WO1988002482A1 - Determination of particle size and electric charge - Google Patents
Determination of particle size and electric charge Download PDFInfo
- Publication number
- WO1988002482A1 WO1988002482A1 PCT/AU1987/000333 AU8700333W WO8802482A1 WO 1988002482 A1 WO1988002482 A1 WO 1988002482A1 AU 8700333 W AU8700333 W AU 8700333W WO 8802482 A1 WO8802482 A1 WO 8802482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particle
- suspension
- charge
- particle size
- determining
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 144
- 230000005684 electric field Effects 0.000 claims abstract description 42
- 238000005259 measurement Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000012530 fluid Substances 0.000 claims abstract description 12
- 230000003993 interaction Effects 0.000 claims abstract description 11
- 239000000725 suspension Substances 0.000 claims description 63
- 230000033001 locomotion Effects 0.000 claims description 14
- 230000037230 mobility Effects 0.000 description 22
- 239000000084 colloidal system Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000004513 sizing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012898 sample dilution Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000003922 charged colloid Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
Definitions
- the present invention relates to a method of a means for the determination of particle size and electric charge or zeta potential in a colloidal system.
- a colloid is a suspension of small particles in a fluid medium (e.g. aerosols and the dispersions of solids in liquids). Colloids have great scientific and industrial importance. Examples include blood, paints, slurries and milk.
- the particle carries an electric charge. This charge is balanced by an excess of ions of opposite charge in the suspending liquid .
- Known methods for measuring particle size include the use of electron microscopes. Coulter counters, centrifuges and dynamic light-scattering devices. However, all of these known methods require the removal, and subsequent dilution of the sample prior to testing, making such methods unsuited to on-line monitoring of particle size.
- Known methods for measuring particle charge all involve the measurement of the particle velocity in an electric field.
- the velocity is determined by measuring the time required for the particle to pass between two points on a microscopic grid when a steady electric field is applied.
- particle velocity is measured by a light-scattering technique with an alternating electric field of 10 or 20 Hz.
- the "Zeta Sizer” measures the light scattered from a laser beam as it passes through the suspension. In the absence of an applied field, the fluctuations in the scattered light provide information about the particle size, and if a slowly varying electric field is applied the particle charge can be obtained from the fluctuating light signal.
- a means for determining the particle motion in an alternating field from measurements of the interaction of sound waves in the suspension are provided.
- means for measuring and generating the interaction of sound waves and electric fields in a suspension comprising positioned spaced apart electrodes and pressure transducers in contact with the suspension, enabling the simultaneous measurement of electric current, potential, and pressure differences in the suspension.
- Figure 1 illustrates separate graphs of applied electric field versus time and particle velocity versus time
- Figure 2 illustrates graphically the determination of particle size from phase lag measurement
- Figure 3 illustrates graphically the subsequent determination of particle charge from amplitude measurement
- Figure 4 illustrates a parallel plate cell used in obtaining measurements in some embodiments of the present invention.
- phase lag increases with particle radius (since this increases the particle inertia), while the velocity amplitude decreases with radius. In general these two quantities also depend on particle ⁇ potential.
- phase lag is independent of the magnitude of ⁇ .
- amplitude measurement can then be used for charge determination.
- the particle velocity can be obtained indirectly from measurements involving the interaction of electric fields and sound waves in the suspension. It can for example be obtained for the measurememt of sound waves generated by electric fields, or from the measurement of electric fields generated by sound waves in the suspension.
- An advantage of the present invention is that measurement can be performed on-line, as opposed to the sampling methods required of the prior art and it can be applied to opaque suspensions.
- the present invention can also be applied to larger particles than can the prior art light scattering techniques, which are limited to ⁇ 1 ⁇ m range. In the case of highly charged particles, it may be necessary to reduce the charge by the addition of salt or acid/base, since the determination of size and charge is simpler for systems withh low ⁇ -potential. Alternatively, high ⁇ systems can be sized by using a prior calibration procedure.
- this optimum frequency is 16 MHz.
- the phase lag is a sensitive function of frequency, and for this reason it is well-suited for determining particle sizes.
- the particle velocity can be determined by measuring the interaction of sound waves and electric fields in the suspension; it can for example be determined by measuring sound waves generated by an alternating electric field, and by measuring the electric fields generated by sound waves.
- the second has appeared in the scientific literature. Most of the work on this effect is restricted to electrolytes, with the most notable exception being two papers by J.A. Enderby (Proc. Roy. Soc. A 207, 329 (1951)) and J.A. Enderby and F. Booth (Proc. Phys. Soc. 65, 321 (1952)). These authors apparently had no idea that this effect was related to the particle velocity. Furthermore, there appear to be a number of errors in their work R.W. O'Brien, J. Fluid Mech. (to be published). There is no disclosure in these references of the possibility of obtaining particle size from this effect.
- a method for determining particle size and charge from measurements of particle velocity in an alternating electric field (2) A method for obtaining that particle velocity from measurements of the interaction of sound waves and electric fields in the suspension. With the aid of these procedures it is possible to determine particle size and charge from measurements of the interaction of sound waves and electric fields in any suspension.
- Aspect (1) of the invention will be described in the following two sections.
- Aspect (2) will be addressed in section 3.
- this applied field can be rewritten as iwt , with the understanding that the field is actually given by the real part of this complex expression.
- the applied field exerts an alternating force on the particles which causes them to oscillate backwards and forwards at the frequency of the applied field.
- the particle velocity is denoted by The complex quantity requires two real numbers ( and a direction ) for its specification. The two numbers are the amplitude of the particle velocity, and arg the phase lag referred to earlier.
- ⁇ is a complex quantity.
- is equal to for unit applied field, and arg ⁇ is equal to the phase lag. Since ⁇ is independent of , it can only depend (for any given frequency) on the properties of the particle and solvent; ⁇ is the quantity which should be measured in the course of determining particle size and charge.
- this low- ⁇ approximation depends on the ratio of particle radius to double-layer thickness; If that ratio is around one, the approximation should be valid for ⁇ potentials of up to about 50mv. lf particle radius is much greater than double-layer thickness, the ⁇ potential limit will be larger; For example, if the ratio of the radius to thickness is 50, the low- ⁇ approximation will work up to about 100mv. This should cover most commonly occuring colloids. For the highly charged colloids it may be necessary to add salt or acid/base to reduce the ⁇ potential and thereby take advantage of the low- ⁇ results.
- E n is the exponential integral
- ⁇ is the permittivity of the suspending liquid
- ⁇ is the "zeta potential" of the particle, a quantity related to its charge (see, e.g. chapter 2 of "Zeta Potential in Colloid Science” by R.J. Hunter, Academic
- ⁇ -1 is the double-layer thickness (related to the electrolyte concentration; see above reference)
- a is the particle radius
- V'/ F' is the speed at which an uncharged sphere moves when acted on by an alternating force of unit magnitude, given by
- p is the density of the suspending liquid
- v is the kinematic viscosity of the suspending liquid
- p+ ⁇ p is the particle density.
- u( ⁇ ) is a function which is 0 when ⁇ 0, and 1 for ⁇ >0
- this frequency corresponds to a frequency of 16MHz , whi le for a 1 ⁇ m particle, this frequency is 160kHz.
- the formula (1) defining the electrophoretic mobility can also be applied to a much more general class of suspensions, namely "statistically isotropic" suspensions. These are suspensions which appear to be isotropic, from the macroscopic point of view (Batchelor, G.K., J. Fluid Mech., 41, 545, (1970)). Many suspensions fall into this category, particularly if they have not been subjected to a flow and if sedimentation is not too significant. Since these isotropic suspensions may be concentrated, the particle interactions will cause the velocity to vary from one particle to the next.
- the quantity which appears in equation (1) in this case is intended to represent an average of the particle velocities given by
- iwt is the velocity of the centre of mass of the jth particle in the sample
- ⁇ m j is the particle mass minus the mass of solvent displaced by the particle
- the applied field also represents an average, namely an average of the local electric field over a representative volume of the suspension (see the previous reference). For a dilute suspension this is equivalent to the previous definition.
- electrophoretic mobility is considerably more complicated for "non-isotropic" suspensions. In these suspensions the velocity is not usually parallel to the applied field. Thus if the applied field is parallel to the x axis of some cartesian coordinat system, the particle velocity will in general have components along the x,y and z axes. Since the velocity is still proportional to field strength, it is possible to define three electrophoretic mobilities, one for each component of . Three more components are required to characterize the mobility with a field in the y direction, and another three for a field in the z direction, giving nine in all.
- the means by which the electrophoretic mobility can be measured experimentally there is described a general class of devices which can be used for making these measurements, and how the mobility can be determined from the various measured quantities.
- the devices for measuring the mobility consist of a "cell" which contains the suspension, together with various means for measuring voltage differences (or electric currents) and pressure differences across the cell, and means for generating sound waves and/or alternating electric fields in the cell.
- the cell could consist of two parallel metal plates with the suspension filling the gap between them. Later in this section it will be shown how the mobility can be determined for such a cell from the measurement of the pressure difference and open circuit voltage difference generated between the plates by the vibration of one of those plates.
- the electrophoretic mobility is measured when both sound waves and electric fields are present in the suspension.
- the electric field generates electric currents in the suspension.
- the sound waves also generate electric currents, due to the fact that both particles and solvent carry a charge, and the particle motions in the sound wave are different from that of the liquid, owing to the particle inertia.
- the total current density due to the electric field and the sound waves is given by an expression of the form
- i o e iwt is the volume-averaged current density, a quantity which includes both free charge and electric displacement contributions (see O'Brien, R.W., Adv. Coll.
- Vp o e iwt is the macroscopic pressure gradient due to the sound waves, and and are properties of the suspension, being called the "complex conductivity tensor". Equation (6) has not appeared before in the scientific literature.
- the quantity which characterizes the current due to the sound waves is related to the electrophoretic mobility tensor by the formula (7) where ⁇ is the volume fraction of the suspension occupied by particles, and as before ⁇ is the solvent density, and ⁇ + ⁇ is the suspension density: is the "transpose" of the mobility tensor, the quantity whose components are obtained by interchanging the rows and columns of the matrix.
- the separation h between the plates is assumed to be much smaller than the width and height of the plates.
- Sound waves are set up in the device by the forced oscillation of one of the plates.
- the resulting pressure difference across the plates ⁇ Pe iwt is measured by, for example transducers on the plates, and the open circuit voltage difference ⁇ e iwt is also measured.
- ⁇ e iwt is the electrical potential
- a s men t i oned i n ⁇ 2 , i t i s e nv i saged that t he d ev i ces described here would make measurements over a range of f requencies appropriate to the expected particle s ize range.
- the Matec device measures sound waves generated by electric fields, and electric fields generated by sound waves at about 1MHz, in a parallel plate cell.
- the device measures the potential, but not the pressure difference across the cell. It is therefore not suited to the direct determination of
- the Pen-Kem instrument measures the potential difference between two electrodes caused by the generation of sound waves at around 200 kHz.
- the device also measures the pressure at a point some distance away from the electrodes. As it is not possible to directly determine the pressure difference between the electrodes from this single pressure measurement, this device is also unsuited to the direct determination of
- Apparatus measures the interaction of sound waves and electric fields over a range of frequencies, and comprises means to convert the information so obtained to provide a direct measurement of electrophoretic mobility, from which particle size and zeta potential can be inferred.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
A method for the determination of particle size and electric charge or zeta potential of particles dispersed in a fluid medium. The particle size and charge are determined from measurements of (1) the phase lag between an applied alternating electric field and the resulting particle velocity, and (2) the amplitude of the particle velocity. Also disclosed is the measurement of the interaction of sound waves and electric fields in the fluid medium over a range of frequencies to obtain the particle size and zeta potential.
Description
DETERMINATION OF PARTICLE SIZE AND ELECTRIC CHARGE TECHNICAL FIELD
The present invention relates to a method of a means for the determination of particle size and electric charge or zeta potential in a colloidal system.
A colloid is a suspension of small particles in a fluid medium (e.g. aerosols and the dispersions of solids in liquids). Colloids have great scientific and industrial importance. Examples include blood, paints, slurries and milk.
The most significant characteristics of many colloidal systems are the size and charge of the particles, since most other properties of the system are influenced to some extent by these factors. There are many areas of industry in which it is necessary to be able to determine the size of particles suspended in a liquid or the electric charge on the particles. For example, in the mining industry, mineral ores must be ground down until the particles are the right size for floating, and in liquid purification processes it is important to be able to keep particle charge low in order to encourage the coagulation of the particles into clumps large enough to be filtered out.
In nearly every colloidal system the particle carries an electric charge. This charge is balanced by an excess of ions of opposite charge in the suspending liquid .
These ions tend to cluster around the particle, forming a
diffuse cloud which is known as the double-layer. The voltage difference between the particle surface and the liquid beyond the double-layer in equilibrium is referred to as. the "zeta potential" denoted by ζ. The bigger the particle charge, the bigger the ζ potential. BACKGROUND ART
Known methods for measuring particle size include the use of electron microscopes. Coulter counters, centrifuges and dynamic light-scattering devices. However, all of these known methods require the removal, and subsequent dilution of the sample prior to testing, making such methods unsuited to on-line monitoring of particle size.
Known methods for measuring particle charge all involve the measurement of the particle velocity in an electric field. In some methods, the velocity is determined by measuring the time required for the particle to pass between two points on a microscopic grid when a steady electric field is applied. In other methods, particle velocity is measured by a light-scattering technique with an alternating electric field of 10 or 20 Hz.
There is apparatus suitable for determining both particle size and charge. The "Zeta Sizer" (Malvern Instruments) measures the light scattered from a laser beam as it passes through the suspension. In the absence of an applied field, the fluctuations in the scattered light provide information about the particle size, and if a slowly
varying electric field is applied the particle charge can be obtained from the fluctuating light signal.
All of the above methods suffer the disadvantage that they require sample dilutions and most require use of light-scattering instruments. Accordingly, opaque samples cannot be measured. DISCLOSURE OF THE INVENTION
It is an object of the present invention to provide a method of and means for the determination of particle size and electric charge or zeta potential of particles in a colloidal system.
It is another object of the present invention to provide a method of and means for the determination of particle size and electric charge or zeta potential of particles in a colloidal system on-line and without sample dilution, even in opaque solutions.
It is a further object of the present invention to provide a method of and means for determination of the motion of colloidal particles in a high-frequency field, for it is by the use of high frequency measurements of particle motion that the particle size and charge can be determined .
These and other objects of the present invention will be apparent from the following non-limiting disclosure of the invention. According to one aspect of the present invention there is provided means for determining the size and charge of particles dispersed in a fluid medium from the phase lag
and amplitude of particle velocity in an alternating electric field.
According to a further aspect of the present invention there is provided means for determining the particle size in a fluid medium having uniform, low ζ potential from a measurement of the phase of the particle motion in a high frequency alternating electric field, and wherein the zeta-potential can be determined from the amplitude of the motion in the alternating field. According to another aspect of the invention there is provided a means for determining the particle motion in an alternating field from measurements of the interaction of sound waves in the suspension.
According to a further aspect of the invention there is provided means for measuring and generating the interaction of sound waves and electric fields in a suspension, comprising positioned spaced apart electrodes and pressure transducers in contact with the suspension, enabling the simultaneous measurement of electric current, potential, and pressure differences in the suspension.
These and other aspects of the invention will be apparent from the above, and from the following description relating to the invention. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further described with reference to the drawings, in which:-
Figure 1 illustrates separate graphs of applied
electric field versus time and particle velocity versus time;
Figure 2 illustrates graphically the determination of particle size from phase lag measurement; Figure 3 illustrates graphically the subsequent determination of particle charge from amplitude measurement; and
Figure 4 illustrates a parallel plate cell used in obtaining measurements in some embodiments of the present invention.
MODE FOR CARRYING OUT THE INVENTION
When an alternating electric field is applied to a colloidal suspension it causes the particles to oscillate at the frequency of the applied field in a way which depends on particle size and zeta potential. If the frequency of the applied field is much lower than the optimum sizing frequency (to be defined hereinafter), the particle velocity will be in phase with the applied field; i.e., when the field switches direction, so too does the particle motion. At higher frequencies a phase lag develops, i.e., there is a time lag between the change in direction of the applied field and the subsequent change in the direction of the particle motion due to the particle inertia. This is illustrated in Figure 1. For a given particle, the phase lag increases with particle radius (since this increases the particle inertia), while the velocity amplitude decreases with
radius. In general these two quantities also depend on particle ζ potential. Thus by measuring phase lag and amplitude it should be possible to determine size and charge. For suspensions in which the particles have a uniform, low ζ-potential it is shown that the phase lag is independent of the magnitude of ζ. For such suspensions a measurement of phase lag can therefore be used to determine particle size, and the amplitude measurement can then be used for charge determination. Mathematical formulae relating phase lag to particle size, and amplitude to size and charge are presented for a dilute suspension of spheres with low ζ. The particle velocity can be obtained indirectly from measurements involving the interaction of electric fields and sound waves in the suspension. It can for example be obtained for the measurememt of sound waves generated by electric fields, or from the measurement of electric fields generated by sound waves in the suspension. An advantage of the present invention is that measurement can be performed on-line, as opposed to the sampling methods required of the prior art and it can be applied to opaque suspensions. The present invention can also be applied to larger particles than can the prior art light scattering techniques, which are limited to <1μm range. In the case of highly charged particles, it may be necessary to reduce the charge by the addition of salt or acid/base, since the determination of size and charge is simpler for systems withh
low ζ-potential. Alternatively, high ζ systems can be sized by using a prior calibration procedure.
The only theoretical studies of particle velocity that have appeared in the literature have been concerned with either a steady electric field ("Zeta Potential in
Colloid Science" by R.J. Hunter, Academic Press 1981,
Chapter 3) or an alternating field at frequencies which for most suspensions are well below the optimum frequency for size determination (Hinch E.J., et al, J. Chem. Soc. Faraday Trans. 2 80, 535 (1984)). The latter authors made no mention of the possibility of size determination from phase lag and amplitude measurement.
In accordance with the present invention particle velocity has been calculated for a dilute suspension over the frequency range which is best-suited to particle sizing, that is frequencies of the order of v/a 2, where v is the kinematic viscosity of the suspending liquid (=0.01 cm2/se for water), and a is the particle radius. For an 0.1μm radius particle, this optimum frequency is 16 MHz. In this frequency range the phase lag is a sensitive function of frequency, and for this reason it is well-suited for determining particle sizes.
As indicated above, the particle velocity can be determined by measuring the interaction of sound waves and electric fields in the suspension; it can for example be determined by measuring sound waves generated by an alternating electric field, and by measuring the electric
fields generated by sound waves. Of these two effects, only the second has appeared in the scientific literature. Most of the work on this effect is restricted to electrolytes, with the most notable exception being two papers by J.A. Enderby (Proc. Roy. Soc. A 207, 329 (1951)) and J.A. Enderby and F. Booth (Proc. Phys. Soc. 65, 321 (1952)). These authors apparently had no idea that this effect was related to the particle velocity. Furthermore, there appear to be a number of errors in their work R.W. O'Brien, J. Fluid Mech. (to be published). There is no disclosure in these references of the possibility of obtaining particle size from this effect.
The phenomenon of sound wave generation by an electric field is described in U.S. Patent 4,497,208. However, there is no disclosure in the above referenced patent of the link between the effect and particle velocity, or of the possibility of determining particle size from the effect. Formulae associated with particle size and charge determination
There are two main aspects to this invention: (1) A method for determining particle size and charge from measurements of particle velocity in an alternating electric field (2) A method for obtaining that particle velocity from measurements of the interaction of sound waves and electric fields in the suspension.
With the aid of these procedures it is possible to determine particle size and charge from measurements of the interaction of sound waves and electric fields in any suspension. Aspect (1) of the invention will be described in the following two sections. Aspect (2) will be addressed in section 3.
1. The velocity of an isolated sphere in an alternating electric field. In a dilute suspension, each particle can be treated as being alone in an infinite liquid. In this section a dilute suspension of uniform spheres will be studied. We let cos wt denotes the ambient electric field
in the suspension; this is the electric field which would apply in the absence of any particles. | | is the amplitude
of this applied field, and w/2π is the frequency.
Following the standard procedure for problems involving sinusoidally varying quantities, this applied field can be rewritten as iwt, with the understanding
that the field is actually given by the real part of this complex expression.
Since colloidal particles are electrically charged, the applied field exerts an alternating force on the particles which causes them to oscillate backwards and forwards at the frequency of the applied field. The particle velocity is denoted by The complex
quantity requires two real numbers ( and a direction ) for
its specification. The two numbers are the amplitude
of the particle velocity, and arg the phase lag referred
to earlier.
The quantity is proportional to the
strength of the applied field. For spherical particles, which on account of their symmetry move in the direction of the applied field, this proportionality relation takes the simple form
The phenomenon of particle motion in an electric field is called "electrophoresis", and u is termed the
"electrophoretic mobility" of the particle. Like μ is a
complex quantity. |μ| is equal to for unit applied
field, and arg μ is equal to the phase lag. Since μ is independent of , it can only depend (for any given
frequency) on the properties of the particle and solvent; μ is the quantity which should be measured in the course of determining particle size and charge.
The calculation of v is greatly complicated by the fact that the applied field distorts the double layer. As a result the double layer ions impose an electric force which retards the particle, thereby affecting both the phase lag and the amplitude of the motion. Fortunately, at the optimum sizing frequency, this double-layer distortion can be neglected in the important case of particles with low ζ
potential .
The range of validity of this low-ζ approximation depends on the ratio of particle radius to double-layer thickness; If that ratio is around one, the approximation should be valid for ς potentials of up to about 50mv. lf particle radius is much greater than double-layer thickness, the ζ potential limit will be larger; For example, if the ratio of the radius to thickness is 50, the low-ζ approximation will work up to about 100mv. This should cover most commonly occuring colloids. For the highly charged colloids it may be necessary to add salt or acid/base to reduce the ζ potential and thereby take advantage of the low-ζ results.
For a sphere with low ζ, we have shown that the
Here En is the exponential integral ε is the permittivity of the suspending liquid, ζ is the "zeta potential" of the particle, a quantity related to its charge (see, e.g. chapter 2 of "Zeta Potential in Colloid Science" by R.J. Hunter, Academic
Press, 1981), κ-1 is the double-layer thickness (related to the electrolyte concentration; see above reference), a is the particle radius, V'/F' is the speed at which an uncharged sphere moves when acted on by an alternating force of unit magnitude, given by
p is the density of the suspending liquid, v is the kinematic viscosity of the suspending liquid, and p+Δp is the particle density. Finally, the quantities k,
, b and c are defined by
εP being the particle permittivity, and w' = wε/K∞, where K∞ is electrolyte conductivity.
Finally, u(ζ) is a function which is 0 when ζ<0, and 1 for ζ >0
In the case when ka>>1 (thin double layer), equation (4) reduces to
Since (u(ζ)-1) depends on the sign, but not on the magnitude of ζ, and G is independent of ζ, it follows from equation (3) that the phase lag arg μ is also independent of the magnitude of ζ. This property of the phase lag makes it ideal for the determination of particle size. To illustrate this point reference is made to Figure 2 wherein arg μ for the κa>>1 case has been plotted as a function of the non-dimensional variable wa2/v.
Figure 2 was constructed using equation (6) with parameters Δρ/ρ =1, ε /ε = 0, and ζ>0.
From this figure it can be seen that for fixed values of w and v, arg y increases monotonically with increasing particle radius, tending to a limiting value of
45° as wa2/v →∞ .
With the aid of this curve it is possible to obtain a unique particle size from any measurement of arg μ For example a phase lag of 14º implies that wa2/v=1. If the suspending liquid is water, which has a v value of .01cm2/sec, and if the frequency of the applied Ifield is
1MHz, the particle radius corresponding to wa2/v = 1 is
0.4μm..
For a given solvent, the range of particle sizes which can be accurately measured in this way depends on the frequency of the applied field. From Figure 2 it can be shown that a one degree error in the measurement of arg μ leads to a relative error of less than 6% in the assessed particle size provided 1<wa2/v<4.
Thus for any particle size , there is an optimum frequency range for size determination , given by
v/a2<w<4v/a2.
Although the curve in Figure 2 is only valid for a very limited class of suspension , the notion of an optimum frequency range is likely to have universal application . The prec ise end po ints of the range may vary from one suspension to the next , but the optimum wi ll always be around v/a2. For an 0.1 μm particle in water v/a2
corresponds to a frequency of 16MHz , whi le for a 1μ m
particle, this frequency is 160kHz.
From equation (3) it can be seen that arg μ changes by ιr radians (corresponding to 180° in phase lag) , as the ζ potential changes sign. Thus the curve of arg μ for ζ<0 would have the same form as Figure 2, but with arg μ reduced by 180°C. Since the total variation in arg μ with particle radius is only 45°, there is no possibility of a positive and a negative particle yielding the same phase angle. In fact the sign of ζ can be immediately ascertained from the quadrant in which the phase angle lies: the first quadrant indicates ζ>0, while the third quadrant implies ζ<0.
Once the radius a and the sign of ζ have been ascertained from the phase lag, |ζ| can be determined from the measured value of Iμ|· Figure 3 shows the variation of the non-dimensional quantity pv|μ|/ε|ζ| with wa2 /v .
Once again the curve comes from equation (6), with the same parameters as in Figure 2. From the curve it can be seen that |μ| decreases monotonically with increasing frequency or particle radius. This curve can be used for determining |ζ|. For example, if the particle radius has been found to be 0.4 μm then from the figure pv|μ|/ε|ζ| = 0.87. If the measured |μ| is 3.5x10-4cm2V-1s-1, it follows that |ζ| = 50mv (assuming ρ, v and ε values for water). Since the phase lag measurement indicated a positive ζ , it is found that ζ =50 mv
Although Figures 2 and 3 were obtained with the formula (6) for the thin double layer case, the procedure herein described is valid for arbitrary double layer thickness. To summarize the main points: (1) The particle size and the sign of ζ can be obtained from phase lag measurement.
(2) |ζ| can then be obtained from the measured |μ| value.
(3) The optimum sizing frequencies are around w=v/a2.
2. Results valid for more general suspensions.
The formula (1) defining the electrophoretic mobility can also be applied to a much more general class of suspensions, namely "statistically isotropic" suspensions. These are suspensions which appear to be isotropic, from the macroscopic point of view (Batchelor, G.K., J. Fluid Mech., 41, 545, (1970)). Many suspensions fall into this category, particularly if they have not been subjected to a flow and if sedimentation is not too significant. Since these isotropic suspensions may be concentrated, the particle interactions will cause the velocity to vary from one particle to the next. The quantity
which appears in equation (1) in this case is intended to represent an average of the particle velocities given by
where iwt is the velocity of the centre of mass of the
jth particle in the sample, and Δmj is the particle mass minus the mass of solvent displaced by the particle.
The applied field also represents an average,
namely an average of the local electric field over a representative volume of the suspension (see the previous reference). For a dilute suspension this is equivalent to the previous definition.
The notion of electrophoretic mobility is considerably more complicated for "non-isotropic" suspensions. In these suspensions the velocity is not
usually parallel to the applied field. Thus if the applied field is parallel to the x axis of some cartesian coordinat system, the particle velocity will in general have components along the x,y and z axes. Since the velocity is still proportional to field strength, it is possible to define three electrophoretic mobilities, one for each component of . Three more components are required to
characterize the mobility with a field in the y direction, and another three for a field in the z direction, giving nine in all.
It is convenient to regard these nine mobilities as the components of a single entity known as the "electrophoretic mobility sensor", denoted by The nine
components of
are usually set out in the 3 x 3 matrix
where (μ11,μ21,μ31)E are the x, y and z components of
caused by a field along the x-axis. The other two columns of the matrix give the velocity due to fields in the y and z directions respectively.
In this notation, the relationship between
and for a non-isotropic suspension takes the compact form
In the case of an isotropic suspension, the off-diagonal entries in the μ matrix are zero, and the diagonal entries take the common value denoted earlier by μ The above result reduces to (1) in this case.
The components of will depend on the particle
size and charge distribution. Unfortunately the exact calculation of this relationship is only feasible at present for dilute suspensions of particles of simple geometry. For the more complicated types of suspensions which are likely to be encountered in practice, there appear to be two options for obtaining approximate relations between size, charge and mobility, (a) Cell Models If the particles are not elongated or flat it should be possible to approximate them by spheres. In a cell model the effect of neigbouring particles on any given
sphere is assumed to be the same as an outer spherical surface centred on that particle. The "cell" then consists of a single particle surrounded by a concentric spherical surface, with the annular region between occupied by electrolyte. Such models have been successfully used in the calculation of average sedimentation velocities (see "Low Reynolds Number Hydrodynamics" by Happel and H. Brenner, Prentice-Hall, (1965)) and in the calculation of electrophoretic mobilities (Levine S. and Neale G., J . Colloid. Interface Sci. 47, 520 (1974)) in steady electric fields, for concentrated suspensions. The boundary conditions to be applied at the outer surface of the cell depend on the problem at hand. The boundary conditions suggested here are: zero total force, zero pressure, zero perturbation in ion densities, and an electric potentional equal to where is the position vector measured from
the particle centre. These boundary conditions may require some modification in the light of future experimental studies. (k) An empirical approach
If the cell model is not appropriate for the suspension of interest, an empirical approach can be adopted. In this approach, samples of the suspension are removed and analysed after each set of mobility measurements is made. These mobility measurements should be carried out over a range of frequencies spanning the optimum range corresponding to the expected particle size range. Changes
in the particle size or ζ potential distribution can then be correlated with the form of the curves of |μij| and arg |μij| as a function of frequency, where the symbol μij denotes any measured component of the mobility tensor. For suspensions in which the ζ-potential is both uniform and small, μ will be proportional to ζ. As a consequence the quantities arg u will be independent of the magnitude of ζ, as we saw in the dilute suspension of spheres in § 1. Although arg μ may depend on |ζ| for more general suspensions, it is still likely that of the two quantities | μ | and arg | μ |, the latter will be the more sensitive function of particle size. Thus in attempting to correlate mobility with particle size distribution, attention should be focussed on arg μ rather than | μ I· 3. The experimental determination of the electrophoretic mobility
Turning now to the second major aspect of the invention: the means by which the electrophoretic mobility can be measured experimentally. In this section there is described a general class of devices which can be used for making these measurements, and how the mobility can be determined from the various measured quantities.
The results given in this section apply to any colloid, except in those instances where statistically isotropic colloids are specifically referred to.
The devices for measuring the mobility consist of
a "cell" which contains the suspension, together with various means for measuring voltage differences (or electric currents) and pressure differences across the cell, and means for generating sound waves and/or alternating electric fields in the cell.
To take a simple example, the cell could consist of two parallel metal plates with the suspension filling the gap between them. Later in this section it will be shown how the mobility can be determined for such a cell from the measurement of the pressure difference and open circuit voltage difference generated between the plates by the vibration of one of those plates.
As may be gathered from the above description, the electrophoretic mobility is measured when both sound waves and electric fields are present in the suspension. In addition to its effect on particle motion, the electric field generates electric currents in the suspension. The sound waves also generate electric currents, due to the fact that both particles and solvent carry a charge, and the particle motions in the sound wave are different from that of the liquid, owing to the particle inertia. The total current density due to the electric field and the sound waves is given by an expression of the form
Here ioe iwt is the volume-averaged current density, a quantity which includes both free charge and electric
displacement contributions (see O'Brien, R.W., Adv. Coll.
Interface Sci. , 16, 281, (1982) ) . Vpoeiwt is the macroscopic pressure gradient due to the sound waves, and
and are properties of the suspension, being called the
"complex conductivity tensor". Equation (6) has not appeared before in the scientific literature.
The quantity which characterizes the current
due to the sound waves, is related to the electrophoretic mobility tensor by the formula
(7) where Φ is the volume fraction of the suspension occupied by particles, and as before ρ is the solvent density, and ρ +ΦΔρ is the suspension density: is the "transpose" of
the mobility tensor, the quantity whose components are obtained by interchanging the rows and columns of the
matrix.
With the aid of (7) it is possible to determine
once
is known. The devices described here determine by
measuring
·
In order to provide examples of ways is which
can be measured using this class of device, reference is made to the parallel plate cell, illustrated in Figure 4.
The separation h between the plates is assumed to be much smaller than the width and height of the plates.
Sound waves are set up in the device by the forced oscillation of one of the plates. The resulting pressure
difference across the plates ΔPeiwt is measured by, for example transducers on the plates, and the open circuit voltage difference Δψe iwt is also measured.
In such a device the current in the suspension
is uniform. In order for such a current to flow, the plates must be linked by a wire to complete the circuit. Under open-circuit conditions the current is therefore zero
everywhere in the suspension. Thus equations (6) gives
where, for simplicity the suspension is taken to be isotropic. Integrating this result across the plates, it is found that
αΔP = K*Δψ
Thus if K * has been determined from a conductivity measurement, α can be obtained from the measurement of ΔP
and Δψ .
Alternatively, if the two plates are short circuited the electric field in the suspension will be zero, and (6) reduces to
for an isotropic suspension. Integrating across the plates
and using the fact that is uniform it is found that
where A is the plate area, and Ioeiwt is the current passing between the plates. Thus by measuring the pressure difference and short-circuit current it is possible to determine without the need for a conductivity measurement.
The mathematical formula for obtaining
for a general device is derived with the aid of the result
which holds everywhere in the suspension. Integrating equation (6) over the volume v of the suspension within the cell, and using the above identity, it is found that
(8) where Z denotes the surface of v and
is the unit normal directed outwards from v. is the position vector to the
surface from an arbitrary point in the suspension, and
Ψeiwt is the electrical potential.
From equation (8) it can be seen that components of can be determined if p
o and ψ are known over the surface of v. ln the parallel plate device referred to above, either
(open-circuit) or Ψ (short-circuit) were
set to zero , and the other two quant it ies measured .
A s men t i oned i n § 2 , i t i s e nv i saged that t he d ev i ces described here would make measurements over a range of f requencies appropriate to the expected particle s ize range.
Previous known devices are manufactured by Matec
Instruments, Warwick, R.I., U.S.A. and Pen Kem, Inc.,
Bedford Hills, N.Y., U.S.A. The Matec device measures sound waves generated by electric fields, and electric fields generated by sound waves at about 1MHz, in a parallel plate cell. The device measures the potential, but not the pressure difference across the cell. It is therefore not suited to the direct determination of
The Pen-Kem instrument measures the potential difference between two electrodes caused by the generation of sound waves at around 200 kHz. The device also measures the pressure at a point some distance away from the electrodes. As it is not possible to directly determine the pressure difference between the electrodes from this single pressure measurement, this device is also unsuited to the direct determination of
Apparatus according to the present invention measures the interaction of sound waves and electric fields over a range of frequencies, and comprises means to convert the information so obtained to provide a direct measurement of electrophoretic mobility, from which particle size and zeta potential can be inferred.
Although the invention has been described above with reference to examples and to preferred embodiments, it will be appreciated that the invention may be embodied in other forms or carried out in other ways without departing from the spirit or essential characteristics thereof. The above description is therefore to be considered in all respects, illustrative and not restrictive, and all changes which come within the meaning and range of equivalency are intended to be embraced therein.
Claims
1. A method for determining the size and charge of particles dispersed in a fluid medium from the phase lag and amplitude of particle velocity in an alternating electric field.
2. A method for determining the particle size in a fluid medium having uniform, low ζ potential from a measurement of the phase of the particle motion in a high frequency alternating electric field, and wherein the zeta-potential can be determined from the amplitude of the motion in the alternating field.
3. A method for determining the average size and charge of particles in a fluid medium by combining measurments of the phase and amplitude of the particle motion in an electric field with an appropriate cell model.
4. A method for determining size and charge for polydisperse suspensions by a correlation technique, involving measurements of the average particle velocity over a range of frequencies, and determining the appropriate frequency range from the expected particle size range.
5. A method for obtaining the particle velocity in an alternating electric field from measurements of the interaction of sound waves and electric fields in the suspension.
6. A method for generating and measuring the interaction of sound waves and electric fields in fluid suspension comprising positioned spaced apart electrodes and pressure tranducers in contact with the suspension, enabling the simultaneous measurement of electrical potentials, currents and pressure differences in the suspension.
7. Apparatus for determining the particle size and charge of particles dispersed in a fluid medium when using a method as claimed in any one of the previous claims.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3751968T DE3751968T2 (en) | 1986-09-30 | 1987-09-30 | DETERMINATION OF PARTICLE SIZE AND ELECTRIC CHARGE |
EP87906644A EP0327545B1 (en) | 1986-09-30 | 1987-09-30 | Determination of particle size and electric charge |
KR1019880700613A KR970000633B1 (en) | 1986-09-30 | 1987-09-30 | Determination of particle size and electric charge |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPH824186 | 1986-09-30 | ||
AUPH8241 | 1986-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1988002482A1 true WO1988002482A1 (en) | 1988-04-07 |
Family
ID=3771835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1987/000333 WO1988002482A1 (en) | 1986-09-30 | 1987-09-30 | Determination of particle size and electric charge |
Country Status (8)
Country | Link |
---|---|
US (1) | US5059909A (en) |
EP (1) | EP0327545B1 (en) |
JP (1) | JP2668372B2 (en) |
KR (1) | KR970000633B1 (en) |
AT (1) | ATE145986T1 (en) |
AU (1) | AU597442B2 (en) |
DE (1) | DE3751968T2 (en) |
WO (1) | WO1988002482A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0391674A2 (en) * | 1989-04-05 | 1990-10-10 | New York University | A method for characterising particles |
WO1993004363A2 (en) * | 1991-08-23 | 1993-03-04 | Matec Applied Sciences, Inc. | A device for determining the size and charge of colloidal particles |
WO1994029694A1 (en) * | 1993-06-07 | 1994-12-22 | Colloidal Dynamics Pty. Ltd. | Particle size and charge measurement in multi-component colloids |
GB2368904A (en) * | 2000-11-10 | 2002-05-15 | Zetatronics Ltd | Obtaining informatiion about zeta potential, electrophoretic mobility and numbers of suspended particles |
EP1154266A3 (en) * | 2000-04-29 | 2002-12-11 | Malvern Instruments Limited | Mobility and effects arising from surface charge |
WO2010041082A3 (en) * | 2008-10-09 | 2010-08-19 | Malvern Instruments Limited | Apparatus for high-throughput suspension measurements |
RU2763129C1 (en) * | 2021-06-02 | 2021-12-27 | Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации | Device for measuring the specific charge of aerosol particles |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5280250A (en) * | 1991-09-30 | 1994-01-18 | Electric Power Research Institute, Inc. | Method and apparatus for measuring ζ potential of a substance at high temperature |
US6109098A (en) * | 1998-06-30 | 2000-08-29 | Doukhin Dispersion Technology, Inc. | Particle size distribution and zeta potential using acoustic and electroacoustic spectroscopy |
US8115729B2 (en) * | 1999-05-03 | 2012-02-14 | E Ink Corporation | Electrophoretic display element with filler particles |
US6449563B1 (en) * | 1999-10-12 | 2002-09-10 | Dispersion Technology, Inc | Method and device for determining particle size distribution and zeta potential in concentrated dispersions |
AUPQ529000A0 (en) * | 2000-01-28 | 2000-02-17 | Research Laboratories Of Australia Pty Ltd | Toner characterization cell |
FI20001685A0 (en) * | 2000-07-19 | 2000-07-19 | Tr Tech Int Oy | Measurement system and method for measuring particle velocity and / or particle velocity distribution and / or particle velocity distribution and / or particle size and / or particle size distribution |
US6678536B2 (en) * | 2000-12-07 | 2004-01-13 | Mark Wendell Fletcher | Wireless microphone |
AUPR338101A0 (en) * | 2001-02-26 | 2001-03-22 | Colloidal Dynamics Pty. Ltd. | Improved geometry for pulsed acoustic measurements |
US20030124712A1 (en) * | 2002-01-02 | 2003-07-03 | Bauman Mark A. | Method and apparatus for differentiating articles in a product stream |
US7063777B2 (en) * | 2002-12-12 | 2006-06-20 | Aura Biosystems Inc. | Dielectrophoretic particle profiling system and method |
US7785601B2 (en) | 2002-12-31 | 2010-08-31 | Sygnis Bioscience Gmbh & Co. Kg | Methods of treating neurological conditions with hematopoietic growth factors |
US7695723B2 (en) | 2002-12-31 | 2010-04-13 | Sygnis Bioscience Gmbh & Co. Kg | Methods of treating neurological conditions with hematopoietic growth factors |
US7140239B2 (en) * | 2003-03-18 | 2006-11-28 | Battelle Memorial Institute | System and technique for ultrasonic characterization of settling suspensions |
US6915214B2 (en) * | 2003-05-19 | 2005-07-05 | Dispersion Technology, Inc. | Method for determining electric properties of particles in liquids by means of combined electroacoustic and complex conductivity measurement |
US20080218738A1 (en) * | 2004-04-10 | 2008-09-11 | Michael Trainer | Methods and apparatus for determining particle characteristics by measuring scattered light |
KR100778762B1 (en) * | 2006-07-18 | 2007-11-27 | 한국과학기술원 | Automatic particle motion detector in fluidic channel and detecting method thereof |
US7705825B2 (en) * | 2006-07-31 | 2010-04-27 | Xerox Corporation | Method for measuring effective operation of gyricon display device |
DE102011050957A1 (en) * | 2011-06-09 | 2012-12-13 | OCé PRINTING SYSTEMS GMBH | Method for determining the mass concentration of particles in a particle and liquid dispersion |
WO2014097402A1 (en) * | 2012-12-18 | 2014-06-26 | 日立化成株式会社 | Zeta potential measurement method and zeta potential measurement system |
RU2626214C2 (en) * | 2015-12-22 | 2017-07-24 | федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" | Acoustic analyzer for determining size and electrokinetic potential of non-spherical nano-sized particles in liquid media |
KR102464440B1 (en) * | 2020-10-08 | 2022-11-10 | 경북대학교 산학협력단 | Apparatus and method for detecting physical properties of individual nanoparticle |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1185898A (en) * | 1966-05-23 | 1970-03-25 | Coulter Electronics | Apparatus for Particle Classification and Analysis |
US3633415A (en) * | 1969-03-28 | 1972-01-11 | Westinghouse Electric Corp | Flowmeter |
US4375673A (en) * | 1980-09-15 | 1983-03-01 | Xerox Corporation | Charge spectrograph |
US4497208A (en) * | 1983-06-23 | 1985-02-05 | Matec, Inc. | Measurement of electro-kinetic properties of a solution |
WO1986000707A1 (en) * | 1984-07-09 | 1986-01-30 | Forschungsanwendungsgesellschaft M.B.H. | Method for determining the zeta-potential of solid materials |
WO1986002727A1 (en) * | 1984-10-23 | 1986-05-09 | LÖFFLER, Friedrich | Method and device for measuring the solid material concentration and the grain size distribution in a suspension by using ultrasounds |
US4633714A (en) * | 1985-08-13 | 1987-01-06 | University Of Arkansas | Aerosol particle charge and size analyzer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59122930A (en) * | 1982-12-28 | 1984-07-16 | Mitsubishi Heavy Ind Ltd | Fine particle detecting method |
US4679439A (en) * | 1985-09-17 | 1987-07-14 | Dorr-Oliver Incorporated | Method and apparatus for measuring the unsteady sedimentation potential of colloidal particles |
-
1987
- 1987-09-30 US US07/328,254 patent/US5059909A/en not_active Expired - Lifetime
- 1987-09-30 AT AT87906644T patent/ATE145986T1/en active
- 1987-09-30 AU AU80722/87A patent/AU597442B2/en not_active Expired
- 1987-09-30 KR KR1019880700613A patent/KR970000633B1/en not_active IP Right Cessation
- 1987-09-30 JP JP62506037A patent/JP2668372B2/en not_active Expired - Fee Related
- 1987-09-30 DE DE3751968T patent/DE3751968T2/en not_active Expired - Lifetime
- 1987-09-30 WO PCT/AU1987/000333 patent/WO1988002482A1/en active IP Right Grant
- 1987-09-30 EP EP87906644A patent/EP0327545B1/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1185898A (en) * | 1966-05-23 | 1970-03-25 | Coulter Electronics | Apparatus for Particle Classification and Analysis |
US3633415A (en) * | 1969-03-28 | 1972-01-11 | Westinghouse Electric Corp | Flowmeter |
US4375673A (en) * | 1980-09-15 | 1983-03-01 | Xerox Corporation | Charge spectrograph |
US4497208A (en) * | 1983-06-23 | 1985-02-05 | Matec, Inc. | Measurement of electro-kinetic properties of a solution |
WO1986000707A1 (en) * | 1984-07-09 | 1986-01-30 | Forschungsanwendungsgesellschaft M.B.H. | Method for determining the zeta-potential of solid materials |
WO1986002727A1 (en) * | 1984-10-23 | 1986-05-09 | LÖFFLER, Friedrich | Method and device for measuring the solid material concentration and the grain size distribution in a suspension by using ultrasounds |
US4633714A (en) * | 1985-08-13 | 1987-01-06 | University Of Arkansas | Aerosol particle charge and size analyzer |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0391674A2 (en) * | 1989-04-05 | 1990-10-10 | New York University | A method for characterising particles |
EP0391674A3 (en) * | 1989-04-05 | 1992-06-10 | New York University | A method for characterising particles |
AU684706B2 (en) * | 1991-08-23 | 1998-01-08 | Agilent Technologies Inc. | A device for determining the size and charge of colloidal particles |
WO1993004363A3 (en) * | 1991-08-23 | 1993-04-15 | Matec Applied Sciences Inc | A device for determining the size and charge of colloidal particles |
WO1993004363A2 (en) * | 1991-08-23 | 1993-03-04 | Matec Applied Sciences, Inc. | A device for determining the size and charge of colloidal particles |
WO1994029694A1 (en) * | 1993-06-07 | 1994-12-22 | Colloidal Dynamics Pty. Ltd. | Particle size and charge measurement in multi-component colloids |
US5616872A (en) * | 1993-06-07 | 1997-04-01 | Colloidal Dynamics Pty Ltd | Particle size and charge measurement in multi-component colloids |
EP1154266A3 (en) * | 2000-04-29 | 2002-12-11 | Malvern Instruments Limited | Mobility and effects arising from surface charge |
US7217350B2 (en) | 2000-04-29 | 2007-05-15 | Malvern Instruments Limited | Mobility and effects arising from surface charge |
GB2368904A (en) * | 2000-11-10 | 2002-05-15 | Zetatronics Ltd | Obtaining informatiion about zeta potential, electrophoretic mobility and numbers of suspended particles |
WO2010041082A3 (en) * | 2008-10-09 | 2010-08-19 | Malvern Instruments Limited | Apparatus for high-throughput suspension measurements |
US9341564B2 (en) | 2008-10-09 | 2016-05-17 | Malvern Instruments, Ltd. | Apparatus for high-throughput suspension measurements |
RU2763129C1 (en) * | 2021-06-02 | 2021-12-27 | Федеральное государственное бюджетное учреждение "33 Центральный научно-исследовательский испытательный институт" Министерства обороны Российской Федерации | Device for measuring the specific charge of aerosol particles |
Also Published As
Publication number | Publication date |
---|---|
KR970000633B1 (en) | 1997-01-16 |
DE3751968T2 (en) | 1997-06-19 |
EP0327545B1 (en) | 1996-12-04 |
AU597442B2 (en) | 1990-05-31 |
JPH02501087A (en) | 1990-04-12 |
AU8072287A (en) | 1988-04-21 |
JP2668372B2 (en) | 1997-10-27 |
US5059909A (en) | 1991-10-22 |
KR890700225A (en) | 1989-03-10 |
ATE145986T1 (en) | 1996-12-15 |
DE3751968D1 (en) | 1997-01-16 |
EP0327545A4 (en) | 1990-06-27 |
EP0327545A1 (en) | 1989-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5059909A (en) | Determination of particle size and electrical charge | |
O'brien et al. | Electroacoustic determination of particle size and zeta potential | |
Delgado et al. | Measurement and interpretation of electrokinetic phenomena (IUPAC technical report) | |
EP0528078B1 (en) | Aspect ratio measurement | |
Delgado et al. | Measurement and interpretation of electrokinetic phenomena | |
Kozak et al. | Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection | |
Adamczyk | Particle adsorption and deposition: role of electrostatic interactions | |
US4602989A (en) | Method and apparatus for determining the zeta potential of colloidal particles | |
EP0702786B1 (en) | Particle size and charge measurement in multi-component colloids | |
US4679439A (en) | Method and apparatus for measuring the unsteady sedimentation potential of colloidal particles | |
Fuller et al. | Microfabricated multi-frequency particle impedance characterization system | |
Delgado et al. | Electrokinetic phenomena and their experimental determination: an overview | |
Fichtner et al. | Determination of the exact particle radius distribution for silica nanoparticles via capillary electrophoresis and modeling the electrophoretic mobility with a modified analytic approximation | |
Wen et al. | On current blockade upon analyte translocation in nanopores | |
Palberg et al. | Electrophoretic-electroosmotic light scattering | |
O'Brien et al. | Determining charge and size with the acoustosizer | |
Takeda et al. | Dynamic electrophoresis | |
Cardwell | Adsorption studies using a streaming current detector | |
Knösche et al. | Determination of particle size distribution and electrokinetic properties with the AcoustoSizer in comparison with other methods | |
Cannon et al. | New developments in electroacoustic methods and instrumentation | |
Hunter | Electrokinetics of particles | |
James et al. | Surface conductance studies of model particles: I. Determination of the formation factor | |
Shilov | Electrokinetics of Suspended Solid Colloid Particles | |
JAIN et al. | Measurement of zeta potential. | |
Jiang et al. | Manipulation of gold coated microspheres using electrorotation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1987906644 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1987906644 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1987906644 Country of ref document: EP |