WO1987000119A1 - Procede et appareils d'extrusion de structures alveolaires en matiere thermoplastique et structures ainsi obtenues - Google Patents

Procede et appareils d'extrusion de structures alveolaires en matiere thermoplastique et structures ainsi obtenues Download PDF

Info

Publication number
WO1987000119A1
WO1987000119A1 PCT/FR1986/000219 FR8600219W WO8700119A1 WO 1987000119 A1 WO1987000119 A1 WO 1987000119A1 FR 8600219 W FR8600219 W FR 8600219W WO 8700119 A1 WO8700119 A1 WO 8700119A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
extrusion
thermoplastic material
extruded
coolant
Prior art date
Application number
PCT/FR1986/000219
Other languages
English (en)
Inventor
Jacques Bournazel
Guy Ducruy
Original Assignee
Induplast (S.A.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Induplast (S.A.) filed Critical Induplast (S.A.)
Publication of WO1987000119A1 publication Critical patent/WO1987000119A1/fr
Priority to NO870718A priority Critical patent/NO870718D0/no
Priority to DK091287A priority patent/DK91287D0/da

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/355Conveyors for extruded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb
    • B29L2031/608Honeycomb structures

Definitions

  • the present invention relates to a process for producing cellular structures in thermoplastic material, by extrusion, as well as the apparatus implementing this process and the structures thus obtained.
  • thermoplastic material for example thermoforming from a sheet or molding in a closed mold.
  • the extrusion is done vertically and the means used to avoid this deformation are twofold.
  • traction is exerted on the extruded structure with traction members moving substantially at the extrusion speed.
  • each cell undergoes on each side, as soon as it leaves the die, a constant pressure depending on the column of coolant which is the same in all the cells.
  • the vertical arrangement of the extruder has the drawback of requiring a very complex installation in the case where elements of very long cellular structures are desired.
  • each internal wall of the structure is maintained by the pressure of the liquid contained in the neighboring cells, and each external wall is maintained by the pressure of the coolant at the outside of the structure and by the pressure of the coolant inside the neighboring cell.
  • the height of the cooling tank and if one limited this height compared to the length of the desired structure, the weight of the cooling liquid contained in the alveoli would deform the exterior walls of the structure.
  • the present invention retains the advantages of this method, in particular with regard to the uselessness of a calibration subsequent to the output of the die, and makes it possible to avoid the disadvantages thereof.
  • It relates to a method of extruding a cellular structure in thermoplastic material, through a die corresponding to the profile of the desired cellular structure, characterized in that said structure is subjected to a quenching operation on most of its different sides, as soon as it leaves the industry.
  • the extruded structure is, as soon as it leaves the die, sufficiently rigid to stand by itself immediately, which not only makes posterior calibration unnecessary, it allows it to be handled without the need for special precautions.
  • the structure being extruded is subjected, immediately before the quenching operation which it undergoes at the outlet of the die, to a traction which ensures its drawing, this drawing having the result is a molecular orientation which, fixed immediately by the quenching operation, will increase the mechanical properties of the extruded structure.
  • the drawing of the structure in extrusion is preceded by a rolling, so as to cause the beginning of molecular orientation which will then be accentuated by the drawing.
  • the die receives the thermoplastic material to be formed, from a supply chamber with at least two successive compartments, separated by a perforated plate intended to aid in homogenization and in a regular distribution of the thermoplastic material over the entire section of the die.
  • each perforated plate is provided with heating means so as to participate in maintaining the temperature of the thermoplastic material.
  • each perforated plate can advantageously constitute a spacer said bodies and thus allow the realization of a one-piece feed chamber.
  • the coolant circuit is connected to a compressed air circuit intended to replace this liquid under certain conditions, so as to more economically ensure the seal between the extrusion circuit and the cooling system.
  • FIG. 1 schematically shows an installation for implementing the invention.
  • FIG. 2 shows a detail of the supply chamber of the die of the installation of FIG. 1.
  • FIG. 3 is a view, partially in section, along the line III-III, of FIG. 2.
  • FIG. 1 there is an extruder 1 with a feed hopper 2 and a thermally insulated outlet pipe 3, which feeds a die 4 via a feed chamber 6.
  • This die 4 comprises (see FIGS. 2 and 3) a certain number of hexagonal elements 36, the mounting of which will be explained below.
  • the supply chamber 6 is separated by a bottom 13 and a partition 15 of a compartment 7 which is adjacent to it and on which is fixed a pipe 8, connected to a water pipe 9 carrying a temperature regulating device 5 and a stop valve 11 and to a compressed air pipe 10 carrying a stop valve 12.
  • Tubes 14 are poked on the bottom 15 and pass through the internal partition 13 on which cylinders 16 are welded.
  • Each cylinder 16 is concentric with one of the pipes 14 and carries at its free end a part 17 whose function is twofold: serve as a spacer between the cylinder 16 which carries it and the pipe 14 concentric with said cylinder, and constitute a seat for elements 36.
  • These elements 36 which have a hexagonal shape because the desired profile for the product to be extruded is a honeycomb profile, are made of insulating material such as polytetrafluoroethylene and are held on the parts 17 by nuts 19 which are screwed onto the pipes 14 thanks to the slots 20 which they comprise. They are separated so that their lips 18 achieve a narrowing of the passage section of the thermoplastic material.
  • the supply chamber 6 is divided into three compartments 28, 29 and 30 by two perforated plates 21 and 22 held in place by spacers 23, 24 and 25 arranged around the cylinders 16.
  • the spacers 23 maintain the spacing of the perforated plate 21 relative to the bottom 13.
  • the spacers 24 maintain the spacing of the two perforated plates 21 and 22 between them.
  • the spacers 25 maintain the spacing of the perforated plate 22 relative to the parts i7 and therefore also relative to the elements 36 constituting the die.
  • the perforated plate 22 has smaller perforations than the perforated plate 21 as it appears in FIG. 3.
  • the two perforated plates 21 and 22 are made of material allowing them to be heated by the Joule effect and are integrated into an electric heating system, not shown.
  • a tray 26 follows the ridge. It is equipped with a traction bench for extruded structures constituted by two endless belts 27 and 34, the control device of which, not shown, includes a speed variator.
  • the tank 26 ends with an inclined plane 31 and comprises, between this inclined plane and the belts 27 and 34 of the traction bench, a conventional cutting device 32, movable on rails f.3 to allow the cutting of the extruded structures 37 , 38, without having to stop their translational movement towards the inclined plane 31.
  • thermoplastic material heated and fluidized in the extruder 1 passes, through the piping 3, into the supply chamber 6, where it arrives in the compartment 28, before being pushed back through the perforated plate 21 into the compartment 29, then, through the perforated plate 22, into the compartment 30 which immediately precedes the die 4 through which it will receive its honeycomb profile.
  • the thermoplastic material is at a temperature sufficient to be fluent. But when passing through the die, this temperature must be rigorously constant over time and in all points of the die to obtain a regular structure.
  • the passage of the thermoplastic material through the perforated plate 21 carries out a first stage of the homogenization of the heating since each stream of material passing through the perforations is heated in contact with the perforated plate.
  • the temperature of the coolant which arrives in the cells at the outlet of the die has no effect on the temperature of the material upstream of said die and, therefore, the extrusion can be carried out normally.
  • the pipes 14 which supply the coolant they are thermally insulated from the perforated heating plates 21 and 22. This insulation is obtained by the stationary air present between the pipes 14 and the cylinders 16.
  • the spacers 23, 24 and 25 can optionally be provided with heating means to help maintain the thermoplastic material contained in the supply chamber at a constant temperature.
  • the hexagonal slots made by the lips 18 of the elements 36 are narrower than the spacing between two neighboring sets of cylinder 16 and spacers 23, 24, 25.
  • the profile of the parts 17 and the traction operated on the structure in extrusion by the belts 27 and 34 cause a double action on this structure, namely a stretching preceded and / or accompanied by a rolling, these two actions having the result of achieving molecular orientation.
  • the thermoplastic material is laminated in the passage between two neighboring pieces 17 and between two neighboring lips 18, thanks to the reduction in section that it undergoes.
  • This cooling is obtained by the distribution, through the pipes 14, of a cooling liquid brought to an ad hoc temperature by the temperature regulating device 5.
  • the final product obtained is mechanically more resistant than if it had been extruded by the usual methods, thanks, on the one hand, to the quenching effect, but also thanks to the fact that this quenching took place on a thermoplastic material. in which rolling and drawing had achieved molecular orientation.
  • the structure obtained 37 advances in the tank 26 thanks to the tractir ⁇ operated by the belts 27 and 34, and also, but to a lesser extent, to the thrust coming from the extruder.
  • the belts 27 and 34 are equipped with a speed variator which makes it possible to adapt it to the desired extrusion conditions. Indeed, for a constant thrust of the extruder, a slowing down of the traction bench would cause a thickening of the walls, or even blistering, while an acceleration would cause them to lose weight, or even a lack of material in places.
  • the extruded structure is cut, on demand and according to the desired length, using the cutting device 32, and the cut section 38 continues to advance, pushed by the next section 37 driven by the belts 27 and 34, up to that said cut section reaches the plane inclined 31 which makes it leave the tank while simultaneously emptying into the tank, the coolant contained in the cells.
  • the extruder 1 and the belts 27 and 34 which eliminates the thrust upstream of the die and the traction downstream on the structure in extrusion, the extruded structure is cut by any means at a very short distance from the die, for example at 20 centimeters, in order to facilitate re-starting and the heating system is then placed on the minimum desired position both for the extruder 1 and for the supply chamber 6.
  • thermoplastic material could then no longer normally supply the liquid of cooling required in extrusion operation.
  • the invention proposes to replace the cooling liqui ⁇ e with compressed air.
  • the tap 11 of the coolant is gradually closed, by gradually opening the tap 12 located on the compressed air pipe 10.
  • the latter passes, by emptying their coolant, into the piping 8 and into the compartment 7, and exits through the pipes 14 which it keeps open by opposing an untimely entry of the thermoplastic material which would flow from the supply chamber 6, along the die.
  • thermoplastic material is no longer fluent in the supply chamber 6 and the shut-off valve 11 of the coolant is closed. As in the previous case, it is recommended to cut it at a small distance from die 4, in order to facilitate re-starting.
  • the heating systems of the extruder 1 and of the supply chamber 6 are first started and the compressed air valve 12 is opened to prevent the thermoplastic material becoming fluent from plugging. the pipes 14.
  • the compressed air is replaced by the coolant by gradually opening the valve 11 and gradually closing the valve 12 and the extruder 1 and the traction bench 27-34.
  • the perforated plates 21 and 22 which are arranged in the supply chamber 6, could, instead of being heated directly, be heated indirectly, for example, by means of resistance cords which could be wound around cylinders 16.
  • the hexagonal profile of the cells could be replaced by any other cylindrical profile, in particular triangular, allowing the production of beams resistant to bending.
  • the tank 26 can be equipped with a valve arranged, for example, 50 centimeters from the die.
  • This valve drawn in dotted line rep.35 in fig.1, is open in extrusion operation and closed when the die stops. Vlle allows instant filling of the part of the tank between valve and die, at the time of restarting, which represents a saving of time for carrying out this restarting.
  • the compressed air could be replaced by a closed circuit of coolant which would be supplied in the part of the tank closed by the valve 35 and would return to the top of the supply chamber 6, upstream or downstream of the temperature regulating device 5.
  • thermoplastic material could also, in order to limit the exit of the thermoplastic material through the die when the extruder is stopped but with a certain heating in the supply chamber 6, equip this with an adjustable valve so as to ensure the evacuation of any surplus volume of material due to gasification due to the heat, and to evote as this surplus does not pass through the die.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Fabrication par extrusion à travers une filière de structures alvéolaires en matière thermoplastique. Suivant l'invention, lesdites structures sont soumises, immédiatement à la sortie de la filière, à une opération de trempe de préférence accompagnée préalablement d'un étirage et d'un laminage. Application notamment à la fabrication de structures en nid d'abeilles sous forme de poutres, poutrelles ou plaques.

