WO1989000151A1 - Reactor for producing biogas - Google Patents

Reactor for producing biogas Download PDF

Info

Publication number
WO1989000151A1
WO1989000151A1 PCT/FI1988/000101 FI8800101W WO8900151A1 WO 1989000151 A1 WO1989000151 A1 WO 1989000151A1 FI 8800101 W FI8800101 W FI 8800101W WO 8900151 A1 WO8900151 A1 WO 8900151A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
biogas
reactor vessel
putrified
vessel
Prior art date
Application number
PCT/FI1988/000101
Other languages
French (fr)
Inventor
Arto Ilmari Stenroos
Isabel Pipping
Original Assignee
Oy Dn-Bioprocessing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oy Dn-Bioprocessing Ltd filed Critical Oy Dn-Bioprocessing Ltd
Publication of WO1989000151A1 publication Critical patent/WO1989000151A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/04Stirrer or mobile mixing elements with introduction of gas through the stirrer or mixing element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/24Recirculation of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention concerns a reactor for producing biogas.
  • the invention relates to enhanced utilization of the waste material used in producing biogas. Numerous possibilities exist to utilize the residual sludge produced in the waste material putrifying process, and the aim of the invention was to devise apparatus intended for biogas production in which part of the putrified organic matter can successfully be utilized e.g. as soil amelioration material.
  • Putrifying is a process in which the organic matter is decomposed by action of bacteria, methane bacteria among others, so that as end product biogas is obtained which may further be burned in boiler plants, or the energy of which can be usefully applied in another way.
  • Putrifying is a commonly applied method e.g. in treating municipal effluent sludges. Above all, it serves to improve the hygienic quality and drying properties of the sludge, while at the same time the process produces at least the putrifying gas quantity required to satisfy its own heating requirements. As a rule no good enough result has been achieved as regards energy householding. It is however generally known that increasing the gas yield would make the process economically profitable in this sense as well.
  • Expedients known in prior art enabling the biogas yield to be increased include: elevated process temperature, efficient agitation in the reactors, subdividing the process into sections appropriate for different groups of microbes, regulation of acidity, adding various organic or inorganic nutrients, and eliminating the harmful effects of certain heavy metals or sulphide ions.
  • the invention has for object a means which is favourable in its total energy economy. Also an object of the invention is an apparatus by the aid of which the various fractions of the reactor can be utilized.
  • the general aim of the invention is also a biogas- producing apparatus in which the gas production has been success ⁇ fully enhanced.
  • a reactor has been formed which com ⁇ prises a vertical shaft for rotating the waste material to be putrified.
  • several outlets are provided from the reactor vessel or reactor tank for separating different fractions from the putrified waste material.
  • a biogas reactor in which part of the biogas is conducted to -a point above the sludge input pipe and so-called floatation is applied in order to separate impurities present in the sludge from the surface of the sludge mass proper, whereby the fraction that is separate from the central 5 part of the vessel will be free of impurity particles, whereby it becomes utilizable e.g. in decorative horticultural building.
  • the biogas reactor of the invention is mainly characterized in that the reactor for producing biogas comprises a rotatable gas Q floatation section disposed in the lower part of the vertical reactor vessel, above the entrance port of the waste material supply pipe, and that the reactor vessel comprises at least three draining ports for fractions of the organic matter being putrified or for particles entering therewith, gravitation-based separation 5 being arranged to take place below the floatation section, advantageously with the structural parts rotating in said lower part aiding the separation.
  • the reactor vessel comprises at least one waste material exit port in the central part of the reactor vessel. Through said exit port waste material is conducted into a drain pipe when desired, and said conduction of waste material is then advantageously accomplished with the aid of compressed air.
  • the reactor may advantageously comprise an exit port for the fraction deposited 0 in the upper part of the sludge mass, disposed adjacent to the upper sludge surface.
  • a valve is again provided in conjunction with said exit port, and thus said fraction can be conducted out from the reactor vessel by opening/closing said valve.
  • Advan ⁇ tageously, vanes or equivalent are provided adjacent to the upper c sludge mass surface by the aid of which the impurities deposited in the upper part of the sludge mass are transported away from the reactor vessel.
  • Fig. 1 is presented a biogas reactor according to the invention, 5 in sectioned view and schematically.
  • Fig. 2 is presented a second advantageous embodiment of the biogas reactor of the invention, similarly in sectioned view and schematically.
  • Fig. 3 is presented a third advantageous embodiment of the biogas reactor of the invention, similarly in elevational view and sectioned.
  • the biogas reactor comprises a feed pipe 1, through which the organic material to be putrified is introduced in the reactor vessel 3 and in its lower part. From the upper part of the reactor vessel 3 departs a gas pipe 4 for carrying the biogas out from the reactor vessel. The biogas is transported further through said pipe 4 e.g. to a burner, ot it is otherwise recovered.
  • a sedimentation unit 8 comprising a gas floatation section 8b, a gas conduction tube 8c and guide vanes 8d.
  • a side branch 4b branches off from the main branch 4a, and a gas pumping means 5 transports part of the biogas by the branch pipe 4b to below the reactor vessel 3, to the gas conduction tube 8c extending into the reactor vessel 3 and conducting said part of the biogas further to the so-called gas floatation section 8b, which comprises a plurality of nozzle apertures 8b' through which the gas discharges into the material that is being putrified. Separation by gravitation has been arranged to take place below the floatation section 8b with the aid of vanes 8d or other equivalent components moving, advantageously rotating, in said section.
  • the gas conduction tube 8c is rotated with a mixer motor 6.
  • the gas floatation section 8b being attached to the gas conduction tube 8c, rotates within the reactor vessel 3, and the biogas dis- charges in the form of bubbles through the nozzle apertures 8b', into the organic matter that is being putrified.
  • part of the impurities present in the material being putrified e.g. plastic bodies, rise with the bubbles to the surface of the sludge, where they can be separately separated.
  • the gas floatation section 8b is located substantially above the input port la of the feed pipe 1.
  • the bottom part 3a of the reactor vessel 3 is advantageously conical and the wall surfaces 3a ⁇ of said conical part are substantially parallel with the lower guide vanes 8d.
  • Heavy particles, such as glass shards and equivalent settle into the settling section 7, and these impurities can be removed with the aid of the sludge removal pump 7a in the settling section 7 and further out from the reactor vessel 3 through the exit 12'.
  • Above the nozzle apertures 8b' of the floatation section 8b in the reactor vessel 3 is located an exit 12" , through which waste material that has been putrified can be removed from the reactor vessel 3 for further removal and utilization.
  • an exit port 12"' In the very highest part of the reactor, adjacent to the upper sludge surface is located an exit port 12"', through which the impurity fraction can be removed which has been deposited in the upper part of the sludge.
  • the removal ports 12" and 12 1 " join the duct 13a, and the exit port 12' of the bottom- most fraction joins the duct 13b, said ducts further joining a joint output pipe 13c.
  • valve 14" in the exit duct After the exit aperture 12" in the middle has been provided a valve 14" in the exit duct, and after the exit port 12"' of the topmost fraction a valve 14"' has been disposed in the duct section adjoining thereto. It is possible b_y alternatingly opening these valves, to remove the desired fraction through the duct 13a and further through the duct 13c, while the putrified organic matter advantageously departs under gravity action from the reactor vessel 3.
  • Fig. 2 is depicted a second advantageous embodiment of the invention.
  • the reactor vessel 3 comprises a vertical, at least bipartite shaft 13.
  • the shaft comprises a first shaft section 15a and a second shaft section 15b. These shaft sections have been joined end to end with a thrust bearing arrange ⁇ ment 16.
  • At least the lower shaft is so designed that the biogas can be carried therethrough, in the manner shown in Fig. 1, to the gas floatation section 8b.
  • the shaft 15a is advantageously a hollow tube.
  • the topmost shaft 15b is rotated by a motor 17 and the lower ⁇ most shaft, by the motor 6.
