WO1988008970A1 - Method of inspecting can seaming - Google Patents

Method of inspecting can seaming Download PDF

Info

Publication number
WO1988008970A1
WO1988008970A1 PCT/JP1988/000448 JP8800448W WO8808970A1 WO 1988008970 A1 WO1988008970 A1 WO 1988008970A1 JP 8800448 W JP8800448 W JP 8800448W WO 8808970 A1 WO8808970 A1 WO 8808970A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
information
tightening
input means
tightened
Prior art date
Application number
PCT/JP1988/000448
Other languages
French (fr)
Japanese (ja)
Inventor
Kyuichi Shibazaki
Eiji Tsuda
Hideaki Honma
Original Assignee
Toyo Seikan Kabushiki Kaisha
Softex Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP62111565A external-priority patent/JPS63274853A/en
Priority claimed from JP11156687A external-priority patent/JPS63274808A/en
Priority claimed from JP62111564A external-priority patent/JPH0721467B2/en
Application filed by Toyo Seikan Kabushiki Kaisha, Softex Company Limited filed Critical Toyo Seikan Kabushiki Kaisha
Publication of WO1988008970A1 publication Critical patent/WO1988008970A1/en
Priority to GB8830046A priority Critical patent/GB2215834B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Definitions

  • the present invention relates to a method for detecting a tightened portion of a metal can used as a canned container for food or the like.
  • Metal cans used as cans for food etc. are formed of the can body, can lid, and can bottom.
  • the can body has a can lid.
  • the bottom of the can and in the case of a two-bead can in which the can body and the bottom are integrated, the can lid is wound around the can body.
  • the cans are sealed.
  • the body of the can body and the can lid (hereinafter referred to as the “can lid” including the can bottom) have a body formed at the edge of the can body.
  • the hook (BH) and the cover hook (CH) formed on the outer peripheral line of the can lid are combined and pressed to form a rail.
  • the quality of this closing has a great influence on the quality maintenance of the contents filled in the can.
  • the child hook (OL) between the body hook (BH) and the cover hook (CH) does not have a sufficient length, the wound portion has a defect.
  • Cans can cause problems such as decay of the contents due to poor sealing. For this reason, the cans that have been wound It was necessary to inspect the parts regularly and control the process to prevent the occurrence of cans with poor winding.
  • the cross section of the inside of the crimping can be visually inspected by cutting the crimping city in one direction using a thread saw. Or to measure the dimensions of each part. In addition, such inspection and measurement are usually performed at only three locations on the entire circumference of the tightened portion because the cutting operation using a thread saw requires time and effort.
  • the conventional method of inspecting the tightened portion of the can is performed by cutting the wrapped portion using a thread saw, thereby performing three inspections and setting measurement points.
  • I was However, this cutting work is time-consuming and poses a problem because of the risk of cutting the fingers.
  • the tip of the body hook (BH) and cover hook (CH) in the tightened portion often generates irregular undulations in a short cycle due to the tightening. Therefore, the conventional method of judging the quality of the entire circumference of the tightened portion based on the inspection and measurement at about three locations also had a problem that it lacked the resilience.
  • the present invention has been made in order to solve such a problem, and uses X-ray fluoroscopic information of a wrapped portion, particularly, fluoroscopic X-ray fluoroscopic information. Allows for sufficient tightening to obtain reliable test results
  • the purpose is to provide an inspection method for can-tightened parts that enables safe, quick and easy inspection and measurement of each point.
  • the present invention relates to an X-ray source arranged close to one end in a radial direction of a can-tightening target to be inspected, and an X-ray information input means arranged near the other end of the can-tightening part to be inspected.
  • X-ray fluoroscopic information on the front of the can-winding section is input to the above-mentioned X-ray input information means, and measurement of the can-winding section is performed using the X-ray fluoroscopic information. There is a way to do this.
  • the large invention uses an X-ray source located close to one end in the radial direction of the can-tightened portion to be inspected, and an X-ray placed S near the other end of the inspected can-tightened portion.
  • X-ray fluoroscopic information of the front side of the can winding part is input to the above-mentioned X-ray input information means, and can-winding is performed using this X-ray fluoroscopic information. It is a method to measure the tightening part.
  • an X-ray is projected in a tangential direction to a tightened portion of a can to be inspected, and the X-ray transmitted through the tightened portion is input to an X-ray camera.
  • the X-ray fluoroscopic information of the cross section of the tightened part is obtained, and the X-ray fluoroscopic information is further image-processed to obtain a surface image of the tightened part, and the can is tightened based on this image. It is a method to inspect the cross-sectional shape of the part.
  • FIG. 1 is a structural diagram showing a first embodiment of the method of the present invention
  • FIG. 2 is a diagram showing a new surface and an X-ray front see-through image of a can winding portion
  • FIG. 3 (a) and (b) are Configuration diagrams each showing a modified example of the embodiment
  • Fig. 4 is a block diagram showing a second embodiment of the thick invention method
  • Figs. 5 (a) and (b) are each a block diagram showing a modification of the same embodiment
  • Fig. 6 is a block diagram showing the third embodiment of the * method
  • Fig. 7 is a diagram showing a cross section of the can winding part and a X-ray front perspective image
  • -Figs. 8 (a) and (b) are respectively Configuration diagram showing a modification of the embodiment
  • FIG. 1 is a configuration diagram showing a first embodiment
  • FIG. 2 is a diagram showing a new surface and an X-ray front see-through image of a can winding portion.
  • reference numeral 1 denotes a can to be inspected, and a canned portion 4 for connecting a can frame 2 and a can lid 3 is formed at an end in the axial direction.
  • the tightening portion 4 is provided with a body hook (BH and BH) formed on the edge of the can frame 2.
  • the cover hooks (CH) formed on the outer periphery of the can 3 are firmly engaged with each other in a crimped state.
  • Each dimension data such as (0L) is required.
  • 10 is an X-ray source with a focus of 0.1 to 1.
  • X-ray tube is used.
  • This X-ray source 10 emits: The X-ray energy should be set to the size shown in the table below, for example, depending on the material of can 2 and can 3. Is desirable.
  • Reference numeral 11 denotes an X-ray camera as X-ray information input means for inputting X-ray fluoroscopic information to the tightening unit 4. That is, the can 1 is wound between the X-ray source 10 and the X-ray camera 11.
  • An X-ray transmitted through the fastening portion 4 is input as the X-ray fluoroscopic information relating to the fastening portion 4.
  • the X-ray camera 11 is placed S as close as possible to the winding part 4 of the can 1.
  • the winding part 4 of the can 1 is placed S so that the front side, that is, the surface of the winding wall 4 a for the winding is opposed to the X-ray source 10. .
  • the can 1 is arranged with the can lid plane parallel to the X-ray 10a projected from the X-ray source 10, the winding
  • the two points, the upper end 4b and the lower end 4c of 4 are located on the X line. Then, information obtained by seeing through these two places is overlapped and input to the X-ray camera 11, so that accurate X-ray fluoroscopic information cannot be obtained.
  • the can i is arranged so that the plane of the can lid is inclined at an arbitrary angle with respect to the X-rays 10a projected from the X-ray source 10, and the tightening section is provided.
  • the X-ray is directly projected on the lower end 4 c close to the X-ray camera 11.
  • chuck gall 4a is set to have an inclination angle 0 of about -8 degrees with respect to can 2 and g
  • the can 1 is inclined by e (approximately 4 to 8 degrees) with respect to the X-rays 10a projected from 0.
  • any of means for tilting the x-ray light source l 0 and s, or means for tilting the can 1 may be employed.
  • Reference numeral 12 denotes an image processing device, which performs image processing on the X-ray fluoroscopic information of the cinching section 4 input to the X-ray camera i 1, and places the wrapping section 4 on the display 13.
  • the overlapping perspective of the body hook (BH) and the cover hook (CH) is shown in black, white and gray as the front perspective image.
  • a two-dimensional image A displayed in a contrast and a one-dimensional image B in which the strength of the contrast in the two-dimensional image is displayed in a graph are used.
  • only the two-dimensional image A may be used, and in the case of only dimensional measurement, only the one-dimensional image B may be used.
  • An X-ray 10a is projected from the angle of the inclination angle e with respect to the plane of the can lid of the can 1 to the front of the tightening portion 4 (the surface of the chuck wall 4a). Then, the X-ray camera 11 arranged on the back of the winding portion 4 has a body hook (BH) and a cover hook (CH) in the winding city 4.
  • An X-ray transmission intensity distribution corresponding to the degree of overlap is input as X-ray fluoroscopic information.
  • This X-ray fluoroscopic information is subjected to image processing such as enhancement of light and dark contrast by an image processing device 12, and is displayed on a display 13. Are displayed as front see-through images A and B of the tightening portion 4.
  • the winding portion 4 is divided into six parts as indicated by @ to ® in FIG.
  • the arrangement of each of these parts does not change as long as the body hook (BH) and the cover hook (CH) are in a state where they can be combined.
  • the radiation of each part corresponds to the contents of the liability.
  • the normal tightening portion 4 has a sufficient length of the overlapping portion (OL) of the body hook (BH) and the cover hook (CH) as shown in FIG. Is held.
  • This overlapping portion (OL) appears in the two-dimensional image A as the darkest portion existing at the center. If the body hook (BH) or the cover hook (CH) is not properly tightened due to its short length, etc., the two-dimensional image A is used. The width of the part becomes narrower.
  • the width of each portion @ to 5 in the two-dimensional image A changes in response to the defect of the winding portion 4, so that these widths are compared with those in the normal case.
  • the length of each part of the winding part 4 for example, the length of each of the body hook (BH), the cover hook (CH), and the overlapping part (OL) is set in the one-dimensional image B. Based on the processing The first measurement can be performed.
  • such an inspection can be performed by rotating the can relative to X-rays to inspect the entire circumference of the re-tightened portion.
  • FIGS. 3 (a) and 3 (b) are views showing a modified example of the first embodiment.
  • the device shown in FIG. 1A uses an X-ray line sensor 21 as an X-ray information input means. That is, the X-rays projected from the X-ray source 1.0 and transmitted through the tightening unit 4 are converted into the respective elements of the X-ray liner 21 arranged close to the tightening unit 4. And converts them into electric signals and outputs them to the signal processing device 22.
  • the signal processor 22 processes the electric signal sent from each sensor element to generate one-dimensional information (one-dimensional image in FIG. 2) corresponding to the X-ray transmission intensity distribution. Image B-the same information) is output to the output device 23. Furthermore, if this one-dimensional information is processed, as in the device shown in FIG. 1, the length of each part of the tightening section 4, for example, the body hook (BH), The lengths of the cover hook (CH) and the overlap (OL) can be determined.
  • BH body hook
  • CH cover hook
  • OL overlap
  • the apparatus shown in FIG. 3 (b) uses the X-ray sensor 31 as the X-ray information input means. That is, it is projected from the X-ray source 10 and transmitted through the tightening unit 4: X-rays are input to the X-ray sensor 31 placed close to the tightening unit 4 and placed S.
  • a shielding plate 34 provided with a pinhole (0.5 m ⁇ or less) 34 a is provided in front of the X-ray sensor 31, whereby the binhole 3 is formed. Only X-rays suitable for 4a are input to the X-ray sensor 31 to prevent a decrease in accuracy due to X-ray diffusion.
  • the can 1 is moved in the ⁇ direction (the direction of the arrow in the drawing) in order to scan the entire tightening unit 4.
  • the X-ray source 10 and the X-ray sensor 31 may be moved in the direction of the arrow with respect to the can 1 as a matter of course.
  • the X-rays input to the X-ray sensor 31 are converted into electric signals and input to the signal processing device 32.
  • the signal processing device 3 2 processes the time-series input signal, one-dimensional corresponding to X-ray transmission strength distribution information of the (one-dimensional image image that put in Figure 2 and the 3 m C a) Similar to one-dimensional information obtained by the device Information) is output to output device 3 3.
  • By processing the one-dimensional information it is possible to determine the length of each part of the tightening unit 4 in the same manner as in the above-described apparatus example. Wear .
  • the inspection and measurement of the tightening capital 4 can be performed on the X-ray fluoroscopic information. It can be done very quickly.
  • an X-ray information input means use can be made of an X-ray camera, an X-ray line sensor, and a means other than the X-ray sensor for detecting the X-ray transmission intensity distribution. Inspection methods.
  • the Inspection method for can-can-clamping equipment equipped with means for preventing halting that occurs on the periphery of X-ray fluoroscopic images is unnecessary when the X-ray information input means is other than an X-ray camera.
  • FIG. 4 is a configuration diagram of the second embodiment.
  • reference numeral 1 denotes a can to be inspected, and a winding portion 4 for connecting the can 2 and the can lid 3 is formed at an end in the direction of the arrow.
  • Reference numeral 10 denotes an X-ray source, which uses a so-called broad-focus X-ray tube having a focal point of 3 mm ⁇ or more (usually about 5 ⁇ ).
  • the X-ray energy emitted by the X-ray source 10 is desirably set to, for example, the size shown in the table below, depending on the material of the can body 2 and the can lid 3.
  • Reference numeral 1 denotes an X-ray camera for inputting X-ray fluoroscopic information on the wrapping portion 4. That is, the fastening part 4 of the can 1 is placed S between the X-ray source 10 and the X-ray camera 11, and this winding is performed. The X-Jip that has passed through the fastening section 4 is input as the X-ray fluoroscopic information regarding the fastening section 4.
  • the can 1 is arranged so that the central axis is substantially orthogonal to the X-ray line. Further, the X-ray source 10 and the X-ray camera 11 are arranged close to the upper and lower ends 4b and 4c of the wrapping portion 4, respectively.
  • the X-rays from the X-ray source 10 penetrate through the upper end 4b and the lower end 4c of the tightening portion 4 at two places.
  • the X-ray source 10 used in the present embodiment is a broad-focus X-ray tube having a large focal point, which is located close to the upper end 4b of the tightening area. Due to the arrangement, X-rays 10a passing through the upper end 4b of the tightening part are diffused as shown in the figure, making it impossible to input with the X-ray camera 11 Or, even if input is possible, the image is blurred and no image is formed. On the other hand, the X-ray 10b passing through the lower end 4c of the wrapped portion passes through the lower end 4c and is input to the X-ray camera 11 at a nearby position, so that clear image information is obtained. .
  • the X-ray camera 11 has a body hook (BH) at the lower end 4c of the wind-up unit and a hook.
  • the X-ray transmission intensity distribution corresponding to the degree of overlap of the hooks (CH) is input as X-ray fluoroscopic information.
  • the X-ray fluoroscopic information is image-processed by the image processing device 12, and displayed on the display 13 as frontal fluoroscopic images A and B of the tightening unit 4.
  • the tightening portion 4 is divided into six parts as shown by (I) to 5 in FIG.
  • the S row for each city does not change as long as the body hook (BH) and the cover hook (CH) are in a state of interlocking.
  • the width of each part is, for example, body hook (BH) or cover hook. If there is a defect such as a short hook (CH), a wide or narrow change will occur in response to the content of the defect.
  • the normal tightening portion 4 has a sufficient overlapping portion (OL) between the pod hook (BH) and the cover hook (CH). It holds the length.
  • This overlapping portion (OL) appears in the two-dimensional image A as the darkest portion existing in the central city. If the body hook (BH) or canopy hook (CH) is too short to be in the normal winding state, the two-dimensional image A The width of the part ® becomes narrower.
  • the width of each portion in the two-dimensional image A changes, so that these widths are the same as in the normal case.
  • each part of the wind-up part 4 for example, the length of each of the hook (BH), the cover hook (CH), and the overlapping part (OL) is expressed in the one-dimensional image B. Based on this, it is possible to easily calculate the measured values by performing arithmetic processing.
  • Figs. 5 (a) and (b) are configuration diagrams showing another example of an apparatus for performing the present method.
  • the device shown in FIG. Ca) uses an X-ray line sensor 21 as X-ray information input means.
  • the X-rays 10 b projected from the X-ray source 10 and transmitted through the lower end 4 c of the tightening device are placed in the X-ray sensor 21 close to the tightening unit 4.
  • the signals are converted into electric signals and output to the signal processing device 22.
  • the signal processor 22 processes the electric signal sent from each sensor element to generate one-dimensional information corresponding to the X-ray transmission intensity distribution (similar to the one-dimensional image B in FIG. 2). Is output to the output device 23.
  • the length of each part of the winding part 4 for example, the body hook (BH), the cover The lengths of the hook (CH) and the overlap city (OL) can be determined.
  • the device shown in Fig. 5 (b) uses X-rays as X-ray information input means.
  • the sensor 31 was used. That is, the X-rays projected from the X-ray source 10 and transmitted through the lower end 4 c of the winding portion are input to the X-ray sensor 31 arranged close to the winding portion 4.
  • a shielding plate 34 having a pinhole (0.5 mm ⁇ jb or less) 34a is provided in front of the X-ray sensor 31. Only X-rays that have passed through the pinhole 34a are input to the X-ray sensor 31 to prevent a decrease in accuracy due to X-ray diffusion.
  • the can 1 is moved in the axial direction (the direction of the arrow shown in the figure) in order to scan the whole of the tightening unit 4.
  • the X-ray source 10 and the X-ray sensor 31 may be moved in the direction of the arrow with respect to the can 1 as a matter of course.
  • the X-rays input to the X-ray sensor 31 are converted into electric signals and input to the signal processing device 32.
  • the signal processing device 32 processes the signals input in a time series to obtain one-dimensional information corresponding to the X-ray transmission intensity distribution (the one-dimensional image in FIG. 2 and the one in FIG. 5 (a)).
  • the same information as the one-dimensional information obtained by this device is output to the output device 33.
  • the length of each part of the tightening unit 4 can be calculated in the same manner as in the example of the apparatus described above.
  • FIGS. 4 and 5 (a) and (b) is used to carry out the method. Inspection and measurement in 4 can be quickly performed based on X-ray fluoroscopic information.
  • the X-camera, X-line sensor, and other means other than the X-ray sensor can be used to detect the X-ray transmission intensity distribution. Inspection method ⁇
  • FIG. 6 is a configuration diagram showing a third embodiment.
  • reference numeral 1 denotes a can to be inspected, and a canned portion 4 for connecting the can body 2 and the can 3 is formed at the end in the direction of the arrow.
  • the wrapping portion 4 includes a pod hook ( ⁇ ⁇ ) formed on the edge of the can body 2 and a cap formed on the outer periphery of the can 3. Bar hook (CH) and However, they are firmly joined together in a crimped state.
  • 10 is an X-ray tube as an X-ray source.
  • the X-ray energy emitted by the X-ray tube 10 depends on the material of the can body 2 and the can lid 3. For example, it can be set to the following size. Desirable.
  • Reference numeral 1 denotes an X-ray camera for inputting X-ray fluoroscopic information on the wrapper 4. That is, the winding part 4 of the can 1 is arranged between the X-ray tube ⁇ 0 and the X-ray camera 11, and the X-ray transmitted through the winding part 4. , Is input as X-ray fluoroscopic information on the tightening unit 4.
  • can 1 is The tangent should be placed along the X-ray 10a line.
  • the X-ray 10a passes through the portion indicated by the hatching in FIG. 1 with respect to the canned portion 4 of the can placed S in this manner. Therefore, the X-ray fluoroscopic information input to the X-ray camera 11 is obtained by superimposing the partial cross-sectional fluoroscopic information indicated by the above-mentioned hatching, and forming the drilling unit 4. It is not information that sees only the new face 4d. Therefore, in the process of image processing, it is necessary to extract a surface image of the tightening portion from the X-ray fluoroscopic information.
  • Reference numeral 12 denotes an image processing device, which performs image processing of extracting a cross-sectional image of the tightened portion from X-ray fluoroscopic information.
  • the contrast exceeds a certain level with respect to a certain contrast.
  • An X-ray is projected from the tangential direction to the winding part 4 of the can 1, and the X-ray transmitted through the winding part 4 is used as X-ray camera information as X-ray fluoroscopic information on the tightening surface.
  • X-ray camera 11 converts the input X-ray fluoroscopic information into an electric signal and outputs it to the image processing device 12.
  • the image processing device 12 extracts the image of the new front surface 4 d of the tightening unit 4 by emphasizing a portion having a contrast exceeding a certain standard.
  • the cross-sectional image of the tightened portion 4 from which the oil has been drained in this way is displayed on the display 13, so that the inspector can display the cross-sectional image on the display 13. Based on the cross-sectional image, the cross-sectional shape of the can winding part 4 can be visually inspected.
  • the cross-sectional image of the tightened part 4 displayed on the display 13 is almost similar to the cross-sectional shape of the tightened part 4 shown in Fig. 7 in the case of the normal tightened part 4.
  • Shape That is, the shape is such that the body hook (BH), the cover hook (CH), and the overlapping portion (OL) of these have a sufficient length.
  • the tightened portion 4 has a defect, one or all of the above portions are short, and the combination is incomplete. Therefore, based on the cross-sectional image of the tightening unit 4 displayed on the display, if these determinations are made, it is possible to easily and quickly detect a defective can in the winding. be able to .
  • FIG. 8 (a) and (b) show the peripheral image of FIG. 3 is a diagram showing an example of an apparatus provided with a means for preventing halting that occurs in FIG.
  • the cross-sectional image of the tightened portion 4 displayed on the display 13 has a peripheral edge due to the X-ray diffraction phenomenon.
  • the outline of the periphery may be unclear.
  • FIG. C a in order to prevent this harshness, in FIG. C a), at least the holder 21 is brought close to the periphery of the tightening portion 4 on at least the X-ray line. Are in contact with each other. Thus, the sharpening difference between the winding portion 4 and the outer periphery thereof and the hearting can be prevented.
  • a wedge-shaped filter 22 is inserted on the X-ray line, and similarly, the difference in brightness between the outer periphery of the tightened portion 4 and the outer periphery is reduced. To prevent harm.
  • the reason why the wedge shape is adopted is to adjust the amount of blocking the X-rays according to the difference in the thickness of the tightened portion through which the X-rays pass.
  • the halting may occur in the cross-sectional image of the tightened portion. Dimensional errors can be eliminated,
  • each part such as the body hook (BH), the cover hook (CH), the overlapping portion (OL), and the overall length (W) of the tightening portion.
  • BH body hook
  • CH cover hook
  • W overall length
  • a new surface shape inspection method for the canned part other than the display is used to obtain a cross-sectional image of the part.
  • a method for inspecting the cross-sectional shape of a can-tightened portion which automatically determines the quality of the cross-sectional shape of the can-tightened portion based on the obtained cross-sectional image of the tightened portion.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

This invention relates to a method of inspecting can seaming comprising the steps of disposing a can to be inspected between an X-ray source and an X-ray data input means, radiating the X-rays to part of the seaming at a predetermined angle of inclination with respect to the flat surface of the can lid to obtain X-ray transmission data, disposing the X-ray source in the proximity of one of the ends of a diameter of the seaming and the X-ray data input means in the proximity of the other end to obtain the X-ray transmission data, applying the X-rays to the seaming in a tangential direction to obtain the X-ray transmission data on the section of the seaming on the basis of these data.

Description

明 細 書  Specification
缶巻 ^ の検査方法  Inspection method of can volume ^
技 術 分 野  Technical field
本発明は、 食品等の缶詰容器 と して使用する金属缶の 巻締め部を検查する方法に関する 。  The present invention relates to a method for detecting a tightened portion of a metal can used as a canned container for food or the like.
背 景 技 術  Background technology
食品等の缶詰容器と して使用する金属缶は、 缶胴 , 缶 蓋 , 缶底の各 部分で 形成さ れて お り 、 いわ ゆ る ス リ ー ビース缶の場合は、 缶胴に缶蓋 と缶底を巻締める こ と に よ り 構成 し 、 ま た、 缶胴 と 缶底が一体化 し たツー ビース 缶 の場合 は 、 缶胴 に 缶蓋 を巻締め る こ どに よ っ て構成 し 、 缶詰の密封化 を図 っ て い る 。 こ の缶胴 と 缶蓋 ( 以 下、 缶底を含めて 「缶蓋」 と 呼ぶ ) の巻締め部は、 後述 する よ う に ( 第 2 図 ) 、 缶胴の端縁に形成されたボデー フ ッ ク ( B H ) と 、 缶蓋 の外周線に形成さ れたカ バ ー フ ッ ク ( C H ) と を嚙み合わせ、 かつ圧着す る こ と に よ り 形成されて レヽる 。  Metal cans used as cans for food etc. are formed of the can body, can lid, and can bottom. In the case of so-called three-piece cans, the can body has a can lid. And the bottom of the can, and in the case of a two-bead can in which the can body and the bottom are integrated, the can lid is wound around the can body. In addition, the cans are sealed. As will be described later (FIG. 2), the body of the can body and the can lid (hereinafter referred to as the “can lid” including the can bottom) have a body formed at the edge of the can body. The hook (BH) and the cover hook (CH) formed on the outer peripheral line of the can lid are combined and pressed to form a rail.
こ の巻締め剖の良否は、 缶に充塡された内容物の品質 保持に大き な影響を与え る 。 すなわ ち 、 ボデー フ ッ ク ( B H ) と カバー フ ッ ク ( C H ) と の童合部分 ( O L ) が 十分な長さ を有 しな い等に よ り 、 巻締め部に欠陥のあ る 缶は、 密封不良に よ り 内容物を腐敗さ せる等の問題を ひ き お こ す。 こ の ため 、 巻締め工程を終了 し た缶の巻締め 部を定期的に検査 して、 巻締め不良の缶が発生 しないよ う に工程管理する必要があ っ た。 The quality of this closing has a great influence on the quality maintenance of the contents filled in the can. In other words, since the child hook (OL) between the body hook (BH) and the cover hook (CH) does not have a sufficient length, the wound portion has a defect. Cans can cause problems such as decay of the contents due to poor sealing. For this reason, the cans that have been wound It was necessary to inspect the parts regularly and control the process to prevent the occurrence of cans with poor winding.
従来の缶巻締め部検査方法は、 糸の こを用いて巻締め 都を轴方向に切靳する こ と に よ り 、 巻締め内部の横断面 を 目視で き る状態に して、 目視検查あるいは各部寸法測 定を行なう ものであ っ た。 また、 この よ う な検査, 測定 を行なう 箇所は、 糸のこ に よ る切靳作業に手数を要する ため、 通常、 巻締め部の全周における三箇所のみ と して いた。  In the conventional method of inspecting the can-clamping part, the cross section of the inside of the crimping can be visually inspected by cutting the crimping city in one direction using a thread saw. Or to measure the dimensions of each part. In addition, such inspection and measurement are usually performed at only three locations on the entire circumference of the tightened portion because the cutting operation using a thread saw requires time and effort.
こ のよ う に、 従来の缶巻締め部検査方法は、 糸のこを 用いて巻緒め部を切断する こ と に よ り 、 三箇所の検査, ' 測定点を設定して行な っ ていた。 しか し、 こ の切断作業 は 、 手数を要す る と と も に 、 手指を切傷する 危険があ り 、 問題と な つ-ていた。  As described above, the conventional method of inspecting the tightened portion of the can is performed by cutting the wrapped portion using a thread saw, thereby performing three inspections and setting measurement points. I was However, this cutting work is time-consuming and poses a problem because of the risk of cutting the fingers.
ま た、 巻締め部における ボデーフ ッ ク ( B H ),カバー フ ッ ク ( C H ) の先端部は、 巻締めに よ り 不規則な う ね り を短い周期で生 じている こ と が多く 、 し たがっ て、 三 箇所程度の検査, 測定にも とづき巻締め部の全周におけ る良否を判定する従来の方法は、 信穎性に欠ける と いう 問題も あ っ た。 太発明は、 こ の よ う な問題 を解决す る ためになされたもので、 巻締め部の X線透視情報、 特 に、 ブ口— ド フ ォ ーカス X線に よる透視情報を用いる こ と によ り 、 信頼で き る検査結果を得る に十分な裟締め部 各点の検査 , 測定を、 安全に 、 しかも迅速かつ容易に行 な う こ と ので き る缶巻締め部検査方法の提供を 目 的 と す る 。 In addition, the tip of the body hook (BH) and cover hook (CH) in the tightened portion often generates irregular undulations in a short cycle due to the tightening. Therefore, the conventional method of judging the quality of the entire circumference of the tightened portion based on the inspection and measurement at about three locations also had a problem that it lacked the resilience. The present invention has been made in order to solve such a problem, and uses X-ray fluoroscopic information of a wrapped portion, particularly, fluoroscopic X-ray fluoroscopic information. Allows for sufficient tightening to obtain reliable test results The purpose is to provide an inspection method for can-tightened parts that enables safe, quick and easy inspection and measurement of each point.
発 明 の 開 示  Disclosure of the invention
本発明は、 検査対象缶巻締め都の径方向一端に近接 し て配置 し た X線源か ら 、 検査対象缶巻締め部の他端近傍 に配置 し た X線情報入力手段に向けて X線を投射する こ と に よ り 、 上記 X線入力情報手段に缶巻締め部正面の X 線透視情報を入力 し、 こ の X線透視情報を用いて缶卷締 め部の測定を行な う 方法 と して あ る 。  The present invention relates to an X-ray source arranged close to one end in a radial direction of a can-tightening target to be inspected, and an X-ray information input means arranged near the other end of the can-tightening part to be inspected. By projecting X-rays, X-ray fluoroscopic information on the front of the can-winding section is input to the above-mentioned X-ray input information means, and measurement of the can-winding section is performed using the X-ray fluoroscopic information. There is a way to do this.
ま た、 太発明は、 検査対象缶巻締め部の径方向一端に 近接 して ffi置 し た X線源か ら 、 検査対彔缶巻締め部の他 端近傍に S置'し た X線情報入力手段に 向けて X線を投射 する こ と に よ り 、 上記 X線入力情報手段に缶巻締め部正 面の X線透視情報を入力 し 、 こ の X線透視情報を用いて 缶巻締め部の測定を行な う 方法 と して あ る 。  In addition, the large invention uses an X-ray source located close to one end in the radial direction of the can-tightened portion to be inspected, and an X-ray placed S near the other end of the inspected can-tightened portion. By projecting X-rays toward the information input means, X-ray fluoroscopic information of the front side of the can winding part is input to the above-mentioned X-ray input information means, and can-winding is performed using this X-ray fluoroscopic information. It is a method to measure the tightening part.
さ ら に、 本発明は、 検査対象缶の巻締め部に対 して X 線を接線方向に投射 し 、 上記巻締め部を透過 し た X線を X線カ メ ラ に入力する こ と に よ り 巻締め部断面の X線透 視情報を得、 さ ら に こ の X線透視情報を画像処理 して巻 締め部の靳面像を得、 こ の画像に も と づいて缶巻締め部 の断面形状を検査する方法 と して あ る 。 図面の簡単な説明 Further, according to the present invention, an X-ray is projected in a tangential direction to a tightened portion of a can to be inspected, and the X-ray transmitted through the tightened portion is input to an X-ray camera. The X-ray fluoroscopic information of the cross section of the tightened part is obtained, and the X-ray fluoroscopic information is further image-processed to obtain a surface image of the tightened part, and the can is tightened based on this image. It is a method to inspect the cross-sectional shape of the part. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明方法の第一実施例を示す構成図 ; 第 2 図 は缶巻締め部の新面および X線正面透視像を示す図' ; 第 3 図 ( a ) , ( b ) はそれぞれ同実施例の変形例を示す 構成図 ; · 、 FIG. 1 is a structural diagram showing a first embodiment of the method of the present invention; FIG. 2 is a diagram showing a new surface and an X-ray front see-through image of a can winding portion; FIG. 3 (a) and (b) are Configuration diagrams each showing a modified example of the embodiment;
第 4 図は太発明方法の第二実施例を示す構成図 ; 第 5 図 ( a ) , ( b ) は それぞれ同実施例の変形例 を示す構成 図 Fig. 4 is a block diagram showing a second embodiment of the thick invention method; Figs. 5 (a) and (b) are each a block diagram showing a modification of the same embodiment;
第 6 図は *発 方法の第三実施例を示す構成図 ; 第 7 図は缶巻締め部の断面および X線正面透視像を示す 図 ; - 第 8 図 ( a ) , ( b ) はそれぞれ同実施例の変形例を示す 構成図 ; Fig. 6 is a block diagram showing the third embodiment of the * method; Fig. 7 is a diagram showing a cross section of the can winding part and a X-ray front perspective image;-Figs. 8 (a) and (b) are respectively Configuration diagram showing a modification of the embodiment;
発明を実施する ため の最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 発明の実施例につい て図面を参照 し て説明す る 。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第一実施例 First embodiment
第 1 図は第一実施例を示す構成図、 第 2 図は缶巻締め 部の新面および X線正面透視像を示す図であ る 。  FIG. 1 is a configuration diagram showing a first embodiment, and FIG. 2 is a diagram showing a new surface and an X-ray front see-through image of a can winding portion.
第 1 図におい'て、 1 は検査対象 と しての缶であ り 、 軸 方向の端部に缶膈 2 と缶蓋 3 と を結合する巻締め部 4 が 形成されて い る 。 こ の巻締め部 4 は、 第 2 図に すよ う に、 缶膈 2 の端縁に形成されたボデ一 フ ッ ク ( B H と 缶篕 3 の外周緣 に 形成 さ れた カ バー フ ッ ク ( C H ) と が、 圧着 された状態で強固に嚙み合 っ て形成 し て あ る 。 こ の巻締め部 4 の良否を判断する ため に は、 ボデー フ ッ ク ( B H ) , カ バ一 フ ッ ク ( C H ) , こ れ ら の重合部分In FIG. 1, reference numeral 1 denotes a can to be inspected, and a canned portion 4 for connecting a can frame 2 and a can lid 3 is formed at an end in the axial direction. As shown in FIG. 2, the tightening portion 4 is provided with a body hook (BH and BH) formed on the edge of the can frame 2. The cover hooks (CH) formed on the outer periphery of the can 3 are firmly engaged with each other in a crimped state. In order to judge the quality of the tightening part 4, the body hook (BH), the cover hook (CH), and the overlapping portion of these
( 0 L ) 等の各寸法デー タ が必要 と な る 。 Each dimension data such as (0L) is required.
1 0 は X線源 で ぁ リ 、 焦点が 0.1 〜 1. Omn ψ (通常 10 is an X-ray source with a focus of 0.1 to 1.
0.3mm φ ) の 、 いわゆ る フ ァ イ ン フ ォ ー カ ス : X線管を用 い て い る 。 こ の X線源 1 0 の放出する : X線エ ネ ル ギは缶 脶 2 お よ び缶蓋 3 の材料に よ り 、 例えば、 下表の よ う な 大 き さ に設定す る こ と が望ま し い。 0.3 mm φ), so-called fine focus: X-ray tube is used. This X-ray source 10 emits: The X-ray energy should be set to the size shown in the table below, for example, depending on the material of can 2 and can 3. Is desirable.
Figure imgf000007_0001
Figure imgf000007_0001
1 1 は X線情報入力手段 と し て の X線カ メ ラ で あ り 、 巻締 め部 4 に 閟す る X線透視情報 を 入力す る 。 す な わ ち 、 X線源 1 0 と X線 カ メ ラ 1 1 と の間に 、 缶 1 の巻締  Reference numeral 11 denotes an X-ray camera as X-ray information input means for inputting X-ray fluoroscopic information to the tightening unit 4. That is, the can 1 is wound between the X-ray source 10 and the X-ray camera 11.
紙 め部 を配置 し 、 こ の巻締め部 4 を透過 し て き た X線 を、 巻締め部 4 に関する : X線透視情報 と して入力する。 こ こ で、 X線カ メ ラ 1 1 は缶 1 の巻締め部 4 に なるべ く 近接 し て S置する 。 paper An X-ray transmitted through the fastening portion 4 is input as the X-ray fluoroscopic information relating to the fastening portion 4. Here, the X-ray camera 11 is placed S as close as possible to the winding part 4 of the can 1.
また、 缶 1 の巻締め部 4 は、 正面、 すなわ ち巻締め用 チ ヤ ッ ク · ウ ォ ール 4 a の面が X線源 1 0 と対向する よ う に S置 して あ る。 と こ ろで、 X線源 1 0 か ら投射され る X線 1 0 a に対 して、 缶 1 の缶蓋平面が平行 と な る状 態で缶 1 を配置 した場合、 巻綞め都 4 の上端 4 b と下端 4 c の二箇所が X線路上に位置 して し ま う 。 する と 、 X 線カ メ ラ 1 1 には、 これら 二箇所を透視 した情報が重な り 合っ て入力 される こ と と な り 、 正確な X線透視情 が 得 られな く なる 。  In addition, the winding part 4 of the can 1 is placed S so that the front side, that is, the surface of the winding wall 4 a for the winding is opposed to the X-ray source 10. . At this time, if the can 1 is arranged with the can lid plane parallel to the X-ray 10a projected from the X-ray source 10, the winding The two points, the upper end 4b and the lower end 4c of 4, are located on the X line. Then, information obtained by seeing through these two places is overlapped and input to the X-ray camera 11, so that accurate X-ray fluoroscopic information cannot be obtained.
そ こ で、 本発明方法ほ、 X線源 1 0 か ら投射される X 線 1 0 a に対 し、 缶 i を、 缶蓋平面が任意角度だけ傾斜 する よ う に配置 し て巻締め部 4 の上端 4 b を回避'し 、 X 線カ メ ラ 1 1 に近接 した下端 4 c に直接 X線を投射する よ う に してあ る 。 本実施例でほ、 一般に、 チャ ッ ク · ゥ オ ール 4 a が缶舸 2 に対 して約 〜 8 度の傾斜角 0 を有 している こ と に着 g し、 X镍源 1 0 か ら投射 される X線 1 0 a に対 し、 缶 1 を e (約 4 〜 8 度) だけ傾斜 させて い る 。  In the method of the present invention, the can i is arranged so that the plane of the can lid is inclined at an arbitrary angle with respect to the X-rays 10a projected from the X-ray source 10, and the tightening section is provided. By avoiding the upper end 4 b of 4, the X-ray is directly projected on the lower end 4 c close to the X-ray camera 11. In the present embodiment, generally, chuck gall 4a is set to have an inclination angle 0 of about -8 degrees with respect to can 2 and g The can 1 is inclined by e (approximately 4 to 8 degrees) with respect to the X-rays 10a projected from 0.
こ の傾斜角を設定する手段 と し ては、 第 1 図に示すよ  Means for setting this inclination angle are shown in Fig. 1.
新たな ¾羝 ラ に : x線光源 l 0 を傾けて s置する 手段、 あ る い ώ、 缶 1 を傾けて配置す る 手段のいずれ を採用 し て も よ い。 A new style In addition, any of means for tilting the x-ray light source l 0 and s, or means for tilting the can 1 may be employed.
1 2 は画像処理装置であ り 、 X線 カ メ ラ i 1 に入力 さ れた巻締め部 4 の X線透視情報を画像処理 し て、 デ イ ス プ レ イ 1 3 に巻締め部 4 の正面透視画像を表示する 。 正 面透視画像 と し ては、 第 2 図に示す よ う に 、 ボデー フ ッ ク ( B H ) お よ び カ バ 一 フ ッ ク ( C H ) の重な り 具合を 黒 , 白 , 灰の コ ン ト ラ ス ト で表示 した二次元画像 A と 、 さ ら に こ の二次元画像におけ る コ ン ト ラ ス 卜 の強弱を グ ラ フ で表示 し た一次元画像 B と を用い る 。 なお、 目 視検 査の み の場合は、 二次元画像 A だけ を用いればよ く 、 ま た、 寸法測定のみの場合は、 一次元画像 B だけ を用いれ ば よ い。  Reference numeral 12 denotes an image processing device, which performs image processing on the X-ray fluoroscopic information of the cinching section 4 input to the X-ray camera i 1, and places the wrapping section 4 on the display 13. Display the front perspective image of. As shown in Fig. 2, the overlapping perspective of the body hook (BH) and the cover hook (CH) is shown in black, white and gray as the front perspective image. A two-dimensional image A displayed in a contrast and a one-dimensional image B in which the strength of the contrast in the two-dimensional image is displayed in a graph are used. In the case of visual inspection only, only the two-dimensional image A may be used, and in the case of only dimensional measurement, only the one-dimensional image B may be used.
次に 、 上述 した装置を用いて、 缶巻締め部を検衰.する 方法に ついて説明する 。  Next, a description will be given of a method for detecting and detecting a can-wound portion using the above-described apparatus.
缶 1 の缶蓋平面に対 し傾斜角 eの角度か ら 、 巻締め部 4 の正面 ( チ ャ ッ ク · ウ ォ ー ル 4 a の面) に X線 1 0 a を投射する 。 す る と 、 卷締め部 4 の背面に配置 して あ る X線 カ メ ラ 1 1 に は 、 巻締め都 4 に おけ る ボデー フ ッ ク ( B H ) と カ バ ー フ ッ ク ( C H ) の重な り 具合 に対応 し た X線透過強度分布が X線透視情報 と し て入力 され る 。 こ の X線透視情報は、 画像処理装置 1 2 で明暗コ ン ト ラ ス ト の強調 な ど の画像処理がな さ れ 、 デ 'ィ ス プ レ イ 1 3 に巻締め部 4 の正面透視画像 A , B と して表示 される。 こ こ で 、 巻締 め部 4 は 、 第 2 図 に @〜 ® で示す よ う に、 六つの部分に分け られる 。 これら各部分の配列は、 ボデー フ ッ ク ( B H ) と カバ一 フ ッ ク ( C H ) と が靖み 合 う犾態に あ る 限 り 変わ る こ と はない。 しか し、 各部分 の輻は、 例えば、 ボデー フ ッ ク 〔 B H ) またはカバー フ 、,、 ク ( C H ) の長さが短いな どの欠陷があ る と 、 その欠 賠の内容に対応 して広狭の変化を生ずる 。 An X-ray 10a is projected from the angle of the inclination angle e with respect to the plane of the can lid of the can 1 to the front of the tightening portion 4 (the surface of the chuck wall 4a). Then, the X-ray camera 11 arranged on the back of the winding portion 4 has a body hook (BH) and a cover hook (CH) in the winding city 4. An X-ray transmission intensity distribution corresponding to the degree of overlap is input as X-ray fluoroscopic information. This X-ray fluoroscopic information is subjected to image processing such as enhancement of light and dark contrast by an image processing device 12, and is displayed on a display 13. Are displayed as front see-through images A and B of the tightening portion 4. Here, the winding portion 4 is divided into six parts as indicated by @ to ® in FIG. The arrangement of each of these parts does not change as long as the body hook (BH) and the cover hook (CH) are in a state where they can be combined. However, if there is a defect such as a short length of body hook (BH) or cover hook,,, (CH), the radiation of each part corresponds to the contents of the liability. Causes wide and narrow changes.
す な わ ち 、 正常 な巻締め部 4 は 、 第 2 図 に示す ょ ラ に、 ボデー フ ッ ク ( B H ) と カバ一 フ ッ ク ( C H ) と の 重合部 ( O L ) が十分な長さ を保持 してい る。  In other words, the normal tightening portion 4 has a sufficient length of the overlapping portion (OL) of the body hook (BH) and the cover hook (CH) as shown in FIG. Is held.
こ の重合部 ( O L ) は、 二次元画像 A に おい て 、 中央 部に存在する最も暗い部分 )で表われる 。 そ し て、 ボデ 一フ ッ ク ( B H ) またはカバ一 フ ッ ク ( C H ) の長ざが 短い等のため正常な巻締め状態 と な っ てい ない場合は、 上記二次元画像 A におけ る部分 ®の幅が狭 く なる 。  This overlapping portion (OL) appears in the two-dimensional image A as the darkest portion existing at the center. If the body hook (BH) or the cover hook (CH) is not properly tightened due to its short length, etc., the two-dimensional image A is used. The width of the part becomes narrower.
こ のよ う に 、 巻締め部 4 の欠陥に対応 し て、 二次元画 像 A におけ る各部分 @〜⑤の幅が変化する ため、 これ ら の幅を正常な場合の も の と比較 しつつ 目 視検查すれば、 巻締め部 4 の良否を判定する こ と がで き る 。  As described above, the width of each portion @ to ⑤ in the two-dimensional image A changes in response to the defect of the winding portion 4, so that these widths are compared with those in the normal case. By performing a visual inspection while checking, it is possible to determine the quality of the tightened portion 4.
また、 巻締め部 4 の各部の長さ 、 例えば、 ボデ— フ ッ ク ( B H ) 、 カ バ 一 フ ッ ク. ( C H ) 、 重合部 ( O L ) の 各長さ は、 一次元画像 B に も と づき演箕処理 し て容局に 測定 1直を箕出する こ と がで き る 。 The length of each part of the winding part 4, for example, the length of each of the body hook (BH), the cover hook (CH), and the overlapping part (OL) is set in the one-dimensional image B. Based on the processing The first measurement can be performed.
す なわ ち 、 ボデ一 フ ッ ク ( B H ) = Φ) + © + φ  That is, the body hook (BH) = Φ) + © + φ
カ バ 一 フ ッ ク ( C H ) = @ + ( ) +  Cover hook (CH) = @ + () +
重 合 部 ( 0 L ) = ®  Polymer part (0L) = ®
と な る 。  It becomes.
これ ら測定値に も と づいて巻締め部の良否を判定す る こ と も で き る 。  It is also possible to judge the quality of the tightened portion based on these measured values.
また、 こ の よ う な検査を 、 X線に対 し て缶 を相対回転 させ る こ と に よ リ 巻締め部全周の検査 を行な う こ と も可 能 と な る 。  In addition, such an inspection can be performed by rotating the can relative to X-rays to inspect the entire circumference of the re-tightened portion.
第 3 図 ( a ) , ( b ) は第一実施例 におけ る変形例 を 示す耩成図であ る。  FIGS. 3 (a) and 3 (b) are views showing a modified example of the first embodiment.
なお、 先に示 した第 1 図の装置 と 同一部分に は、 同一 符号を付 し 、 そ の部.分の詳細な説明は省 く 。  The same parts as those in the apparatus shown in FIG. 1 are denoted by the same reference numerals, and detailed description of those parts will be omitted.
同図. ( a ) の装置は、 X線情報入力手段 と し て X線 ラ イ ン セ ン サ 2 1 を用 いた も の であ る 。 すなわ ち 、 X線源 1. 0 か ら投射 し て巻締め部 4 を透過 し た X線を 、 巻締め 部 4 に近接 し て配置 した X線 ラ ィ ン セ ン サ 2 1 の各素子 に入力 し 、 それぞれ電気信号に変換 し て信 号処理装置 2 2 へ出力する 。 信号処理装置 2 2 で は 、 各セ ン サ素子 か ら送 られて き た電気信号 を信号処理 し て 、 X線透過強 度分布 に対応 した一次元情報 (第 2 図 に おけ る一次元画 像 B と -同様の情報 と な る) を 出力装置 2 3 に 出力す る 。 さ ら に、 こ の一次元情報を演箕処理すれば、 第 1 図に 示 した装置 と 同様に 、 巻締め部 4 の各部の長 さ 、 例 え ば、 ボデ一 フ ッ ク ( B H ) 、 カバ 一 フ ッ ク ( C H ) 、 重 合部 ( O L ) の各長さを箕出する こ と がで き る 。 The device shown in FIG. 1A uses an X-ray line sensor 21 as an X-ray information input means. That is, the X-rays projected from the X-ray source 1.0 and transmitted through the tightening unit 4 are converted into the respective elements of the X-ray liner 21 arranged close to the tightening unit 4. And converts them into electric signals and outputs them to the signal processing device 22. The signal processor 22 processes the electric signal sent from each sensor element to generate one-dimensional information (one-dimensional image in FIG. 2) corresponding to the X-ray transmission intensity distribution. Image B-the same information) is output to the output device 23. Furthermore, if this one-dimensional information is processed, as in the device shown in FIG. 1, the length of each part of the tightening section 4, for example, the body hook (BH), The lengths of the cover hook (CH) and the overlap (OL) can be determined.
