WO1986005914A1 - Tracking error detecting apparatus for optical disks - Google Patents

Tracking error detecting apparatus for optical disks Download PDF

Info

Publication number
WO1986005914A1
WO1986005914A1 PCT/JP1986/000160 JP8600160W WO8605914A1 WO 1986005914 A1 WO1986005914 A1 WO 1986005914A1 JP 8600160 W JP8600160 W JP 8600160W WO 8605914 A1 WO8605914 A1 WO 8605914A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
tracking error
period
sum
circuit
Prior art date
Application number
PCT/JP1986/000160
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Oinoue
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO1986005914A1 publication Critical patent/WO1986005914A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only

Definitions

  • the present invention relates to an optical disc in which a signal is recorded in a form in which the period of a reproduction output signal changes like a compact disk in which the length of each of a pit and a land changes within a predetermined range.
  • the present invention relates to a tracking error detection device used to track a disc recording track.
  • FIG. 1 shows a tracking system disclosed in Japanese Patent Application Laid-Open No. Sho 52-92332 (Japanese Patent Publication No. Sho 56-30610), which is a first conventional example of the present invention. 4 shows an error detection device.
  • each light detecting section is respectively divided into a recording track direction (y-axis direction) and an orthogonal direction (X-axis direction) of an optical disk (not shown). It has a photodetector consisting of sections 1 to 4, and a reproduced output signal having a waveform as shown in FIG. 2A is obtained at point ⁇ ⁇ ⁇ ⁇ by adders 5 to 7. Then, since the reproduced output signal is input to the phase shifter 8 which shifts the phase by 90 *, a signal having a waveform as shown in FIG. 2B is obtained at the point B.
  • the subtracter 11 subtracts the output signals from the adders 5 and 6, but the signal at point C which is the output signal (diagonal difference signal) from the subtracter 11 is As shown in Fig. 2C, if the beam is shifted to the right with respect to the recording track, the phase is delayed by 90 'from the reproduced output signal, and if the beam is shifted to the left, 90 ⁇ Only the phase is advanced. Since the signals at the points B and C are multiplied by the multiplier 12, a signal having a waveform as shown in FIG. 2D is obtained at the point D. At point E after passing through the low-pass filter 13, as shown in FIG.
  • a positive DC signal is obtained if the beam is shifted to the right with respect to the recording track, If it is shifted to the left, a negative DC signal is obtained. If the beam is on the recording track, the DC signal shown in Fig. 2E will not appear.
  • the signal at point E indicates a tracking error, and tracking servo can be performed based on the tracking error signal.
  • both the rising and falling of the signal at point A in FIG. There is a method in which the signal at point C is sampled separately at the loss point, the signals that have been sampled are subtracted, and the signal resulting from this subtraction is used as a tracking error signal.
  • the method of the first conventional example described above shifts the phase of the reproduced output signal by 90 ', and is effective only in the case of a single carrier.
  • the EFM format which is the NRZ format used in compact disks, etc.
  • an accurate tracking error signal cannot be obtained.
  • the method of the second conventional example requires a high-speed switch element and the like, has a complicated configuration, and cannot be easily integrated into an IC. Therefore, there is a problem that the cost is high.
  • the method of the third conventional example described above uses only phase information and does not use amplitude information, so that it is weak to noise (poor playability), that is, an accurate tracking error signal is obtained. There is a problem that you cannot do that.
  • An optical disc tracking error detecting device is formed by dividing a recording track of an optical disc into a tangential direction of a recording track and a direction perpendicular to the tangential direction.
  • a photodetector comprising first, second, third and fourth photodetectors for detecting reflected light from the optical disc; and first, second, third and fourth light detectors.
  • a second signal based on a first signal, which is a sum signal of the respective detection outputs of the detection unit, and a sum signal of the respective detection outputs of the first and third light detection units on a diagonal line and the second signal.
  • a third signal which is the difference between the sum signals of the respective detection outputs of the fourth photodetector, and a low-pass filter to which the output of the multiplier is supplied.
  • An optical disk track that obtains a tracking error signal from the output of the low-pass filter.
  • a signal is recorded on the optical disk in a form in which the period of the first signal changes, and the second signal is obtained by converting the first signal by a delay circuit. It is characterized by being a signal delayed by about 1/4 period of the minimum period.
  • an accurate tracking error signal can be obtained even for an optical disc on which a signal is recorded in a form in which the carrier frequency changes.
  • FIG. 1 is a block diagram of a first conventional example of the present invention
  • FIG. 2 is a signal waveform diagram in the first conventional example.
  • 3 to 12 show an embodiment of the present invention.
  • FIG. 3 is a block diagram of the i-th embodiment
  • FIG. 4 is a signal waveform diagram in the first embodiment
  • FIG. 6 is a block diagram of the second embodiment
  • FIG. 7 is a circuit diagram of a main part of the second embodiment
  • FIG. 8 is a diagram of the third embodiment.
  • Block diagram, FIG. 9 is a signal waveform diagram in the third embodiment
  • FIG. 10 is a block diagram of the fourth embodiment
  • FIG. 11 is a circuit diagram of a main part of the fourth embodiment
  • FIG. 12 is a waveform diagram of signals in the fourth embodiment.
  • FIG. 3 first to fourth embodiments of the present invention will be described with reference to FIGS. 3 to 12.
  • FIG. 3 first to fourth embodiments of the present invention will be described with reference to FIGS. 3 to 12.
  • FIG. 3 to FIG. 5 show the first embodiment.
  • the first embodiment has substantially the same configuration as the first conventional example described above, except that a delay circuit 21 is used in place of the phase shifter 8 as shown in FIG. You can. -If the carrier frequency of the reproduction output signal is single, setting the delay time of the delay circuit 21 to 1 / '4 of the carrier cycle will result in a phase delay of 90, Become equivalent. Therefore, in this case, a tracking error signal can be obtained according to the same principle as the first conventional example described above.
  • the delay time is set to approximately 12 of the shortest bit length, ie, approximately 1 to 4 periods of the minimum period.
  • the reproduced output signal at the point A in FIG. 3 as shown in FIG. 4A is delayed by the time r by the delay circuit 21 and at the point B in FIG. 3 as shown in FIG. 4B.
  • the signal at point C is generated by inverting each other around the zero-cross point of the rising and falling of the reproduction output signal. In this case, as shown in Fig. 4C, if the beam is shifted to the right with respect to the recording track, it becomes negative at the rise, positive at the fall, and rises if it is shifted to the left. Positive, negative on falling.
  • a signal having a waveform as shown in FIG. 4D is obtained at point D.
  • a positive DC signal is obtained if the beam is shifted to the right with respect to the recording track, and a negative DC signal is obtained if the beam is shifted to the left. Can be If the beam is on the recording track, the DC signal shown in Fig. 4E will not appear.
  • the signal at the point E indicates a tracking error.
  • FIG. 5 shows the optical system of the first embodiment.
  • a beam 23 emitted from a light source 22 such as a semiconductor laser is passed through a beam splitter 24, a collimator lens 25, and an objective lens 26 to an optical disk (not shown).
  • the beam 23 reflected from the optical disc passes through the objective lens 26, the collimator lens 25, and the beam splitter 24, and the light detection units 1 to It is incident on 4.
  • FIG. 6 and FIG. 7 show a second embodiment.
  • the second embodiment is a system for binarizing a reproduction output signal as digital data, for example, like a compact disk.
  • a binarizing circuit 27 is provided before the point A for obtaining a reproduced output signal, and a two-pole circuit is provided before the multiplier 12.
  • Circuit 28, that is, a circuit that outputs a + signal when the input signal is 1 and outputs a-signal when the input signal is 0 is provided.