  • the topmost shaft comprises guide vanes 10a and 10b, which mix the sludge.
  • the motor may rotate the shafts 15a and 15b in the opposite directions, whereby the so-called sedimentation process is enhanced.
  • the end faces of the vanes 10a and 10b are advantageously disposed in a plane, in which they pass by the exit ports 12' and 12" and thereby prevent blocking of the exit apertures.
  • One motor may rotate both shafts 15a and 15b, and over a gear transmission also in opposite directions.
  • the valve 14" has been arranged to open and close the exit port 12"
  • the valve 14"' has been arranged to open and close the topmost exit port 12"' .
  • Fig. 3 is depicted a third advantageous embodiment of the in ⁇ vention, in which in the topmost part of the vessel has been in ⁇ stalled a separate vane 19, rotated by a motor 18.
  • the motor 18 has been mounted in the very top part of the reactor vessel 3, on the top surface of the reactor vessel, and it has been arranged to rotate the shaft 19' of the vane 19.
  • an exit port 20 In the plane of the vane 19 is located an exit port 20, through which impurities are removed which have accumulated on the surface in the course of floatation, e.g. plastic articles and other light structural parts.
  • the central sludge section A of the reactor vessel 3 has, as shown in the figure, two separate exit ports 21 and 22. There is further ⁇ more an aperture 23 for removal of heavy settled particles, in the lower part of the vessel 2. Therefore, in the case of the reactor of the embodiment of this figure, four different fractions may be extracted from the reactor vessel 3.
  • Sludge in various stages of putrification can be removed through the exit apertures 21,22, and through the topmost exit aperture 20 those impurities can be separated from within the vessel which have accumulated on the surface of the sludge section.
  • valve 26 In conjunction with the exit port 22 has been disposed a valve 26 and with the exit port 21, a valve 25. Similarly, the valve 24 has been installed in conjunction with the exit port 20 and the valve 28 in conjunction with the exit port 23, in the duct 13b. Furthermore, the duct 13a includes a valve 27 in its lower part.
  • the reactor vessel 3 comprises a first, bottom-most conical, downward tapering wall portion 30 and a second conical wall portion 31, between these conical portions being a portion 3b comprising a straight cylindrical mantle surface.
  • Below the first conical portion 30 lies the lowest part of the biogas reactor vessel 3, enclosed by the cylindrical mantle surface 29, which contains a floatation section 8b and vanes 8d rotated by the shaft 8c.
  • the floatation section with its biogas nozzle apertures 8b' is located substantially close to the point where the portions 29 and 30 of the tank 3 join each other.
  • the upper part of the tank 30 comprises above the second conical tank portion 31 an uppermost part 32 with straight cylindrical mantle, which encloses within itself a shaft 33 and therewith connected vanes 34 and 35 rotated by a motor 36 and a shaft 33, the ends of these vanes being advantageously arranged to sweep past the fraction removal ports 37 and 38 leading out from the tank section 32, whereby the vanes prevent blocking of the exit ports 37 and 38.
  • valves 39 and 40 have been provided, the desired fraction being removal along the duct 13a by opening and closing these valves.
  • the tank 3 comprises, below the tank section 29, a settling section 7, and therefrom an exit duct 13b, through which with a cylinder 7b and other action means the fraction is removed with pressure through the aperture 41.
  • the biogas circulating through the ducts 4 and 4b may be similar as in the preceding embodiments. It is thus understood that part of the biogas is carried to the floatation section 8b by the duct 4b.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The invention concerns a reactor for producing biogas, comprising a reactor vessel (3), a feed pipe (1) for introducing organic material to be putrified and a biogas output pipe (4), and within said reactor vessel (3) mixing means for mixing the organic material to be putrified. The reactor for producing biogas comprises a rotatable gas floatation section (8b) which has been disposed in the lower part of the vertical reactor vessel (3) above the entrance port (1a) of the waste material supply pipe (1). The reactor vessel comprises at least three ports for removal of fractions of the organic material being putrified or of particles entrained therewith, gravitation separation being arranged to take place below the floatation section (8b), advantageously with structural components (8d) moving in said below-located part promoting the separation.

Description

Reactor for producing biogas
The invention concerns a reactor for producing biogas.
The invention relates to enhanced utilization of the waste material used in producing biogas. Numerous possibilities exist to utilize the residual sludge produced in the waste material putrifying process, and the aim of the invention was to devise apparatus intended for biogas production in which part of the putrified organic matter can successfully be utilized e.g. as soil amelioration material.
Putrifying is a process in which the organic matter is decomposed by action of bacteria, methane bacteria among others, so that as end product biogas is obtained which may further be burned in boiler plants, or the energy of which can be usefully applied in another way.
Putrifying is a commonly applied method e.g. in treating municipal effluent sludges. Above all, it serves to improve the hygienic quality and drying properties of the sludge, while at the same time the process produces at least the putrifying gas quantity required to satisfy its own heating requirements. As a rule no good enough result has been achieved as regards energy householding. It is however generally known that increasing the gas yield would make the process economically profitable in this sense as well.
Expedients known in prior art enabling the biogas yield to be increased include: elevated process temperature, efficient agitation in the reactors, subdividing the process into sections appropriate for different groups of microbes, regulation of acidity, adding various organic or inorganic nutrients, and eliminating the harmful effects of certain heavy metals or sulphide ions.
It has also been known that methane bacteria require highly reduced conditions in order to operate, and it is known that oxygen -- either atmospheric or released through chemical reactions -- is toxic to the vital processes of methane bacteria at quite low contents already. Endeavours have therefore been made to prevent entraining of oxygen into the biogas process proper, as efficiently as possible.
Therefore the invention has for object a means which is favourable in its total energy economy. Also an object of the invention is an apparatus by the aid of which the various fractions of the reactor can be utilized. The general aim of the invention is also a biogas- producing apparatus in which the gas production has been success¬ fully enhanced.
As taught by the invention, a reactor has been formed which com¬ prises a vertical shaft for rotating the waste material to be putrified. As taught by the invention, several outlets are provided from the reactor vessel or reactor tank for separating different fractions from the putrified waste material. As taught by the n invention, there has also been formed a biogas reactor in which part of the biogas is conducted to -a point above the sludge input pipe and so-called floatation is applied in order to separate impurities present in the sludge from the surface of the sludge mass proper, whereby the fraction that is separate from the central 5 part of the vessel will be free of impurity particles, whereby it becomes utilizable e.g. in decorative horticultural building.
The biogas reactor of the invention is mainly characterized in that the reactor for producing biogas comprises a rotatable gas Q floatation section disposed in the lower part of the vertical reactor vessel, above the entrance port of the waste material supply pipe, and that the reactor vessel comprises at least three draining ports for fractions of the organic matter being putrified or for particles entering therewith, gravitation-based separation 5 being arranged to take place below the floatation section, advantageously with the structural parts rotating in said lower part aiding the separation. As taught by the invention, the reactor vessel comprises at least one waste material exit port in the central part of the reactor vessel. Through said exit port waste material is conducted into a drain pipe when desired, and said conduction of waste material is then advantageously accomplished with the aid of compressed air. After the exit port a valve has been provided, the draining of said fraction from the reactor vessel being regulated by opening and closing this valve. As taught by the invention, the reactor may advantageously comprise an exit port for the fraction deposited 0 in the upper part of the sludge mass, disposed adjacent to the upper sludge surface. A valve is again provided in conjunction with said exit port, and thus said fraction can be conducted out from the reactor vessel by opening/closing said valve. Advan¬ tageously, vanes or equivalent are provided adjacent to the upper c sludge mass surface by the aid of which the impurities deposited in the upper part of the sludge mass are transported away from the reactor vessel.
The invention is described in the following, referring to certain n advantageous embodiments of the invention, presented in the figures of the attached drawings, yet to which the invention is not meant to be exclusively confined.
In Fig. 1 is presented a biogas reactor according to the invention, 5 in sectioned view and schematically.
In Fig. 2 is presented a second advantageous embodiment of the biogas reactor of the invention, similarly in sectioned view and schematically. 0
In Fig. 3 is presented a third advantageous embodiment of the biogas reactor of the invention, similarly in elevational view and sectioned.
In Fig. 4 is presented a fourth advantageous embodiment of the invention. As depicted in Fig. 1, the biogas reactor comprises a feed pipe 1, through which the organic material to be putrified is introduced in the reactor vessel 3 and in its lower part. From the upper part of the reactor vessel 3 departs a gas pipe 4 for carrying the biogas out from the reactor vessel. The biogas is transported further through said pipe 4 e.g. to a burner, ot it is otherwise recovered. In the lower part of the reactor vessel 3 has been disposed a sedimentation unit 8, comprising a gas floatation section 8b, a gas conduction tube 8c and guide vanes 8d. From the gas pipe 4, a side branch 4b branches off from the main branch 4a, and a gas pumping means 5 transports part of the biogas by the branch pipe 4b to below the reactor vessel 3, to the gas conduction tube 8c extending into the reactor vessel 3 and conducting said part of the biogas further to the so-called gas floatation section 8b, which comprises a plurality of nozzle apertures 8b' through which the gas discharges into the material that is being putrified. Separation by gravitation has been arranged to take place below the floatation section 8b with the aid of vanes 8d or other equivalent components moving, advantageously rotating, in said section.
The gas conduction tube 8c is rotated with a mixer motor 6. The gas floatation section 8b, being attached to the gas conduction tube 8c, rotates within the reactor vessel 3, and the biogas dis- charges in the form of bubbles through the nozzle apertures 8b', into the organic matter that is being putrified. Hereby part of the impurities present in the material being putrified e.g. plastic bodies, rise with the bubbles to the surface of the sludge, where they can be separately separated.
With the gas conduction tube 8c, which is rotated with the mixer motor 6, are connected the gas floatation section 8b of the sedi¬ mentation unit 8, and the guide vanes 8d.
The gas floatation section 8b is located substantially above the input port la of the feed pipe 1. The bottom part 3a of the reactor vessel 3 is advantageously conical and the wall surfaces 3a^ of said conical part are substantially parallel with the lower guide vanes 8d. Heavy particles, such as glass shards and equivalent settle into the settling section 7, and these impurities can be removed with the aid of the sludge removal pump 7a in the settling section 7 and further out from the reactor vessel 3 through the exit 12'. Above the nozzle apertures 8b' of the floatation section 8b in the reactor vessel 3 is located an exit 12" , through which waste material that has been putrified can be removed from the reactor vessel 3 for further removal and utilization. In the very highest part of the reactor, adjacent to the upper sludge surface is located an exit port 12"', through which the impurity fraction can be removed which has been deposited in the upper part of the sludge. For removal of the upper fractions, the removal ports 12" and 121" join the duct 13a, and the exit port 12' of the bottom- most fraction joins the duct 13b, said ducts further joining a joint output pipe 13c.
After the exit aperture 12" in the middle has been provided a valve 14" in the exit duct, and after the exit port 12"' of the topmost fraction a valve 14"' has been disposed in the duct section adjoining thereto. It is possible b_y alternatingly opening these valves, to remove the desired fraction through the duct 13a and further through the duct 13c, while the putrified organic matter advantageously departs under gravity action from the reactor vessel 3.
In Fig. 2 is depicted a second advantageous embodiment of the invention. This embodiment differs from that of Fig. 1 in that the reactor vessel 3 comprises a vertical, at least bipartite shaft 13. In the embodiment of the figure, the shaft comprises a first shaft section 15a and a second shaft section 15b. These shaft sections have been joined end to end with a thrust bearing arrange¬ ment 16. At least the lower shaft is so designed that the biogas can be carried therethrough, in the manner shown in Fig. 1, to the gas floatation section 8b. The shaft 15a is advantageously a hollow tube. The topmost shaft 15b is rotated by a motor 17 and the lower¬ most shaft, by the motor 6. The topmost shaft comprises guide vanes 10a and 10b, which mix the sludge. The motor may rotate the shafts 15a and 15b in the opposite directions, whereby the so- called sedimentation process is enhanced. The end faces of the vanes 10a and 10b are advantageously disposed in a plane, in which they pass by the exit ports 12' and 12" and thereby prevent blocking of the exit apertures. One motor may rotate both shafts 15a and 15b, and over a gear transmission also in opposite directions. The valve 14" has been arranged to open and close the exit port 12" , and the valve 14"' has been arranged to open and close the topmost exit port 12"' .
In Fig. 3 is depicted a third advantageous embodiment of the in¬ vention, in which in the topmost part of the vessel has been in¬ stalled a separate vane 19, rotated by a motor 18. The motor 18 has been mounted in the very top part of the reactor vessel 3, on the top surface of the reactor vessel, and it has been arranged to rotate the shaft 19' of the vane 19. In the plane of the vane 19 is located an exit port 20, through which impurities are removed which have accumulated on the surface in the course of floatation, e.g. plastic articles and other light structural parts.
The central sludge section A of the reactor vessel 3 has, as shown in the figure, two separate exit ports 21 and 22. There is further¬ more an aperture 23 for removal of heavy settled particles, in the lower part of the vessel 2. Therefore, in the case of the reactor of the embodiment of this figure, four different fractions may be extracted from the reactor vessel 3. The lowermost fraction, com¬ prising the heavy impurities which have accumulated in the settling section 7, is removed through the exit port 23. Sludge in various stages of putrification can be removed through the exit apertures 21,22, and through the topmost exit aperture 20 those impurities can be separated from within the vessel which have accumulated on the surface of the sludge section. In conjunction with the exit port 22 has been disposed a valve 26 and with the exit port 21, a valve 25. Similarly, the valve 24 has been installed in conjunction with the exit port 20 and the valve 28 in conjunction with the exit port 23, in the duct 13b. Furthermore, the duct 13a includes a valve 27 in its lower part.
In Fig. 4, a fourth advantageous embodiment of the invention is depicted, in elevational view and schematically. In the embodiment of the figure, the reactor vessel 3 comprises a first, bottom-most conical, downward tapering wall portion 30 and a second conical wall portion 31, between these conical portions being a portion 3b comprising a straight cylindrical mantle surface. Below the first conical portion 30 lies the lowest part of the biogas reactor vessel 3, enclosed by the cylindrical mantle surface 29, which contains a floatation section 8b and vanes 8d rotated by the shaft 8c. The floatation section with its biogas nozzle apertures 8b' is located substantially close to the point where the portions 29 and 30 of the tank 3 join each other.
The upper part of the tank 30 comprises above the second conical tank portion 31 an uppermost part 32 with straight cylindrical mantle, which encloses within itself a shaft 33 and therewith connected vanes 34 and 35 rotated by a motor 36 and a shaft 33, the ends of these vanes being advantageously arranged to sweep past the fraction removal ports 37 and 38 leading out from the tank section 32, whereby the vanes prevent blocking of the exit ports 37 and 38. In connection with the ducts of the fraction removal ports 37 and 38, valves 39 and 40 have been provided, the desired fraction being removal along the duct 13a by opening and closing these valves.
The tank 3 comprises, below the tank section 29, a settling section 7, and therefrom an exit duct 13b, through which with a cylinder 7b and other action means the fraction is removed with pressure through the aperture 41.
The biogas circulating through the ducts 4 and 4b may be similar as in the preceding embodiments. It is thus understood that part of the biogas is carried to the floatation section 8b by the duct 4b.

Claims

Claims
1. A reactor for producing biogas, comprising a reactor vessel (3) , a feed pipe (1) for introducing organic material to be putrified and a biogas output pipe (4) , and within said reactor vessel (3) mixing means for mixing the organic material to be putrified, and in said reactor being performed separation of organic matter, applying floatation, for separating at least three different fractions, characterized in that the reactor for producing biogas 0 comprises a rotatable gas floatation section (8b) which has been disposed in the lower part of the vertical reactor vessel (3) above the entrance port (la) of the waste material supply pipe (1) , and that the reactor vessel comprises at least three ports for removal of fractions of the organic material being putrified
15 or of particles entrained therewith, gravitation separation being arranged to take place below the floatation section (8b) , advan¬ tageously with structural components (8d) moving in said below- located part promoting the separation.
20 2. Reactor according to claim 1, characterized in that the reactor comprises in the lower part of the jeactor vessel (3) a shaft rotating the gas floatation section (8b) , through which advan¬ tageously the biogas is also carried to the gas floatation section, the biogas being distributed through nozzle apertures (8b') by nc moving the floatation section (8b) , in among the organic material to be putrified.
3. Reactor according to claim 1 or 2 for producing biogas, charac¬ terized in that the reactor vessel (3) comprises at least one
3Q waste material exit port (12") in the central part (A) of the reactor vessel (3), through said exit port (12") being conducted, when desired, waste material into an exit pipe (13a,13b), advan¬ tageously with the aid of gravity, by opening and closing a valve (14") provided after the exit port (12").
35
4. Reactor according to any one of the preceding claims for pro¬ ducing biogas, characterized in that the reactor comprises an exit port (12"',20,37) for removal of the fraction deposited in the upper part of the waste mass, disposed adjacent to the upper surface of the waste material, and a valve (14" ',24,39) disposed in con¬ junction therewith, said fraction being conductable out from the reactor vessel (3) by opening and closing the valve (14"' ,24,39) .
5. Reactor according to any one of the preceding claims for pro¬ ducing biogas, characterized in that the apparatus comprises a branch pipe (4b) connected to the biogas output pipe (4) , through 0 which part of the biogas is conducted to the gas floatation section (8b), advantageously by a pumping means (5).
6. Reactor according to claim 1 for producing biogas, characterized in that the reactor comprises a vertical shaft which comprises at 5 least two sections (15a,15b) which are thrust bearing-carried against each other and which shafts can be rotated independent of each other.
7. Reactor according to any one of the preceding claims for pro- o ducing biogas, characterized in that the reactor comprises a vane (19,10a,34) sweeping over the upper part of the waste mass and which has been disposed to move any impurities which have been carried to the upper part of the sludge and deposited there, through an exit port (20,12"',37) out from the reactor vessel (3). 5
0
5
PCT/FI1988/000101 1987-07-03 1988-06-23 Reactor for producing biogas WO1989000151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI872943A FI81774C (en) 1987-07-03 1987-07-03 Reactor designed to generate biogas
FI872943 1987-07-03

Publications (1)

Publication Number Publication Date
WO1989000151A1 true WO1989000151A1 (en) 1989-01-12

Family

ID=8524759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI1988/000101 WO1989000151A1 (en) 1987-07-03 1988-06-23 Reactor for producing biogas

Country Status (2)

Country Link
FI (1) FI81774C (en)
WO (1) WO1989000151A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018847A1 (en) * 1992-03-17 1993-09-30 Outokumpu Ecoenergy Oy Method and apparatus for producing feed mixture
GB2333771A (en) * 1998-01-28 1999-08-04 William Richard Butterworth Treating bio-degradable waste material
WO2002094978A2 (en) * 2001-05-22 2002-11-28 Xaver Lipp Device and method for fermenting organic substances
EP2028162A1 (en) * 2007-08-03 2009-02-25 ACEA Pinerolese Industriale S.p.A. Reactor for the anaerobic production of biogas from pre-treated wet waste and stirring method in such reactor
GB2457681A (en) * 2008-02-21 2009-08-26 Farm Renewable Enviromental En A Gas Acuated Mixing System
WO2012131679A1 (en) * 2011-03-28 2012-10-04 Rainbowtec Environmental Solutions 2010 Ltd. An apparatus for waste separation
JP2021094532A (en) * 2019-12-18 2021-06-24 株式会社クボタ Fermentation treatment apparatus
JP2021104468A (en) * 2019-12-26 2021-07-26 株式会社クボタ Fermentation treatment apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE852378C (en) * 1949-06-28 1952-10-13 Walter Dr Eggersgluess Method and device for the destruction and application of floating sludge layers in septic tanks
GB753914A (en) * 1953-06-08 1956-08-01 Chicago Pump Co Process and apparatus for sewage digestion
WO1980001286A1 (en) * 1978-12-22 1980-06-26 F Pfulg Apparatus for anaerobic fermentation of organic material in aqueous dispersion for the production of methane and organic by-products
EP0057152A2 (en) * 1981-01-28 1982-08-04 SOCIETE GENERALE POUR LES TECHNIQUES NOUVELLES S.G.N. Société anonyme dite: Anaerobic fermentation reactor with packing material
AU528945B2 (en) * 1979-02-06 1983-05-19 James Hardie & Coy Pty Limited Methane generator
GB2140402A (en) * 1983-05-23 1984-11-28 Biosystem E Ab Plant for processing organic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE852378C (en) * 1949-06-28 1952-10-13 Walter Dr Eggersgluess Method and device for the destruction and application of floating sludge layers in septic tanks
GB753914A (en) * 1953-06-08 1956-08-01 Chicago Pump Co Process and apparatus for sewage digestion
WO1980001286A1 (en) * 1978-12-22 1980-06-26 F Pfulg Apparatus for anaerobic fermentation of organic material in aqueous dispersion for the production of methane and organic by-products
AU528945B2 (en) * 1979-02-06 1983-05-19 James Hardie & Coy Pty Limited Methane generator
EP0057152A2 (en) * 1981-01-28 1982-08-04 SOCIETE GENERALE POUR LES TECHNIQUES NOUVELLES S.G.N. Société anonyme dite: Anaerobic fermentation reactor with packing material
GB2140402A (en) * 1983-05-23 1984-11-28 Biosystem E Ab Plant for processing organic material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679263A (en) * 1992-03-17 1997-10-21 Eco Technology Jvv Oy Method and apparatus for producing feed mixture
WO1993018847A1 (en) * 1992-03-17 1993-09-30 Outokumpu Ecoenergy Oy Method and apparatus for producing feed mixture
GB2333771A (en) * 1998-01-28 1999-08-04 William Richard Butterworth Treating bio-degradable waste material
WO2002094978A2 (en) * 2001-05-22 2002-11-28 Xaver Lipp Device and method for fermenting organic substances
WO2002094978A3 (en) * 2001-05-22 2003-12-04 Xaver Lipp Device and method for fermenting organic substances
EP2028162A1 (en) * 2007-08-03 2009-02-25 ACEA Pinerolese Industriale S.p.A. Reactor for the anaerobic production of biogas from pre-treated wet waste and stirring method in such reactor
EP2862622A1 (en) * 2008-02-21 2015-04-22 Farm Renewable Environmental Energy Ltd A gas actuated mixing system and method
GB2457681A (en) * 2008-02-21 2009-08-26 Farm Renewable Enviromental En A Gas Acuated Mixing System
WO2009104002A1 (en) * 2008-02-21 2009-08-27 Farm Renewable Environmental Energy Ltd A gas actuated mixing system and method
GB2457681B (en) * 2008-02-21 2013-02-27 Farm Renewable Enviromental Energy Ltd A gas actuated mixing system
AU2009216568B2 (en) * 2008-02-21 2013-07-18 Farm Renewable Environmental Energy Ltd A gas actuated mixing system and method
US8608965B2 (en) 2008-02-21 2013-12-17 Farm Renewable Environmental Energy Ltd. Gas actuated mixing system and method
WO2012131679A1 (en) * 2011-03-28 2012-10-04 Rainbowtec Environmental Solutions 2010 Ltd. An apparatus for waste separation
CN103517979A (en) * 2011-03-28 2014-01-15 伦博泰克环境解决方案2010有限公司 An apparatus for waste separation
US20140004589A1 (en) * 2011-03-28 2014-01-02 Rainbowtec Environmental Solutions 2010 Ltd. Apparatus for waste separation
JP2021094532A (en) * 2019-12-18 2021-06-24 株式会社クボタ Fermentation treatment apparatus
JP7319185B2 (en) 2019-12-18 2023-08-01 株式会社クボタ Fermentation processing equipment
JP2021104468A (en) * 2019-12-26 2021-07-26 株式会社クボタ Fermentation treatment apparatus

Also Published As

Publication number Publication date
FI872943A (en) 1989-01-04
FI81774B (en) 1990-08-31
FI872943A0 (en) 1987-07-03
FI81774C (en) 1990-12-10

Similar Documents

Publication Publication Date Title
USRE35668E (en) Sludge collection apparatus and method
CN1017269B (en) Pressurized flotation modules and method for pressurized from separation
WO1989000151A1 (en) Reactor for producing biogas
RU2431610C2 (en) Compound method for reagentless treatment of waste water and briquetting sludge
US4514297A (en) Bioreactor
EP2028161A1 (en) Device and method for regaining magnesium ammonium phosphate from sewage sludge
US7296693B2 (en) Anaerobic sludge digester
CN108350651B (en) Rotor unit for processing recycled material
CN106630373A (en) Sewage treatment system and method for effectively realizing organic sludge reduction
EP0182955B2 (en) Reaction vessel
US3932273A (en) Method for the primary and secondary treatment of wastewater in a unitary apparatus
US3442386A (en) Plant for treating sewage water
CN105836967A (en) Method for treating sewage by adopting dual-uncoupling membrane bioreactor
EP0902761B1 (en) Clarification plant for water purification
EP0139976A1 (en) Apparatus for the anaerobic decomposition of organic substances
CN212246904U (en) Oil sludge extraction unit, oil sludge extraction assembly and oil sludge treatment device
CN110028206B (en) Treatment method of weaving wastewater
DE2806109A1 (en) DEVICE FOR CLEANING LIQUIDS
KR830007437A (en) Method and device for purification of contaminated water
CN206751600U (en) A kind of aerobic/anaerobic active sludge biological method sewage-treatment plant
CN212293246U (en) Pretreatment device and pretreatment system for oily sludge
CN207468385U (en) A kind of petroleum wastewater treatment device
US2585808A (en) Water purification apparatus
CN218248693U (en) Combined type multi-depth desanding device for organic garbage slurry
CN108350652B (en) Treatment of recycled materials

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE