WO1988009480A1 - Process and device for compensating for the influence of turbulences in measurements - Google Patents
Process and device for compensating for the influence of turbulences in measurements Download PDFInfo
- Publication number
- WO1988009480A1 WO1988009480A1 PCT/CH1988/000093 CH8800093W WO8809480A1 WO 1988009480 A1 WO1988009480 A1 WO 1988009480A1 CH 8800093 W CH8800093 W CH 8800093W WO 8809480 A1 WO8809480 A1 WO 8809480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target point
- frequencies
- measuring
- different
- measuring device
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000005855 radiation Effects 0.000 claims abstract description 7
- 238000012937 correction Methods 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 7
- 230000005540 biological transmission Effects 0.000 description 9
- 230000007774 longterm Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000008710 crystal-8 Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/78—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
- G01S3/782—Systems for determining direction or deviation from predetermined direction
- G01S3/783—Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
- G01C15/002—Active optical surveying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/78—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
- G01S3/781—Details
Definitions
- the invention relates to a method for compensating for inhomogeneities in the refractive index of a dispersive medium when determining the direction of a target point by evaluating the propagation behavior of wave radiation emanating from the target point, according to the preamble of patent claim 1 of the procedure.
- This basic knowledge leads to the object of the present invention, which consists in developing a method and a device for detecting and compensating for such turbulence effects when determining the direction, so that even variable inhomogeneities for a short time in the refractive index of a dispersive medium when determining the direction of a target point by evaluating the propagation behavior of a wave radiation emanating from the target point.
- the measures according to the invention offer significant advantages in several respects: Even in the event of strong turbulence in the medium along the measuring path between the measuring point and the target point, e.g. perform very precise corrected angle measurements within seconds. The effects of turbulence are recorded briefly and also simultaneously with the actual measurement and processed to a corrected measured value. The reproducible accuracy of the measured values is a few hundred nanoradians when the measuring time of a few seconds is selected.
- Fig. 4 shows the example of a transmitter with a laser diode for generating two transmission frequencies
- Fig. 5 shows a receiver circuit for the invention
- FIG. 1 There is a direct geometric connection D between a transmitter 1 and a receiver 2. Light rays emanating from the transmitter 1 are deflected along the transmission path as a result of changes in refractive index, so that they are in the receiver at an angle ⁇ with respect to the straight line D arrive. Without a correction, the transmitter 1 would be a virtual transmitter l r appear on the connection D ', which can lead to incorrect measurements, in particular in the case of angle measurements and measurement methods based thereon.
- the dispersion effect is used, by means of which two different frequencies B and R are deflected to different extents along the transmission path.
- the difference in the angle of incidence caused by the dispersion is delta ⁇ . It has now been shown that, due to the dispersion, the angle difference delta ⁇ is, in a first approximation, directly proportional to the angle error ⁇ originating from the changes in the refractive index.
- the method described in more detail below takes this knowledge into account in that the angle deviations delta ⁇ caused by the dispersion are measured in very short time intervals as a series of individual measurements and are averaged over a period of seconds or minutes. The required correction for the actual measured value is then obtained from the mean value obtained. The time intervals mentioned for determining the correction values are matched to the actual changes in the refraction behavior of the transmission medium.
- n (x, y, z) is the refractive index of the medium (e.g. air)
- exp (ik (c + ax + by)] represents a plane wave propagating in the direction (a, b, l).
- the angles a and b are only dependent on the wavelength of the light via the refractive index n, such as this is necessary for the turbulence compensation.
- FIG. 4 shows the principle of obtaining two transmission frequencies from a single laser diode by frequency doubling.
- the deflected beam passes through a non-linear crystal 8, e.g. a potassium niobate or lithium niobate crystal.
- the frequency of the light wave is doubled, in the example to 860 nm.
- This frequency lies in the blue range and is designated B in FIG. 4, in contrast to the original frequency, which is in red -Range and is designated with R.
- an intensity filter 9 is provided in at least one of the beam paths.
- a rotating chopper disk 10 which carries out a different intensity modulation for both frequencies. This is achieved by slits S1 and S2 of different widths on the circumference of the chopper disk 10.
- the light rays R and B emanating from the transmitter 1 of different frequencies are collected jointly by a receiver optics 5 and directed onto the surface of a position-sensitive detector 6.
- the different frequencies are red and blue light beams which emanate from at least one laser diode in the transmitter.
- the detector is, for example, a dual photodiode, which has two adjacent light-sensitive areas E and F.
- an evaluation circuit on the receiver side has inputs E and F for the output signals of the photodiode regions and a reference input Ref.
- the input signals E and F are each fed to a sample and hold circuit 11 or 12.
- the outputs of these two circuits are sampled by a multiplex circuit 14, amplified in an amplifier 15 and fed to registers 17 via an analog / digital converter 16, where the signals for further processing in can be temporarily stored in a computer 18.
- Angular differences delta ß are obtained from the position signals at the inputs E and F.
- these values are related to other measured values in the sense of a correction in accordance with a predetermined program, so that corrected measured values can be output directly at the computer output, or these values are stored for later processing.
- two light frequencies of approximately 430 nm and approximately 860 nm were transmitted through an air atmosphere of approximately 24 degrees Celsius.
- the aperture of the receiver optics was 36 mm in one case and 46 mm in the second case.
- the individual measured values were averaged after 1 see and after 10 see. The results are as follows:
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH191887A CH674080A5 (enrdf_load_stackoverflow) | 1987-05-19 | 1987-05-19 | |
CH1918/87-4 | 1987-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1988009480A1 true WO1988009480A1 (en) | 1988-12-01 |
Family
ID=4221623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH1988/000093 WO1988009480A1 (en) | 1987-05-19 | 1988-05-19 | Process and device for compensating for the influence of turbulences in measurements |
Country Status (3)
Country | Link |
---|---|
CH (1) | CH674080A5 (enrdf_load_stackoverflow) |
DE (1) | DE3730093A1 (enrdf_load_stackoverflow) |
WO (1) | WO1988009480A1 (enrdf_load_stackoverflow) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9101398D0 (sv) * | 1991-05-08 | 1991-05-08 | Geotronics Ab | Kompensationsanordning foer hoejdavstaemnings- instrument |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3369445A (en) * | 1963-09-09 | 1968-02-20 | Litton Systems Inc | Optical alignment ascertaining device and process for elimination of refractive effects |
US3915574A (en) * | 1974-09-26 | 1975-10-28 | Rca Corp | Method for determining an accurate alignment of a laser beam |
DE3130747C1 (de) * | 1981-08-04 | 1983-02-24 | Dornier System Gmbh, 7990 Friedrichshafen | Verfahren und Vorrichtung zur Bestimmung der Koordinaten des fiktiven Auftreffpunktes von ungebrochenen Lichtstrahlen |
-
1987
- 1987-05-19 CH CH191887A patent/CH674080A5/de not_active IP Right Cessation
- 1987-09-08 DE DE19873730093 patent/DE3730093A1/de active Granted
-
1988
- 1988-05-19 WO PCT/CH1988/000093 patent/WO1988009480A1/de unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3369445A (en) * | 1963-09-09 | 1968-02-20 | Litton Systems Inc | Optical alignment ascertaining device and process for elimination of refractive effects |
US3915574A (en) * | 1974-09-26 | 1975-10-28 | Rca Corp | Method for determining an accurate alignment of a laser beam |
DE3130747C1 (de) * | 1981-08-04 | 1983-02-24 | Dornier System Gmbh, 7990 Friedrichshafen | Verfahren und Vorrichtung zur Bestimmung der Koordinaten des fiktiven Auftreffpunktes von ungebrochenen Lichtstrahlen |
Also Published As
Publication number | Publication date |
---|---|
CH674080A5 (enrdf_load_stackoverflow) | 1990-04-30 |
DE3730093C2 (enrdf_load_stackoverflow) | 1990-07-12 |
DE3730093A1 (de) | 1988-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2849186C2 (enrdf_load_stackoverflow) | ||
DE69636403T2 (de) | Spektrometrie und optisches Messverfahren und Vorrichtung | |
DE3937141C2 (enrdf_load_stackoverflow) | ||
DE10130763A1 (de) | Vorrichtung zur optischen Distanzmessung über einen grossen Messbereich | |
DE2947549A1 (de) | Faseroptisches temperaturmessgeraet | |
DE3524368C2 (enrdf_load_stackoverflow) | ||
DE4128912C2 (de) | Verfahren und Einrichtung zur Kalibrierung von Spektralradiometern | |
DE2364184C3 (de) | Vorrichtung zur Messung der Trübung von Fluiden mit Licht | |
EP0030610A1 (de) | Verfahren und Vorrichtung zur quantitativen Bestimmung optisch aktiver Substanzen | |
DE4443069C2 (de) | Verfahren zur Messung von Strömungsvektoren in Gasströmungen | |
EP0174496A2 (de) | Verfahren zur Bestimmung der Strahlungswellenlänge und der wellenlängenkorrigierten Strahlungsleistung monochromatischer Lichtquellen, sowie Einrichtung zur Durchführung des Verfahrens | |
EP0745839B1 (de) | Vorrichtung und Verfahren zur Kompensation der Scheibenverschmutzung bei Sichtweitenmessgeräten | |
DE69735565T2 (de) | Optisches Messgerät mit wellenlängenselektiver Lichtquelle | |
DE68905384T2 (de) | Vorrichtung zur korrelation von lichtintensitaet. | |
DE19817843B4 (de) | Verfahren zum Ableiten sonnenangeregten Fluoreszenzlichts aus Strahldichtemessungen | |
DE2702332B2 (de) | Verfahren zur chemischen und mineralogischen Analyse des Erdbodens | |
DE2852614A1 (de) | Optisches messystem | |
EP0508182A2 (de) | Verfahren zur Messung des optischen Absorptionsvermögens von Proben mit automatischer Korrektur des Anzeigefehlers und Vorrichtung zur Durchführung des Verfahrens | |
WO1988009480A1 (en) | Process and device for compensating for the influence of turbulences in measurements | |
DE3827913C2 (enrdf_load_stackoverflow) | ||
DE3321360C2 (enrdf_load_stackoverflow) | ||
EP0013729B1 (de) | Optische Messeinrichtung für Ätzgeschwindigkeiten undurchsichtiger Materialien | |
DE1953630C3 (de) | Vorrichtung zum Messen der Geschwindigkeit von Partikeln in einem Strömungsmittel | |
DE1548262B2 (de) | Optisches Gerät zur Messung von Schichtdicken in Vakuumaufdampfprozessen | |
EP0076886A1 (de) | Verfahren und Vorrichtung zur Messung des Konzentrations-verhältnisses zweier IR-, NIR-, VIS- oder UV-Strahlung absorbierender Komponenten eines Komponentengemischs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |