WO1989005243A1 - Process for adjusting wheel suspensions - Google Patents

Process for adjusting wheel suspensions Download PDF

Info

Publication number
WO1989005243A1
WO1989005243A1 PCT/DE1988/000656 DE8800656W WO8905243A1 WO 1989005243 A1 WO1989005243 A1 WO 1989005243A1 DE 8800656 W DE8800656 W DE 8800656W WO 8905243 A1 WO8905243 A1 WO 8905243A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
vehicle
oscillator
signal
gate
Prior art date
Application number
PCT/DE1988/000656
Other languages
German (de)
French (fr)
Inventor
Erich Rubel
Ute Gerlach
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1989005243A1 publication Critical patent/WO1989005243A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof

Definitions

  • the invention relates to a method for chassis control according to the preamble of the main claim. It is already known to statically adjust the suspension properties of a chassis, for example by changing the damping factors of shock absorbers. H. only at the beginning of a journey to change to improve driving comfort and / or driving safety. In this way, it is not possible to adapt the vehicle to constantly changing road conditions.
  • the method according to the invention with the characterizing features of the main claim offers the advantage that the current road condition can be taken into account during driving operation and that the behavior of the undercarriage can be adapted immediately to the road conditions that occur in the sense of improving driving comfort and driving safety.
  • FIG. 1 shows the front part of a vehicle with an ultrasound transducer arranged thereon to explain the measuring principle on which the method is based
  • FIG. 2 shows the block diagram of a device for carrying out the method according to the invention
  • FIG. 3 shows the circuit diagram of an exemplary embodiment of the device
  • FIG ; 5 shows a diagram for explaining the radiation characteristic of the ultrasonic funnel
  • FIG. 6 shows a time diagram of the evaluation circuit
  • FIG. 7 shows the relationship between the number of pulses and the output voltage of the DA converter contained in the ultrasound device
  • FIG. 8 shows the relationship between speed and Number of pulses
  • FIG. 9 is a block diagram of the evaluation circuit
  • FIG. 1 shows the front part of a vehicle with an ultrasound transducer arranged thereon to explain the measuring principle on which the method is based
  • FIG. 2 shows the block diagram of a device for carrying out the method according to the invention
  • FIG. 3 shows the circuit diagram of an exemplary embodiment of the device
  • FIG ; 5 shows a diagram for explaining the radiation characteristic of
  • FIG. 10 is a circuit diagram of the evaluation circuit
  • FIG. 11 shows the ultrasound signal and the spring arm deflection of a vehicle wheel as a function of time in a diagram
  • FIGS. 12 to 15 in diagrams the ultrasound signal and the stamp speed of a stamp simulating the road as a function of time.
  • the suspension of a vehicle 1 should be adjusted in accordance with the road conditions encountered in the driving operation.
  • the road surface FO is monitored in order to detect bumps in the road before the tires run over it.
  • the temporal change in the distance a (see FIG. 1) between the vehicle floor and the road surface can serve as a measure of the unevenness of the road. This rate of change
  • each of these sensors 2 must be attached to the front of the vehicle in the track of each front wheel so that the condition of the road can be detected separately for each of the two pairs of wheels.
  • the acoustic Doppler effect that occurs with all sound waves, including ultrasound, means a frequency shift between the transmission and reception frequencies when the transmitter and receiver move relative to each other. Only the radial speed component in the direction of connection between transmitter and receiver is decisive, tangential speed components do not cause any frequency shift.
  • the receiver moves towards the stationary transmitter at the relative speed v, the receiver registers the changed frequency instead of the transmission frequency f 0
  • the transmitter and receiver When used as an ultrasonic sensor, the transmitter and receiver are mounted next to each other, perpendicular to the road, on the vehicle front (see FIG. 1). The rate of change is considered
  • a system moved with the vehicle is chosen as the reference system so that the transmitter and receiver appear to be at rest.
  • the (stationary) transmitter attached to the vehicle sends the frequency f 0 perpendicular to the road.
  • the frequency thus becomes from the road surface that moves perpendicular to the vehicle floor with the relative speed v
  • the road surface reflects this frequency and acts as such as a moving transmitter, as it were, while the receiver on the vehicle is at rest. So now the frequency
  • s is the distance covered by the vehicle. This must be taken into account when processing the determined speed v later. At a speed v in the range between - v max and
  • the difference frequency f d between the reception frequency f e and a fixed superposition frequency f ü must be formed:
  • this difference frequency can only be positive. If the transmission frequency f 0 is used as the superimposition frequency, no information is obtained about the direction of the movement, ie the sign of v, because positive and negative speeds provide the same positive difference frequency.
  • the further evaluation of the differential frequency f d takes place in a counter by means of a comparison signal, the fixed frequency f v of which is substantially greater than the gate frequency f g .
  • the pulses of the comparison signal are counted during half a period of the gate signal (corresponding to a period of the difference signal). The number of pulses is a measure of the size of the differential frequency and thus also of the speed v.
  • the transmission frequency f 0 the beat frequency f ü and the comparison frequency f v .
  • the factor N3 is freely selectable, it essentially determines the resolution of the measured speed.
  • the oscillator can be of simple construction and that no high demands are placed on the frequency stability, that the temperature drift of the oscillator has no influence, and that no adjustment is required if, for. B. a new ultrasonic transducer is installed.
  • Piezo transducers designed as flexible oscillators are used both as transmitters and receivers. These transducers, for example, have a pronounced natural frequency in the range between 30 kHz and 35 kHz.
  • the oscillator oscillates at this resonance frequency and the bandpass filter (see FIG. 3) is tuned to this center frequency.
  • the same exponential funnel explained later with reference to FIG. 4 was used as the sound funnel in front of the transmitter and receiver. Because the beam can be focused in this way, the beam can be directed onto the measuring surface and disturbing influences from the surroundings are kept to a minimum.
  • FIG. 2 shows the block diagram of a device for performing the method according to the invention.
  • the device comprises an oscillator 10 which generates a transmission signal of frequency f 0.
  • Oscillator 10 is a piezoelectric transducer designed as a flexural oscillator which generates a transmission frequency f 0 in the range between 30 kHz and 35 kHz.
  • the transmission signal with the frequency f 0 is supplied on the one hand to a transmission antenna 11 for radiation onto the road surface and on the other hand to a phase lock loop stage 12.
  • Subsequent divider multiplier stages 13, 14 generate the superimposition frequency f u and the comparison frequency f v from the frequency f 0 of the transmission signal.
  • the device further comprises a receiving part 15 for receiving a signal of the frequency f e , which results from the signal emitted by the oscillator 10 by reflection on the road surface.
  • the receiving part 15 comprises a receiving antenna 16 and, as a receiver 17, a piezo transducer configured as a bending oscillator of the same type already used in the oscillator 10.
  • the receiving frequency f e is fed to a mixing stage 20 after amplification in a selective amplifier 18, 19. In this mixing stage 20, the reception frequency f e is mixed with the fixed beat frequency f ü , so that the Differential frequency f d results. This difference frequency f d becomes
  • FIG. 3 shows in the form of a circuit diagram an exemplary embodiment of the device shown as a block diagram in FIG. 2 without the components 22 and 23.
  • FIG. 4 shows, in side view and partially in longitudinal section, on an image scale of approximately 2: 1, an ultrasonic funnel used both as a transmitting antenna 11 and as a receiving antenna 16, which consists of a first, essentially cylindrical section 41 and a second section 42 , which is substantially frustoconical.
  • the cylindrical first section 41 sits on the base of the frustoconical second section 42.
  • the sections 41 and 42 are penetrated by a bore 43 which extends in the axial direction and widens in a funnel shape towards the radiation or irradiation opening 43a.
  • the ultrasonic funnel 40 enables the emitted ultrasonic waves to be focused so that they can be directed specifically onto the measuring surface.
  • the radiation characteristic of the ultrasonic funnel 40 is shown in the diagram in FIG.
  • the focusing characteristic of the ultrasonic funnel 40 ensures that as little interference as possible is recorded in addition to the frequency f e of interest.
  • excessive beam bundling should be avoided, as driving due to air Currents and temperature differences can cause diffraction effects that can impair the coupling between the transmitting antenna and the receiving antenna.
  • FIG. 9 shows a timing diagram of the evaluation circuit
  • Figure 9 shows the evaluation circuit as a block diagram
  • Figure 10 shows the evaluation circuit as a circuit diagram.
  • the evaluation circuit according to FIG. 9 comprises an EX-OR gate 90, the input terminal of which is supplied with the gate frequency f g .
  • the output connection of the EX-OR gate 90 is connected on the one hand to the input connection of a monostable multivibrator 91, and on the other hand to the stop connection of a binary counter 92.
  • the comparison frequency f v is supplied to the input terminal of the binary counter 92.
  • the output terminal of the binary counter 92 is connected to a buffer 93.
  • This buffer 93 is in turn connected to the input terminal of a digital-to-analog converter 94, at the output terminal of which the output signal U is available.
  • the pulses of the comparison signal f v are counted during a half period of the gate signal f g .
  • the number of pulses determined is converted into an analog voltage value U A.
  • the pulses present as digital information can be taken over directly by a computer for further processing.
  • a short rectangular pulse is first generated by the EX-OR gate 90 (EXOR signal FIG. 6c). Its falling edge triggers a mono stable flip-flop 91, which then also emits a short square pulse (monoflop signal Figure 6d). The duration of the two pulses is determined by the external RC circuit (see Figure 10).
  • the pulses of the comparison signal f v (FIG. 6a) are counted up by the binary counter 92 (FIG. 9). As soon as the EXOR signal jumps to H, the counter 92 is stopped. At the same time, the counting result achieved so far, the number of pulses n I , is transferred to the buffer memory 93, which acts as a holding element. Then the binary counter 92 is reset by the monoflop signal and it can be counted again.
  • EX-OR gate 90 and the monostable multivibrator 91 is appropriately dimensioned such that:
  • the result pending at the output of the buffer memory 93 is converted into an analog one by a digital-to-analog converter 94
  • Suspension means 23 in the sense of improving driving comfort and / or driving safety.
  • the time until the next measured value update depends on the frequency of the gate signal f g and thus on the measured value. It is on average
  • the output voltage of digital-to-analog converter 94 was measured at some predetermined fixed pulse numbers. The relationship determined is shown in FIG. 7.
  • FIG. 11 shows the ultrasound signal in the upper curve and the spring deflection of the shock absorber on the right front wheel measured for comparison when driving at a constant speed of 80 km / h in the lower curve.
  • FIGS. 12 to 15 Further measured values were obtained on a test bench.
  • the vehicle was driven to the test stand in such a way that the device was fixed above a stamp that was arranged to move up and down and simulate the surface of the road.
  • the stamp was moved sinusoidally up and down at an average measuring distance of approx. 30 cm. Stamp deflection and the output signal of the DA converter were recorded as a function of time in the measurement diagram.
  • the corrected double signal can be calculated.
  • the corrected Doppler signal (lower curve) and the punch speed (upper curve) are shown for different vibration frequencies of the punch in FIGS. 12 to 15.
  • the two signals in the diagrams are slightly shifted from each other in the vertical direction. From the diagrams it can be clearly seen that the corrected Doppler signal obtained by reflection on the stamp surface reproduces the stamp movement very precisely, so that unevenness in the road surface can be determined in this way and used to influence the spring means 23.
  • a sensor 2 is attached to the front of the vehicle in the track of each front wheel in order to be able to separately detect the road condition for each of the two wheel pairs. It is also possible to assign a separate sensor to each wheel of the undercarriage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Vehicle Body Suspensions (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

This invention concerns a process and a device for regulating the wheel suspension of a motor vehicle (1) with a wheel suspension comprising springs and means for adjusting the spring. To improve driving confort and/or safety, the road surface (FO) in front of the vehicle or in front of the vehicle wheel is monitored. When unevennesses of the surface are encountered, a signal depending on the size of the unevennesses is produced and influences the spring.

Description

Verfahren zur Fahrwerksregelung Chassis control procedure
Stand der TechnikState of the art
Die Erfindung geht aus von einem Verfahren zur Fahrwerksregelung nach der Gattung des Hauptanspruches. Es ist bereits bekannt, die Federungseigenschaften eines Fahrwerkes, beispielsweise durch Veränderung der Dämpfungsfaktoren von Stoßdämpfern, statisch, d. h. lediglich zu Beginn einer Fahrt, zu verändern, um den Fahrkomfort und/oder die Fahrsicherheit zu verbessern. Eine Anpassung im Fahrbetrieb an sich ständig verändernde Fahrbahnverhältnisse ist auf diese Weise nicht möglich.The invention relates to a method for chassis control according to the preamble of the main claim. It is already known to statically adjust the suspension properties of a chassis, for example by changing the damping factors of shock absorbers. H. only at the beginning of a journey to change to improve driving comfort and / or driving safety. In this way, it is not possible to adapt the vehicle to constantly changing road conditions.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruches bietet demgegenüber den Vorteil, daß während des Fahrbetriebes der aktuelle Fahrbahnzustand berücksichtigt werden kann und daß das Verhalten des Fahrwerks unverzüglich den jeweils auftretenden Fahrbahnverhältnissen im Sinne einer Verbesserung des Fahrkomforts und der Fahrsicherheit angepaßt werden kann.The method according to the invention with the characterizing features of the main claim offers the advantage that the current road condition can be taken into account during driving operation and that the behavior of the undercarriage can be adapted immediately to the road conditions that occur in the sense of improving driving comfort and driving safety.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich. In weiteren Unteransprüchen werden Einrichtungen zur Durchführung des erfindungsgemäßen Verfahrens angegeben.Advantageous developments and improvements of the method specified in the main claim are possible through the measures listed in the subclaims. In further subclaims Means specified for performing the method according to the invention.
Zeichnungdrawing
Das Verfahren und die Einrichtungen zur Durchführung des Verfahrens werden anhand der Zeichnung und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 das Vorderteil eines Fahrzeuges mit einem daran angeordneten Ultraschallwandler zur Erläuterung des dem Verfahren zugrundeliegenden Meßprinzips, Figur 2 das Blockschaltbild einer Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens, Figur 3 den Stromlaufplan eines Ausführungsbeispieles der Einrichtung, Figur 4 den Ultraschalltrichter des Ultraschallwandlers der Einrichtung; Figur 5 ein Diagramm zur Erläuterung der Abstrahlcharakteristik des Ultraschalltrichters, Figur 6 ein Zeitdiagramm der Auswerteschaltung, Figur 7 in einem Diagramm den Zusammenhang zwischen der Impulszahl und der AusgangsSpannung des in dem Ultraschallgerät enthaltenen DA-Wandlers, Figur 8 in einem Diagramm den Zusammenhang zwischen Geschwindigkeit und Impulszahl, Figur 9 ein Blockschaltild der Auswerteschaltung, Figur 10 einen Stromlaufplan der Auswerteschaltung, Figur 11 in einem Diagramm das Ultraschallsignal sowie die Federarmauslenkung eines Fahrzeugrades als Funktion der Zeit; Figuren 12 bis 15 in Diagrammen das Ultraschallsignal und die Stempelgeschwindigkeit eines die Fahrbahn simulierenden Stempels als Funktion der Zeit.The method and the devices for carrying out the method are explained in more detail with reference to the drawing and in the description below. FIG. 1 shows the front part of a vehicle with an ultrasound transducer arranged thereon to explain the measuring principle on which the method is based, FIG. 2 shows the block diagram of a device for carrying out the method according to the invention, FIG. 3 shows the circuit diagram of an exemplary embodiment of the device, and FIG ; 5 shows a diagram for explaining the radiation characteristic of the ultrasonic funnel, FIG. 6 shows a time diagram of the evaluation circuit, FIG. 7 shows the relationship between the number of pulses and the output voltage of the DA converter contained in the ultrasound device, FIG. 8 shows the relationship between speed and Number of pulses, FIG. 9 is a block diagram of the evaluation circuit, FIG. 10 is a circuit diagram of the evaluation circuit, FIG. 11 shows the ultrasound signal and the spring arm deflection of a vehicle wheel as a function of time in a diagram; FIGS. 12 to 15 in diagrams the ultrasound signal and the stamp speed of a stamp simulating the road as a function of time.
Beschreibung der ErfindungDescription of the invention
Zur Verbesserung des Komforts und der Fahrsicherheit soll im Fahrbetrieb die Federung eines Fahrzeugs 1 entsprechend den jeweils angetroffenen Fahrbahnverhältnissen abgestimmt werden. Dazu wird die Fahrbahnoberfläche FO überwacht, um Unebenheiten der Fahrbahn zu erkennen, bevor sie von den Reifen überfahren werden. Als Maß für die Fahrbahnunebenheit kann die zeitliche Veränderung des Abstandes a (siehe Figur 1) zwischen Fahrzeugboden und Fahrbahnoberfläche dienen. Diese ÄnderungsgeschwindigkeitIn order to improve comfort and driving safety, the suspension of a vehicle 1 should be adjusted in accordance with the road conditions encountered in the driving operation. For this purpose, the road surface FO is monitored in order to detect bumps in the road before the tires run over it. The temporal change in the distance a (see FIG. 1) between the vehicle floor and the road surface can serve as a measure of the unevenness of the road. This rate of change
v = da/dt (1)v = da / dt (1)
wird vorzeichenrichtig mit einem Ultraschallsensor 2, der nach dem Dopplereffekt arbeitet, gemessen.is measured with the correct sign using an ultrasonic sensor 2, which works according to the Doppler effect.
Im praktischen Betrieb muß je einer dieser Sensoren 2 am Fahrzeugbug in der Spur jedes Vorderrades angebracht werden, damit für jedes der beiden Radpaare der Fahrbahnzustand getrennt erfaßt werden kann.In practical operation, each of these sensors 2 must be attached to the front of the vehicle in the track of each front wheel so that the condition of the road can be detected separately for each of the two pairs of wheels.
Unter dem akustischen Dopplereffekt, der bei allen Schallwellen auftritt, also auch beim Ultraschall, versteht man eine Frequenzverschiebung zwischen Sende- und Empfangsfrequenz, wenn sich Sender und Empfänger relativ zueinander bewegen. Dabei ist nur die radiale Geschwindigkeitskomponente in Verbindungsrichtung zwischen Sender und Empfänger entscheidend, tangentiale Geschwindigkeitskomponenten bewirken keine Frequenzverschiebung.The acoustic Doppler effect that occurs with all sound waves, including ultrasound, means a frequency shift between the transmission and reception frequencies when the transmitter and receiver move relative to each other. Only the radial speed component in the direction of connection between transmitter and receiver is decisive, tangential speed components do not cause any frequency shift.
Es müssen zwei Fälle unterschieden werden:A distinction must be made between two cases:
a) Ruhender Sender, bewegter Empfängera) Station at rest, moving receiver
Wenn sich der Empfänger mit der Relativgeschwindigkeit v zum ruhenden Sender hinbewegt, so registriert der Empfänger statt der Sendefrequenz f0 die veränderte FrequenzIf the receiver moves towards the stationary transmitter at the relative speed v, the receiver registers the changed frequency instead of the transmission frequency f 0
f = f0 (1 + v/c) . (2)f = f 0 (1 + v / c). (2)
Dabei ist c die Schallgeschwindigkeit im betreffenden Medium, v ist positiv, wenn die Bewegung in Richtung des Senders erfolgt. b) Bewegter Sender, ruhender EmpfängerC is the speed of sound in the medium in question, v is positive if the movement is in the direction of the transmitter. b) Moving transmitter, stationary receiver
Bewegt sich dagegen der Sender mit der Relativgeschwindigkeit v zum ruhenden Empfänger hin, so wird die FrequenzIf, on the other hand, the transmitter moves with the relative speed v towards the stationary receiver, the frequency becomes
Figure imgf000006_0001
empfangen, d. h. es ergibt sich dieselbe Frequenzverschiebung wie bei ruhendem Sender und bewegtem Empfänger.
Figure imgf000006_0001
received, ie there is the same frequency shift as when the transmitter is stationary and the receiver is moving.
Bei der Anwendung als Ultraschallsensor sind Sender und Empfänger nebeneinander, senkrecht auf die Fahrbahn gerichtet, am Fahrzeugbug angebracht (vgl. Figur 1). Betrachtet wird die ÄnderungsgeschwindigkeitWhen used as an ultrasonic sensor, the transmitter and receiver are mounted next to each other, perpendicular to the road, on the vehicle front (see FIG. 1). The rate of change is considered
v = da/dt (1)v = da / dt (1)
des Abstandes a zwischen Fahrzeugboden (und damit Sender und Empfänger) und Fahrbahnoberfläche. Als Bezugssystem wird ein mit dem Fahrzeug bewegtes System gewählt, so daß Sender und Empfänger als ruhend erscheinen.the distance a between the vehicle floor (and thus the transmitter and receiver) and the road surface. A system moved with the vehicle is chosen as the reference system so that the transmitter and receiver appear to be at rest.
Der am Fahrzeug angebrachte (ruhende) Sender sendet mit der Frequenz f0 senkrecht auf die Fahrbahn. Von der Fahrbahnoberfläche, die sich senkrecht zum Fahrzeugboden mit der Relativgeschwindigkeit v bewegt, wird also die FrequenzThe (stationary) transmitter attached to the vehicle sends the frequency f 0 perpendicular to the road. The frequency thus becomes from the road surface that moves perpendicular to the vehicle floor with the relative speed v
fr = f0 (1 + v/c) (4)f r = f 0 (1 + v / c) (4)
empfangen. Die Fahrbahn reflektiert diese Frequenz, und wirkt so gleichsam als bewegter Sender, während der Empfänger am Fahrzeug in Ruhe ist. Deshalb wird jetzt die Frequenzreceive. The road surface reflects this frequency and acts as such as a moving transmitter, as it were, while the receiver on the vehicle is at rest. So now the frequency
Figure imgf000007_0001
empfangen.
Figure imgf000007_0001
receive.
Für sehr kleine Geschwindigkeiten v gilt näherungsweiseFor very low speeds v approximately applies
Figure imgf000007_0002
Figure imgf000007_0002
Darüber hinaus bewegt sich das Fahrzeug mit der Fahrgeschwindigkeit v parallel zur Fahrbahn. Als Tangentialgeschwindigkeit bewirkt sie jedoch keine FrequenzverSchiebung. Allerdings ist die Änderungsgeschwindigkeit v = da/dt von der Fahrgeschwindigkeit vFahr = ds/dt abhängig:In addition, the vehicle moves at the vehicle speed v parallel to the road. However, as a tangential velocity, it does not cause any frequency shift. However, the rate of change v = da / dt depends on the driving speed v Fahr = ds / dt:
Figure imgf000007_0003
s ist die vom Fahrzeug zurückgelegte Strecke. Das muß bei einer späteren Weiterverarbeitung der ermittelten Geschwindigkeit v beachtet werden. Bei einer Geschwindigkeit v im Bereich zwischen - vmax und
Figure imgf000007_0003
s is the distance covered by the vehicle. This must be taken into account when processing the determined speed v later. At a speed v in the range between - v max and
+ vmax schwankt die empfangene Frequenz zwischen+ v max the received frequency fluctuates between
femin = f0 (1 - 2 vmax/c) (7)f emin = f 0 (1 - 2 v max / c) (7)
undand
femax = f0 (1 + 2 vmin/c) (8)f emax = f 0 (1 + 2 v min / c) (8)
Um die in dieser Frequenz enthaltene Geschwindigkeitsinformation auszuwerten, muß die Differenzfrequenz fd zwischen Empfangsfrequenz fe und einer festen Überlagerungsfrequenz fü gebildet werden:In order to evaluate the speed information contained in this frequency, the difference frequency f d between the reception frequency f e and a fixed superposition frequency f ü must be formed:
= ∣ fü - fe ∣ (9)= ∣ f ü - f e ∣ (9)
Natürlich kann diese Differenzfrequenz nur positiv sein. Wenn man als Überlagerungsfrequenz die Sendefrequenz f0 verwendet, erhält man keine Information über die Richtung der Bewegung, d. h. das Vorzeichen von v, weil positive und negative Geschwindigkeiten dieselbe positive Differenzfrequenz liefern.Of course, this difference frequency can only be positive. If the transmission frequency f 0 is used as the superimposition frequency, no information is obtained about the direction of the movement, ie the sign of v, because positive and negative speeds provide the same positive difference frequency.
Es ist daher sinnvoller, als Überlagerungsfrequenz eine Frequenz zu verwenden, die sich um mehr als die maximale mögliche FrequenzverschiebungIt is therefore more sensible to use a frequency that is more than the maximum possible frequency shift as the superposition frequency
∣ f0 - fe | max = 2 f0 vmax/c (10)∣ f 0 - f e | max = 2 f 0 v max / c (10)
von der Sendefrequenz f0 unterscheidet. Hier wurde fü > f0 gewählt, es wäre jedoch ebenso fü < f0 möglich gewesen. Die Differenzfrequenz berechnet sich nun also zudiffers from the transmission frequency f 0 . Here f u> f 0 is selected, it would be equally f u <f 0 have been possible. The difference frequency is now calculated
fd = fü - fe f d = f ü - f e
= fü - f0 (1 + 2 v/c) (11)= f ü - f 0 (1 + 2 v / c) (11)
Sie schwankt um den Offset-WertIt fluctuates around the offset value
fdo = fü - f0 (12)f do = f ü - f 0 (12)
herum zwischen den Frequenzenaround between the frequencies
fdmin = fü - femax f dmin = f ü - f emax
= fü - f0 (1 + 2 vmax/c)= f ü - f 0 (1 + 2 v max / c)
= fdo - 2 vmax/c (13)= f do - 2 v max / c (13)
undand
fdmax = fü - femin f dmax = f ü - f emin
= fdo + 2 vmax/c (14)= f do + 2 v max / c (14)
Es ist sinnvoll, anschließend eine Halbierung der Differenzfrequenz vorzunehmen, um ein exakt gleiches Impuls-Pause-Verhältnis zu schaffen.It makes sense to then halve the difference frequency in order to create an exactly the same pulse-pause ratio.
Dadurch ergibt sich die Gate-FrequenzThis results in the gate frequency
fg = 1/2 fd f g = 1/2 f d
= 1/2 [fü - f0 (1 + 2 v/c)] , (15) die dann einem Zähler zugeführt wird.= 1/2 [f ü - f 0 (1 + 2 v / c)], (15) which is then fed to a counter.
Die weitere Auswertung der Differenzfrequenz fd geschieht in einem Zähler mittels eines Vergleichssignals, dessen feste Frequenz fv wesentlich größer als die Gate-Frequenz fg ist. Dazu werden die Impulse des Vergleichssignals während einer halben Periode des Gate-Signals (entsprechend einer Periode des Differenzsignals) gezählt. Die Zahl der Impulse ist ein Maß für die Größe der Differenzfrequenz und damit auch für die Geschwindigkeit v.The further evaluation of the differential frequency f d takes place in a counter by means of a comparison signal, the fixed frequency f v of which is substantially greater than the gate frequency f g . For this purpose, the pulses of the comparison signal are counted during half a period of the gate signal (corresponding to a period of the difference signal). The number of pulses is a measure of the size of the differential frequency and thus also of the speed v.
Es werden also drei verschiedene Frequenzen benötigt: die Sendefrequenz f0, die Überlagerungsfrequenz fü und die Vergleichsfrequenz fv.So three different frequencies are required: the transmission frequency f 0 , the beat frequency f ü and the comparison frequency f v .
Wenn man diese drei Frequenzen aus einem einzigen Oszillator durch Vervielfachung und Teilung erzeugt, erreicht man, daß die Impulszahl von der Oszillatorfrequenz unabhängig ist:If one generates these three frequencies from a single oscillator by multiplication and division, one achieves that the number of impulses is independent of the oscillator frequency:
Oszillatorfrequenz f0 Oscillator frequency f 0
Überlagerungsfrequenz fü = N1/N2 f0 (16)Beat frequency f ü = N1 / N2 f 0 (16)
Vergleichsfrequenz fv = N1/N3 f0 (17) .Comparison frequency f v = N1 / N3 f 0 (17).
Der Faktor N3 ist frei wählbar, er bestimmt im wesentlichen die Auflösung der gemessenen Geschwindigkeit.The factor N3 is freely selectable, it essentially determines the resolution of the measured speed.
Die Meßzeit am Zähler (halbe Periodendauer des Gate-Signals) beträgt dannThe measuring time on the counter (half the period of the gate signal) is then
Figure imgf000010_0001
Figure imgf000011_0001
Daraus ergibt sich die Impulszahl
Figure imgf000010_0001
Figure imgf000011_0001
This results in the number of pulses
Figure imgf000011_0002
unabhängig von der Sendefrequenz.
Figure imgf000011_0002
regardless of the transmission frequency.
Als Vorteile ergeben sich hieraus weiter, daß der Oszillator einfach aufgebaut sein kann und keine hohen Anforderungen an die Frequenzstabilität zu erfüllen sind, daß die Temperaturdrift des Oszillators keinen Einfluß hat, und daß keine Justage erforderlich ist, wenn z. B. ein neuer Ultraschallwandler eingebaut wird.There are further advantages from this that the oscillator can be of simple construction and that no high demands are placed on the frequency stability, that the temperature drift of the oscillator has no influence, and that no adjustment is required if, for. B. a new ultrasonic transducer is installed.
Dadurch ist auch eine wesentlich höhere Genauigkeit des Meßergebnisses erreichbar.As a result, a significantly higher accuracy of the measurement result can also be achieved.
Sowohl als Sender als auch als Empfänger werden als Biegeschwinger ausgestaltete Piezowandler verwendet. Diese Wandler haben beispielsweise eine ausgeprägte Eigenfrequenz im Bereich zwischen 30 kHz und 35 kHz. Der Oszillator schwingt mit dieser Resonanzfrequenz und auch der Bandpaß (vgl. Figur 3) ist auf diese Mittenfrequenz abgestimmt. Als Schalltrichter wurde vor Sender und Empfänger derselbe später anhand von Figur 4 noch erläuterte Exponentialtrichter verwendet. Durch die damit erreichbare Bündelung des Strahls kann der Strahl gezielt auf die Meßfläche gerichtet werden und störende Einflüsse der Umgebung werden klein gehalten.Piezo transducers designed as flexible oscillators are used both as transmitters and receivers. These transducers, for example, have a pronounced natural frequency in the range between 30 kHz and 35 kHz. The oscillator oscillates at this resonance frequency and the bandpass filter (see FIG. 3) is tuned to this center frequency. The same exponential funnel explained later with reference to FIG. 4 was used as the sound funnel in front of the transmitter and receiver. Because the beam can be focused in this way, the beam can be directed onto the measuring surface and disturbing influences from the surroundings are kept to a minimum.
Eine zu starke Strahlbündelung muß jedoch vermieden werden, weil der Ultraschallstrahl durch Luftströmungen (Fahrtwind) und Temperaturunterschiede gebeugt wird. Die Beugung tritt umso stärker auf, je schärfer der Strahl gebündelt ist.However, excessive beam bundling must be avoided because the ultrasound beam is diffracted by air currents (wind) and temperature differences. Diffraction is more pronounced the sharper the beam is focused.
Figur 2 zeigt das Blockschaltbild einer Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens. Die Einrichtung umfaßt einen ein Sendesignal der Frequenz f0 erzeugenden Oszillator 10. Bei dem Oszillator 10 handelt es sich um einen als Biegeschwinger ausgestalteten piezoelektrischen Wandler, der eine Sendefrequenz f0 im Bereich zwischen 30 kHz und 35 kHz erzeugt. Das Sendesignal mit der Frequenz f0 wird einerseits einer Sendeantenne 11 zur Abstrahlung auf die Fahrbahnoberfläche und andererseits einer Phase-Lock-Loop-Stufe 12 zugeführt. Durch nachgeschaltete Teiler-Multiplikatorstufen 13, 14 werden aus der Frequenz f0 des Sendesignales die Überlagerungsfrequenz fü und die Vergleichsfrequenz fv erzeugt. Die Einrichtung umfaßt weiter ein Empfangsteil 15 zum Empfang eines Signals der Frequenz fe, die sich aus dem vom Oszillator 10 abgestrahlten Signal durch Reflexion an der Fahrbahnoberfläche ergibt. Das Empfangsteil 15 umfaßt eine Empfangsantenne 16 sowie als Empfänger 17 einen als Biegeschwinger ausgestalteten Piezowandler der gleichen auch schon im Oszillator 10 verwendeten Art. Die Empfangsfrequenz fe wird nach Verstärkung in einem selektiven Verstärker 18, 19 einer Mischstufe 20 zugeleitet. In dieser Mischstufe 20 wird die Empfangsfrequenz fe mit der festen Überlagerungsfrequenz fü gemischt, so daß sich die Differenzfrequenz fd ergibt. Diese Differenzfrequenz fd wird zurFigure 2 shows the block diagram of a device for performing the method according to the invention. The device comprises an oscillator 10 which generates a transmission signal of frequency f 0. Oscillator 10 is a piezoelectric transducer designed as a flexural oscillator which generates a transmission frequency f 0 in the range between 30 kHz and 35 kHz. The transmission signal with the frequency f 0 is supplied on the one hand to a transmission antenna 11 for radiation onto the road surface and on the other hand to a phase lock loop stage 12. Subsequent divider multiplier stages 13, 14 generate the superimposition frequency f u and the comparison frequency f v from the frequency f 0 of the transmission signal. The device further comprises a receiving part 15 for receiving a signal of the frequency f e , which results from the signal emitted by the oscillator 10 by reflection on the road surface. The receiving part 15 comprises a receiving antenna 16 and, as a receiver 17, a piezo transducer configured as a bending oscillator of the same type already used in the oscillator 10. The receiving frequency f e is fed to a mixing stage 20 after amplification in a selective amplifier 18, 19. In this mixing stage 20, the reception frequency f e is mixed with the fixed beat frequency f ü , so that the Differential frequency f d results. This difference frequency f d becomes
Erzeugung einer Gate-Frequenz einer weiteren Teilerstufe 21 zugeleitet, die die Differenzfrequenz fd zweckmäßig durch zwei teilt. Die Gate-Frequenz fg und die feste Vergleichsfrequenz fv werden einer später noch anhand von Figur 9 erläuterten Auswerteschaltung 22 zugeleitet. Diese AuswerteSchaltung 22 beeinflußt mittels eines Ausgangssignales UA die Federungsmittel 23 des Fahrwerks des Fahrzeugs 1.Generation of a gate frequency fed to a further divider stage 21, which divides the difference frequency f d appropriately by two. The gate frequency f g and the fixed comparison frequency f v are fed to an evaluation circuit 22 which will be explained later with reference to FIG. 9. This evaluation circuit 22 influences the suspension means 23 of the chassis of the vehicle 1 by means of an output signal U A.
Figur 3 zeigt in Form eines Stromlaufplanes ein Ausführungsbeispiel der in Figur 2 als Blockschaltbild dargestellten Einrichtung ohne die Bestandteile 22 und 23.FIG. 3 shows in the form of a circuit diagram an exemplary embodiment of the device shown as a block diagram in FIG. 2 without the components 22 and 23.
Figur 4 zeigt in Seitenansicht und teilweise im Längsschnitt dargestellt, in einem Abbildungsmaßstab von ungefähr 2 : 1, einen sowohl als Sendeantenne 11 als auch als Empfangsantenne 16 verwendeten Ultraschalltrichter, der aus einem ersten, im wesentlichen zylinderförmigen Abschnitt 41 und aus einem zweiten Abschnitt 42 besteht, der im wesentlichen kegelstumpfförmig ausgebildet ist. Der zylinderförmige erste Abschnitt 41 sitzt dabei auf der Grundfläche des kegelstumpfförmig ausgebildeten zweiten Abschnittes 42 auf. Die Abschnitte 41 und 42 sind von einer in Axialrichtung verlaufenden Bohrung 43 durchsetzt, die sich zur Abstrahlungs- bzw. Einstrahlungsöffnung 43a hin trichterförmig erweitert. Der Ultraschalltrichter 40 ermöglicht die Bündelung der abgestrahlten Ultraschallwellen, so daß diese gezielt auf die Meßfläche gerichtet werden können. Die Abstrahlcharakteristik des Ultraschalltrichters 40 ist in dem Diagramm der Figur 5 dargestellt. Auf der Empfängerseite sorgt die Bündelungscharakteristik des Ultraschalltrichters 40 dafür, daß neben der interessierenden Frequenz fe möglichst wenig Störanteile aufgenommen werden. Allerdings ist eine zu starke Strahlbündelung zu vermeiden, da beim Fahrbetrieb infolge von Luft Strömungen und Temperaturunterschieden Beugungseffekte auftreten können, die die Kopplung zwischen Sendeantenne und Empfangsantenne beeinträchtigen können.FIG. 4 shows, in side view and partially in longitudinal section, on an image scale of approximately 2: 1, an ultrasonic funnel used both as a transmitting antenna 11 and as a receiving antenna 16, which consists of a first, essentially cylindrical section 41 and a second section 42 , which is substantially frustoconical. The cylindrical first section 41 sits on the base of the frustoconical second section 42. The sections 41 and 42 are penetrated by a bore 43 which extends in the axial direction and widens in a funnel shape towards the radiation or irradiation opening 43a. The ultrasonic funnel 40 enables the emitted ultrasonic waves to be focused so that they can be directed specifically onto the measuring surface. The radiation characteristic of the ultrasonic funnel 40 is shown in the diagram in FIG. On the receiver side, the focusing characteristic of the ultrasonic funnel 40 ensures that as little interference as possible is recorded in addition to the frequency f e of interest. However, excessive beam bundling should be avoided, as driving due to air Currents and temperature differences can cause diffraction effects that can impair the coupling between the transmitting antenna and the receiving antenna.
Die im Blockschaltbild der Figur 2 mit 22 bezeichnete Auswerteschaltung wird nun unter Bezug auf Figur 6, Figur 9 und Figur 10 beschrieben. Figur 6 zeigt ein Zeitdiagramm der Auswerteschaltung, während Figur 9 die AuswerteSchaltung als Blockschaltbild und Figur 10 die Auswerteschaltung als Stromlaufplan zeigen. Die Auswerteschaltung nach Figur 9 umfaßt ein EX-OR-Glied 90, dessen Eingangsanschluß die Gate-Frequenz fg zugeführt wird. Der Ausgangsanschluß des EX-OR-Gliedes 90 ist einerseits mit dem Eingangsanschluß einer monostabilen Kippstufe 91, sowie andererseits mit dem Stop-Anschluß eines Binärzählers 92 verbunden. Dem Eingangsanschluß des Binärzählers 92 wird die Vergleichsfrequenz fv zugeführt. Der Ausgangsanschluß des Binärzählers 92 ist mit einem Zwischenspeicher 93 verbunden. Der Ausgangsanschluß dieses Zwischenspeichers 93 wiederum ist mit dem Eingangsanschluß eines Digital-Analog-Wandlers 94 verbunden, an dessen Ausgangsanschluß das Ausgangssignal U zur Verfügung steht. Zur Erläuterung der Funktion der Auswerteschaltung 22 werden jetzt zusätzlich Figur 6 und Figur 10 betrachtet.The evaluation circuit designated 22 in the block diagram of FIG. 2 will now be described with reference to FIG. 6, FIG. 9 and FIG. 10. Figure 6 shows a timing diagram of the evaluation circuit, while Figure 9 shows the evaluation circuit as a block diagram and Figure 10 shows the evaluation circuit as a circuit diagram. The evaluation circuit according to FIG. 9 comprises an EX-OR gate 90, the input terminal of which is supplied with the gate frequency f g . The output connection of the EX-OR gate 90 is connected on the one hand to the input connection of a monostable multivibrator 91, and on the other hand to the stop connection of a binary counter 92. The comparison frequency f v is supplied to the input terminal of the binary counter 92. The output terminal of the binary counter 92 is connected to a buffer 93. The output terminal of this buffer 93 is in turn connected to the input terminal of a digital-to-analog converter 94, at the output terminal of which the output signal U is available. To explain the function of the evaluation circuit 22, FIG. 6 and FIG. 10 are now considered in addition.
Während einer Halbperiode des Gate-Signals fg werden die Impulse des Vergleichssignals fv gezählt. Die ermittelte Impulszahl wird in einen analogen Spannungswert UA umgewandelt. Jedoch können die als digitale Information vorliegenden Impulse in einem anderen Ausführungsbeispiel der Erfindung direkt von einem Rechner zur Weiterverarbeitung übernommen werden.The pulses of the comparison signal f v are counted during a half period of the gate signal f g . The number of pulses determined is converted into an analog voltage value U A. However, in another exemplary embodiment of the invention, the pulses present as digital information can be taken over directly by a computer for further processing.
Bei jeder Flanke des Gate-Rechtecksignals fg (Figur 6b) wird zunächst vom EX-OR-Glied 90 ein kurzer Rechteckimpuls erzeugt (EXOR-Signal Figur 6c). Dessen abfallende Flanke triggert eine mono stabile Kippstufe 91, die daraufhin ebenfalls einen kurzen Rechteckimpuls abgibt (Monoflop-Signal Figur 6d). Die Dauer der beiden Impulse wird durch die äußere RC-Beschaltung bestimmt (vergleiche Figur 10).On each edge of the gate rectangular signal f g (FIG. 6b), a short rectangular pulse is first generated by the EX-OR gate 90 (EXOR signal FIG. 6c). Its falling edge triggers a mono stable flip-flop 91, which then also emits a short square pulse (monoflop signal Figure 6d). The duration of the two pulses is determined by the external RC circuit (see Figure 10).
Solange kein EXOR-Signal anliegt, werden die Impulse des VergleichsSignals fv (Figur 6a) vom Binärzähler 92 (Figur 9) hochgezählt. Sobald aber das EXOR-Signal auf H springt, wird der Zähler 92 gestoppt. Gleichzeitig wird das bisher erreichte Zählergebnis, die Impulszahl nI, in den Zwischenspeicher 93, der als Halteglied wirkt, übernommen. Danach wird der Binärzähler 92 durch das Mono- flop-Signal zurückgesetzt und es kann von neuem gezählt werden.As long as no EXOR signal is present, the pulses of the comparison signal f v (FIG. 6a) are counted up by the binary counter 92 (FIG. 9). As soon as the EXOR signal jumps to H, the counter 92 is stopped. At the same time, the counting result achieved so far, the number of pulses n I , is transferred to the buffer memory 93, which acts as a holding element. Then the binary counter 92 is reset by the monoflop signal and it can be counted again.
Die Gesamtdauer te + tm der beiden Rechteckimpulse desThe total duration t e + t m of the two rectangular pulses
EX-OR-Gliedes 90 und der monostabilen Kippstufe 91 wird zweckmäßig derart bemessen, daß gilt:EX-OR gate 90 and the monostable multivibrator 91 is appropriately dimensioned such that:
te + tm < Tv = 1/fv , (20)t e + t m <T v = 1 / f v , (20)
Dadurch wird erreicht, daß beim Zählen nur maximal ein Impuls des Vergleichssignals fv ausgelassen wird. Für N3 ≥ 2 kann das mit der hier vorgeschlagenen Schaltung erreicht werden. Für N3 = 1 ist diese Bedingung jedoch nicht mehr erfüllbar; dann sollte die Dauer des EX-OR-Impulses te möglichst klein sein.This ensures that only a maximum of one pulse of the comparison signal f v is omitted during counting. For N3 ≥ 2 this can be achieved with the circuit proposed here. For N3 = 1, however, this condition can no longer be met; then the duration of the EX-OR pulse t e should be as short as possible.
Das jeweils am Ausgang des Zwischenspeichers 93 anstehende Ergebnis wird durch einen Digital-Analog-Wandler 94 in einen analogenThe result pending at the output of the buffer memory 93 is converted into an analog one by a digital-to-analog converter 94
Spannungswert UA, umgesetzt. Das Signal UA beeinflußt dann dieVoltage value U A , implemented. The signal U A then affects the
Federungsmittel 23 im Sinne einer Verbesserung des Fahrkomforts und/oder der Fahrsicherheit. Die Zeit bis zur nächsten Meßwertaktualisierung ist von der Frequenz des Gate-Signales fg und damit vom Meßwert abhängig. Sie beträgt im MittelSuspension means 23 in the sense of improving driving comfort and / or driving safety. The time until the next measured value update depends on the frequency of the gate signal f g and thus on the measured value. It is on average
Figure imgf000016_0001
und hängt damit von der gewählten Oszillatorfrequenz f0 ab.
Figure imgf000016_0001
and thus depends on the chosen oscillator frequency f 0 .
Die Ausgangsspannung des Digital-Analog-Wandlers 94 wurde bei einigen vorgegebenen festen Impulszahlen gemessen. Der ermittelte Zusammenhang ist in Figur 7 dargestellt.The output voltage of digital-to-analog converter 94 was measured at some predetermined fixed pulse numbers. The relationship determined is shown in FIG. 7.
AusOut
Figure imgf000016_0002
ergibt sich für die Abhängigkeit der Geschwindigkeit von der gemessenen Impulszahl
Figure imgf000016_0002
results for the dependence of the speed on the measured number of impulses
Figure imgf000016_0003
Figure imgf000016_0003
Der auf diese Weise berechnete Zusammenhang ist in Figur 8 aufgetragen.The relationship calculated in this way is plotted in FIG. 8.
Bei einer Testfahrt wurde für N3 = 5 angesetzt und ein 8-bit Digital-Analog-Wandler 94 in der Auswerteschaltung nach Figur 9, Figur 10 verwendet. Die Einrichtung wurde unter der Stoßstange des Versuchsfahrzeugs in der Spur des rechten Vorderrades derart angebracht, daß die Trichter der Ultraschallwandler etwa senkrecht nach unten auf die Oberfläche der Fahrbahn gerichtet waren. Figur 11 zeigt im oberen Kurvenverlauf das Ultraschallsignal und im unteren Kurvenverlauf die zum Vergleich gemessene Federauslenkung des Stoßdämpfers am rechten Vorderrad bei einer Fahrt mit etwa konstanter Geschwindigkeit von 80 km/h.A test run was made for N3 = 5 and an 8-bit digital-to-analog converter 94 in the evaluation circuit according to FIG. 9, FIG 10 used. The device was attached under the bumper of the test vehicle in the track of the right front wheel in such a way that the funnels of the ultrasonic transducers were directed approximately perpendicularly downwards onto the surface of the road. FIG. 11 shows the ultrasound signal in the upper curve and the spring deflection of the shock absorber on the right front wheel measured for comparison when driving at a constant speed of 80 km / h in the lower curve.
Wesentlich bessere Ergebnisse wurden mit N3 =1 und einem 10-bit-DA-Wandler in der Auswerteschaltung nach Figur 9, Figur 10 erzielt.Substantially better results were achieved with N3 = 1 and a 10-bit DA converter in the evaluation circuit according to FIG. 9, FIG. 10.
Weitere Meßwerte (Figur 12 bis Figur 15) wurden auf einem Prüfstand gewonnen. Das Fahrzeug wurde dabei so auf den Prüfstand gefahren, daß die Einrichtung feststehend über einem auf und ab bewegbar angeordneten, die Oberfläche der Fahrbahn simulierenden Stempel hing. Der Stempel wurde in einem mittleren Meßabstand von ca. 30 cm sinusförmig auf und ab bewegt. Stempelauslemkung sowie Ausgangssignal des DA-Wandlers wurden als Funktion der Zeit im Meßdiagramm erfaßt.Further measured values (FIGS. 12 to 15) were obtained on a test bench. The vehicle was driven to the test stand in such a way that the device was fixed above a stamp that was arranged to move up and down and simulate the surface of the road. The stamp was moved sinusoidally up and down at an average measuring distance of approx. 30 cm. Stamp deflection and the output signal of the DA converter were recorded as a function of time in the measurement diagram.
Unter Verwendung des Zusammenhangs zwischen Ausgangsspannung des DA-Wandlers und Impulszahl (Figur 7) konnte nachUsing the relationship between the output voltage of the DA converter and the number of pulses (Figure 7) was able to
Figure imgf000017_0001
das korrigierte Doppiersignal berechnet werden. Das korrigierte Dopplersignal (untere Kurve) und die Stempelgeschwindigkeit (obere Kurve) sind für verschiedene Schwingungsfrequenzen des Stempels in den Figuren 12 bis 15 dargestellt. Zur besseren Unterscheidung sind beide Signale in den Diagrammen leicht in vertikaler Richtung gegeneinander verschoben. Aus den Diagrammen ist deutlich erkennbar, daß das durch Reflexion an der Stempeloberfläche gewonnene korrigierte Dopplersignal die Stempelbewegung sehr genau abbildet, so daß auf diese Weise Unebenheiten der Fahrbahnoberfläche festgestellt und zur Beeinflussung der Federungsmittel 23 ausgenutzt werden können.
Figure imgf000017_0001
the corrected double signal can be calculated. The corrected Doppler signal (lower curve) and the punch speed (upper curve) are shown for different vibration frequencies of the punch in FIGS. 12 to 15. For better differentiation, the two signals in the diagrams are slightly shifted from each other in the vertical direction. From the diagrams it can be clearly seen that the corrected Doppler signal obtained by reflection on the stamp surface reproduces the stamp movement very precisely, so that unevenness in the road surface can be determined in this way and used to influence the spring means 23.
Oben wurde erwähnt, daß je ein Sensor 2 am Fahrzeugbug in der Spur jedes Vorderrades angebracht wird, um für jedes der beiden Radpaare den Fahrbahnzustand getrennt erfassen zu können. Es ist weiter möglich, jedem Rad des Fahrwerks einen getrennten Sensor zuzuordnen. It was mentioned above that a sensor 2 is attached to the front of the vehicle in the track of each front wheel in order to be able to separately detect the road condition for each of the two wheel pairs. It is also possible to assign a separate sensor to each wheel of the undercarriage.

Claims

Ansprüche Expectations
1. Verfahren zur Fahrwerksregelung eines Kraftfahrzeuges mit einem Federungsmittel umfassenden Fahrwerk, sowie mit Mitteln zur Beeinflussung der Federungsmittel, dadurch gekennzeichnet, daß die Fahrbahnoberfläche vor dem Fahrzeug bzw. vor den Rädern des Fahrzeuges überwacht wird und daß bei Auftreten von Fahrbahnunebenheiten vom Ausmaß der Fahrbahnunebenheiten abhängige Signale erzeugt und damit die Federungsmittel im Sinne einer Verbesserung des Fahrkomforts und/oder der Fahrsicherheit beeinflußt werden.1. A method for chassis control of a motor vehicle with a suspension comprising suspension means, and with means for influencing the suspension means, characterized in that the road surface in front of the vehicle or in front of the wheels of the vehicle is monitored and that when bumps occur on the extent of the bumps dependent Signals are generated and the suspension means are influenced in the sense of improving driving comfort and / or driving safety.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Feststellung von Fahrbahnunebenheiten die zeitliche Änderung (da/dt) des Abstandes (h) zwischen Fahrzeugboden und Fahrbahnoberfläche (0) ausgewertet wird.2. The method according to claim 1, characterized in that the temporal change (da / dt) of the distance (h) between the vehicle floor and road surface (0) is evaluated to determine uneven road surfaces.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß zur Ermittlung der zeitlichen Änderung (v =da/dt) des Abstandes (a) zwischen Fahrzeugboden und Fahrbahnoberfläche (0) die fahrgeschwindigkeitsabhängige Frequenzänderung eines vom Fahrzeug abgestrahlten und von der Fahrbahnoberfläche reflektierten Signales der Frequenz (f0) ausgewertet wird. 3. The method according to any one of claims 1 and 2, characterized in that to determine the change over time (v = da / dt) of the distance (a) between the vehicle floor and road surface (0), the speed-dependent frequency change of a radiated from the vehicle and from the road surface reflected signals of the frequency (f 0 ) is evaluated.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das von der Fahrbahnoberfläche reflektierte Signal zur Bildung einer Differenzfrequenz (fd) mit einem Signal überlagert wird, dessen Frequenz (fü) sich um mehr als die maximal mögliche Frequenzverschiebung (Dopplereffekt) von der Frequenz (f0) des4. The method according to any one of claims 1 to 3, characterized in that the signal reflected from the road surface to form a differential frequency (f d ) is superimposed with a signal whose frequency (f ü ) is more than the maximum possible frequency shift ( Doppler effect) on the frequency (f 0 ) of the
Sendesignales unterscheidet.Broadcast signals differentiates.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Differenzfrequenz ( fd), gegebenenfalls durch Teilung, in eine Gate-Frequenz (fg = 1/2 fd) umgewandelt und einer Zähleinrichtung zugeführt wird, in der die Gate-Frequenz (fg) mit einem Vergleichssignal verglichen wird, dessen Frequenz (fv) konstant und wesentlicher größer als die Gate-Frequenz (fd) ist.5. The method according to any one of claims 1 to 4, characterized in that the differential frequency (f d ), optionally by division, is converted into a gate frequency (f g = 1/2 f d ) and fed to a counter in which the gate frequency (f g ) is compared with a comparison signal, the frequency (f v ) of which is constant and substantially greater than the gate frequency (f d ).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Frequenzen (f0, fü, fv) von einem einzigen Oszillator abgeleitet werden.6. The method according to any one of claims 1 to 5, characterized in that the frequencies (f 0 , f ü , f v ) are derived from a single oscillator.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß vom Fahrzeug ein Ultraschallsignal abgestrahlt wird.7. The method according to any one of claims 1 to 6, characterized in that an ultrasonic signal is emitted from the vehicle.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Frequenz (f0) des vom Fahrzeug abgestrahlten Ultraschallsignals zwischen 30 kHz und 35 kHz, insbesondere bei etwa8. The method according to any one of claims 1 to 7, characterized in that the frequency (f 0 ) of the ultrasound signal emitted by the vehicle between 30 kHz and 35 kHz, in particular at about
33 kHz, liegt.33 kHz.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß folgende Beziehungen zwischen den Frequenzen (f0, fü und fv) eingehalten werden9. The method according to any one of claims 1 to 8, characterized in that the following relationships between the frequencies (f 0 , f ü and f v ) are maintained
Figure imgf000020_0001
N1 = 32 , N2 = 30 und N3 = 1.
Figure imgf000020_0001
N1 = 32, N2 = 30 and N3 = 1.
10. Einrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9, gekennzeichnet durch einen Oszillator (10) zur Erzeugung der Oszillatorfrequenz (f0) sowie eine Sendeantenne (11) zur Abstrahlung der Oszillatorfrequenz (f0) auf die Fahrbahnoberfläche, Teiler- bzw. Multiplikationsstufen (13, 14) zur Erzeugung je einer Überlagerungsfrequenz (fü) bzw. einer Vergleichsfrequenz (fv) aus der Oszillatorfrequenz (f0). ein eine Empfangsantenne (16) und einem Empfänger (17) sowie einen selektiven Verstärker (18, 19) umfassendes Empfangsteil (15) zum Empfang und zur Verstärkung des von der Fahrbahnoberfläche reflektierten Signals der Frequenz (fe), eine Mischstufe (20) zur Bildung einer Differenzfrequenz (fd) zwischen der Empfangsfrequenz (fe) und der festen Überlagerungsfrequenz (fü), eine Teilerstufe (21) zur Bildung einer10. Device for carrying out the method according to one of claims 1 to 9, characterized by an oscillator (10) for generating the oscillator frequency (f 0 ) and a transmitting antenna (11) for radiation of the oscillator frequency (f 0 ) on the road surface, divider or multiplication stages (13, 14) for generating a superposition frequency (f ü ) or a comparison frequency (f v ) from the oscillator frequency (f 0 ). a receiving part (15) comprising a receiving antenna (16) and a receiver (17) and a selective amplifier (18, 19) for receiving and amplifying the signal of frequency (f e ) reflected from the road surface, a mixing stage (20) for Forming a difference frequency (f d ) between the reception frequency (f e ) and the fixed superposition frequency (f ü ), a division stage (21) to form a
Gate-Frequenz (fg) aus der Differenzfrequenz (fd), eine AuswerteSchaltung (22), der zur Bildung eines die Federungsmittel (23) beeinflussenden Ausgangssignales (UA) die Gate-Frequenz (fg) und die Vergleichsfrequenz (fv) zugeleitet werden.Gate frequency (f g ) from the difference frequency (f d ), an evaluation circuit (22) which, to form an output signal (U A ) influencing the suspension means (23), the gate frequency (f g ) and the comparison frequency (f v ) are forwarded.
11. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Auswerteschaltung (22) ein EX-OR-Glied (90) umfaßt, dessen Eingangsanschluß die Gate-Frequenz (fg) zugeführt wird, dessen Ausgangsanschluß einerseits mit einer monostabilen Kippstufe (91) und andererseits mit dem Sperreingang eines Binärzählers (92) verbunden ist, an dessen Eingangsanschluß die Vergleichsfrequenz (fv) geführt und dessen Löscheingang mit dem Ausgangsanschluß der monostabilen Kippstufe (91) verbunden ist, daß dem Binärzähler (92) ein Zwischenspeicher (93) und diesem wiederum ein Digital-Analog-Wandler (24) nachgeschaltet ist, und von dessen Ausgangsanschluß die Ausgangsspannung (UA) zur Beeinflussung der Federungsmittel (23) abgeleitet wird. 11. The device according to claim 10, characterized in that the evaluation circuit (22) comprises an EX-OR gate (90), the input terminal of which is fed the gate frequency (f g ), the output terminal on the one hand with a monostable multivibrator (91) and on the other hand is connected to the lock input of a binary counter (92), at the input connection of which the comparison frequency (f v ) is conducted and whose erase input is connected to the output connection of the monostable multivibrator (91), that the binary counter (92) has a buffer (93) and this in turn is followed by a digital-to-analog converter (24), and the output voltage (U A ) for influencing the spring means (23) is derived from its output connection.
12. Einrichtung nach einem der Ansprüche 10 und 11, dadurch gekennzeichnet, daß sowohl Oszillator (10) als auch Empfänger (17) je einen als Biegeschwinger ausgebildeten piezoelektrischen Wandler umfassen.12. Device according to one of claims 10 and 11, characterized in that both the oscillator (10) and the receiver (17) each comprise a piezoelectric transducer designed as a bending oscillator.
13. Einrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß die Einrichtung eine Sendeantenne (11) und eine Empfangsantenne (16) aufweist, die als "Ultraschalltrichter" ausgebildet sind, d. h. die eine zentralaxiale, im wesentlichen rotationssymmetrische Ausnehmung aufweisen, die die Gestalt eines Exponentialtrichters hat.13. Device according to one of claims 10 to 12, characterized in that the device has a transmitting antenna (11) and a receiving antenna (16) which are designed as "ultrasonic funnels", d. H. which have a central axial, substantially rotationally symmetrical recess, which has the shape of an exponential funnel.
14. Einrichtung nach einem der Ansprüche 10 bis 13, daß jeder Spur des Fahrzeuges je eine Einrichtung zugeordnet ist, wobei zumindest Oszillator (10) und Empfangsteil (15), einschließlich der zugeordneten Sende- und Empfangsantennen (11, 16) im Fahrzeugbug vor dem Vorderrad angeordnet sind. 14. Device according to one of claims 10 to 13, that each track of the vehicle is assigned a device, wherein at least oscillator (10) and receiving part (15), including the associated transmit and receive antennas (11, 16) in the vehicle front before Front wheel are arranged.
PCT/DE1988/000656 1987-12-02 1988-10-26 Process for adjusting wheel suspensions WO1989005243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873740792 DE3740792A1 (en) 1987-12-02 1987-12-02 METHOD FOR CHASSIS CONTROL
DEP3740792.9 1987-12-02