Description

PROCEDE ET APPAREILS D'EXTRUSION DE STRUCTURES ALVEOLAIRES EN MATIERE THERMOPIASTIQUE ET STRUCTURES AINSI OBTENUES
La présente invention concerne un procédé de réalisation de structures alvéolaires en matière thermoplastique, par extrusion, ainsi que les appareils mettant en oeuvre ce procédé et les structures ainsi obtenues. II existe plusieurs procédés permettant de réaliser des structures alvéolaires en matière thermoplastique, par exemple le thermoformage à partir d'une feuille ou le moulage en moule fermé.
Ces deux procédés présentent, entre autres inconvénients, celui de ne pas pouvoir être mis en oeuvre de façon continue ainsi que celui d'être très limités en ce qui concerne la longueur des structures qu'ils permettent d'obtenir.
Il existe aussi des procédés utilisant l'extrusion à travers une filière dont le profil correspond à celui de la structure alvéolaire désirée. Ils présentent l'inconvénient de nécessiter des moyens complexes pour maintenir cette structure sans déformation à sa sortie de la filière jusqu'à ce qu'elle se tienne d'elle-même après refroidissement suffisant.
Parmi ces procédés, celui objet du brevet français n° 80-23188 propose des moyens simplifiés consistant essentiellement en un refroidissement simultané de tous les alvéoles au fur et à mesure de leur extrusion, ce qui permet d'extruder des structures de section plus large que si le refroidissement était exclusivement périphérique. De plus, la filière est réalisée en un matériau très isolant comme le polytétrafluoréthylène, ce qui permet d'obtenir un refroidissement assez rapide des structures extrudées. S'il est vrai que le refroidissement de la matière thermoplastique constituant la structure extrudée est relativement rapide, il n'en reste pas moins qu'à sa sortie de la filière, cette structure est encore à l'état ramolli et risque donc de se déformer, ce qui obligerait alors à un calandrage. Dans l'exemple de réalisation présenté, l'extrusion se fait à la verticale et les moyens utilisés pour éviter cette déformation sont doubles. D'une part, on exerce, sur la structure extrudée, une traction avec des organes de traction se déplaçant sensiblement à la vitesse d'extrusion. D'autre part, chaque alvéole subit de chaque cδté, dès sa sortie de la filière, une pression constante fonction de la colonne de liquide de refroidissement qui est la même dans tous les alvéoles.
Mais la disposition verticale de l'extrudeuse présente l'inconvénient de nécessiter une installation très complexe dans le cas où l'on désire des éléments de structures alvéolaires de grande longueur. En effet, tant que la structure extrudée est maintenue dans le liquide de refroidissement, chaque paroi interne de la structure est maintenue par la pression du liquide contenu dans les alvéoles voisins, et chaque paroi externe est maintenue par la pression du liquide de refroidissement à l'extérieur de la structure et par la pression du liquide de refroidissement à l'intérieur de l'alvéole voisin. Mais il est évident qu'on ne peut pas allonger indéfiniment sans problèmes, la hauteur du bac de refroidissement, et si on limitait cette hauteur par rapport à la longueur de la structure désirée, le poids du liquide de refroidissement contenu dans les alvéoles déformerait les parois extérieures de la structure.
La présente invention conserve les avantages de ce procédé, notamment en ce qui concerne l'inutilité d'un calibrage postérieur à la soxtie de la filière, et permet d'en éviter les inconvénients.
Sans nécessiter de moyens complexes pour éviter la déformation de la structure extrudée à la sortie de la filière, elle assure par ailleurs, eu égard aux autres procédés d' extrusion, une rigidité accrue du produit final et elle permet une extrusion sans contraintes particulières concernant les longueurs de structures que l'on peut obtenir.
Elle a pour objet un procédé d'extrusion d'une structure alvéolaire en matière thermoplastique, à travers une filière correspondant au profil de la structure alvéolaire désirée, caractérisé en ce que ladite structure est soumise à une opération de trempe sur la plupart de ses différentes faces, dès sa sortie de la filière.
Ainsi la structure extrudée est, dès sa sortie de la filière, suffisamment rigidifiée pour se tenir d'elle-même tout de suite, ce qui, non seulement rend inutile un calibrage postérieur rais permet de la manutentionner sans besoin de précautions particulières.
Suivant une autre caractéristique de l'invention, la structure en cours d'extrusion est soumise, immédiatement avant l'opération de trempe qu'elle subit à la sortie de la filière, à une traction qui en assure l'étirage, cet étirage ayant pour résultat une orientation moléculaire qui, fixée aussitôt par l'opération de trempe, va augmenter les propriétés mécaniques de la structure extrudée.
Suivant une autre caractéristique de l'invention, l'étirage de la structure en extrusion est précédé d'un laminage, de manière à provoquer le début d'orientation moléculaire qui sera ensuite accentuéepar l'étirage.
Un tel procédé peut être mis en oeuvre avec l'appareillage décrit dans le brevet français 80-23188 cité plus haut ou des appareillages analogues. Dans une réalisation intéressante de l'invention, la filière reçoit la matière thermoplastique à former, d'une chambre d'alimentation à au moins deux compartiments successifs, séparés par une plaque perforée destinée à aider à une homogénéisation et à une répartition régulière de la matière thermoplastique sur toute la section de la filière.
Dans une version particulièrement intéressante de cette réalisation, chaque plaque perforée est munie de moyens de chauffage de manière à participer au maintien en température de la matière thermoplastique. Dans le cas où les éléments constituant la filière sont portés par des corps parallèles dont chacun contient un conduit qui lui est axial, en est isolé thermiquement et amène un liquide de refroidissement immédiatement en aval de la filière, chaque plaque perforée peut avantageusement constituer une entretoise desdits corps et permettre ainsi la réalisation d'une chambre d'alimentation monobloc. Suivant une autre réalisation intéressante de l'invention, le circuit du liquide de refroidissement est relié à un circuit d'air comprimé destiné à remplacer ce liquide dans certaines conditions, de manière à assurer plus économiquement l'étanchéité entre le circuit d'extrusion et le circuit de refroidissement. D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre d'une réalisation de l'invention donnée à titre purement indicatif et nullement limitatif.
La figure 1 montre schématiquement une installation pour la mise en oeuvre de l'invention. La figure 2 montre un détail de la chambre d'alimentation de la filière de l'installation de la figure 1.
La figure 3 est une vue, partiellement en coupe, suivant la ligne III-III, de la figure 2.
Sur la figure 1, on a une extrudeuse 1 avec une trémie d'alimentation 2 et une tuyauterie de sortie 3 thermiquement isolée, qui alimente une filière 4 par l'intermédiaire d'une chambre d'alimentation 6.
Cette filière 4 comprend (voir figures 2 et 3) un certain nombre d'éléments hexagonaux 36 dont le montage sera expliqué plus loin.
La chambre d'alimentation 6 est séparée par un fond 13 et une cloison 15 d'un compartiment 7 qui lui est voisin et sur lequel est fixée une tuyauterie 8, reliée à une tuyauterie d'eau 9 portant un dispositif régulateur de température 5 et un robinet d'arrêt 11 et à une tuyauterie d'air comprimé 10 portant un robinet d'arrêt 12.
Des tuyauteries 14 sont piquées sur le fond 15 et traversent la cloison intérieure 13 sur laquelle sont^soudés des cylindres 16. Chaque cylindre 16 est concentrique à l'une des tuyauteries 14 et porte à son extrémité libre une pièce 17 dont la fonction est double : servir d'entretoise entre le cylindre 16 qui la porte et la tuyauterie 14 concentrique audit cylindre, et constituer assise pour les éléments 36. Ces éléments 36, qui ont une forme hexagonale parce que le profil désiré pour le produit à extruder est un profil en nid d'abeilles, sont en matériau isolant tel que le polytétrafluoréthylène et sont maintenus sur les pièces 17 par des écrous 19 qui se vissent sur les tuyauteries 14 grâce aux fentes 20 qu'ils comportent. Ils sont écartés de telle manière que leurs lèvres 18 réalisent un rétrécissement de la section de passage de la matière thermoplastique.
La chambre d'alimentation 6 est partagée en trois compartiments 28, 29 et 30 par deux plaques perforées 21 et 22 maintenues en place par des entretoises 23, 24 et 25 disposées autour des cylindres 16.
Les entretoises 23 maintiennent l'écartement de la plaque perforée 21 par rapport au fond 13. Les entretoises 24 maintiennent l'écartement des deux plaques perforées 21 et 22 entre elles. Les entretoises 25 maintiennent l'écartement de la plaque perforée 22 par rapport aux pièces i7 et donc également par rapport aux éléments 36 constituant la filière.
La plaque perforée 22 a des perforations plus petites que la plaque perforée 21 comme il apparaît sur la figure 3.
Les deux plaques perforées 21 et 22 sont en matériau permettant de les chauffer par effet Joule et sont intégrées dans un système de chauffage électrique non figuré.
Un bac 26 fait suite à la f itière. Il est équipé d'un banc de traction des structures extrudées constitué par deux courroies sans fin 27 et 34 dont le dispositif de commande, non, représenté, comporte un variateur de vitesse.
Le bac 26 se termine par un plan incliné 31 et comporte, entre ce plan incliné et les courroies 27 et 34 du banc de traction, un dispositif de coupe classique 32, mobile sur des rails f.3 pour permettre la coupe des structures extrudées 37, 38, sans avoir besoin d'arrêter leur mouvement de translation vers le plan incliné 31.
Dans ces conditions, le fonctionnement s'établit comme décrit ci-après.
En marche normale, la matière thermoplastique réchauffée et fluidifiée dans l'extrudeuse 1 passe, par la tuyauterie 3, dans la chambre d'alimentaion 6, où elle arrive dans le compartiment 28,avant d'être repoussée à travers la plaque perforée 21 dans le compartiment 29, puis, à travers la plaque perforée 22, dans le compartiment 30 qui précède immédiatement la filière 4 à travers laquelle elle va recevoir son profil alvéolaire. Lorsqu'elle arrive à l'entrée de la chambre d'alimentation 6, la matière thermoplastique est à une température suffisante pour être fluente. Mais au passage de la filière, cette température doit être rigoureusement constante dans le temps et dans tous les points de la filière pour obtenir une structure régulière. Le passage de la matière thermoplastique à travers la plaque perforée 21 réalise une première étape de l'homogénéisation du chauffage puisque chaque veine de matière passant par les perforations est réchauffée au contact de la plaque perforée.
Le passage à travers les deux plaques perforées 21 et 22 donne un autre résultat, à savoir l'équilibrage de la pression de la matière dans tout l'intérieur du compartiment 30, et donc une distribution régulière à travers toute la section de la filière.
Grâce à la réalisation de la filière 4 avec les éléments 36 en polytétrafluoréthylène et grâce aussi au mouvement de la matière vers l'extérieur, la température du liquide de refroidissement qui arrive dans les alvéoles à la sortie de la filière, est sans incidence sur la température de la matière en amont de ladite filière et, dès lors, l'extrusion peut s'effectuer normalement.
Quant aux tuyauteries 14 qui amènent le liquide de refroidissement, elles sont isolées thermiquement des plaques perforées chauffantes 21 et 22. Cette isolation est obtenue par l'air immobile présent entre les tuyauteries 14 et les cylindres 16.
Du fait de cette isolation, les entretoises 23, 24 et 25 peuvent éventuellement être munies de moyens de chauffage pour aider au maintien à une température constante de la matière thermoplastique contenue dans la chambre d'alimentation.
On notera que les fentes hexagonales réalisées par les lèvres 18 des éléments 36, fentes à travers lesquelles la structure va recevoir sa forme alvéolaire, sont plus étroites que l'écartement entre deux ensembles cylindre 16 et entretoises 23, 24, 25 voisins. Le profil des pièces 17 et la traction opérée sur la structure en extrusion par les courroies 27 et 34 provoquent une double action sur cette structure, à savoir un étirage précédé et/ou accompagné d'un laminage, ces deux actions ayant pour résultat de réaliser une orientation moléculaire. En effet, dans un premier temps, la matière thermoplastique est laminée au passage entre deux pièces 17 voisines et entre deux lèvres 18 voisines, grâce à la réduction de section qu'elle subit. Puis, dans un deuxième temps, elle fait l'objet d'un étirage dû à la traction opérée par les courroies 27 et 34, étirage qui dure encore au moment où la matière extrudée est soumise, dès qu'elle a dépassé les éléments 36, à un refroidissement assez brutal pour provoquer une trempe.
Ce refroidissement est obtenu par la distribution, à travers les tuyauteries 14, d'un liquide de refroidissement amené à une température ad hoc par le dispositif régulateur de température 5.
Par exemple, pour une extrusion suivant l'invention de polypropylène chauffé à environ 240° Celsius dans la chambr-e d'alimentation de la filière, on peut utiliser comme liquide de refroidissement, de l'eau à une température de 5° Celsius environ et en tout cas inférieure à 10° Celsius. La structure ainsi extrudée obtient sa forme définitive sans qu'il soit besoin de la calibrer à nouveau.