  • Examples of the polarization circuit 28 include a method of adding a bias to a digital signal, a method of AC coupling, and a method of level conversion as shown in FIG. ⁇
  • the level conversion type bipolar circuit 28 shown in FIG. 5 comprises an NOT circuit 31, a resistor 32, a transistor 33, and a resistor 34.
  • a + V cc signal is input, a + V cc signal is output, and when a 0 signal is input, a -V signal is output.
  • the signal obtained from the bipolarization circuit 28 has substantially the same rising and falling edges, but is substantially the same as the signal shown in FIG. 4B. Therefore, also in the second embodiment, a tracking error signal can be obtained based on the same principle as in the first embodiment.
  • the multiplier 12 is used in each of the first and second embodiments.
  • the input signals are a and b
  • the output signal c is ,
  • -kz and k3 are coefficients for determining the amount of feedthrough, and are 0 when the multiplier 12 is an ideal one. However, if the multiplier 1 2 are omitted or when or null adjustment is inexpensive is, k 2 or k 3 are relatively rather large, it is impossible to ignore the influence. '
  • FIG. 8 and FIG. 9 show a third embodiment capable of coping with such a situation.
  • 9A to 9H show the waveforms of the signals at points A to H in FIG. 8, respectively.
  • the NOT circuit 35, the AND circuit 36, the NOR circuit 37, and the subtractor 38 The output signal has a waveform as shown in FIGS. 9B, 9D, 9E, and 9F, respectively. Therefore, also in the third embodiment, a tracking error signal can be obtained on the same principle as in the first embodiment described above.
  • the symbol at the point F which is the carrier input to the multiplier 12 has a frequency component with a low spectrum removed as shown in FIG. 9F. For this reason, it is possible to prevent the S / N of the tracking error signal from deteriorating.
  • FIGS. I0 to 12 show a fourth embodiment.
  • a phase switching amplifier 41 is used in place of the bipolar circuit 28 and the multiplier 12 of the second embodiment shown in FIG.
  • the second phase switching amplifier 41 is a non-inverting amplifier when the signal at the point A in FIG. 10 which is an input signal is 1: 1 is a non-inverting amplifier, and when it is 0, it is an inverting amplifier. In. It has been established.
  • the signal at point B in FIG. 12B as shown in FIG. 12B is detected by turning on and off the signal at point A in FIG. 10 as shown in FIG.
  • a signal as shown in FIG. 12C is obtained. Accordingly, a smoothed tracking error signal is obtained from the low-pass filter 13.
  • the first 1 Figure shows a specific circuit example of the phase switching amplifier 4 1, this phase switching amplifier 4 1, consists operational amplifier 4 2, sweep rate pitch 4 3, and a resistor R, ⁇ R 3 ing.
  • Switch 4 3 is off when the signal at point A is 1 and 0 It is configured to turn on when. Therefore, when the signal at point A is 1, the amplification A of the phase switching amplifier 41 is
  • the phase switching amplifier 41 can switch the phase by 180.
  • an accurate track can be obtained even for a compact disc in which the period of the reproduction output signal i changes or an optical disc in which a signal is recorded in a form in which the carrier frequency fluctuates.
  • a kicking error signal is obtained.
  • the configuration is 3 ⁇ 4, and it is easy to change to C. It is possible to obtain an accurate tracking error signal with the fg cost device.

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

Tracking error detecting apparatus used for an optical disk in which a signal is recorded so that the period of a regenerative output signal varies, such as a compact disk in which the lengths of a pit and a land vary within predetermined ranges. In this apparatus, the return light from a disk is received by four-divided optical detecting unit (1)-(4), and a regenerative output signal, which is obtained from an output of the sum of these reception signals, is delayed by about 1/4 of a minimum period thereof by a delay circuit (21). This delayed signal and a signal representative of a difference between the sum of outputs from a pair of diagonally opposite portions of the four-divided optical detecting unit (1)-(4) and that of outputs from the other pair of diagonally opposite portions thereof are multiplied in a multiplier (12), and a signal which is then passed through a low-pass filter (13) is determined as a tracking error signal. Thus, an accurate tracking error signal can be obtained by an inexpensive apparatus.

Description

明 細 書 光学ディ スクの ト ラ ッキング誤差検出装置 技術分野  Description Optical disk tracking error detector Technical field
本発明は、 ピッ ト とラ ン ドとの夫々の長さが所定の範囲内で変化 しているコ ンパク トディスクの様に再生出力信号の周期が変化する 形で信号が記録されている光学ディ スクの記録 ト ラ ックに対して ト ラ ツキングを行うために使用される ト ラ ツキング誤差検出装置に関 する ものである。  The present invention relates to an optical disc in which a signal is recorded in a form in which the period of a reproduction output signal changes like a compact disk in which the length of each of a pit and a land changes within a predetermined range. The present invention relates to a tracking error detection device used to track a disc recording track.
背景技術 Background art
第 1図は、 本発明の第 1従来例である特開昭 5 2 - 9 3 2 2 3号 (特公昭 5 6 — 3 0 6 1 0号) 公報に記載されている ト ラ ッキ ング 誤差検出装置を示している。  FIG. 1 shows a tracking system disclosed in Japanese Patent Application Laid-Open No. Sho 52-92332 (Japanese Patent Publication No. Sho 56-30610), which is a first conventional example of the present invention. 4 shows an error detection device.
この第 1従来例は、 光学デイ スク (図示せず) の記録 ト ラ ッ クの 方向 ( y軸方向) 及びこれと直交する方向 ( X軸方向) に夫々分割 されている 4個の光検出部 1 〜 4から成る光検出器を有しており、 加算器 5 〜 7 によって、 Λ点では第 2 A図に示す様な波形の再生出 力信号が得られる。 そして 9 0 * だけ位相を運らせる移相器 8 に再 生出力信号が入力されるので、 B点では第 2 B図に示す様な波形の 信号が得られる。  In this first conventional example, four light detecting sections are respectively divided into a recording track direction (y-axis direction) and an orthogonal direction (X-axis direction) of an optical disk (not shown). It has a photodetector consisting of sections 1 to 4, and a reproduced output signal having a waveform as shown in FIG. 2A is obtained at point に よ っ て by adders 5 to 7. Then, since the reproduced output signal is input to the phase shifter 8 which shifts the phase by 90 *, a signal having a waveform as shown in FIG. 2B is obtained at the point B.
一方、 減算器 1 1 は加.算器 5、 6からの出'力信号の減算を行うが. この減算器 1 1 からの出力信号 (対角差信号) である C点での信号 は、 第 2 C図に示す様に、 ビームが記録 ト ラ ックに対して右側へず れていれば再生出力信号より も 9 0 ' だけ位相が遅れており、 左側 へずれていれば 9 0 · だけ位相が進んでいる。 B点及び C点における信号は乗算器 1 2 によって乗算されるので、 D点では第 2 D図に示す様な波形の信号が得られる。 そして、 低域 濾波器 1 3を通過した後の E点では、 第 2 E図に示す様に、 ビーム が記録 ト ラ ックに対して右側へずれていれば正の直流信号が得られ、 左側へずれていれば負の直流信号が得られる。 また、 ビームが記録 トラ ツク上にあれば、 第 2 E図に示した直流信号は現れない。 On the other hand, the subtracter 11 subtracts the output signals from the adders 5 and 6, but the signal at point C which is the output signal (diagonal difference signal) from the subtracter 11 is As shown in Fig. 2C, if the beam is shifted to the right with respect to the recording track, the phase is delayed by 90 'from the reproduced output signal, and if the beam is shifted to the left, 90 · Only the phase is advanced. Since the signals at the points B and C are multiplied by the multiplier 12, a signal having a waveform as shown in FIG. 2D is obtained at the point D. At point E after passing through the low-pass filter 13, as shown in FIG. 2E, a positive DC signal is obtained if the beam is shifted to the right with respect to the recording track, If it is shifted to the left, a negative DC signal is obtained. If the beam is on the recording track, the DC signal shown in Fig. 2E will not appear.