Publications (1)

Publication Number Publication Date
WO1989005243A1 true WO1989005243A1 (en) 1989-06-15

Family

ID=6341709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1988/000656 WO1989005243A1 (en) 1987-12-02 1988-10-26 Process for adjusting wheel suspensions

Country Status (2)

Country Link
DE (1) DE3740792A1 (en)
WO (1) WO1989005243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393225A1 (en) * 1989-04-20 1990-10-24 Siemens Aktiengesellschaft Ultrasonic detection with an ultrasonic beam directed transversely to a vehicle's direction of movement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4029034C2 (en) * 1990-09-13 1999-02-25 Wabco Gmbh Device for influencing the suspension behavior of a sprung mass
DE10256726A1 (en) * 2002-12-05 2004-06-24 Conti Temic Microelectronic Gmbh Method for signal generation in a motor vehicle depending on the road surface
DE102014207952A1 (en) 2014-04-28 2015-10-29 Zf Friedrichshafen Ag Method for determining a loading state of a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR72682E (en) * 1957-01-04 1960-04-22 Citroen Sa Andre Further training in vehicle suspension
GB862059A (en) * 1958-05-27 1961-03-01 Nat Res Dev Improvements in or relating to radar systems
DE3423602A1 (en) * 1984-06-27 1986-01-09 Robert Bosch Gmbh, 7000 Stuttgart Device for measuring the distance between the chassis and the axle of a vehicle
US4657280A (en) * 1983-10-27 1987-04-14 Honda Giken Kogyo Kabushiki Kaisha System for controlling the damping rate of a vehicle suspension
JPS62122812A (en) * 1985-11-25 1987-06-04 Matsushita Electric Works Ltd Road surface sensor for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR72682E (en) * 1957-01-04 1960-04-22 Citroen Sa Andre Further training in vehicle suspension
GB862059A (en) * 1958-05-27 1961-03-01 Nat Res Dev Improvements in or relating to radar systems
US4657280A (en) * 1983-10-27 1987-04-14 Honda Giken Kogyo Kabushiki Kaisha System for controlling the damping rate of a vehicle suspension
DE3423602A1 (en) * 1984-06-27 1986-01-09 Robert Bosch Gmbh, 7000 Stuttgart Device for measuring the distance between the chassis and the axle of a vehicle
JPS62122812A (en) * 1985-11-25 1987-06-04 Matsushita Electric Works Ltd Road surface sensor for vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 11, Nr. 344 (M-640)(2791), 11. November 1987; & JP-A-62122812 (MATSUSHITA ELECTRIC WORKS LTD) 4. Juni 1987 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393225A1 (en) * 1989-04-20 1990-10-24 Siemens Aktiengesellschaft Ultrasonic detection with an ultrasonic beam directed transversely to a vehicle's direction of movement

Also Published As

Publication number Publication date
DE3740792A1 (en) 1989-06-15

Similar Documents

Publication Publication Date Title
EP2373434B1 (en) Detection device and method for detecting an environment of a vehicle
EP1105749A1 (en) Method and device for detecting objects, especially used as a parking assistance device in a motor vehicle
EP2430474B1 (en) Method for the functional testing of an ultrasonic sensor on a motor vehicle, method for operating an ultrasonic sensor on a motor vehicle, and distance measuring apparatus having at least one ultrasonic sensor for use in a motor vehicle
DE10124909A1 (en) Method and device for operating a radar sensor arrangement
DE10140346B4 (en) Method for distance measurement
DE102017104145B4 (en) Method for operating an ultrasonic sensor device for a motor vehicle with different excitation of a membrane, ultrasonic sensor device, driver assistance system and motor vehicle
EP0389670A2 (en) Apparatus for measuring the speed of a vehicle according to the Doppler radar principle.
EP0829734B1 (en) Method and device for measuring the difference in time of travel of an electrical, electromagnetic or acoustic signal
EP0800654B1 (en) Circuitry with radar equipment for determining a distance or relative speed
DE102017118883A1 (en) A method of operating an ultrasonic sensor device for a motor vehicle with adaptation of a time profile of an amplitude in frequency-modulated excitation signals
DE3028338A1 (en) DOPPLER RADAR DEVICE
DE102018101324B4 (en) A method for determining a position of an object in an environmental region of a motor vehicle by emitting an ultrasound signal having different frequencies, a computing device and an ultrasound sensor device
WO1989005243A1 (en) Process for adjusting wheel suspensions
DE3835510A1 (en) Device, operating according to the Doppler principle, for measuring the distance travelled by a vehicle
DE102017122477A1 (en) Method for operating an ultrasonic sensor for a motor vehicle with object recognition in the near and far range, ultrasonic sensor device, driver assistance system and motor vehicle
DE2803781A1 (en) Deceleration detector to trigger passenger protection devices - has spring-mass system with strain gauge attached for contactless signalling
EP0855577A1 (en) Method for autonomous parameter adjustment of an ultrasonic measuring device
DE102018103560B4 (en) Method for characterizing an object in a surrounding area of a motor vehicle by comparing a received signal from a distance sensor with a predetermined curve, sensor device and driver assistance system
DE2556257C2 (en) Method for testing a transducer and measuring arrangement therefor
DE19923484B4 (en) Method and device for adjusting the damping
DE19721835A1 (en) Circuit for distance sensor, especially ultrasonic sensor, for motor vehicles
DE3607335A1 (en) Random forming of the monitoring zone of ultrasound measurement and control apparatuses by adapted control of the sensitivity response of the ultrasound receiver
EP1530520A2 (en) Device for determining the acceleration of the wheel of a vehicle
DE102018103561B4 (en) Method for detecting at least one object in a surrounding area of a motor vehicle with separation of a received signal from a distance sensor, sensor device and driver assistance system
DE102017126828A1 (en) A method of operating an ultrasonic sensor for a motor vehicle with suppression of disturbances in a second receiving path, ultrasonic sensor and driver assistance system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE