WO1989005450A1 - Process and device for contactless measurement of mechanical stresses on rapidly moving objects with a crystalline structure - Google Patents

Process and device for contactless measurement of mechanical stresses on rapidly moving objects with a crystalline structure Download PDF

Info

Publication number
WO1989005450A1
WO1989005450A1 PCT/EP1988/001091 EP8801091W WO8905450A1 WO 1989005450 A1 WO1989005450 A1 WO 1989005450A1 EP 8801091 W EP8801091 W EP 8801091W WO 8905450 A1 WO8905450 A1 WO 8905450A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
analyzer crystal
collimator
crystal
examined
Prior art date
Application number
PCT/EP1988/001091
Other languages
German (de)
French (fr)
Inventor
Thomas Wroblewski
Jörg IHRINGER
Original Assignee
Deutsches Elektronen-Synchrotron Desy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Elektronen-Synchrotron Desy filed Critical Deutsches Elektronen-Synchrotron Desy
Publication of WO1989005450A1 publication Critical patent/WO1989005450A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis

Definitions

  • the invention relates to a method according to the preamble of claim 1 and an apparatus for performing the method.
  • Tensions in solids can be determined by examining the changes in the crystal structure caused by them.
  • X-ray reflexes are measured as a function of the sample position and the stresses acting on the sample. This is called poly figure analysis. So far, only static samples could be examined with this method, since a shift of the sample leads to a shift of the reflex. This leads to the fact that the X-ray or "reflected" from the sample or the object to be examined Corpuscular beam no longer falls into the detector arranged at a fixed spatial angle.
  • Figure 1 is a schematic representation of the arrangement for performing the method?
  • FIG. 2 shows a recording of two angle-dependent radiation intensities determined with the device according to FIG. 1.
  • a sample to be examined or an object S is arranged in the center of a goniometer circular arc, on which a housing H can be pivoted about the location of the object S.
  • a collimator SC, an analyzer crystal A and a detector D are arranged in the housing H and are described in more detail below.
  • a beam is directed as a monochromatic radiation through a slit system SS via a double crystal monochromator DCM onto the object S.
  • the double crystal mono Chromator DCM is used on the one hand to generate monochromatic radiation and on the other hand to generate a parallel offset beam in order to be able to arrange the object S approximately as an extension of the beam emerging on the slit system SS.
  • An ionization chamber IC is spatially between the double crystal monochromator DCM and the object
  • the beam "reflected" by the sample S enters the housing H and, in one embodiment, passes through a Soller collimator SC, which has foils arranged parallel to the diffraction plane and extending in the beam direction.
  • the Soller collimator SC serves to limit the divergence of the radiation scattered on the sample perpendicular to the diffraction plane.
  • the analyzer crystal A is either a single-crystal plate, a mosaic crystal plate or a synthetic multi-layer crystal "multilayer", which is attached in the housing H to a swiveling support without tension. This enables the analyzer crystal to be aligned both in the direction of the opening 0 of the housing H and in the direction of the entry axis of the detector D.
  • the detector D is likewise expediently adjustable in the housing H such that between the analyzer crystal A and the detector D can be made to have a fixed ink relationship that corresponds to the gloss angle ⁇ 9> of the analyzer crystal A used for the wavelength set on the monochromator.
  • the analyzer crystal is, for example, a silicon or germanium mosaic crystal with the orientation 111 and the dimensions 30 ⁇ 60 mm with a thickness of approximately
  • detector D customary scintillation counters are used as detector D, but any detectors sensitive to the radiation used, such as an ionization chamber, a semiconductor detector or a proportional counter tube, can also be used.
  • an analyzer crystal A suitable for examining a moving object S in size, type and shape is selected and mounted in the housing H.
  • the Bragg gloss angle "U * is known for crystals of this type, so that the analyzer can be adjusted under the gloss angle -ß * with respect to the detector D.
  • the adjustment is carried out by rotating the analyzer carrier about an axis that is perpendicular to the plane of the goniometer arc and thus perpendicular to the plane of the drawing.
  • the object to be examined is then arranged at point S.
  • the slit system SS can then be opened and the object S can be irradiated with monochromatic radiation
  • the goniometer circular arc (not shown) is pivoted, the radiation intensity falling into the detector being recorded as a function of the angle 2 ⁇ . which leads to a change in the network plane spacing in the object to be examined but also changes the "reflection angle", which can be seen by changing the intensity of the "reflected" beam.
  • d is the network plane distance, " ⁇ ” the diffraction angle and " ⁇ ' 1 the wavelength of the monochromatic beam.
  • Figure 2 shows the curves for measuring the rotor of a turbopump, which was made of aluminum.
  • the aluminum reflex was measured for indices 333 and 511.
  • the investigation was carried out using an X-ray beam with an energy of 8.63 keV and a wavelength of 0.1437 nm.
  • the X-ray beam hit the roots of the turbine blades.
  • With the turbine running a clear shift of the reflex to higher angles was measured compared to the turbine at rest. This corresponds to a reduction in the lattice constant due to transverse contractions perpendicular to the direction of pull given by the centrifugal force.
  • the curves shown represent an averaging over all blades, but it is pointed out that stroboscopic measurements are also possible, so that measurements can be carried out with high-precision spatial resolution.
  • the accuracy of the method can be increased significantly by going to smaller diffraction angles.
  • Half-widths were already used measured from 0.01 degrees.
  • the accuracy of the method can also be increased by using other monochromators and analyzer crystals or reflections (e.g. Germanium 511 orientation).

Abstract

In a process for contactless measurement of mechanical stresses on rapidly moving objects, an analyzing crYstal (A) and a detector (B) are arranged in a housing (H) and are pivoted together at a fixed angle to each other along an arc of a circle of a goniometer about the test object (S). The variation of the grating constants of the test object and the resultant stress are derived from the difference between the angles of diffraction (2) measured in the absence of stresses and in the presence of stresses.

Description

Verfahren und Vorrichtung zur berührungsfreien Messung mechanischer Spannungen an schnell bewegten Objekten mit kristalliner Struktur Method and device for non-contact measurement of mechanical stresses on rapidly moving objects with a crystalline structure
Die Erfindung betrifft ein Verfahren gemäß Oberbegriff des Patentanspruchs 1 und eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method according to the preamble of claim 1 and an apparatus for performing the method.
Spannungen in Festkörpern können bestimmt werden, indem man die durch sie hervorgerufenen Änderungen im Kristallgefüge untersucht. Hierzu werden Röntgenreflexe als Funktion der Probenstellung und der auf die Probe wirkenden Spannungen vermessen. Man nennt dies Polyfigurenanalyse. Bisher konnten mit diesen Verfahren nur ruhende Proben untersucht werden, da eine Verschiebung der Probe zu einer Verschiebung des Reflexes führt. Dies führt dazu, daß der von der Probe oder dem zu untersuchenden Objekt "reflektierte" Röntgen- oder Korpuskularstrahl nicht mehr in den unter festem Ortswinkel angeordneten Detektor fällt.Tensions in solids can be determined by examining the changes in the crystal structure caused by them. For this purpose, X-ray reflexes are measured as a function of the sample position and the stresses acting on the sample. This is called poly figure analysis. So far, only static samples could be examined with this method, since a shift of the sample leads to a shift of the reflex. This leads to the fact that the X-ray or "reflected" from the sample or the object to be examined Corpuscular beam no longer falls into the detector arranged at a fixed spatial angle.
Es ist Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens zu schaffen, mit denen die mechanischen Spannungen in sich schnell bewegenden Objekten berührungsfrei ermittelt werden können.It is an object of the invention to provide a method and a device for carrying out the method, with which the mechanical stresses in rapidly moving objects can be determined without contact.
Zur Losung dieser Aufgabe dienen die kennzeichnenden Merk- male des Patentanspruchs 1 in Verbindung mit dessen Ober¬ begriff. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den ünteransprüchen.The characteristic features of patent claim 1 in conjunction with its preamble serve to solve this problem. Advantageous embodiments of the invention result from the subordinate claims.
Die Erfindung wird im folgenden anhand von Figuren näher erläutert. Es zeigen:The invention is explained in more detail below with reference to figures. Show it:
Figur 1 eine schematische Darstellung der Anordnung zur Durchführung des Verfahrens? undFigure 1 is a schematic representation of the arrangement for performing the method? and
Figur 2 eine Aufzeichnung zweier mit der Vorrichtung nach Figur 1 ermittelter winkelabhängiger Strahlungs¬ intensitäten.FIG. 2 shows a recording of two angle-dependent radiation intensities determined with the device according to FIG. 1.
Gemäß Figur 1 wird eine zu untersuchende Probe oder ein Objekt S im Mittelpunkt eines Goniometer-Kreisbogens ange¬ ordnet, auf dem ein Gehäuse H um den Ort des Objekts S schwenkbar ist. In dem Gehäuse H sind ein Kollimator SC, ein Analysator-Kristall A und ein Detektor D angeordnet, die weiter unten näher beschrieben werden.According to FIG. 1, a sample to be examined or an object S is arranged in the center of a goniometer circular arc, on which a housing H can be pivoted about the location of the object S. A collimator SC, an analyzer crystal A and a detector D are arranged in the housing H and are described in more detail below.
Von einer nicht dargestellten Strahlenquelle, die beispiels¬ weise Röntgen-, Elektronen- oder Neutronenstrahlen aussendet, wird ein Strahl durch ein Spaltsystem SS über einen Doppelkristall-Monochromator DCM als monochromatische Strah- lung auf das Objekt S gerichtet. Der Doppelkristall-Mono- chromator DCM dient dabei einmal zur Erzeugung einer monochromatischen Strahlung und zum anderen zur Erzeugung eines parallelversetzten Strahls, um das Objekt S etwa in Verlängerung des auf dem Spaltsystem SS austretenden Strahls anordnen zu können. Eine Ionisationskammer IC ist räumlich zwischen dem Doppelkristall-Monochromator DCM und dem ObjektFrom a radiation source, not shown, which emits X-ray, electron or neutron beams, for example, a beam is directed as a monochromatic radiation through a slit system SS via a double crystal monochromator DCM onto the object S. The double crystal mono Chromator DCM is used on the one hand to generate monochromatic radiation and on the other hand to generate a parallel offset beam in order to be able to arrange the object S approximately as an extension of the beam emerging on the slit system SS. An ionization chamber IC is spatially between the double crystal monochromator DCM and the object
5 angeordnet, durch die der Strahl läuft und die zur Messung der Strahlintensität dient.5 arranged, through which the beam passes and which is used to measure the beam intensity.
Der von der Probe S "reflektierte" Strahl tritt in das Gehäuse H ein und durchsetzt in einer Ausführung einen Soller-Kollimator SC, der parallel zur Beugungsebene angeord¬ nete Folien aufweist, die sich in Strahlrichtung erstrecken. Der Soller-Kollimator SC dient dazu, die Divergenz der an der Probe gestreuten Strahlung senkrecht zur Beugungsebene zu begrenzen.The beam "reflected" by the sample S enters the housing H and, in one embodiment, passes through a Soller collimator SC, which has foils arranged parallel to the diffraction plane and extending in the beam direction. The Soller collimator SC serves to limit the divergence of the radiation scattered on the sample perpendicular to the diffraction plane.
Der Analysator-Kristall A ist entweder ein Einkristall- plättchen, eine Mosaikkristallplatte oder ein synthetischer Mehrschichtkristall "Multilayer" , die in dem Gehäuse H spannungsfrei an einem schwenkbaren Träger angebracht ist. Dies ermöglicht eine Ausrichtung des Analysator-Kristalls sowohl in Richtung auf die Öffnung 0 des Gehäuses H, als auch in Richtung auf die Eintrittsachse des Detektors D. Der Detektor D ist im Gehäuse H ebenfalls zweckmäßigerweise derart ausrichtbar, so daß zwischen dem Analysator-Kristall A und dem Detektor D eine feste inkelbeziehung herstellbar ist, die dem Glanzwinkel ι9> des verwendeten Analysator-Kristalls A für die am Monochromator eingestellte Wellenlänge ent- spricht. Als Analysator-Kristall kommt beispielsweise ein Silicium- oder Germanium-Mosaikkristall mit der Orientierung 111 und den Abmessungen 30 x 60 mm mit einer Dicke von etwaThe analyzer crystal A is either a single-crystal plate, a mosaic crystal plate or a synthetic multi-layer crystal "multilayer", which is attached in the housing H to a swiveling support without tension. This enables the analyzer crystal to be aligned both in the direction of the opening 0 of the housing H and in the direction of the entry axis of the detector D. The detector D is likewise expediently adjustable in the housing H such that between the analyzer crystal A and the detector D can be made to have a fixed ink relationship that corresponds to the gloss angle ι9> of the analyzer crystal A used for the wavelength set on the monochromator. The analyzer crystal is, for example, a silicon or germanium mosaic crystal with the orientation 111 and the dimensions 30 × 60 mm with a thickness of approximately
6 mm in Frage. Als Detektor D verwendet man beispielsweise übliche Szinti- lationszähler, es lassen sich jedoch auch beliebige für die verwendete Strahlung empfindliche Detektoren wie eine Ioni¬ sationskammer, ein Halbleiterdetektor oder ein Proportional- zählrohr einsetzen.6 mm in question. For example, customary scintillation counters are used as detector D, but any detectors sensitive to the radiation used, such as an ionization chamber, a semiconductor detector or a proportional counter tube, can also be used.
ArbeitsweiseWay of working
Zuerst wird ein für die Untersuchung eines sich bewegenden Objekts S in Größe, Art und Form geeigneter Analysator- Kristall A ausgewählt und in dem Gehäuse H montiert. Der Bragg'sche Glanzwinkel "U* ist für derartige Kristalle bekannt, so daß der Analysator unter dem Glanzwinkel -ß* in bezug auf den Detektor D justierbar ist. Die Justierung erfolgt dabei durch Drehen des Analysatortragers um eine Achse, die senkrecht auf die Ebene des Goniometer-Kreis¬ bogens und damit senkrecht auf die Zeichenebene steht. Anschließend wird das zu untersuchende Objekt an der Stelle S angeordnet. Hierauf kann das Spaltsystem SS geöffnet .und das Objekt S mit monochromatischer Strahlung bestrahlt werden. Nun wird das Gehäuse H entlang dem nicht darge¬ stellten Goniometer-Kreisbogen geschwenkt, wobei die in den Detektor fallende Strahlungsintensität als Funktion des Winkels 2Θ aufgezeichnet wird. Wenn Spannungen an dem zu untersuchenden Objekt S auftreten, dann verändert sich die Gitterstruktur und damit die Gitterkonstante des zu unter¬ suchenden Objekts, was zu einer Veränderung des Netzebenen- abstandes in dem zu untersuchenden Objekt führt. Dies verändert aber auch den "Reflexionswinkel" , was man durch Änderung der Intensität des "reflektierten" Strahls erkennt.First, an analyzer crystal A suitable for examining a moving object S in size, type and shape is selected and mounted in the housing H. The Bragg gloss angle "U * is known for crystals of this type, so that the analyzer can be adjusted under the gloss angle -ß * with respect to the detector D. The adjustment is carried out by rotating the analyzer carrier about an axis that is perpendicular to the plane of the goniometer arc and thus perpendicular to the plane of the drawing. The object to be examined is then arranged at point S. The slit system SS can then be opened and the object S can be irradiated with monochromatic radiation The goniometer circular arc (not shown) is pivoted, the radiation intensity falling into the detector being recorded as a function of the angle 2Θ. which leads to a change in the network plane spacing in the object to be examined but also changes the "reflection angle", which can be seen by changing the intensity of the "reflected" beam.
Nimmt man, durch Schwenken des Gehäuses H auf dem Gonio¬ meter-Kreisbogen, ein Beugungsdiagramm (Intensität als Funktion des Winkels) des ruhenden Objekts und ein Beugungs- diagramm des bewegten Objekts auf, so kann man aus der Dif ferenz der beiden Beugungsdiagramme die unter dem Einf luß von Spannungen erfolgende Veränderung der Gitterkonstanten α er¬ mitteln , denn es gilt die Beziehung :If, by swiveling the housing H on the gonometric arc, a diffraction diagram (intensity as a function of the angle) of the stationary object and a diffraction diagram of the moving object are recorded, one can see from the Difference of the two diffraction diagrams determine the change in the lattice constant α which takes place under the influence of voltages, because the following applies:
Figure imgf000007_0001
Figure imgf000007_0001
Darin ist "d" der Netzebeneabstand, "θ " der Beugungswinkel und "λ '1 die Wellenlänge des monochromatischen Strahls.Therein "d" is the network plane distance, "θ" the diffraction angle and "λ ' 1 the wavelength of the monochromatic beam.
Ferner besteht zwischen dem Netzebenenabstand d und der Gitterkonstanten a die Beziehung:There is also the relationship between the network plane distance d and the lattice constant a:
Figure imgf000007_0002
Figure imgf000007_0002
worin h, k und 1 die Miller1 sehen Indices sind.where h, k and 1 are the Miller 1 see indices.
Figur 2 zeigt die Kurven für die Vermessung des Rotors einer Turbopumpe, der aus Aluminium bestand. Dabei wurde der Aluminium-Reflex für die Indices 333 und 511 vermessen. Die Untersuchung erfolgte mit einem Röntgenstrahl der Energie von 8,63 keV mit einer Wellenlänge von 0,1437 nm. Der Röntgenstrahl traf auf die Wurzeln der Turbinenschaufeln. Bei laufender Turbine wurde gegenüber der ruhenden Turbine eine deutliche Verschiebung des Reflexes zu höheren Winkeln gemessen. Dies entspricht einer Verkleinerung der Gitter¬ konstanten aufgrund von Querkontraktionen senkrecht zu der durch die Fliehkraft gegebenen Zugrichtung. Die dargestell- ten Kurven stellen eine Mittelung über alle Schaufeln dar, es wird jedoch darauf hingewiesen, daß auch stroboskopische Messungen möglich sind, so daß man mit hochgenauer Ortsauf- lösung messen kann. Die Genauigkeit des Verfahrens kann noch wesentlich dadurch erhöht werden, daß man zu kleineren Beugungswinkeln geht. Dabei wurden bereits Halbwertsbreiten von 0,01 Grad gemessen.Figure 2 shows the curves for measuring the rotor of a turbopump, which was made of aluminum. The aluminum reflex was measured for indices 333 and 511. The investigation was carried out using an X-ray beam with an energy of 8.63 keV and a wavelength of 0.1437 nm. The X-ray beam hit the roots of the turbine blades. With the turbine running, a clear shift of the reflex to higher angles was measured compared to the turbine at rest. This corresponds to a reduction in the lattice constant due to transverse contractions perpendicular to the direction of pull given by the centrifugal force. The curves shown represent an averaging over all blades, but it is pointed out that stroboscopic measurements are also possible, so that measurements can be carried out with high-precision spatial resolution. The accuracy of the method can be increased significantly by going to smaller diffraction angles. Half-widths were already used measured from 0.01 degrees.
Ebenso kann die Genauigkeit des Verfahrens durch Verwendung anderer Monochromatoren und Analysatorkristalle bzw. Reflexe erhöht werden (z.B. Germanium 511-Orientierung) .The accuracy of the method can also be increased by using other monochromators and analyzer crystals or reflections (e.g. Germanium 511 orientation).
Schließlich ist es in einer weiteren Ausführung auch möglich, anstelle des Analysator-Kristalls A einen Soller- Kollimator SC1 mit zur Strahlrichtung parallelen Folien, die jedoch senkrecht auf die Schwenkebene des Detektors D (und damit senkrecht auf die Zeichenebene) stehen, vor dem Detektor anzuordnen und gemeinsam mit dem Detektor D unter Beibehaltung der Ausrichtung zueinander auf dem Goniometer- Kreisbogen zu schwenken. Der Winkel zwischen der Mittellinie von Soller-Kollimator SC und Detektor D beträgt in diesem Fall 0°. Finally, in a further embodiment it is also possible, instead of the analyzer crystal A, to have a Soller collimator SC 1 with foils parallel to the beam direction, but which are perpendicular to the swivel plane of the detector D (and thus perpendicular to the plane of the drawing) in front of the detector to arrange and to pivot together with the detector D while maintaining the orientation to each other on the goniometer arc. The angle between the center line of the Soller collimator SC and detector D is 0 ° in this case.

Claims

Patentansprüche Claims
1. Verfahren zur berührungsfreien Messung mechanischer Spannungen an schnell bewegten Objekten mit kristal¬ liner Struktur, bei dem ein monochromatischer Röntgen- oder Korpuskularstrahl auf ein zu untersuchendes Objekt (S) geleitet und von dessen Netzebenen in Richtung auf einen Detektor (D) abgelenkt wird, da¬ durch gekennzeichnet, daß der Strahl von einem Analy¬ sator-Kristall (A) in den Detektor (D) gelenkt wird? daß der Analysator-Kristall (A) und der Detektor (D) in einer festen Winkelbeziehung zueinander gehal¬ ten werden; und daß der Analysator-Kristall (A) zusam¬ men mit dem Detektor (D) um das zu untersuchende Objekt (S) auf einem Goniometer-Kreisbogen geschwenkt wird.1. Method for the contact-free measurement of mechanical stresses on rapidly moving objects with a crystalline structure, in which a monochromatic X-ray or corpuscular beam is directed onto an object (S) to be examined and deflected from its network planes in the direction of a detector (D), characterized by the fact that the beam is directed by an analyzer crystal (A) into the detector (D) ? that the analyzer crystal (A) and the detector (D) are held in a fixed angular relationship to one another; and that the analyzer crystal (A) is pivoted together with the detector (D) around the object (S) to be examined on a goniometer arc.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß anstelle des Analysator-Kristalls (A) ein Soller- Kollimator (SC) zusammen mit dem Detektor (D) auf dem Goniometer-Kreisbogen geschwenkt wird, und daß man im Soller-Kollimator (SC) Folien einsetzt, die parallel zum Strahl und senkrecht zur Schwenkebene angeordnet sind.2. The method according to claim 1, characterized in that instead of the analyzer crystal (A) a Soller collimator (SC) is pivoted together with the detector (D) on the goniometer arc, and that one in the Soller collimator (SC ) Uses foils that are arranged parallel to the beam and perpendicular to the swivel plane.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den Analysator-Kristall (A) bezüglich der Einfallsachse des Detektors (D) unter dem Bragg' sehen Glanzwinkel {~f>) ausrichtet und justiert.3. The method according to claim 1, characterized in that aligning and adjusting the analyzer crystal (A) with respect to the axis of incidence of the detector (D) under the Bragg 'see glancing angle {~ f>).
4. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Analysator-Kristall (A) oder ein Soller-Kolli¬ mator (SC) und ein Detektor (D) in fester Winkelbezie¬ hung zueinander einstellbar und gemeinsam um den Ort des zu untersuchenden Objekts (S) auf einem Gonio¬ meter-Kreisbogen schwenkbar sind.4. Device for performing the method according to one of claims 1 to 3, characterized in that an analyzer crystal (A) or a Soller collimator (SC) and a detector (D) in a fixed Winkelbezie¬ relation to each other adjustable and together around the The location of the object (S) to be examined can be pivoted on a circular gonometer.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß ein weiterer Kollimator (SC) im Strahlengang vom Objekt (S) zum Analysator-Kristall (A) angeordnet ist.5. The device according to claim 4, characterized in that a further collimator (SC) is arranged in the beam path from the object (S) to the analyzer crystal (A).
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der weitere Kollimator (SC) ebenfalls ein Soller- Kollimator ist, dessen Folien parallel zur Schwenk¬ ebene angeordnet sind. 6. The device according to claim 5, characterized in that the further collimator (SC) is also a Soller collimator, the films of which are arranged parallel to the swivel plane.
PCT/EP1988/001091 1987-12-01 1988-12-01 Process and device for contactless measurement of mechanical stresses on rapidly moving objects with a crystalline structure WO1989005450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873740614 DE3740614C1 (en) 1987-12-01 1987-12-01 Method and device for the contactless measurement of mechanical stresses on rapidly moving objects with a crystalline structure
DEP3740614.0 1987-12-01

Publications (1)

Publication Number Publication Date
WO1989005450A1 true WO1989005450A1 (en) 1989-06-15

Family

ID=6341602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1988/001091 WO1989005450A1 (en) 1987-12-01 1988-12-01 Process and device for contactless measurement of mechanical stresses on rapidly moving objects with a crystalline structure

Country Status (2)

Country Link
DE (1) DE3740614C1 (en)
WO (1) WO1989005450A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539608B1 (en) * 1991-05-14 1999-01-27 V-Ray Imaging Corporation Method for obtaining internal structure image of object

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2805342A (en) * 1954-07-12 1957-09-03 Andrew R Lang Diffractometer
US2805341A (en) * 1954-07-12 1957-09-03 Andrew R Lang Diffractometer
US3617705A (en) * 1968-03-27 1971-11-02 Tokyo Shibaura Electric Co Method of measuring stress with x-rays
US3855470A (en) * 1973-01-22 1974-12-17 Aquitaine Petrole Process and apparatus for x-ray crystallography
EP0044492A2 (en) * 1980-07-17 1982-01-27 Kraftwerk Union Aktiengesellschaft Goniometer for measuring mechanical stresses using X rays
GB2166630A (en) * 1984-10-27 1986-05-08 Mtu Muenchen Gmbh Method and apparatus for inspecting a crystalline object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2805342A (en) * 1954-07-12 1957-09-03 Andrew R Lang Diffractometer
US2805341A (en) * 1954-07-12 1957-09-03 Andrew R Lang Diffractometer
US3617705A (en) * 1968-03-27 1971-11-02 Tokyo Shibaura Electric Co Method of measuring stress with x-rays
US3855470A (en) * 1973-01-22 1974-12-17 Aquitaine Petrole Process and apparatus for x-ray crystallography
EP0044492A2 (en) * 1980-07-17 1982-01-27 Kraftwerk Union Aktiengesellschaft Goniometer for measuring mechanical stresses using X rays
GB2166630A (en) * 1984-10-27 1986-05-08 Mtu Muenchen Gmbh Method and apparatus for inspecting a crystalline object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539608B1 (en) * 1991-05-14 1999-01-27 V-Ray Imaging Corporation Method for obtaining internal structure image of object

Also Published As

Publication number Publication date
DE3740614C1 (en) 1988-12-29

Similar Documents

Publication Publication Date Title
DE602004001795T2 (en) X-ray diffractometer for grazing incidence measurements that can be toggled between in-plane and out-of-plane measurements
DE3134552C2 (en) X-ray diffractometer
EP1647840B1 (en) X-ray-optical or neutron-optical analyser comprising a stripdetector having variable light-transmission
DE2933047C2 (en) Method and device of X-ray diffraction
EP0068045B1 (en) Crystal x-ray sequential spectrometer
DE2748501C3 (en) Method and device for creating texture topograms
DE3439471A1 (en) METHOD AND DEVICE FOR TESTING SINGLE-CRYSTAL OBJECTS
WO1995022758A1 (en) X-ray analysis device
Parrish Advances in X-ray diffractometry of clay minerals
DE3740614C1 (en) Method and device for the contactless measurement of mechanical stresses on rapidly moving objects with a crystalline structure
Andersen et al. Multiple scattering of heavy ions of keV energies transmitted through thin, polycrystalline gold foils
DE102011009125B4 (en) X-ray spectrometer
DE3442061C2 (en)
DE2911596C3 (en) Measurement arrangement for X-ray fluorescence analysis
DE4130556C2 (en) Device for total reflection X-ray fluorescence analysis
DE1239501B (en) X-ray device for determining internal stresses
DE2204678C3 (en) Device for displaying local orientation deviations in single crystals
DE4236291A1 (en) Texture and stress analysis and crystal orientation determn. method - involves exposing specimen to x-rays and measuring radiation from specimen with energy resolution detector at various output angles
DE4327129A1 (en) X=ray spectrometer - has independently rotatable crystal changer and detector which are adjustable in single and double angles respectively, memory for storing desired angles for certain elements, and controller for correcting measured angle
DE10065277A1 (en) Internal stress analysis method for metallic material e.g. for turbine blade, involves limiting scattering volume of photon beam, such that beam is reflected from every crystal lattice of irradiated target portion
DE1902628B2 (en) X-ray camera for X-ray diffraction analysis of powdery substances
AT394907B (en) Method and apparatus for investigating biological materials
DE3839990A1 (en) Device for radiographic imaging and the measurement of local voltage distributions
DE102015201909A1 (en) Method and system for determining an optical path difference between partial light waves arising in a birefringent object
DE102015215559A1 (en) Method for the high-resolution imaging of a surface area with grazing incidence of the measuring radiation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH FR GB