De plus, elle se tient d'elle-même suffisamment pour ne pas nécessiter de dispositions particulières pour sa manutention, d'autant plus que chaque paroi de chaque alvéole est soumise simultanément à la même action par le même liquide de refroidissement.
Enfin, le produit final obtenu est mécaniquement plus résistant que s'il avait été extrudé par les méthodes habituelles, grâce, d'une part, à l'effet de trempe, mais grâce aussi à ce que cette trempe est intervenue sur une matière thermoplastique dans laquelle un laminage et un étirage avaient réalisé une orientation moléculaire.
A la sortie de la filièie, la structure obtenue 37 avance dans le bac 26 grâce à la tractirα opérée par les courroies 27 et 34, et aussi, mais dans une moindre mesure, à la poussée venant de l'extrudeuse.
Il est d'ailleurs nécessaire qu'il y ait un équilibre entre ces deux actions pour obtenir un produit constant, tant en dimensions qu'en qualités mécaniques. C'est pourquoi les courroies 27 et 34 sont équipées d'un variateur de vitesse qui permet d'adapter celle-ci aux conditions d'extrusion désirées. En effet, pour une poussée constante de l'extrudeuse, un ralentissement du banc de traction provoquerait un épaississement des parois, voire des boursouflures, tandis qu'une accélération provoquerait leur amaigrissement, voire un manque de matière par places.
On découpe, à la demande et suivant la longueur désirée, la structure extrudée, en utilisant le dispositif de coupe 32, et le tronçon coupé 38 continue d'avancer, poussé par le tronçon 37 suivant entraîné par les courroies 27 et 34, jusqu'à ce que ledit tronçon coupé atteigne le plan incliné 31 qui lui fait quitter le bac en assurant simultanément le vidage dans le bac, du liquide de refroidissement contenu dans les alvéoles.
Pour arrêter l'installation, on opère de deux manières différentes, suivant que l'arrêt doit n'être que momentané ou doit durer un laps de temps un peu long.
Pour arrêter l'installation momentanément, par exemple si on souhaite ne pas avoir à faire réchauffer toute la matière première thermoplastique contenue dans l'extrudeuse 1 et dans la chambre d'alimentation 6, ce qui peut demander quelques heures, on arrête simultanément l'extrudeuse 1 et les courroies 27 et 34 ce qui supprime la poussée en amont de la filière et la traction en aval sur la structure en extrusion, on coupe par un moyen quelconque la structure extrudée à une très courte distance de la filière, par exemple à 20 centimètres, en vue de faciliter le re-démarrage et on place alors le système de chauffage sur la position minimum désirée à la fois pour l'extrudeuse 1 et pour la chambre d'alimentation 6.
Mais le chauffage, même minimum, dans la chambre d'alimentation, risquerait de faire couler de la matière thermoplastique à travers la tête de filière et de venir obturer certaines des tuyauteries 14 sinon toutes, et elles ne pourraient plus alors fournir normalement le liquide de refroidissement nécessaire en fonctionnement d'extrusion.
Il est vrai que pour éviter cet inconvénient, on pourrait laisser couler le liquide de refroidissement pendant tout l'arrêt de l'installation. Mais cela serait onéreux.
C'est pourquoi l'invention propose de remplacer le liquiαe de refroidissement par de l'air comprimé. Pour cela, on ferme progressivement le robinet 11 du liquide de refroidissement, en ouvrant progressivement le robinet 12 situé sur la tuyauterie 10 d'air comprimé. Celui-ci passe, en les vidant de leur liquide de refroidissement, dans la tuyauterie 8 et dans le compartiment 7, et sort par les tuyauteries 14 qu'il maintient ouvertes en s'opposant à une entrée intempestive de la matière thermoplastique qui s'écoulerait de la chambre d'alimentation 6, le long de la filière.
Pour re-démarrer l'installation, on met en route le chauffage normal de l'extrudeuse et de la chambre d'alimentation 6 et lorsque la température est atteinte, on substitue le liquide de refroidissement à l'air comprimé dans les tuyauteries 14 en fermant progressivement le robinet 12 et en ouvrant progressivement le robinet 11 et on met en route l'extrudeuse puis le banc de traction.
Pour arrêter l'installation pour un temps assez long, on arrête en premier lieu l'extrudeuse et son système de chauffage, puis le système de chauffa e de la chambre d'alimentation 6 et les courroies 27 et 34 formant le banc de traction. On attend que la matière thermoplastique ne soit plus fluente dans la chambre d'alimentation 6 et on ferme le robinet d'arrêt 11 du liquide de refroidissement. Comme dans le cas précédent, il est recommandé delà couper à une petite distance de la filière 4, en vue de faciliter le re-démarrage.
Pour opérer celui-ci, on met d'abord en route les systèmes de chauffage de l'extrudeuse 1 et de la chambre d'alimentation 6 et on ouvre le robinet 12 d'air comprimé pour empêcher la matière thermoplastique devenant fluente d'obturer les tuyauteries 14. Lorsque la matière thermoplastique atteint la température d'extrusion, on remplace l'air comprimé par le liquide de refroidissement en ouvrant progressivement le robinet 11 et en fermant progressivement le robinet 12 et on met en route l'extrudeuse 1 et le banc de traction 27-34. Il est entendu que l'on peut, sans sortir de l'invention,modifier des détails de construction et/ou de fonctionnement en vue d'obtenir les mêmes résultats.
Par exemple, les plaques perforées 21 et 22 qui sont disposées dans la chambre d'alimentation 6, pourraient, au lieu d'être chauffées directement, être chauffées indirectement, par exemple, par l'intermédiaire de cordons de résistance qui pourraient être enroulés autour des cylindres 16. Le profil hexagonal des alvéoles pourrait être remplacé par tout autre profil cylindrique, notamment triangulaire, permettant la réalisation de poutrelles désistant à la flexion.
Le bac 26 peut être équipé d'une vanne disposée, par exemple, à 50 centimètres de la filière. Cette vanne,dessinée en pointillé rep.35 sur la fig.1, est ouverte en fonctionnement d'extrusion et fermée à l'arrêt de la filière. Vlle permet un remplissage instantané de la partie du bac entre vanne et filière, au moment de la remise en route, ce qui représente un gain de temps pour effectuer cette remise en route. Pour assurer le libre passage des tuyauteries 14, on pourrait remplacer l'air comprimé par un circuit fermé de liquide de refroidissement qui s'alimenterait dans la partie du bac fermée par la vanne 35 et reviendrait en tête de la chambre d'alimentation 6, en amont ou en aval du dispositif régulateur de température 5. On pourrait également, dans le but de limiter la sortie de la matiè thermoplastique à travers la filière lorsque l'extrudeuse est arrêtée mais avec un certain chauffage dans la chambre d'alimentation 6, aquiper celleci d'une soupape réglable de manière à assurer l'évacuation d'un éventuel surplus de volume de matière dû à une gazéification du fait de la chaleur, et à évoter aomso que ce surplus ne traverse la filière.

Claims

REVENDICATIONS
1) Procédé d'extrusion d'une structure alvéolaire en matière thermoplastique, à travers une filière correspondant au profil de la structure alvéolaire désirée, caractérisé en ce que ladite structure est soumise à une opération de trempe au moins sur la plupart de ses différentes faces, immédiatement à sa sortie de la filière (4).
2) Procédé d'extrusion selon la revendication 1, caractérisé en ce que l'agent de refroidissement qui reçoit chaque alvéole dès sa formation à la sortie de la filière (4), est à une température inférieure à
10° Celsius. 3) Procédé d'extrusion suivant l'une des revendications prédédentes, caractérisé en ce que la structure en cours d'extrusion est soumise, immédiatement avant l'opération de trempe, à une traction en assurant l'étirage.
4) Procédé d'extrusion suivant la revendication 3, caractérisé en ce que l'opération d'étirage de la structure en cours d'extrusion est précédée d'une opération de laminage.
5) Procédé d 'extrusion suivant l 'une des revendications précédentes à travers une filière assurant une extrusion dans une direction sensiblement horizontale, caractérisé en ce que l ' agent de refroidissement étant un liquide, la structure (37, 38) sortant de la filière (4) est reçue dans un bac (26) qui contient du liquida de refroidissement jusqu' à un niveau situé au dessus de ladite structure.
6) Filière pour l'extrusion d'une structure alvéolaire en matière thermoplastique avec, en amont, une série de corrs pa ral lèles creux (16) espacés, comportant en leur intérieur un conduit axial (14) relié à un circuit de refroidissement (8) et débouchant dans les alvéoles dès leur sortie de la filière (4), caractérisée en ce que les lèvres (18) des éléments (36) qu'elle comporte réalisent un rétrécissement qui provoque un effet de laminage de la matière thermoplastique à son passage dans la filière (4).
7) Filière suivant la revendication 6, accolée à une chambre (6) l'alimentant en matière thermoplastique, caractérisée en ce que cette chambre comprend au moins deux compartiments successifs (28, 29, 30), séparés par une plaque perforée (21, 22). 8) Filière suivant les revendications 6 ou 7, comportant au moins deux plaques perforées (21, 22), caractérisée en ce que la plaque perforée (22) la plus proche de la filière (4) possède des perforations identiques et que ces perforations sont les plus petites de l'ensemble des plaques perforees (21, 22). 9) Appareil de fabrication de structures alvéolaires pour la réalisation du procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'il comprend une filière (4) selon l'une des revendications 6 à
8 et des moyens (27, 34) aidant à l'extraction du produit extrudé (37, 38) en l'entraînant, dans le sens de l'extrusion, à une vitesse assurant un étirage de la structure alvéolaire extrudée.
10) Appareil suivant la revendication précédente, caractérisé en ce que les conduits (14) amenant l'agent de refroidissement dans les alvéoles à leur sortie de la filière (4) sont reliés à une tuyauterie (8) comportant un robinet (11) de liaison au circuit (9, 5) d'agent de refroidissement et un robinet (12) de liaison à un circuit (10) d'air comprimé.
PCT/FR1986/000219 1985-06-24 1986-06-23 Procede et appareils d'extrusion de structures alveolaires en matiere thermoplastique et structures ainsi obtenues WO1987000119A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO870718A NO870718D0 (no) 1985-06-24 1987-02-23 Fremgangsmaate og apparater for ekstrudering av termoplastiske hulstrukturer fremstilt paa denne maate.
DK091287A DK91287D0 (da) 1985-06-24 1987-02-23 Fremgangsmaade og apparat til ekstrudering af termoplastiske emner med cellestruktur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8509554A FR2583676B1 (fr) 1985-06-24 1985-06-24 Procede et appareils d'extrusion de structures alveolaires en matiere thermoplastique et structures ainsi obtenues
FR85/09554 1985-06-24

Publications (1)

Publication Number Publication Date
WO1987000119A1 true WO1987000119A1 (fr) 1987-01-15

Family

ID=9320580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1986/000219 WO1987000119A1 (fr) 1985-06-24 1986-06-23 Procede et appareils d'extrusion de structures alveolaires en matiere thermoplastique et structures ainsi obtenues

Country Status (10)

Country Link
EP (1) EP0267900A1 (fr)
JP (1) JPS63501491A (fr)
AU (1) AU5995386A (fr)
CA (1) CA1294404C (fr)
DK (1) DK91287D0 (fr)
ES (1) ES8707445A1 (fr)
FR (1) FR2583676B1 (fr)
GR (1) GR861614B (fr)
WO (1) WO1987000119A1 (fr)
ZA (1) ZA864708B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571691A (en) * 1989-05-05 1996-11-05 Baylor College Of Medicine Production of recombinant lactoferrin and lactoferrin polypeptides using CDNA sequences in various organisms
US5766939A (en) * 1989-05-05 1998-06-16 Baylor College Of Medicine Production of recombinant lactoferrin and lactoferrin polypeptides using CDNA sequences in various organisms
WO1998041388A1 (fr) * 1997-03-19 1998-09-24 Guy Ducruy Procede de fabrication d'une structure alveolaire en matiere thermofusible, et dispositif pour la mise en oeuvre de ce procede
US6111081A (en) * 1996-05-31 2000-08-29 Baylor College Of Medicine Lactoferrin variants and uses thereof
US20110012281A1 (en) * 2005-08-19 2011-01-20 Solvay(Societe Anonyme) Process for Manufacturing A Plastic-Based Cellular Structure And Device For Implementing This Process
EP2311629A1 (fr) 2009-10-16 2011-04-20 Rieter Technologies AG Construction de type sandwich avec nid d'abeille pour l'industrie automobile
CN102814967A (zh) * 2012-07-31 2012-12-12 昆山圣源机械有限公司 八出牵引装置
US9586378B2 (en) 2008-04-08 2017-03-07 Marc Le Monnier Cell-like structure manufacturing method, cell-like structure and corresponding equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899145B1 (fr) 2006-03-29 2008-05-09 Solvay Procede pour la fabrication d'une structure alveolaire a base de matiere plastique

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3169272A (en) * 1962-10-30 1965-02-16 Continental Oil Co Apparatus for making plastic tubing
US3825641A (en) * 1971-06-04 1974-07-23 L Barnett Method of forming multiple passageway plastic conduit
DE2836941A1 (de) * 1978-08-24 1980-03-13 Walter Goern Verfahren und vorrichtung zum kuehlen von extrudierten hohlprofilstraengen
FR2442714A1 (fr) * 1978-11-29 1980-06-27 Ind Plastiche Vernici Spa Perfectionnement aux systemes d'extrusion
GB2086304A (en) * 1980-10-30 1982-05-12 Indumat Sa Device for producing cellular structures of thermoplastic material
US4371326A (en) * 1979-01-26 1983-02-01 Mcalister Roy E Apparatus for making plastic solar panel structure
FR2512391A1 (fr) * 1981-09-04 1983-03-11 Armosig Filiere d'extrusion pour profile creux
EP0160200A2 (fr) * 1984-04-02 1985-11-06 AEC, INC. (a Delaware Corporation) Dispositif de refroidissement pour une extrudeuse

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3169272A (en) * 1962-10-30 1965-02-16 Continental Oil Co Apparatus for making plastic tubing
US3825641A (en) * 1971-06-04 1974-07-23 L Barnett Method of forming multiple passageway plastic conduit
DE2836941A1 (de) * 1978-08-24 1980-03-13 Walter Goern Verfahren und vorrichtung zum kuehlen von extrudierten hohlprofilstraengen
FR2442714A1 (fr) * 1978-11-29 1980-06-27 Ind Plastiche Vernici Spa Perfectionnement aux systemes d'extrusion
US4371326A (en) * 1979-01-26 1983-02-01 Mcalister Roy E Apparatus for making plastic solar panel structure
GB2086304A (en) * 1980-10-30 1982-05-12 Indumat Sa Device for producing cellular structures of thermoplastic material
FR2512391A1 (fr) * 1981-09-04 1983-03-11 Armosig Filiere d'extrusion pour profile creux
EP0160200A2 (fr) * 1984-04-02 1985-11-06 AEC, INC. (a Delaware Corporation) Dispositif de refroidissement pour une extrudeuse

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766939A (en) * 1989-05-05 1998-06-16 Baylor College Of Medicine Production of recombinant lactoferrin and lactoferrin polypeptides using CDNA sequences in various organisms
US5571691A (en) * 1989-05-05 1996-11-05 Baylor College Of Medicine Production of recombinant lactoferrin and lactoferrin polypeptides using CDNA sequences in various organisms
US6111081A (en) * 1996-05-31 2000-08-29 Baylor College Of Medicine Lactoferrin variants and uses thereof
US6277231B1 (en) 1997-03-19 2001-08-21 Guy Ducruy Method for producing a honeycomb core in thermofusible material, and device for implementing same
FR2760999A1 (fr) * 1997-03-19 1998-09-25 Guy Ducruy Procede de fabrication d'une structure alveolaire en matiere thermofusible, et dispositif pour la mise en oeuvre de ce procede
CN1064895C (zh) * 1997-03-19 2001-04-25 盖伊·迪克吕 热熔材料制蜂窝结构的制造方法及采用该方法的装置
WO1998041388A1 (fr) * 1997-03-19 1998-09-24 Guy Ducruy Procede de fabrication d'une structure alveolaire en matiere thermofusible, et dispositif pour la mise en oeuvre de ce procede
US20110012281A1 (en) * 2005-08-19 2011-01-20 Solvay(Societe Anonyme) Process for Manufacturing A Plastic-Based Cellular Structure And Device For Implementing This Process
US8696853B2 (en) * 2005-08-19 2014-04-15 Solvay Sa Process for manufacturing a plastic-based cellular structure and device for implementing this process
US9586378B2 (en) 2008-04-08 2017-03-07 Marc Le Monnier Cell-like structure manufacturing method, cell-like structure and corresponding equipment
EP2311629A1 (fr) 2009-10-16 2011-04-20 Rieter Technologies AG Construction de type sandwich avec nid d'abeille pour l'industrie automobile
WO2011045364A1 (fr) 2009-10-16 2011-04-21 Rieter Technologies Ag Construction en sandwich d'un nid d'abeilles pour l'industrie automobile
CN102814967A (zh) * 2012-07-31 2012-12-12 昆山圣源机械有限公司 八出牵引装置

Also Published As

Publication number Publication date
ES8707445A1 (es) 1987-08-01
GR861614B (en) 1986-10-21
CA1294404C (fr) 1992-01-21
JPS63501491A (ja) 1988-06-09
DK91287A (da) 1987-02-23
EP0267900A1 (fr) 1988-05-25
DK91287D0 (da) 1987-02-23
FR2583676B1 (fr) 1988-03-25
ZA864708B (en) 1987-02-25
FR2583676A1 (fr) 1986-12-26
ES556536A0 (es) 1987-08-01
AU5995386A (en) 1987-01-30

Similar Documents

Publication Publication Date Title
EP1268158A1 (fr) Procede et ligne de fabrication en continu de tubes en matiere plastique avec etirage bi-axial, et tube en matiere plastique obtenu
EP1009625B1 (fr) Procede de fabrication d'une structure alveolaire en matiere thermofusible, et dispositif pour la mise en oeuvre de ce procede
WO1987000119A1 (fr) Procede et appareils d'extrusion de structures alveolaires en matiere thermoplastique et structures ainsi obtenues
CH679845A5 (fr)
FR2486445A1 (fr) Appareil de thermoformage sous vide de feuilles thermoplastiques
CH463771A (fr) Procédé de fabrication de feuilles d'un polymère thermoplastique
EP0061412B1 (fr) Procédé et dispositif pour fabriquer des bandes de mousse de polymères
EP0795389A1 (fr) Procédé et dispositif pour le refroidissement interne de tuyaux en matière plastique
CH457813A (fr) Procédé de moulage d'un objet à partir d'une matière thermoélastiquement déformable et machine pour la mise en oeuvre de ce procédé
EP1248529A1 (fr) Procede et installation de preparation en continu de caseinate
CH621534A5 (fr)
FR2493219A1 (fr) Procede et dispositif de fabrication de structures alveolaires en matiere thermoplastique et structures obtenues
EP0069007B1 (fr) Procédé pour la fabrication de récipients en matière plastique étirée et soufflée et machine pour la mise en oeuvre du procédé
FR2464235A1 (fr) Procede pour la production sans moule de pieces de forme poreuses en verre quartzeux et utilisation desdites pieces de forme
CA1029908A (fr) Installation pour la fabrication en continu de panneaux en matiere synthetique
EP0928239B1 (fr) Procede et installation de traitement de tubes en matiere plastique avec etirage bi-axial
FR2957018A1 (fr) Procede et appareillage pour la fabrication d'un corps creux en matiere plastique a partir de deux feuilles
CA2626870C (fr) Appareil refroidi pour le depot par plasma d'une couche barriere sur un recipient
EP0407323A1 (fr) Procédé et dispositif de coulée continue entre cylindres de produits métalliques minces aptes au laminage à froid direct
FR2939708A1 (fr) Procede et installation pour appliquer un fluide sur des fonds de recipients thermoplastiques, notamment pour le refroidissement des fonds chauds de recipients thermoplastiques sortant de moulage
FR2536698A1 (fr) Procede et dispositif permettant d'obtenir des bandes a partir d'un materiau, notamment d'un coagulum de latex; bandes ainsi obtenues
EP2655996A1 (fr) Module de chauffage, systeme de chauffage comprenant plusieurs modules de chauffage et installation comprenant un tel systeme de chauffage
CH698800B1 (fr) Procédé de fabrication de barreaux d'oeuf dur et dispositif pour sa mise en oeuvre.
EP0623795B1 (fr) Unité de refroidissement pour produits pâteux conformés en boudins
CH443657A (fr) Procédé de fabrication de corps de longueur indéfinie en matière thermoplastique expansée et dispositif pour la mise en oeuvre de ce procédé

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1986903441

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986903441

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1986903441

Country of ref document: EP