第 3 図 ( b ) の装置は、 X線情報入力手段 と し て X線 セ ンサ 3 1 を用いた も のであ る 。 すなわち、 X線源 1 0 か ら投射 し て巻締め部 4 を透過 した: X線を 、 巻締め部 4 に近接 し て S置 し た X線 セ ン サ 3 1 に入力す る 。 こ こ で、 X線セ ン サ 3 1 の前面には、 ピ ンホー ル( 0 . 5m π φ 以下〉 3 4 a を穿設 した遮蔽板 3 4が設けてぁ 、 これ に よ り ビ ンホール 3 4 a を通適 した X線のみが: X線セ ン サ 3 1 に入力される よ う に し て、 X線の拡散に よ る精度 低下を防止 し ている。  The apparatus shown in FIG. 3 (b) uses the X-ray sensor 31 as the X-ray information input means. That is, it is projected from the X-ray source 10 and transmitted through the tightening unit 4: X-rays are input to the X-ray sensor 31 placed close to the tightening unit 4 and placed S. Here, a shielding plate 34 provided with a pinhole (0.5 m πφ or less) 34 a is provided in front of the X-ray sensor 31, whereby the binhole 3 is formed. Only X-rays suitable for 4a are input to the X-ray sensor 31 to prevent a decrease in accuracy due to X-ray diffusion.
また、 本装置の場合は、 巻締め部 4 の全体を走査する た め に 、 缶 1 を铀方向 〔図示矢印方向) に移動する よ う に し てい る 。 なお、 X籙源 1 0 および X線セ ンサ 3 1 を 缶 1 に対 して図示矢印方向 に移動 させて も よ い こ と は勿 論であ る。  Further, in the case of the present apparatus, the can 1 is moved in the 铀 direction (the direction of the arrow in the drawing) in order to scan the entire tightening unit 4. Note that the X-ray source 10 and the X-ray sensor 31 may be moved in the direction of the arrow with respect to the can 1 as a matter of course.
X線セ ンサ 3 1 に入力 した X線は、 電気信号に変換さ れて信号処理装置 3 2 に入力 される 。 信号処理装置 3 2 では、 時系列的に入力 した信号を処理 して、 X線透過強 度分布に対応 した一次元情報 (第 2 図におけ る一次元画 像および第 3 m C a ) の装置で得る一次元情報 と 同様の 情報) を 出力 ¾置 3 3 に出力する 。 そ し て 、 こ の -一次元 . 情報を演箕処理す る こ と に よ リ 、 先に示 した装置例 と 同 様、 巻締め部 4 の各部の長 さ を箕出する こ と が で き る 。 The X-rays input to the X-ray sensor 31 are converted into electric signals and input to the signal processing device 32. In the signal processing device 3 2 processes the time-series input signal, one-dimensional corresponding to X-ray transmission strength distribution information of the (one-dimensional image image that put in Figure 2 and the 3 m C a) Similar to one-dimensional information obtained by the device Information) is output to output device 3 3. By processing the one-dimensional information, it is possible to determine the length of each part of the tightening unit 4 in the same manner as in the above-described apparatus example. Wear .
以上、 第 1 図 , 第 3 図 ( a ) , ( b ) に それぞれ示 し た装置を用い て実施する本発明方法に よれば、 巻締め都 4 の検査 , 測定を 、 X線透視情報に も と づ き き わめて迅 速 に行な う こ と がで き る 。  As described above, according to the method of the present invention which is performed using the apparatus shown in each of FIGS. 1 and 3 (a) and (b), the inspection and measurement of the tightening capital 4 can be performed on the X-ray fluoroscopic information. It can be done very quickly.
そ のため 、 巻締め部 4 の全周を短い間隔で多数検査 , 測定で き 、 そ の結果に高い信頼性を得る こ と がで き る 。  Therefore, a large number of inspections and measurements can be performed at short intervals over the entire circumference of the tightening portion 4, and the results can be obtained with high reliability.
なお、 次の よ う な変形例に よ り 、 実施する こ と も で き る 。  The present invention can be implemented by the following modified examples.
Φ X線に対する缶の横断面の傾斜角を 、 4〜 8 度以外 の角度 と し た缶巻締め部の検査方法。  Inspection method for can-tightened parts where the inclination angle of the cross section of the can with respect to Φ X-ray was set to an angle other than 4 to 8 degrees.
② X線情報入力手段 と し て 、 X線 カ メ ラ 、 X線 ラ イ ン セ ン サ 、 X線セ ン サ以外の X線透過強度分布を検出 でき る 手段を用いた缶巻締め部の検査方法。  (2) As an X-ray information input means, use can be made of an X-ray camera, an X-ray line sensor, and a means other than the X-ray sensor for detecting the X-ray transmission intensity distribution. Inspection methods.
③ X線源か ら投射 される X線の線路上 に 、 巻締め部の  ③ On the X-ray track projected from the X-ray source,
X線透視画像周縁に生ず る ハ レ ー シ ョ ン の防止手段を設 けた缶巻締め都の検査方法。 なお、 上記ハ レ ー シ ョ ン 防 止手段は、 X線情報入力手段が X線 カ メ ラ 以外の と き は 不要 であ る 。 Inspection method for can-can-clamping equipment equipped with means for preventing halting that occurs on the periphery of X-ray fluoroscopic images. The halting prevention means is unnecessary when the X-ray information input means is other than an X-ray camera.
④ 得た X線透視情報を用い て、 缶巻締め部の良否 を 自 動的に判別す る よ ラ に した缶巻締め部の検査方法。 第二実施例 缶 A method for inspecting canned parts that automatically determines the quality of the canned parts using the obtained X-ray fluoroscopic information. Second embodiment
第 4 図は第二実施例構成図であ る。  FIG. 4 is a configuration diagram of the second embodiment.
第 4 図において、 1 は検査対象 と し ての缶であ り 、 轴 方向の端部に缶詷 2 と缶蓋 3 と を結合する巻締め部 4 が 形成されてい る 。  In FIG. 4, reference numeral 1 denotes a can to be inspected, and a winding portion 4 for connecting the can 2 and the can lid 3 is formed at an end in the direction of the arrow.
1 0 は X線源であ り 、 焦点が 3 mm φ以上 (通常 5 ππι φ 程度) の、 いわゆ る ブ ロ ー ド フ ォ ー カ ス X線管を用いて いる。 こ の X線源 1 0 の放出す る X線エネルギは缶胴 2 および缶蓋 3 の材料に よ り 、 例えば、 下表の よ う な大き さに設定する こ とが望ま しい。  Reference numeral 10 denotes an X-ray source, which uses a so-called broad-focus X-ray tube having a focal point of 3 mmφ or more (usually about 5ππιφ). The X-ray energy emitted by the X-ray source 10 is desirably set to, for example, the size shown in the table below, depending on the material of the can body 2 and the can lid 3.
Figure imgf000014_0001
Figure imgf000014_0001
1 1 は X線カ メ ラ であ り 、 巻き締め部 4 に関する X線 透視情報を入力する。 すなわ ち 、 X線源 1 0 と X線カ メ ラ 1 1 と の間に ' 缶 1 の巻締め部 4 を S置 し、 この巻銪 め部 4 を透過 し て き た X緝を 、 巻締め部 4 に関する : X線 透視情報 と し て入力する 。 こ こ で、 缶 1 は、 中心軸を X 線の線路 と ほぼ直交する状態で配置 し て あ る 。 また、 X 線源 1 0 およ び X線カ メ ラ 1 1 は、 卷締め部 4 の上下端 4 b , 4 c に それぞれ近接 し て配置する 。 Reference numeral 1 denotes an X-ray camera for inputting X-ray fluoroscopic information on the wrapping portion 4. That is, the fastening part 4 of the can 1 is placed S between the X-ray source 10 and the X-ray camera 11, and this winding is performed. The X-Jip that has passed through the fastening section 4 is input as the X-ray fluoroscopic information regarding the fastening section 4. Here, the can 1 is arranged so that the central axis is substantially orthogonal to the X-ray line. Further, the X-ray source 10 and the X-ray camera 11 are arranged close to the upper and lower ends 4b and 4c of the wrapping portion 4, respectively.
こ の よ う に配置 した場合、 X線源 1 0 か ら の X線は、 巻締め部 4 の上端 4 b と 下端 4 c の二箇所を透過する こ と に なる。 しか し、 本実施例で用いた X線源 1 0 が, 焦 点の大 き な ブ ロ ー ド フ ォ ー カ ス X線管であ り 、 これを巻 締め都上端 4 b に近接 し て配置 し て あ る ため、 巻締め部 上端 4 b を通る X線 1 0 a は、 図示の よ う に拡散 して し ま い 、 X線カ メ ラ 1 1 での入力が不可能に な る か、 入力 で き た と し て も ぼけて結像 し ない状態 と な る。 一方、 卷 締め部下端 4 c を通 る X線 1 0 b は、 該下端 4 c を透過 後、 近傍 した位置で X線カ メ ラ 1 1 に入力する ため、 明 暸 な画像情報 と な る 。  In such an arrangement, the X-rays from the X-ray source 10 penetrate through the upper end 4b and the lower end 4c of the tightening portion 4 at two places. However, the X-ray source 10 used in the present embodiment is a broad-focus X-ray tube having a large focal point, which is located close to the upper end 4b of the tightening area. Due to the arrangement, X-rays 10a passing through the upper end 4b of the tightening part are diffused as shown in the figure, making it impossible to input with the X-ray camera 11 Or, even if input is possible, the image is blurred and no image is formed. On the other hand, the X-ray 10b passing through the lower end 4c of the wrapped portion passes through the lower end 4c and is input to the X-ray camera 11 at a nearby position, so that clear image information is obtained. .
以上の原理か ら 、 巻締め部上端 4 b に関する X線透視 情報は、 ほ と ん ど無視で き る も の と な り 、 X線カ メ ラ 1 1 にほ、 巻締め部下端 4 c に関す る X線透視情報のみが 明瞭 に入力 される こ と に な る 。  From the above principle, the X-ray fluoroscopic information on the upper end 4b of the tightened portion can be almost ignored, and the X-ray camera 11 and the lower end 4c of the tightened portion have almost no effect. Only the X-ray fluoroscopy information related to this will be clearly input.
1 2 は画像処理装置であ り 、 X線カ メ ラ 1 1 に入力 さ れた巻締め部 4 の X線透視情報を明暗コ ン ト ラ ス ト 強調 な どの画像処理 を し て 、 デ ィ ス プ レ イ 1 3 に巻締め部 4 の正面透視画像を表示する 。 正面透視画像 と しては、 第 2 図に示すよ う に、 ポデ一 フ ッ ク ( B H ) およびカバー フ ッ ク ( C H ) の重な り 具合を黒 , 白 , 灰のコ ン ト ラ ス ト で表示 した二次元画像 A と 、 さ ら に こ の二次元画像に おけ る コ ン ト ラ ス ト の強弱をグ ラ フ で表示 した一次元画 像 と を用い る 。 なお、 目 視検查のみの場合は、 二次元 画像 Aだけを用いれば よ く 、 ま た、 寸法測定のみの場合 は、 一次元画像 B だけを用いればよ い。 1 2 Ri der image processing apparatus, and an X-ray fluoroscopy information X Senka ra 1 1 tightening portion 4 which is input to the brightness Control This setup La be sampled emphasized that any image processing, de I Tightening part 4 on spray 13 Display the front perspective image of. As the front perspective image, as shown in Fig. 2, the overlap of the pod hook (BH) and the cover hook (CH) is indicated by the black, white, and ash contours. The two-dimensional image A displayed in a list and the one-dimensional image in which the strength of contrast in the two-dimensional image is displayed in a graph are used. In the case of only visual inspection, only the two-dimensional image A may be used, and in the case of only dimensional measurement, only the one-dimensional image B may be used.
次に、 上述 した装置を用いて、 缶巻締め部を検査する 方法について説明する。  Next, a method for inspecting a can-sealed portion using the above-described apparatus will be described.
X線源 1 0 か ら 、 巻締め部 4 の正面 ( チ ャ ッ ク · ゥ ォ ール 4 a の面) に: X線を投射する 。 する と 、 巻締め部 4 の背面近傍に S置 し てあ る : X線カ メ ラ 1 1 には、 巻締め 部下端 4 c におけ る ボデー フ ッ ク ( B H ) と カ ノく 一 フ ッ ク ( C H ) の重な リ 具合に対応 した X線透過強度分布が X線透視情報 と し て入力される。 こ の X線透視情報は、 画像処理装置 1 2 で画像処理され、 デ ィ ス プ レ イ 1 3 に 巻締め部 4 の正面透視画像 A , B と し て表示される 。  From the X-ray source 10, X-rays are projected onto the front of the tightening section 4 (the surface of the chuck 4 a). Then, S is placed near the back of the wind-up unit 4. The X-ray camera 11 has a body hook (BH) at the lower end 4c of the wind-up unit and a hook. The X-ray transmission intensity distribution corresponding to the degree of overlap of the hooks (CH) is input as X-ray fluoroscopic information. The X-ray fluoroscopic information is image-processed by the image processing device 12, and displayed on the display 13 as frontal fluoroscopic images A and B of the tightening unit 4.
こ こ で 、 巻締め部 4 は 、 第 2 図 に(I)〜 ⑤で示す よ う に、 六つ の部分に分け られる 。 これ ら各都分の S列は、 ボデ一 フ ッ ク ( B H ) と カバー フ ッ ク ( C H ) と が嚙み 合 う 状態にあ る限 リ 変わ る こ と はない。 しか し 、 各部分 の-幅は、 例えば、 ボデー フ ッ ク ( B H ) またはカバー フ ッ ク ( C H ) の長 さが短い な どの欠陥があ る と 、 そ の欠 陥の内容に対応 し て広狭の変化を生ず る 。 Here, the tightening portion 4 is divided into six parts as shown by (I) to ⑤ in FIG. The S row for each city does not change as long as the body hook (BH) and the cover hook (CH) are in a state of interlocking. However, the width of each part is, for example, body hook (BH) or cover hook. If there is a defect such as a short hook (CH), a wide or narrow change will occur in response to the content of the defect.
す な わ ち 、 正常 な巻締 め部 4 は 、 第 2 図 に示す よ う に 、 ポデー フ ッ ク ( B H ) と カ バ 一 フ ッ ク ( C H ) と の 重合部 ( O L ) が十分な長 さ を保持 し てい る 。  That is, as shown in FIG. 2, the normal tightening portion 4 has a sufficient overlapping portion (OL) between the pod hook (BH) and the cover hook (CH). It holds the length.
こ の重合部 ( O L ) は、 二次元画像 A に お い て 、 中央 都に存在する最 も暗い部分 ®で表われる 。 そ し て 、 ボデ 一 フ ッ ク ( B H ) または カ ノく一 フ ッ ク ( C H ) の長 さが 短い等のため正常な巻'締め状態 と な っ てい ない場合は、 上記二次元画像 A に おけ る部分 ®の幅が狭 く な る。  This overlapping portion (OL) appears in the two-dimensional image A as the darkest portion existing in the central city. If the body hook (BH) or canopy hook (CH) is too short to be in the normal winding state, the two-dimensional image A The width of the part ® becomes narrower.
こ の よ う に 、 巻締め部 4 の欠陥に対応 し て 、 二次元画 像 A におけ る各部分 ®〜②の幅が変化す る ため、 これ ら の幅を正常な場合の も の と比較 しつつ.目 視検查すれば、 巻締め部 4 の良否を判定する こ と がで き る 。  As described above, in response to the defect in the tightening portion 4, the width of each portion in the two-dimensional image A changes, so that these widths are the same as in the normal case. By performing a visual inspection while comparing, it is possible to determine the quality of the wound portion 4.
また、 巻締め部 4 の各部の長 さ 、 例えば、 ポ'デー フ ッ ク ( B H ) 、 カ バ ー フ ッ ク ( C H ) 、 重合部 ( O L ) の 各長 さ は、 一次元画像 B に も と づ き演 .算処理 し て容易に 測定値を算出す る こ と がで き る 。  In addition, the length of each part of the wind-up part 4, for example, the length of each of the hook (BH), the cover hook (CH), and the overlapping part (OL) is expressed in the one-dimensional image B. Based on this, it is possible to easily calculate the measured values by performing arithmetic processing.
すなわ ち 、 ボデ一 フ ッ ク ( B H ) = ® + © +  That is, the body hook (BH) = ® + © +
カ バ ー フ ッ ク ( C H ) = (d) + (|) +  Cover hook (CH) = (d) + (|) +
重 合 部 ( O L ) - (φ と な る 。  The overlap (OL)-(φ.
これ ら測定値 に も と づい て巻締め部の良否 ^判定する こ と も で き る 。 Based on these measured values, determine the quality of the tightened part ^ You can do that too.
また、 こ の よ う な検查を、 X線に対 し て缶を相対回転 させる こ と に よ リ 巻締め部全周の検査を行な う こ と も可 is と な る 。  In addition, it is also possible to perform such inspection by rotating the can relative to the X-ray to inspect the entire periphery of the tightening portion.
第 5 図 ( a ) , ( b ) は本癸明方法を実施するための他 の装置例を示す構成図である 。 Figs. 5 (a) and (b) are configuration diagrams showing another example of an apparatus for performing the present method.
なお、 先に示 した第 4 図の装置 と 同一部分には、 同一 符号を付 し、 そ の部分の詳細な説明は省 く 。  The same parts as those in the apparatus shown in FIG. 4 are denoted by the same reference numerals, and detailed description of those parts will be omitted.
同図 C a ) の装置は、 X線情報入力手段 と して: X線ラ ィ ン セ ンサ 2 1 を用いた も の であ る 。 すなわ ち 、 X線源 1 0 か ら投射 して巻締め都下端 4 c を透過 した X線 1 0 b を 、 巻締め部 4 に近接 して S置 した X線ラ イ ン セ ンサ 2 1 の各素子に入力 し、 それぞれ電気信号に変換 して信 号処理装置 2 2 へ出力する 。 信号処理装置 2 2 では、 各 セ ンサ素子か ら送 られて きた電気信号を信号処理 して、 X線透過強度分布に対応 した一次元情報 (第 2 図におけ る一次元画像 B と 同様の情報 と な る) を出力装置 2 3 に 出力する。  The device shown in FIG. Ca) uses an X-ray line sensor 21 as X-ray information input means. In other words, the X-rays 10 b projected from the X-ray source 10 and transmitted through the lower end 4 c of the tightening device are placed in the X-ray sensor 21 close to the tightening unit 4. The signals are converted into electric signals and output to the signal processing device 22. The signal processor 22 processes the electric signal sent from each sensor element to generate one-dimensional information corresponding to the X-ray transmission intensity distribution (similar to the one-dimensional image B in FIG. 2). Is output to the output device 23.
さ ら に、 こ の一次元情報を演算処理すれば、 第 4 図に 示 した装置 と 同様に、 巻締め部 4 の各部の長さ 、 例えば 、 ボデー フ ッ ク ( B H ) 、 カ バ一 フ ッ ク ( C H ) 、 重合 都 ( O L ) の各長 さ を箕出する こ と がで き る 。  Further, if this one-dimensional information is subjected to arithmetic processing, similarly to the apparatus shown in FIG. 4, the length of each part of the winding part 4, for example, the body hook (BH), the cover The lengths of the hook (CH) and the overlap city (OL) can be determined.
第 5 図 ( b ) の装置は、 X線情報入力手段 と し て X線  The device shown in Fig. 5 (b) uses X-rays as X-ray information input means.
新たな用紙 セ ン サ 3 1 を用いた も のであ る 。 すなわ ち 、 X線源 1 0 か ら投射 し て卷締め部下端 4 c を透過 した X線を 、 巻締 め部 4 に近接 し て配置 した X線セ ン サ 3 1 に入力する 。 こ こ で、 X線セ ン サ 3 1 の前面には 、 ピ ンホ ー ル ( 0 .5 mm<jb以下) 3 4 a を穿設 した遮蔽板 3 4が設けてあ り 、 これに よ り ピ ンホ ー ル 3 4 a を通過 した X線のみが X線 セ ン サ 3 1 に入力 される よ う に し て、 X線の拡散に よ る 精度低下を防止 し てい る 。 New paper The sensor 31 was used. That is, the X-rays projected from the X-ray source 10 and transmitted through the lower end 4 c of the winding portion are input to the X-ray sensor 31 arranged close to the winding portion 4. Here, a shielding plate 34 having a pinhole (0.5 mm <jb or less) 34a is provided in front of the X-ray sensor 31. Only X-rays that have passed through the pinhole 34a are input to the X-ray sensor 31 to prevent a decrease in accuracy due to X-ray diffusion.
また、 本装置の場合ほ、 巻締め部 4 の全体を走査する ため に、 缶 1 を軸方向 (図示矢印方向) に移動する よ う に し てい る 。 なお、 X線源 1 0 お よ び X線セ ン サ 3 1 を 缶 1 に対 し て図示矢印方向 に移動 さ せて も よ い こ と は勿 l で め る 。  In addition, in the case of this apparatus, the can 1 is moved in the axial direction (the direction of the arrow shown in the figure) in order to scan the whole of the tightening unit 4. The X-ray source 10 and the X-ray sensor 31 may be moved in the direction of the arrow with respect to the can 1 as a matter of course.
X線セ ン サ 3 1 に入力 した X線は、 電気信号に変换 さ れて信号処理装置 3 2 に入力 され る 。 信号処理装置 3 2 では、 時系列的に入力 した信号 を処理 し て、 X線透過強 度分布に対応 した一次元情報 (第 2 図に おけ る一次元画 像お よび第 5 図 ( a ) の装置で得 る -一次元情報 と 同様の 情報) を 出力装置 3 3 に 出力す る 。 そ し て 、 こ の一次元 情報を演箕処理する こ と に よ り 、 先に示 した装置例 と 同 様、 巻締め部 4 の各部の長 さ を算出する こ と ができ る 。  The X-rays input to the X-ray sensor 31 are converted into electric signals and input to the signal processing device 32. The signal processing device 32 processes the signals input in a time series to obtain one-dimensional information corresponding to the X-ray transmission intensity distribution (the one-dimensional image in FIG. 2 and the one in FIG. 5 (a)). The same information as the one-dimensional information obtained by this device is output to the output device 33. By processing the one-dimensional information, the length of each part of the tightening unit 4 can be calculated in the same manner as in the example of the apparatus described above.
以上、 第 4 図 , 第 5 図 ( a ) , ( b ) に それぞれ示 レ た装置 を用 いて実施する *発明方法 に よれば、 巻締め部 4 の検査 , 測定を、 X線透視情報に も とづき き わ め て迅 速に行な う こ とができ る。 As described above, the apparatus shown in FIGS. 4 and 5 (a) and (b) is used to carry out the method. Inspection and measurement in 4 can be quickly performed based on X-ray fluoroscopic information.
そ のため 、 巻締め部 4 の全周を短い間隔で多数検査 , 測定でき 、 そ の結果に高い信穎性を得る こ と がで き る 。  As a result, a large number of inspections and measurements can be made at short intervals around the entire circumference of the tightening section 4, and the results can be obtained with high convergence.
な お 、 次 の よ う な変形例 に よ り 実施する こ と も で き る 。  In addition, it can be implemented by the following modified examples.
① X線情報入力手段 と し て 、 X籙カ メ ラ 、 X籙ラ イ ン セ ン サ、 X線セ ンサ以外の X線透過強度分布を検出で き る手段を用いた缶巻締め部の検査方法 β ① As the X-ray information input means, the X-camera, X-line sensor, and other means other than the X-ray sensor can be used to detect the X-ray transmission intensity distribution. Inspection method β
② X線源か ら投射される X線の線路上に 、 巻締め部の X線透視画像周縁に生ずる 八 レ ー シ ョ ン の防止手段を設 げた缶巻締め部の検査方法。 なお、 上記ハ レ ー シ 3 ン防 止手段は、 X線情報入力手段が X線カ メ ラ以外の と き は 不要であ る。 (2) A method of inspecting a can-clamping section provided with means for preventing eight-sections that occur around the X-ray fluoroscopic image of the crimping section on the X-ray track projected from the X-ray source. It should be noted that the above-mentioned Halle over three down prevention means-out door X-ray information input means other than the X Senka ra is Ru unnecessary der.
③ X線透視情報を用いて、 缶巻締め部の良否を 自動的に 判別する よ う に した缶巻締め部の検査方法。  (3) An inspection method for can-sealed parts that automatically determines the quality of can-sealed parts using X-ray fluoroscopic information.
第三実施例 Third embodiment
第 6 図は第ョ実施例を示す構成図であ る。  FIG. 6 is a configuration diagram showing a third embodiment.
第 6 図に ぉぃ て、 1 は検査対象 と しての缶でぁ リ 、 铀 方向の端部に缶胴 2 と缶羞 3 と を結合する巻締め部 4 が 形成されてい る。 こ の巻締め部 4 は、 第 7 図に示すよ う に、 缶胴 2 の端縁に形成されたポデ一 フ ッ ク ( Β Η ) と 缶畫 3 の外周縁 に形成 さ れた カ バー フ ッ ク ( C H ) と が、 圧着 された状態で強固に嚙み合 っ て形成 し て あ る 。 こ の巻締め部 4 の良否を判断する ため には、 例えば、 ボ デ一 フ ッ ク ( B H ) , カ バー フ ッ ク ( C H ) , これ ら の 重合部分 ( O L ) , ア ツ パ ク リ ア ラ ン ス ( U C ) , ロ ア ク リ ア ラ ン ス ( L C ) 等の状態観察が必要 と な る 。 In FIG. 6, reference numeral 1 denotes a can to be inspected, and a canned portion 4 for connecting the can body 2 and the can 3 is formed at the end in the direction of the arrow. As shown in FIG. 7, the wrapping portion 4 includes a pod hook (Β Η) formed on the edge of the can body 2 and a cap formed on the outer periphery of the can 3. Bar hook (CH) and However, they are firmly joined together in a crimped state. In order to judge the quality of the tightening portion 4, for example, a body hook (BH), a cover hook (CH), an overlap portion of these (OL), and an It is necessary to observe the condition of allance (UC) and lower clearance (LC).
1 0 は X線源 と し て の X線管であ る 。  10 is an X-ray tube as an X-ray source.
こ の: X線管 1 0 の放出す る X線ヱネ ルギは缶胴 2 およ び缶蓋 3 の材料に よ り 、 例えば、 下表の ょ ラ な大 き さ に 設定する こ と が望ま しい。  This: The X-ray energy emitted by the X-ray tube 10 depends on the material of the can body 2 and the can lid 3. For example, it can be set to the following size. Desirable.
Figure imgf000021_0001
Figure imgf000021_0001
1 1 は X線 カ メ ラ でぁ リ 、 卷締め部 4 に関す る X線透 視情報を入力す る 。 すなわ ち 、 X線管 Γ 0 と : X線カ メ ラ 1 1 と の間に 、 缶 1 の巻締め部 4 を配置 し 、 こ の巻締め 部 4· を透過 し て き た X線を 、 巻締め部 4 に関す る X線透 視情報 と し て入力する 。 こ こ で、 缶 1 は、 巻締め部 4 の 接線が X線 1 0 a の線路に沿 っ た状態に配置する 。 Reference numeral 1 denotes an X-ray camera for inputting X-ray fluoroscopic information on the wrapper 4. That is, the winding part 4 of the can 1 is arranged between the X-ray tube Γ 0 and the X-ray camera 11, and the X-ray transmitted through the winding part 4. , Is input as X-ray fluoroscopic information on the tightening unit 4. Here, can 1 is The tangent should be placed along the X-ray 10a line.
こ の よ う に S置 した缶の巻締め部 4 に対 し 、 X線 1 0 a は第 1 図にハ ツ チ ングで示す部分を透過する 。 そ のた め、 X線カ メ ラ 1 1 に入力 した X線透視情報は、 上記ハ ツ チ ン グで示 した部分すベての断面透視情報が重合 し て ぉ リ 、 巻締め部 4 の新面 4 d のみを透視 した情報ではな い。 そ こ で、 画像処理の過程で、 X線透視情報か ら巻締 め部の靳面像を抽出する こ とが必要 と な る。  The X-ray 10a passes through the portion indicated by the hatching in FIG. 1 with respect to the canned portion 4 of the can placed S in this manner. Therefore, the X-ray fluoroscopic information input to the X-ray camera 11 is obtained by superimposing the partial cross-sectional fluoroscopic information indicated by the above-mentioned hatching, and forming the drilling unit 4. It is not information that sees only the new face 4d. Therefore, in the process of image processing, it is necessary to extract a surface image of the tightening portion from the X-ray fluoroscopic information.
1 2 は画像処理装置であ 、 こ こ で X線透視情報か ら 巻締め部の断面像を油出する画像処理を行な う 。 すなわ ち 、 X線カメ ラ 1 1 に入力 した X線透視情報か ら得た画 像信号に対 し、 あ る強さのコ ン ト ラ ス ト を基準と し て、 そ の基準を超え る コ ン ト ラ ス ト を有する部分を強調 し 、 基準以下の部分はカ ツ ドしてま う こ と に よ リ 、 真の巻締 め部新面像に近似 した画像を抽出する こ とができ る。 な お、 こ の画像処理はすべて コ ン ピ ュ ー タ 等を用 い て行な ラ。 こ の よ う に して得た巻締め都 4 の靳面像は、 デ イ ス プ レ イ 1 3 に表示 される 。  Reference numeral 12 denotes an image processing device, which performs image processing of extracting a cross-sectional image of the tightened portion from X-ray fluoroscopic information. In other words, with respect to the image signal obtained from the X-ray fluoroscopic information input to the X-ray camera 11, the contrast exceeds a certain level with respect to a certain contrast. By highlighting the parts that have the same contrast and cutting out the parts below the standard, an image that approximates the true image of the new surface of the tightened part is extracted. Can be done. All this image processing is performed using a computer. The surface image of the winding city 4 obtained in this way is displayed on the display 13.
次に、 上述 した装置を用いて、 缶巻締め部の断面形状 を検査する方法について説明する 。  Next, a method for inspecting the cross-sectional shape of the can-tightened portion using the above-described apparatus will be described.
缶 1 の巻締め部 4 に対 して、 接線方向か ら X線を投射 し、 卷締め部 4 を透過 した X線を巻締め都靳面の X線透 視情報 と し て X線 カ メ ラ 1 1 に 入力す る 。 X線カ メ ラ 1 1 は、 こ の入力 し た X線透視情報を 、 電気信号に変換 し , 画像処理装置 1 2 に出力する 。 画像処理装置 1 2 で は、 一定基準を超え る コ ン ト ラ ス ト を有する 部分を強調 する こ と に よ り 、 巻締め部 4 の正新面 4 d の画像を抽出 す る 。 こ の よ う に し て油出 さ れた巻締め部 4 の断面像 は、 デ ィ ス プ レ イ 1 3 に表示 される ため、 検査員は こ の デ ィ ス プ レ イ 1 3 上の断面像に も と づ き 、 缶巻締め部 4 の断面形状を 目 視検査する こ と がで き る 。 An X-ray is projected from the tangential direction to the winding part 4 of the can 1, and the X-ray transmitted through the winding part 4 is used as X-ray camera information as X-ray fluoroscopic information on the tightening surface. Enter the number in the box. X-ray camera 11 converts the input X-ray fluoroscopic information into an electric signal and outputs it to the image processing device 12. The image processing device 12 extracts the image of the new front surface 4 d of the tightening unit 4 by emphasizing a portion having a contrast exceeding a certain standard. The cross-sectional image of the tightened portion 4 from which the oil has been drained in this way is displayed on the display 13, so that the inspector can display the cross-sectional image on the display 13. Based on the cross-sectional image, the cross-sectional shape of the can winding part 4 can be visually inspected.
デ ィ ス プ レ イ 1 3 上に表示 される巻締め部 4 の断面像 は、 正常な巻締め部 4 の場合、 第 7 図に示す巻締め部 4 の 断 面形状 と ,ほ ぼ近似す る 形状 と な っ て い る 。 すな わ ち 、 ボデー フ ッ ク ( B H ) 、 カ バ一 フ ッ ク ( C H ) 、 こ れ ら の重合部 ( O L ) が十分な長 さ を保持す る形状—と な つ て い る。 一方、 巻締め部 4 に 欠陥の あ る場合は、 上記 各部のいずれか または全てが短 く 、 嚙み合せが不完全 と な っ て い る 。 そ こ で 、 デ ィ ス プ レ イ 上 に表示 された巻締 め部 4 の断面像に も と づ き 、 これ ら の判断を行なえば、 容易かつ迅速 に 巻締め不良 の缶 を 検出 す る こ と がで き る 。  The cross-sectional image of the tightened part 4 displayed on the display 13 is almost similar to the cross-sectional shape of the tightened part 4 shown in Fig. 7 in the case of the normal tightened part 4. Shape. That is, the shape is such that the body hook (BH), the cover hook (CH), and the overlapping portion (OL) of these have a sufficient length. On the other hand, if the tightened portion 4 has a defect, one or all of the above portions are short, and the combination is incomplete. Therefore, based on the cross-sectional image of the tightening unit 4 displayed on the display, if these determinations are made, it is possible to easily and quickly detect a defective can in the winding. be able to .
こ の よ う な検査を 、 X線に対 し相対的に缶 1 を 回転 さ せ て行な う こ と に よ り 、 巻締め部全周の検査を行な う こ と 力 Sで き る 。 次に 、 第 8 図 ( a ) , ( b ) は巻締め都の靳面像周縁 に生ずる ハ レ ー シ ョ ン の防止手段を備えた装置例を示す 図であ る。 By performing such an inspection by rotating the can 1 relative to the X-ray, the force S can be used to inspect the entire circumference of the tightened portion. . Next, Figs. 8 (a) and (b) show the peripheral image of FIG. 3 is a diagram showing an example of an apparatus provided with a means for preventing halting that occurs in FIG.
デ ィ ス プ レ イ 1 3 に表示 さ れた巻締め部 4 の断面像 は、 X線の回折現象に よ り 周縁にハ レ 一 シ ョ ンをお こ -し て お り 、 そ の た め周縁の輪郭が不明瞭 と な る こ と があ る 。  The cross-sectional image of the tightened portion 4 displayed on the display 13 has a peripheral edge due to the X-ray diffraction phenomenon. The outline of the periphery may be unclear.
そ こ で 、 こ の ハ レ ー シ ョ ン を 防止す る た め 、 同 図 C a ) では、 少な く と も X線の線路上における巻締め部 4 の周縁にホルダ 2 1 を近接も し く は接蝕 している 。 こ れに よ り 、 巻締め部 4 と その外周 と の間の明暗差が小さ く な リ 、 ハ レ ー シ ョ ン が防止でき る。 また、 同図 ( b ) では、 X線の線路上に く さ び形 のフ ィ ル タ 2 2 を挿入 し、 同様に巻き締め部 4 どその外周 と の間の明暗差を小 — さ く して ハ レ ー シ ョ ンを防止 している。 こ こ で 、 く さ び形妆 と したのは、 X線が透過する巻締め部の厚さの違 い に応 じて、 X線を阻止する量を調整する ためであ る 。  Therefore, in order to prevent this harshness, in FIG. C a), at least the holder 21 is brought close to the periphery of the tightening portion 4 on at least the X-ray line. Are in contact with each other. Thus, the sharpening difference between the winding portion 4 and the outer periphery thereof and the harting can be prevented. In the same figure (b), a wedge-shaped filter 22 is inserted on the X-ray line, and similarly, the difference in brightness between the outer periphery of the tightened portion 4 and the outer periphery is reduced. To prevent harm. Here, the reason why the wedge shape is adopted is to adjust the amount of blocking the X-rays according to the difference in the thickness of the tightened portion through which the X-rays pass.
こ の よ う な ハ レ ー シ ョ ン防止手段を介在 して、 X線透 視情報を得る よ う にすれば、 巻締め部断面像においてハ レ ー シ ヨ ン に よ り 生 じていた各部寸法誤差が解消でき 、 If the X-ray fluoroscopic information is obtained through such a halting prevention means, the halting may occur in the cross-sectional image of the tightened portion. Dimensional errors can be eliminated,
—層高精度な缶巻締め部靳面形状の検查を行な う こ と が でき る 。 —High-precision inspection of the surface shape of the can-clamping part can be performed.
な お、 次の よ う な変形例 に よ り 実施す る こ と も で き る 。 ①缶巻締め部の断面像に も と づき 、 缶巻締め部 In addition, it can be implemented by the following modified examples. (1) Based on the cross-sectional image of the can winding part, the can winding part
の各部寸法、 例えば、 ボデ一 フ ッ ク ( B H )、カ バ一 フ ッ ク ( C H ) 、 こ れ ら の重合部 ( O L ) 、 巻締め 部の全長 (W) を測定す る よ う に し た缶巻締め部の 新面形状検査方法。  For example, measure the dimensions of each part, such as the body hook (BH), the cover hook (CH), the overlapping portion (OL), and the overall length (W) of the tightening portion. New surface shape inspection method for canned parts.
② X線透視情報の画像処理手段 と し て、 公知の各種画 像処理技術 を用 い た缶巻締 め都 の 新面形状検査方 法。  (2) A new method for inspecting the surface of cans that uses well-known various image processing techniques as image processing means for X-ray fluoroscopic information.
③巻締め部の断面像を 、 デ ィ ス プ レ イ 以外の缶巻締め 部の新面形状検査方法。  (3) A new surface shape inspection method for the canned part other than the display is used to obtain a cross-sectional image of the part.
④得 られた卷締め部の断面像 に も と づ き 、 缶巻締め部 の断面形状の良否を 自動的に判別する よ う に した缶 巻締め部の断面形状検査方法。  (4) A method for inspecting the cross-sectional shape of a can-tightened portion, which automatically determines the quality of the cross-sectional shape of the can-tightened portion based on the obtained cross-sectional image of the tightened portion.

Claims

請求の範囲 The scope of the claims
1 . X線源 と X線情報入力手段と の藺に検査を行なう 缶 を配置 し、 こ の缶の.巻締め部の一部に、 缶蓋平面に対し 所定の傾斜角をも っ て X線を投射する こ と によ り 、 缶巻 締め部正面の X線透視情報を上記 X線情報入力手段に入 力 し、 この X線透視情報を用いて缶巻締め部の検査を行 な う こ と を特徵 と した缶巻締め部の検査方法。 1. Place a can to be inspected on the line between the X-ray source and the X-ray information input means. By projecting X-rays, X-ray fluoroscopic information on the front of the can-winding portion is input to the X-ray information input means, and the can-winding portion is inspected using the X-ray fluoroscopic information. This is a method of inspecting the can-sealed part that specializes in this.
. 上記傾斜角は、 巻締め部のチ ャ ッ ク ゥォ - ルが缶胴 に対 してなす角度と対応して 4〜 8 度に設定してある こ と を特徵と する請求の範囲 1 項記載の缶巻締め部の検査 方法。  The claim 1 is characterized in that the inclination angle is set to 4 to 8 degrees corresponding to the angle formed by the chuck hole of the winding portion with respect to the can body. Inspection method of canned part described in section.
3 . X線源が、 フ ァ イ ン フ ォ ー カス X線管であ る こ と を 特徴と する請求の範囲第 1 または 2 項記載の缶巻締め部 の検查方法。  3. The method for detecting a can-sealed portion according to claim 1, wherein the X-ray source is a fine focus X-ray tube.
4 . X線情報入力手段が、 X線カメ ラ であ る こ と を特徴 と する請求の範囲第 1 , 2 または 3 項記載の缶巻締め部 の検査方法。 - 4. The method for inspecting a can-tightened part according to claim 1, wherein the X-ray information input means is an X-ray camera. -
5 . X線情報入力手段が、 X線ラ イ ンセ ンサで あ る こ と を特徼とする請求の範囲第 1 , 2 ま たは 3 項記載の缶巻 締め部の検査方法。 5. The method for inspecting a can-sealed portion according to claims 1, 2 or 3, wherein the X-ray information input means is an X-ray sensor.
6 · X線情報入力手段が、 X線セ ンサであ る こ と を特徴 と する請求の範囲第 1 , 2 または 3 項記載の缶巻締め都 の検査方法。 6. The can-tightening device according to claims 1, 2 or 3, wherein the X-ray information input means is an X-ray sensor. Inspection method.
7 . 検査対彖缶巻締め部の径方向一端に近接 して配置 し た X線源か ら 、 検査対象缶巻締め部の他端近傍に ffi置 し た X 線情報入力手段に 向 け て X 線を投射する こ と に よ り 、 上記 X線入力情報手段に缶巻締め部正面の X線透視 情報 を入力 し 、 こ の X線透視情報を用いて缶巻締め部 の測定 を行 な う こ と を特徵 と す る 缶巻締め部の検査方 法。  7. From the X-ray source arranged close to one end of the inspection part can-winding part in the radial direction, to the X-ray information input means located near the other end of the inspection part can-tightening part By projecting X-rays, the X-ray fluoroscopic information on the front of the can-winding portion is input to the X-ray input information means, and the measurement of the can-tightening portion is performed using the X-ray fluoroscopic information. Inspection method for can-tightened parts, specializing in this.
8 . X線源が、 ブロー ド フ ォ ーカ ス X線管で ある こ と を 特徴 と する請求の範囲第 7 項記載の缶巻締め部の検査方 法。  8. The inspection method for a can-sealed portion according to claim 7, wherein the X-ray source is a broad focus X-ray tube.
9 . X線情報入力手段が、 X線カ メ ラ で あ る こ と を特徵 と する請求の範囲第 7 ま たは 8項記載の缶巻締め部の検 查方法。  9. The method according to claim 7 or 8, wherein the X-ray information input means is an X-ray camera.
1 0 . X線情報入力手段が、 X線セ ン サで あ る こ と を特 徵 と す る請求の範囲第 7 ま たは 8 項記載の缶巻締め都の 検査方法。  10. The method for inspecting a can-tightening method according to claim 7 or 8, wherein the X-ray information input means is an X-ray sensor.
1 1 . X線情報入力手段が、 X線 ラ イ ン セ ン サで あ る こ と を特徴 と す る請求の範囲第 7 ま たは 8 項記載の缶巻締 め部の検査方法。  11. The inspection method for a can-tightening portion according to claim 7 or 8, wherein the X-ray information input means is an X-ray sensor.
1 2 · X線源か ら投射される X線の線路に対 し 、 測定対 彖缶の中心軸を直交さ せて あ る こ と を特徵 と する請求範 囲第 7 項ない し 1 1 項のいずれか 1 項に記載の缶巻締め 部の検査方法。 1 2 · Claim 7 or 11 characterized by the fact that the central axis of the measuring element can be made orthogonal to the X-ray line projected from the X-ray source. Any of the following items: How to inspect the part.
1 3 . 検査対象缶の巻締め部に対 して X線を接線方向に 投射し、 上記巻締め部を透過した X線を X線カ メ ラ に入 力する こ と に よ り 巻締め部靳面の X線透視情報を得、 さ ら に この X線透視情報を画像処理して巻締め部の断面像 を得、 こ の画像にも とづいて缶巻締め部の靳面形状を検 查する こ と を特徵と した缶巻締め部の検査方法。  1 3. X-rays are projected tangentially to the tightened part of the can to be inspected, and the X-ray transmitted through the above-mentioned tightened part is input to the X-ray camera. Obtain X-ray fluoroscopic information of the surface, further process this X-ray fluoroscopic information to obtain a cross-sectional image of the seam-tightened part, and based on this image, inspect the surface shape of the can-sealed part. Inspection method for can-tightened parts, which is specially designed to be used.
1 4 . 巻締め部の断面像周籙に生ずる ハ レーシ ョ ンの 防止手段を介して X線を X線カ メ ラ に入力するこ と を特 徴 と した請求の範囲第 1 3 項記載の缶巻締め部の検吝方 法 o  14. The method according to claim 13, wherein the X-ray is input to the X-ray camera through a means for preventing the occurrence of a harshness generated around the cross-sectional image of the winding portion. How to inspect the canned area o
PCT/JP1988/000448 1987-05-06 1988-05-06 Method of inspecting can seaming WO1988008970A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8830046A GB2215834B (en) 1987-05-06 1988-12-30 Inspection method for a double seam of a can

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP62/111565 1987-05-06
JP62/111564 1987-05-06
JP62111565A JPS63274853A (en) 1987-05-06 1987-05-06 Inspecting method for can seam part
JP11156687A JPS63274808A (en) 1987-05-06 1987-05-06 Method for inspecting sectional shape of can seaming part
JP62/111566 1987-05-06
JP62111564A JPH0721467B2 (en) 1987-05-06 1987-05-06 Inspection method for canned part

Publications (1)

Publication Number Publication Date
WO1988008970A1 true WO1988008970A1 (en) 1988-11-17

Family

ID=27311990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000448 WO1988008970A1 (en) 1987-05-06 1988-05-06 Method of inspecting can seaming

Country Status (2)

Country Link
GB (1) GB2215834B (en)
WO (1) WO1988008970A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332376A2 (en) * 1988-03-07 1989-09-13 Sentinel Vision Inc. Apparatus for inspecting can seams and the like

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0801307D0 (en) 2008-01-24 2008-03-05 3Dx Ray Ltd Can seam inspection
DE102008053825A1 (en) 2008-10-27 2010-04-29 Cmc Kuhnke Gmbh Positioning device for the investigation of a Dosenfalzquerschnittes and the can folding fold formation by means of X-rays

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716376U (en) * 1971-03-24 1972-10-25
JPS5931051U (en) * 1982-08-23 1984-02-27 株式会社東芝 External diagnostic equipment for electrical equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716376U (en) * 1971-03-24 1972-10-25
JPS5931051U (en) * 1982-08-23 1984-02-27 株式会社東芝 External diagnostic equipment for electrical equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332376A2 (en) * 1988-03-07 1989-09-13 Sentinel Vision Inc. Apparatus for inspecting can seams and the like
EP0332376A3 (en) * 1988-03-07 1990-10-10 Sentinel Vision Inc. Apparatus for inspecting can seams and the like

Also Published As

Publication number Publication date
GB2215834B (en) 1991-06-12
GB2215834A (en) 1989-09-27
GB8830046D0 (en) 1989-05-04

Similar Documents

Publication Publication Date Title
CN116183637A (en) Important cross-line wire crimping quality evaluation method based on X-ray detection technology
WO1988008970A1 (en) Method of inspecting can seaming
JP3942786B2 (en) Bonding inspection apparatus and method
JP5548137B2 (en) Inspection of can winding part
TWI241404B (en) Copper foil inspection apparatus, copper foil inspection process, defect inspection apparatus, and defect inspection process
JP2861649B2 (en) Steel plate weld inspection method
JPH0721467B2 (en) Inspection method for canned part
JP2956541B2 (en) Inspection method of can-winding part and its inspection device
JP2662979B2 (en) Inspection method and apparatus for double tightening part of metal can
JPH02189880A (en) Crimp contact condition inspecting device for crimped terminal
JPS63274808A (en) Method for inspecting sectional shape of can seaming part
JPS63274853A (en) Inspecting method for can seam part
Bražun et al. Using laser profilometry to monitor electrode wear during resistance spot welding
JPH06294748A (en) Surface flaw inspection method at welded part of uo steel pipe
JPH0627045A (en) Sealed part inspecting method for tube container
JP2023098476A (en) Welding quality determination device of arc-welding, welding quality determination method of arc-welding and welding quality determination program of arc-welding
JPS62235550A (en) Defect inspection
JPH04175649A (en) Method and device for inspecting soldering
JPH0315747A (en) Automatic checking device for metal adhesion part
JPH0483109A (en) Method for inspecting failure of can lid
JP2000055840A (en) Fluorescent x-ray inspection device
JPS61252653A (en) Inspecting method for lead frame
JPH0566120A (en) Measuring method for can seamed part
JPH09105619A (en) Measuring apparatus for wall thickness of pipe with internal groove
JPH0578398B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): GB US