WO1989005918A1 - Valve arrangement for pump or compressor - Google Patents

Valve arrangement for pump or compressor Download PDF

Info

Publication number
WO1989005918A1
WO1989005918A1 PCT/NO1988/000094 NO8800094W WO8905918A1 WO 1989005918 A1 WO1989005918 A1 WO 1989005918A1 NO 8800094 W NO8800094 W NO 8800094W WO 8905918 A1 WO8905918 A1 WO 8905918A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
members
discharge
accordance
end wall
Prior art date
Application number
PCT/NO1988/000094
Other languages
French (fr)
Inventor
Leif Dag Henriksen
Original Assignee
3H Invent A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3H Invent A/S filed Critical 3H Invent A/S
Priority to DE8989900931T priority Critical patent/DE3873352T2/en
Priority to AT89900931T priority patent/ATE78901T1/en
Priority to KR1019890701611A priority patent/KR900700807A/en
Publication of WO1989005918A1 publication Critical patent/WO1989005918A1/en
Priority to NO902693A priority patent/NO167227C/en
Priority to FI903100A priority patent/FI903100A0/en
Priority to DK153190A priority patent/DK153190D0/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C9/00Oscillating-piston machines or engines
    • F01C9/002Oscillating-piston machines or engines the piston oscillating around a fixed axis

Definitions

  • Present invention relates to a valve arrangement for pump, compressor or similar machine having oscillating piston wings, where there is arranged a series of mutually angularly displaced discharge slots in a radially extending end wall between a working chamber of the machine and an oppositely disposed dis ⁇ charge chamber and where the discharge slots are controlled by their respective spring-loaded valve member.
  • the present invention is designed particularly for use in machines of especially high speed (rapidly oscillating) type, for example with a rotation range for the driving or the driven shaft of from 10,-000 to 20,-000 revolution/min. (that is to say a rotation range of from 111 to 333 revolutions/sec.)
  • a rotation range for the driving or the driven shaft of from 10,-000 to 20,-000 revolution/min. (that is to say a rotation range of from 111 to 333 revolutions/sec.)
  • valve arrangement where the valve member has a minimal mass, but nevertheless can function in an accurate manner with great effect. With this it is of particular significance that the valve can provide minimal dead space between the valve member or the valve seat and the working chamber in the closed position of the valve.
  • the valve arrangement according to the invention is : charac- ' terised in that the valve member is inserted in" the __end_. wall, in a groove which has a minimum opening directed towards :the-working : chamber and a maximum opening directed towards the discharge: chamber and a valve seat arranged between these openings, the . inner surface of the valve member being flush with or sub ⁇ stantially flush with the adjacent inner surface of the._working chamber.
  • valve members- By inserting according to the invention the valve members-; in the end wall itself between the discharge chamber and the working chambers there is the possibility of placing the valve seats. . fairly tightly up to the working chamber, the valve seats being arranged between said maximum and minimum openings. In practice the dead space between the valve seat and the working chamber can then be reduced to an insignificant minimum.
  • valve:member- to fill in completely or substantially completely the passage .. between the minimum and the maximum opening in the closed position of the valve member.
  • valve member By inserting the valve member in the end wall there is also the possibility, by way of simple means, of allowing movements of the valve member to be limited within the groove in the end wall . with corresponding easy control of the movements of the.valve - member by way of simple means.
  • valve arrangement - is - - characterised in that the valve seat is arranged between opposite- openings (inlet opening and outlet opening) of the discharge, slot, and in that the valve member and associated discharge slot have equivalent conical shapes between the valve seat and the inlet opening of the discharge slot.
  • valve member By this there is the possibility of being able to move the valve member in a simple and effective manner between open and closed positions mainly controlled by equivalent conical surfaces of valve member and discharge slot. At the same time the valve member can fill in the discharge slot almost completely in the closed position of the valve. Furthermore the valve members can be made with little weight and with relatively low volume.
  • valve members are controlled by a common elastically yielding, that is to say spring-loaded valve means.
  • a valve arrangement according to the invention is especially favourable in a construction which is characterised in that the discharge slots are controlled by their respective valve members which are each permanently connected to a common valve means, that the valve members are separately springable relative to the valve means, and that the valve means is inserted in the end wall together with the valve members in a common groove.
  • valve means comprises an annular portion with finger-shaped valve members arranged in a common plane with the annular portion and extending radially from one side edge of the annular portion.
  • valve arrange ⁇ ment is characterised in that the annular portion is arranged radially innermost and the finger member radially outermost,- the annular portion being adapted to be fixed immovably or substanti ⁇ ally immovably in an axial direction, while the finger members are separately pivotable across a radial plane through the annular portion.
  • valve members in the opened position of the valve can be supported against an extra ' support means which can have a shape corresponding to the valve means with associated valve members, but which has a .substanti- . ally greater rigidity and strength than the unit of valve means _ and valve members.
  • the support means By means of the support means the valve means and valve members can also be secured effectively in position ⁇ relative to the groove in the end wall.
  • Fig. 1 shows a vertical section of a compressor according to the invention according to a first embodiment.
  • Fig. 2 shows a perspective view of the most important parts of the compressor according to Fig. 1 pulled axially from-.each other in order to illustrate the parts individually.
  • Fig. 3 shows in a perspective view corresponding to Fig. 2 a compressor according to the invention according to a second embodimen .
  • Fig. 4 shows in plan view a valve means according to Fig.3.
  • Fig. 5 and 6 show an end wall according to said second embodiment seen from two opposite sides.
  • Fig. 7 and 8 show in part a vertical section of the valve means according to Fig. 4 together with a support means fastened in position in the end wall as shown in Fig. 5, with the valve means illustrated in closed and open positions.
  • Fig. 9 shows a section taken along the line 9-9 in Fig- 5-
  • Fig. 10 shows in a perspective view a third embodiment of a valve arrangement according to the invention.
  • Fig. 11 and 12 show in part as shown correspondingly in Fig. 7 and 8 the valve arrangement according to Fig. 10 in closed and open positions.
  • Fig. 13 and 14 show sections through the machine housing with an oscillator member illustrated in two equivalent outer positions.
  • Fig. 15 shows in detail a section of the oscillator member according to Fig. 13.
  • the compressor 10 comprises a stator consisting of a manifold housing 11, a valve means 12, a first end wall 13, a compressor housing member 14 having partition walls 14a and a second end wall 15 and an oscillator member consisting of a rocking piston element 16 having a cylindrical, sleeve-shaped hub portion 16a and several piston wings 16b directed radially outwards from this.
  • a stator consisting of a manifold housing 11, a valve means 12, a first end wall 13, a compressor housing member 14 having partition walls 14a and a second end wall 15
  • an oscillator member consisting of a rocking piston element 16 having a cylindrical, sleeve-shaped hub portion 16a and several piston wings 16b directed radially outwards from this.
  • four piston wings 16b can be employed and correspondingly four pairs of working chambers, as is illu ⁇ strated, or where this is necessarily desired fewer or larger numbers of piston wing portions with a corresponding number of pairs of working chambers.
  • the manifold housing 11 is provided with a radially innermost medium intake 11a which communicates directly with an axially extending duct 17 internally in the hub portion 16a, which is provided with four pairs (only two pairs are shown in Fig. 2) of axially extending- first type port openings, in the form of elongate and narrow inlet slots 18, which pass radially through the body of the hub portion and which are controlled by the movement of the hub portion 16a relative to partition walls 14a of the compressor housing.
  • the port openings can be designed with another shape than illu ⁇ strated, for example with circular port openings.
  • the end wall 13 is provided with four pairs of radially extending port openings of another type, in the form of.” elongate and narrow discharge slots 19, which pass axially through the . body of the end wall 13.
  • the valve means 12 comprises an annular support portion 12a from which four pairs of valve member-forming flaps 12b project radially inwards, which are adapted to stationarily overlap the port openings or the discharge slots 19., the discharge slots 19 being adapted to be closed by the flaps 12b by means of the pressure of the medium on the dov/nstream side . of the medium outlet or by means of the inherent spring pressure in the flaps 12b.
  • the discharge slots 19 are adapted to be opened by the working pressure, which builds up axially within.the end wall 13.
  • valve means 12 is made of an .especially, thin-walled, somewhat resilient material, the valve means being fixed stationarily between the radially outer peripheral portion of the end wall 13 and the radially outer peripheral portion., of the manifold housing 11. Provision is made for a certain play in order to permit movement of the flaps 12b away, from the.port, openings 19.
  • FIG. 3 to 9 there is shown a second embodiment of. the : compressor which is illustrated in Fig..1 and 2.
  • Fig. 3 there is shown a rigid and relatively thick-walled support means 100 which is adapted to form support and stop for a relatively thin-walled valve means 112.
  • the valve means 112 as shown in Fig. 3 and 4 comprises an. annular, radially inner support portion 112a. From this four pairs of valve-forming flaps 112b project radially outwards, which are adapted to stationarily overlap corresponding four pairs of discharge slots 119 in an end wall 113.
  • the support means 100 has a shape corresponding to .the valve means 112 and is provided with an annular, radially inner support portion 100a and four pairs of flaps 100b which project radially outwards from the support portion 100a. As illustrated in Fig. 7 and 8 flaps 100b of the support means are shown deflected obliquely outwards from the main plane of the support portion 100a, so that flaps 100b of the support means can support flaps 112b of the valve means in the opened position of the valve means as shown in Fig. 8.
  • the discharge slots 119 are adapted to be closed by the flaps 112b by means of the pressure of the medium on the downstream side of the medium outlet or by means of the inherent spring pressure in the flaps 112b.
  • the discharge slots 119 in the end wall 113 are localised to a layer axially innermost in the end wall 113, just at the transition to the working chambers of the compressor. More specifically the discharge slots 119 are localised between the surface of the main side which faces towards the working chambers and a plane axially substantially inside the surface of the main side of the end wall 113 which faces towards the discharge chamber.
  • a radially inner annular groove 120 On the side which faces towards the discharge chamber there is arranged a radially inner annular groove 120 with groove portions 121 projecting radially outwards from this.
  • the annular groove 120 and the groove portions 121 have a form which corre ⁇ sponds to the form of the support portion 112a and the flaps 112b and the support portion 100a and the flaps 100b.
  • the valve seat 121a is as shown * in Fig. 9 formed by an annular bulb in the bottom of the groove portion 121, the bulb being produced by means of an extra annular cavity in the bottom of the groove portion 121.
  • the annular groove 120 and the groove portions 121 have a . thickness (reckoned axially in the end wall 113) which is greater than the combined thickness of the thickness of the support portion 112a and the flap 112b together with the support portion 100a.
  • the support portion 112a and the support portion 100a are secured by a stop member 122 radially innermost in the annular groove 120.
  • the flaps 112b are adapted to be pivoted independently of each other, as is indicated in Fig. 7 and 8, but limited by the contour of the support member 100. In practice all the flaps 112b will be pivoted in step with each other between a closed position as shown in Fig. 7 and an opened position as shown in Fig. 8.
  • Fig. 10 to 12 there is shown a third embodiment:where there is illustrated an end wall 213 with four pairs of discharge slots 219.
  • Fig. 10 the arrangement is shown schematically, while the arrangement is illustrated in more detail in Fig- 11 and 12.
  • the valve members 212b and the support member 212 are fastened in an annular groove 220 and in groove portions 221 in a manner corresponding to that shown in the embodiment according to Fig. 3 to 9.
  • Each valve member 212b is as shown in fig.
  • valve head portion 212b' which forms a support abutment against a valve seat 221a laterally outside the dis ⁇ charge slot 219 and is provided with a projection 212b" which has an equivalent form (conical shape) and essentially equivalent or somewhat smaller dimensions than the discharge slot.
  • the projection 212b" can in the closed position of the valve fill in almost completely the dead space which is present between the working chamber and the valve seat.
  • a support element 212 ' in the form of an elastically resilient support means which is common to the separate valve members 212b.
  • the support element 212' has an annular support portion 212a 1 which is fixed in the annular groove 220 by means of a stop member 222. while flaps 212c' of the support element are designed with an S-shape in a plane at right angles to the main plane of the support element 212' .
  • FIG. 13 and 14 there is shown a cross-section of a compressor housing member 114 with associated partition walls 114a and an end wall 115 (opposite the discharge chamber) together with ⁇ rocking piston member 116 having a cylindrical,- sleeve-shaped central portion 116a and four piston wings 116b directed radially outwards from this.
  • the piston wings 116b are of especially thin-walled design in order to ensure the least possible mass in the oscillator member so as to be able thereby to ensure an especially rapid oscillatory movement.
  • the piston wings 116b have for strength reasons a substantially T-shaped cross-section.
  • Stem portion 116c of the T shape which in itself is made of relatively thin-walled construction, is broadest at the inner end and narrowest at the outer end where the stem portion passes over into a cross web or flaps 135, 135.
  • the flaps 135,- 136 are for their part also broadest, at the inner end and narrowest at the outer end.
  • In the partition walls 114a there are formed on opposite sides cavities 137, 138 with a cross-section corresponding to the flaps 135, 136, so that air which is-' present in these cavities is displaced by the flaps ..during movement of the piston wing portion to respective outer .positions* in associated working chambers.
  • the partition walls 114a there is cut out an obliquely extending guide groove 140 which at end surfaces of the partition- walls has a shape and size corresponding to slots 119 of the end wall 113 (see Fig. 5) and opens axially outwards flush with these.
  • the stem portion of the piston wings can be provided with a corresponding projection (not shown further) which on pivoting the piston wing to the outer position. can be pivoted inwardly into the cavity in order to displace .the. ' pressure medium which is cut off in the same. ' .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Check Valves (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)
  • Peptides Or Proteins (AREA)
  • Gas Separation By Absorption (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A valve arrangement for compressor with oscillating piston wings (116b) has a series of mutually angularly displaced discharge slots (119) arranged in a radially extending end wall (113) between working chamber of the machine and on oppositely disposed discharge chamber (111b). The discharge slots (119) are controlled by their respective spring-loaded valve member (112b). The valve member (112b) is inserted in the end wall (113) in a groove (121) which has a minimum opening directed towards the working chamber and a maximum opening directed towards the discharge chamber (111b). A valve seat (121a) is arranged between these openings. The inner surface of the valve is flush or substantially flush with the adjacent inner surface of the working chamber.

Description

VALVE ARRANGEMENT FOR PUMP OR COMPRESSOR.
Present invention relates to a valve arrangement for pump, compressor or similar machine having oscillating piston wings, where there is arranged a series of mutually angularly displaced discharge slots in a radially extending end wall between a working chamber of the machine and an oppositely disposed dis¬ charge chamber and where the discharge slots are controlled by their respective spring-loaded valve member.
The present invention is designed particularly for use in machines of especially high speed (rapidly oscillating) type, for example with a rotation range for the driving or the driven shaft of from 10,-000 to 20,-000 revolution/min. (that is to say a rotation range of from 111 to 333 revolutions/sec.) There is consequently a need for a valve arrangement which can be moved with an especially rapid movement between an open and closed position.
First and foremost the objective is a valve arrangement where the valve member has a minimal mass, but nevertheless can function in an accurate manner with great effect. With this it is of particular significance that the valve can provide minimal dead space between the valve member or the valve seat and the working chamber in the closed position of the valve. The valve arrangement according to the invention is :charac- ' terised in that the valve member is inserted in" the __end_. wall, in a groove which has a minimum opening directed towards :the-working : chamber and a maximum opening directed towards the discharge: chamber and a valve seat arranged between these openings, the . inner surface of the valve member being flush with or sub¬ stantially flush with the adjacent inner surface of the._working chamber.
By inserting according to the invention the valve members-; in the end wall itself between the discharge chamber and the working chambers there is the possibility of placing the valve seats. . fairly tightly up to the working chamber, the valve seats being arranged between said maximum and minimum openings. In practice the dead space between the valve seat and the working chamber can then be reduced to an insignificant minimum.
Further according to the invention by allowing the inner surface of the valve member to be flush with the adjacent inner surface of the working chamber, one can allow the valve:member- to fill in completely or substantially completely the passage .. between the minimum and the maximum opening in the closed position of the valve member. By this the possibility .of the! occurrence of dead space between the working chamber" and the. valve member or the valve seat can be substantially reduced.
By inserting the valve member in the end wall there is also the possibility, by way of simple means, of allowing movements of the valve member to be limited within the groove in the end wall . with corresponding easy control of the movements of the.valve - member by way of simple means.
According to a special embodiment the valve arrangement -is - - characterised in that the valve seat is arranged between opposite- openings (inlet opening and outlet opening) of the discharge, slot, and in that the valve member and associated discharge slot have equivalent conical shapes between the valve seat and the inlet opening of the discharge slot.
By this there is the possibility of being able to move the valve member in a simple and effective manner between open and closed positions mainly controlled by equivalent conical surfaces of valve member and discharge slot. At the same time the valve member can fill in the discharge slot almost completely in the closed position of the valve. Furthermore the valve members can be made with little weight and with relatively low volume.
It is preferred that the valve members are controlled by a common elastically yielding, that is to say spring-loaded valve means. By this one can secure the valve members in position with a common valve means which can be fastened in a simple and ready manner and which can thereby secure the valve members of little weight and low volume effectively in position in assocaited discharge slots.
A valve arrangement according to the invention is especially favourable in a construction which is characterised in that the discharge slots are controlled by their respective valve members which are each permanently connected to a common valve means, that the valve members are separately springable relative to the valve means, and that the valve means is inserted in the end wall together with the valve members in a common groove.
It is preferred that the valve means comprises an annular portion with finger-shaped valve members arranged in a common plane with the annular portion and extending radially from one side edge of the annular portion.
By this there is the possibility of being able to control the valve members in an effective manner relative to each other,- so that minimal extra control means are required to guide the valve members accurately into position relative to the valve seat in the closed position of the valve and in a position displaced away from the valve seat in the opened position of the valve.
In order to achieve a most favourably possible control of the valve means and associated valve members the valve arrange¬ ment is characterised in that the annular portion is arranged radially innermost and the finger member radially outermost,- the annular portion being adapted to be fixed immovably or substanti¬ ally immovably in an axial direction, while the finger members are separately pivotable across a radial plane through the annular portion. By making according to the invention the valve means.:wi h associated valve members of especially thin-walled construction,, there can be obtained particularly little, weight for the valve means and associated valve members, so that the.- alve members can be moved in an especially rapid and specially controlled manner : relative to the valve means.
Furthermore it is preferred that the valve members in the opened position of the valve can be supported against an extra ' support means which can have a shape corresponding to the valve means with associated valve members, but which has a .substanti- . ally greater rigidity and strength than the unit of valve means _ and valve members. By means of the support means the valve means and valve members can also be secured effectively in position relative to the groove in the end wall.
Further features according to the invention will be evident from the following description having regard to the accompanying drawings, in which:
Fig. 1 shows a vertical section of a compressor according to the invention according to a first embodiment.
Fig. 2 shows a perspective view of the most important parts of the compressor according to Fig. 1 pulled axially from-.each other in order to illustrate the parts individually.
Fig. 3 shows in a perspective view corresponding to Fig. 2 a compressor according to the invention according to a second embodimen .
Fig. 4 shows in plan view a valve means according to Fig.3.
Fig. 5 and 6 show an end wall according to said second embodiment seen from two opposite sides.
Fig. 7 and 8 show in part a vertical section of the valve means according to Fig. 4 together with a support means fastened in position in the end wall as shown in Fig. 5, with the valve means illustrated in closed and open positions.
Fig. 9 shows a section taken along the line 9-9 in Fig- 5-
Fig. 10 shows in a perspective view a third embodiment of a valve arrangement according to the invention. Fig. 11 and 12 show in part as shown correspondingly in Fig. 7 and 8 the valve arrangement according to Fig. 10 in closed and open positions.
Fig. 13 and 14 show sections through the machine housing with an oscillator member illustrated in two equivalent outer positions.
Fig. 15 shows in detail a section of the oscillator member according to Fig. 13.
According to a first embodiment which is shown in Fig. 1 and 2 the compressor 10 comprises a stator consisting of a manifold housing 11, a valve means 12, a first end wall 13, a compressor housing member 14 having partition walls 14a and a second end wall 15 and an oscillator member consisting of a rocking piston element 16 having a cylindrical, sleeve-shaped hub portion 16a and several piston wings 16b directed radially outwards from this. For example four piston wings 16b can be employed and correspondingly four pairs of working chambers, as is illu¬ strated, or where this is necessarily desired fewer or larger numbers of piston wing portions with a corresponding number of pairs of working chambers.
In one embodiment there can also be employed for example three piston wing portions to form corresponding three pairs of working chambers- for example two pairs of low pressure chambers and a pair of high pressure chambers which are based on the supply of pressure medium from the said two pairs of low pressure chambers.
As shown in Fig. 1 the manifold housing 11 is provided with a radially innermost medium intake 11a which communicates directly with an axially extending duct 17 internally in the hub portion 16a, which is provided with four pairs (only two pairs are shown in Fig. 2) of axially extending- first type port openings, in the form of elongate and narrow inlet slots 18, which pass radially through the body of the hub portion and which are controlled by the movement of the hub portion 16a relative to partition walls 14a of the compressor housing. If desired the port openings can be designed with another shape than illu¬ strated, for example with circular port openings. The end wall 13 is provided with four pairs of radially extending port openings of another type, in the form of." elongate and narrow discharge slots 19, which pass axially through the . body of the end wall 13. The valve means 12 comprises an annular support portion 12a from which four pairs of valve member-forming flaps 12b project radially inwards, which are adapted to stationarily overlap the port openings or the discharge slots 19., the discharge slots 19 being adapted to be closed by the flaps 12b by means of the pressure of the medium on the dov/nstream side . of the medium outlet or by means of the inherent spring pressure in the flaps 12b. The discharge slots 19 are adapted to be opened by the working pressure, which builds up axially within.the end wall 13. In practice the valve means 12 is made of an .especially, thin-walled, somewhat resilient material, the valve means being fixed stationarily between the radially outer peripheral portion of the end wall 13 and the radially outer peripheral portion., of the manifold housing 11. Provision is made for a certain play in order to permit movement of the flaps 12b away, from the.port, openings 19.
In Fig. 3 to 9 there is shown a second embodiment of. the : compressor which is illustrated in Fig..1 and 2.
In Fig. 3 there is shown a rigid and relatively thick-walled support means 100 which is adapted to form support and stop for a relatively thin-walled valve means 112.
The valve means 112 as shown in Fig. 3 and 4 comprises an. annular, radially inner support portion 112a. From this four pairs of valve-forming flaps 112b project radially outwards, which are adapted to stationarily overlap corresponding four pairs of discharge slots 119 in an end wall 113.
The support means 100 has a shape corresponding to .the valve means 112 and is provided with an annular, radially inner support portion 100a and four pairs of flaps 100b which project radially outwards from the support portion 100a. As illustrated in Fig. 7 and 8 flaps 100b of the support means are shown deflected obliquely outwards from the main plane of the support portion 100a, so that flaps 100b of the support means can support flaps 112b of the valve means in the opened position of the valve means as shown in Fig. 8.
In a corresponding manner as described above the discharge slots 119 are adapted to be closed by the flaps 112b by means of the pressure of the medium on the downstream side of the medium outlet or by means of the inherent spring pressure in the flaps 112b. By arranging the support portion 112a according to the second embodiment radially innermost, instead of radially outer¬ most,- as shown in Fig. 2 . there is obtained firstly a simpler and more effective fixing of the valve means independently of the manifold housing. Secondly one can ensure that the support portion 112a according to Fig. 3 and 4 can be designed with a far smaller surface area and thereby with a corresponding smaller mass.
By allowing in addition flaps 112b of the valve means to be supported against flaps 100b of the support means in the open position, there can be employed an especially small thickness for the valve means and thereby this can be made in a simple and uncomplicated manner.
The discharge slots 119 in the end wall 113 are localised to a layer axially innermost in the end wall 113, just at the transition to the working chambers of the compressor. More specifically the discharge slots 119 are localised between the surface of the main side which faces towards the working chambers and a plane axially substantially inside the surface of the main side of the end wall 113 which faces towards the discharge chamber.
On the side which faces towards the discharge chamber there is arranged a radially inner annular groove 120 with groove portions 121 projecting radially outwards from this. The annular groove 120 and the groove portions 121 have a form which corre¬ sponds to the form of the support portion 112a and the flaps 112b and the support portion 100a and the flaps 100b. Centrally in the groove portions 121 there is designed the inlet opening to the elongate discharge slot 119 and laterally of the inlet opening there is defined in the groove portion 121 a valve seat 121a which forms a .support surface for the associated. valve member- forming' flap 112b. The valve seat 121a is as shown* in Fig. 9 formed by an annular bulb in the bottom of the groove portion 121, the bulb being produced by means of an extra annular cavity in the bottom of the groove portion 121.
The annular groove 120 and the groove portions 121 have a . thickness (reckoned axially in the end wall 113) which is greater than the combined thickness of the thickness of the support portion 112a and the flap 112b together with the support portion 100a. As shown in Fig. 7 and 8 the support portion 112a and the support portion 100a are secured by a stop member 122 radially innermost in the annular groove 120. The flaps 112b are adapted to be pivoted independently of each other, as is indicated in Fig. 7 and 8, but limited by the contour of the support member 100. In practice all the flaps 112b will be pivoted in step with each other between a closed position as shown in Fig. 7 and an opened position as shown in Fig. 8. From the groove portions 121 there extend obliquely outwards guide surfaces 121b for effec¬ tively leading compressed air via a passage between the valve seat 121a and the flap 112b in its opened position-to the adjacent discharge chamber. At 121c there are shown shoulder portions which guide the flaps 112b into place during the. pivotal movement of the flaps between the two positions which are shown in Fig. 7 and 8, so that unintended rotation of the support portion 112a and the support portion 100a in the associated groove 120 in the end wall 113 is avoided.
In Fig. 10 to 12 there is shown a third embodiment:where there is illustrated an end wall 213 with four pairs of discharge slots 219. In Fig. 10 the arrangement is shown schematically, while the arrangement is illustrated in more detail in Fig- 11 and 12. There are shown four pairs of valve members 212b which are supported by a common separate support member 212. The valve members 212b and the support member 212 are fastened in an annular groove 220 and in groove portions 221 in a manner corresponding to that shown in the embodiment according to Fig. 3 to 9. Each valve member 212b is as shown in fig. 11 and 12 provided with a valve head portion 212b' which forms a support abutment against a valve seat 221a laterally outside the dis¬ charge slot 219 and is provided with a projection 212b" which has an equivalent form (conical shape) and essentially equivalent or somewhat smaller dimensions than the discharge slot. By this the projection 212b" can in the closed position of the valve fill in almost completely the dead space which is present between the working chamber and the valve seat. By designing the projection 212b" and the discharge slot 219 with substantially corresponding conical shapes the projection has the possibility of relatively free movement in the disharge slot during opening and closing of the valve and then with a self-centering adjustment of the projection in the discharge slot.
According to Fig. 11 and 12 there is shown a support element 212 ' in the form of an elastically resilient support means which is common to the separate valve members 212b. The support element 212' has an annular support portion 212a1 which is fixed in the annular groove 220 by means of a stop member 222. while flaps 212c' of the support element are designed with an S-shape in a plane at right angles to the main plane of the support element 212' .
In Fig. 13 and 14 there is shown a cross-section of a compressor housing member 114 with associated partition walls 114a and an end wall 115 (opposite the discharge chamber) together with ε rocking piston member 116 having a cylindrical,- sleeve-shaped central portion 116a and four piston wings 116b directed radially outwards from this. The piston wings 116b are of especially thin-walled design in order to ensure the least possible mass in the oscillator member so as to be able thereby to ensure an especially rapid oscillatory movement. The piston wings 116b have for strength reasons a substantially T-shaped cross-section. Stem portion 116c of the T shape, which in itself is made of relatively thin-walled construction, is broadest at the inner end and narrowest at the outer end where the stem portion passes over into a cross web or flaps 135, 135. The flaps 135,- 136 are for their part also broadest, at the inner end and narrowest at the outer end. In the partition walls 114a there are formed on opposite sides cavities 137, 138 with a cross-section corresponding to the flaps 135, 136, so that air which is-' present in these cavities is displaced by the flaps ..during movement of the piston wing portion to respective outer .positions* in associated working chambers. By this there can b& obtained an . effective buffer effect between the oscillator member and associated partition walls 114a and a large end surface according to the conditions. In the end surface of the cross web there are formed a pair of longitudinal lubricating grooves 135a, 136a, such as shown in Fig. 15.
In the partition walls 114a there is cut out an obliquely extending guide groove 140 which at end surfaces of the partition- walls has a shape and size corresponding to slots 119 of the end wall 113 (see Fig. 5) and opens axially outwards flush with these. If desired the stem portion of the piston wings can be provided with a corresponding projection (not shown further) which on pivoting the piston wing to the outer position. can be pivoted inwardly into the cavity in order to displace .the. ' pressure medium which is cut off in the same. ' .

Claims

PATENT CLAIMS,
1. Valve arrangement for pump, compressor or similar machine having oscillating piston wings (16, 116) , where there is arranged a series of mutually angularly displaced discharge slots (19, 119, 129) in a radially extending end wall (13, 113, 213) between a working chamber of the machine and an oppositely disposed discharge chamber (lib, 111b, 211b) and where the dis¬ charge slots are controlled by their respective spring-loaded valve member (12b, 112b, 212b), characterised in that the valve member (12b, 112b, 212b) is inserted in the end wall (13, 113, 213) in a groove (21, 121, 221) which has a minimum opening directed towards the working chamber and a maximum opening directed towards the discharge chamber (lib, 111b, 211b) and a valve seat (121a, 221a) arranged between these openings, the inner surface of the valve member being flush or substantially flush with the adjacent inner surface of the working chamber.
2. Valve arrangement in accordance with claim 1, characterised in that the valve seat (221a) is arranged between opposite openings (inlet opening and outlet opening) of the discharge slot (119), and that valve member (212) and associated discharge slot (119) have equivalent conical shapes between the valve seat and inlet opening of the discharge slot.
3. Valve arrangement in accordance with claim 2, characterised in that the valve seat (221a) is arranged parallel to..the plane of the inlet opening, preferably at the top of an annular bulb, which projects endways outwardly from the bottom of the groove
(221).. and that the valve member (212b) is extended from the valve seat (221a) inwardly towards the inlet opening of the . discharge slot with a projection (212b") which in the closed position of the valve projects inwardly to the inner surface of the associated working chamber and substantially fills in the volume between the valve seat and inlet opening of the discharσe slot.
4. Valve arrangement in accordance with one of the claims 1-3 , characterised in that the valve members (12b, 112b,- 212b) are , controlled by a common elastically yielding, that is to say spring-loaded valve means (12, 112- 212).
5. Valve arrangement in accordance with claim 1, characterised in that the discharge slots (19, 119) are controlled by their respective valve members (12b, 112b) v/hich are each permanently connected to a common valve means (12, 112), that the valve members (12b, 112b) are separately springable relative to the valve means (12, 112), and that the valve means (12, 112) is inserted in the end wall (13. 113) together with the valve members (12b, 112b) in a common groove (20, 21; 120, 121).
6. Valve arrangement in accordance with one of the claims- 1—5, characterised in that the valve means (12, 112) comprises an . annular portion (12a, 112a) with finger-shaped valve members - (12b.- 112b) extending radially from one side edge of the annular portion arranged in a plane common to the annular portion.
7. Valve arrangement in accordance with claim 5,- characterised in that the annular portion (112a) is arranged radially innermost and the finger members (112b) radially outermost, the annular portion (112a) being adapted to be fixed immovably or sub- stantially immovably in an axial direction, while the finger members (112b) are separately pivotable across a radial plane through the annular portion.
8. Valve arrangement in accordance with one of the claims 1-7, characterised in that the valve means (12, 112) with associated valve members (12b, 112b) is made with a special thin-walled construction.
9. Valve arrangement in accordance with claim 8, characterised in that the valve members (112b) are supported in the opened position of the valve against an extra support means (100) which has a shape corresponding to the valve means (112) with associated valve members (112b), but which has a substantially greater rigidity and strength than the unit of valve means and valve members .
PCT/NO1988/000094 1987-12-23 1988-12-16 Valve arrangement for pump or compressor WO1989005918A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE8989900931T DE3873352T2 (en) 1987-12-23 1988-12-16 VALVE ARRANGEMENT FOR PUMP OR COMPRESSOR.
AT89900931T ATE78901T1 (en) 1987-12-23 1988-12-16 VALVE ARRANGEMENT FOR PUMP OR COMPRESSOR.
KR1019890701611A KR900700807A (en) 1987-12-23 1988-12-16 Valve device of pump or compressor
NO902693A NO167227C (en) 1987-12-23 1990-06-18 VALVE ARRANGEMENT FOR PUMP OR COMPRESSOR.
FI903100A FI903100A0 (en) 1987-12-23 1990-06-20 VENTILSYSTEM FOER EN PUMP ELLER KOMPRESSOR.
DK153190A DK153190D0 (en) 1987-12-23 1990-06-22 VALVE ARRANGEMENT FOR PUMP OR COMPRESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO875407A NO167938C (en) 1987-12-23 1987-12-23 DEVICE BY PUMP OR COMPRESSOR
NO875407 1987-12-23

Publications (1)

Publication Number Publication Date
WO1989005918A1 true WO1989005918A1 (en) 1989-06-29

Family

ID=19890496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO1988/000094 WO1989005918A1 (en) 1987-12-23 1988-12-16 Valve arrangement for pump or compressor

Country Status (12)

Country Link
EP (1) EP0395710B1 (en)
JP (1) JPH03502954A (en)
AT (1) ATE78901T1 (en)
AU (1) AU633250B2 (en)
CA (1) CA1334661C (en)
DE (1) DE3873352T2 (en)
DK (1) DK153190D0 (en)
ES (1) ES2012934A6 (en)
FI (1) FI903100A0 (en)
MX (1) MX170497B (en)
NO (2) NO167938C (en)
WO (1) WO1989005918A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188929A1 (en) * 2000-09-14 2002-03-20 Kabushiki Kaisha Toyota Jidoshokki Scroll compressors
WO2004088141A2 (en) * 2003-04-02 2004-10-14 Gebr. Becker Gmbh & Co. Kg Oscillating piston pump
WO2011057345A1 (en) * 2009-11-12 2011-05-19 Exodus R & D Pty Ltd Fluid compressor or pump apparatus
WO2011057348A1 (en) * 2009-11-12 2011-05-19 Exodus R & D Pty Ltd Improved fluid compressor and/or pump arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113073A1 (en) * 2012-02-02 2013-08-08 Exodus R&D International Pte Ltd Pump and/or compressor arrangement including mating, oscillatable vane members for the simultaneous admission and discharge of fluid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827833A (en) * 1971-03-04 1974-08-06 Kawasaki Heavy Ind Ltd Rotor cooling device in an oscillation type compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO168264C (en) * 1989-02-03 1992-01-29 3H Invent As DEVICE PUMP PUMP OR SIMILAR MACHINE.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827833A (en) * 1971-03-04 1974-08-06 Kawasaki Heavy Ind Ltd Rotor cooling device in an oscillation type compressor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188929A1 (en) * 2000-09-14 2002-03-20 Kabushiki Kaisha Toyota Jidoshokki Scroll compressors
US6544016B2 (en) 2000-09-14 2003-04-08 Kabushiki Kaisha Toyota Jidoshokki Scroll compressors
WO2004088141A2 (en) * 2003-04-02 2004-10-14 Gebr. Becker Gmbh & Co. Kg Oscillating piston pump
WO2004088141A3 (en) * 2003-04-02 2005-01-06 Becker Gmbh & Co Kg Geb Oscillating piston pump
WO2011057345A1 (en) * 2009-11-12 2011-05-19 Exodus R & D Pty Ltd Fluid compressor or pump apparatus
WO2011057348A1 (en) * 2009-11-12 2011-05-19 Exodus R & D Pty Ltd Improved fluid compressor and/or pump arrangement
CN102812248A (en) * 2009-11-12 2012-12-05 依达克斯研发国际私人有限公司 Fluid Compressor Or Pump Apparatus
US9163631B2 (en) 2009-11-12 2015-10-20 Exodus R&D International Pte Ltd Fluid compressor or pump apparatus
US9273690B2 (en) 2009-11-12 2016-03-01 Exodus R&D International Pte Ltd Fluid compressor and/or pump arrangement
EA025140B1 (en) * 2009-11-12 2016-11-30 Эксодас Р&Д Интернэшнл Пте Лтд. Improved fluid compressor and/or pump arrangement
EA025114B1 (en) * 2009-11-12 2016-11-30 Эксодас Р&Д Интернэшнл Пте Лтд. Fluid compressor and/or pump apparatus

Also Published As

Publication number Publication date
FI903100A0 (en) 1990-06-20
EP0395710B1 (en) 1992-07-29
ATE78901T1 (en) 1992-08-15
NO167227C (en) 1991-10-16
AU633250B2 (en) 1993-01-28
EP0395710A1 (en) 1990-11-07
NO875407D0 (en) 1987-12-23
NO875407L (en) 1989-06-26
NO167227B (en) 1991-07-08
ES2012934A6 (en) 1990-04-16
DK153190A (en) 1990-06-22
NO902693D0 (en) 1990-06-18
AU2909889A (en) 1989-07-19
JPH03502954A (en) 1991-07-04
DE3873352T2 (en) 1992-12-10
CA1334661C (en) 1995-03-07
MX170497B (en) 1993-08-26
DE3873352D1 (en) 1992-09-03
DK153190D0 (en) 1990-06-22
NO167938C (en) 1991-12-27
NO902693L (en) 1990-06-18
NO167938B (en) 1991-09-16

Similar Documents

Publication Publication Date Title
HU217472B (en) Rotary valve for internal combustion engines
JPH04231693A (en) Root type blower for supercharger
CN1955441A (en) Variable geometry inlet guide vane
JPH076394B2 (en) Internal combustion engine with cylinder intake port
US5762036A (en) Split plenum intake manifold with variable runners
WO1989005918A1 (en) Valve arrangement for pump or compressor
JP6003692B2 (en) Intake device
US4762102A (en) Intake device of an internal combustion engine
EP2044303B1 (en) Intake apparatus for internal combustion engine
EP1619371B1 (en) Throttle valve
US5201644A (en) Valve arrangement for pump or compressor
JPH07224670A (en) Suction system for multicylinder internal combustion engine
JP3914190B2 (en) Intake channel system for internal combustion engine
CN108798818A (en) A kind of valve actuating mechanism and engine system
EP1403483A1 (en) Air intake system for multi-cylinder engine, an engine equipped therewith and rotary-type throttle valve therefor
KR101694740B1 (en) large two stroke engine, inlet valve and cylinder liner
KR20080079664A (en) Improved air supply distributor for an internal combustion engine
US4915128A (en) Automatic chambered flap valve for controlling gas passage, particularly for feeding two-stroke internal combustion engines
JPS609377Y2 (en) Arm mounting structure
JPS6321777Y2 (en)
KR100860459B1 (en) Annular pneumatic motor
KR101481427B1 (en) Valve arrangement for a combustion engine
WO2023053377A1 (en) Air intake structure for internal combustion engine
KR100398158B1 (en) Muffler
JPH02271029A (en) Arranging structure of double poppet valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK FI JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989900931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 903100

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1989900931

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989900931

Country of ref document: EP