従って、 E点における信号が トラ ッキング誤差を示しており、 こ の トラ ッキング誤差信号に基づいて ト ラ ツキングサーボが行う こと ができる。  Therefore, the signal at point E indicates a tracking error, and tracking servo can be performed based on the tracking error signal.
また本発明の第 2従来例として、 特開昭 5 7 — T 4 8 3 7号公報 に記載されている様に、 第 1図の A点における信号の立上り と立下 り との双方のゼロク ロス点で C点における信号を別個にサ ンプリ ン グし、 サ ンプリ ング'した信号同士の減箕を行い、 こ の減算の結果の 信号を ト ラ ッ キ ング誤差信号とする方式がある。  In addition, as a second conventional example of the present invention, as described in Japanese Patent Application Laid-Open No. 57-T48737, both the rising and falling of the signal at point A in FIG. There is a method in which the signal at point C is sampled separately at the loss point, the signals that have been sampled are subtracted, and the signal resulting from this subtraction is used as a tracking error signal.
更にまた本発明の第 3従来例として、 特開昭 5 7 一 1 8 1 4 3 3 号公報に記載されている様に、 第 1 図の加箕器 5 と 6 との夫々の出 力信号の位相情報のみを ト ラ ッキング誤差信号とする方式もある。  Further, as a third conventional example of the present invention, as described in Japanese Patent Application Laid-Open No. 57-118143, the output signals of the respective Kaminos 5 and 6 in FIG. There is also a method in which only the phase information is used as a tracking error signal.
ところが上述の第 1従来例の方式は、 再生出力信号を 9 0 ' だけ 移相する様にしているので、 単一キ ヤ リ ャの場合でしか有効ではな い。 つまり、 コ ンパク トディ スク等で用いられている N R Z形式で ある E F M形式の場合ゃキャ リ ャの周波数が大幅に変動する場合に は、 9 0 ' の移相を広帯域で行う ことが函難 あり、 正確な ト ラ ッ キング誤差信号を得ることができないという問題点がある。  However, the method of the first conventional example described above shifts the phase of the reproduced output signal by 90 ', and is effective only in the case of a single carrier. In other words, in the case of the EFM format, which is the NRZ format used in compact disks, etc., it is difficult to perform the 90 'phase shift over a wide band when the frequency of the carrier fluctuates significantly. However, there is a problem that an accurate tracking error signal cannot be obtained.
また上述の第 2従来例の方式は、 高速のスィ ツチ素子等を必要と して構成が複雑であり I C化も容易にできないために、 コス トが高 いとい う問題点がある。 更にまた上述の第 3従来例の方式は、 位相情報のみを用いて振幅 情報を用いていないために、 ノ イ ズ等に弱い (プレイ性が悪い) 、 つまり正確な ト ラ ッキング誤差信号を得ることができないという問 題点がある。 In addition, the method of the second conventional example requires a high-speed switch element and the like, has a complicated configuration, and cannot be easily integrated into an IC. Therefore, there is a problem that the cost is high. Furthermore, the method of the third conventional example described above uses only phase information and does not use amplitude information, so that it is weak to noise (poor playability), that is, an accurate tracking error signal is obtained. There is a problem that you cannot do that.
発明の開示 Disclosure of the invention
本発明による光学ディ スクの ト ラ ッキ ング誤差検出装置は、 光学 ディ スクの記録 ト ラ ックの接線方向とこの接線方向に直角な方向と に夫々分割されることによって形成されている第 1 、 第 2、 第.3及 び第 4の光検出部から成っており前記光学ディ スクからの反射光を 検出する光検出器と、 前記第 1 、 第 2、 第 3及び第 4の光検出部の 夫々の検出出力の和信号である第 1 の信号に基づく第 2 の信号と対 角線上にある前記第 1及び第 3 の光検出部の夫々の検出出力の和信 号及び前記第 2及び第 4の光検出部の夫々の検出出力の和信号の差 である第 3 の信号とを乗ずる乗算器と、 この乗算器の出力が供給さ れる低域濾波器とを夫々具備し、 この低域濾波器の出力から 卜 ラ ッ キ ング誤差信号を得る様にした光学デイ スクの ト ラ ッキング誤差検 出装置において、 前記光学デイ スクには前記第 1 の信号の周期が変 化する形で信号が記録されており、 前記第 2 の信号は遅延回路によ つて前記第 1 の信号をその最小周期の略 1 / 4周期だけ遅延させた 信号である こ とを特徴と している。  An optical disc tracking error detecting device according to the present invention is formed by dividing a recording track of an optical disc into a tangential direction of a recording track and a direction perpendicular to the tangential direction. A photodetector comprising first, second, third and fourth photodetectors for detecting reflected light from the optical disc; and first, second, third and fourth light detectors. A second signal based on a first signal, which is a sum signal of the respective detection outputs of the detection unit, and a sum signal of the respective detection outputs of the first and third light detection units on a diagonal line and the second signal. And a third signal, which is the difference between the sum signals of the respective detection outputs of the fourth photodetector, and a low-pass filter to which the output of the multiplier is supplied. An optical disk track that obtains a tracking error signal from the output of the low-pass filter. In the error detecting device, a signal is recorded on the optical disk in a form in which the period of the first signal changes, and the second signal is obtained by converting the first signal by a delay circuit. It is characterized by being a signal delayed by about 1/4 period of the minimum period.
. 従って、 本発明による ト ラ ッキング誤差検出装置によれば、 キヤ リ ャ周波数が変勳する形で信号が記録されて'いる光学ディ スクに対 しても正確な ト ラ ッキング誤差信号が得られる。  Therefore, according to the tracking error detecting device of the present invention, an accurate tracking error signal can be obtained even for an optical disc on which a signal is recorded in a form in which the carrier frequency changes. Can be
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の第 1従来例のブロ ッ ク図、 第 2図は第 1従来例 における信号の波形図である。 第 3図〜第 1 2図は本発明の実施例を示しており、 第 3図は第 i 実施例のプロ ック図、 第 4図は第 1実施例における信号の波形図、 第 5図は第 1実施例の光学系の斜視図、 第 6図は第 2実施例のプロ ック図、 第 7図は第 2実施例の要部の回路図、 第 8図は第 3実施例 のプロ ック図、 第 9図は第 3実施例における信号の波形図、 第 1 0 図は第 4実施例のブロ ック図、 第 1 1図は第 4実施例の要部の回路 図、 第 1 2図は第 4実施例における信号の波形図である。 FIG. 1 is a block diagram of a first conventional example of the present invention, and FIG. 2 is a signal waveform diagram in the first conventional example. 3 to 12 show an embodiment of the present invention. FIG. 3 is a block diagram of the i-th embodiment, FIG. 4 is a signal waveform diagram in the first embodiment, and FIG. Is a perspective view of the optical system of the first embodiment, FIG. 6 is a block diagram of the second embodiment, FIG. 7 is a circuit diagram of a main part of the second embodiment, and FIG. 8 is a diagram of the third embodiment. Block diagram, FIG. 9 is a signal waveform diagram in the third embodiment, FIG. 10 is a block diagram of the fourth embodiment, FIG. 11 is a circuit diagram of a main part of the fourth embodiment, FIG. 12 is a waveform diagram of signals in the fourth embodiment.
発明を実施するための最良の形態 . BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の第 1 〜第 4実施例を第 3図〜第 1 2図を参照しな がら説明する。  Hereinafter, first to fourth embodiments of the present invention will be described with reference to FIGS. 3 to 12. FIG.
第 3図〜第 5図が、 第 1実施例を示している。 この第 1 実施例は、 第 3図に示す様に、 移相器 8 の替わりに遅延回路 2 1 が用いられて いることを除いて記述の第 1従来例と実質的に同様の構成であって よい。 - 再生出力信号のキャ リ ャ周波数が単一である場合は、 遅延回路 2 1 による遅延時間てをキヤ リ ャ周期の 1 /' 4に設定すれば、 9 0 , の位相遅れがあることと等価になる。 従ってこの場合は、 既述の第 1従来例と同じ原理で、 ト ラ ッキ ング誤差信号を得るこ とができる。 再生出力信号が N R Z形式の例えば E F M形式である場合は、 最 短ピッ ト長の略 1 2つまり最小周期の略 1 ノ 4周期に、 遅延時間 てを設定する。 従ってコ ンパク トディ スクの場合であれば、 最短ピ ッ ト長が約 7 0 O n s であるので、 遅延時間 : r = 3 5 0 n s と設定 する。 FIG. 3 to FIG. 5 show the first embodiment. The first embodiment has substantially the same configuration as the first conventional example described above, except that a delay circuit 21 is used in place of the phase shifter 8 as shown in FIG. You can. -If the carrier frequency of the reproduction output signal is single, setting the delay time of the delay circuit 21 to 1 / '4 of the carrier cycle will result in a phase delay of 90, Become equivalent. Therefore, in this case, a tracking error signal can be obtained according to the same principle as the first conventional example described above. If the playback output signal is in the NRZ format, for example, the EFM format, the delay time is set to approximately 12 of the shortest bit length, ie, approximately 1 to 4 periods of the minimum period. Thus in the case of co Npaku Toddy disk, since the minimum peak Tsu preparative length is about 7 0 O ns, the delay time: setting the r = 3 5 0 ns.
この結果、 第 4 A図に示すような第 3図の A点における再生出力 信号は、 遅延回路 2 1 によって時間 rだけ遅延されて、 第 3図の B 点では第 4 B図に示す様な信号となる。 一方、 C点における信号は、 再生出力信号の立上り及び立下りの ゼロク ロス点を中心にして、 互いに反転して生ずる。 そしてこの場 合、 第 4 C図に示す様に、 ビームが記録 ト ラ ックに対して右側へず れていれば立上りで負、 立下りで正となり、 左側へずれていれば立 上りで正、 立下りで負となる。 As a result, the reproduced output signal at the point A in FIG. 3 as shown in FIG. 4A is delayed by the time r by the delay circuit 21 and at the point B in FIG. 3 as shown in FIG. 4B. Signal. On the other hand, the signal at point C is generated by inverting each other around the zero-cross point of the rising and falling of the reproduction output signal. In this case, as shown in Fig. 4C, if the beam is shifted to the right with respect to the recording track, it becomes negative at the rise, positive at the fall, and rises if it is shifted to the left. Positive, negative on falling.
この結果、 D点では第 4 D図に示す様な波形の信号が得られる。 また E点では、 第 4 E図に示す様に、 ビームが記録 ト ラ ッ クに対し て右側へずれていれば正の直流信号が得られ、 左側へずれていれば 負の直流信号が得られる。 そして、 ビームが記録 ト ラ ック上にあれ ば、 第 4 E図に示した直流信号は現れない。  As a result, a signal having a waveform as shown in FIG. 4D is obtained at point D. At point E, as shown in Fig. 4E, a positive DC signal is obtained if the beam is shifted to the right with respect to the recording track, and a negative DC signal is obtained if the beam is shifted to the left. Can be If the beam is on the recording track, the DC signal shown in Fig. 4E will not appear.
つまり、 既述の第 1従来例と同様に、 E点における信号が ト ラ ッ キング誤差を示している。  That is, similarly to the first conventional example described above, the signal at the point E indicates a tracking error.
第 5図は、 この第 1実施例の光学系を示している。 半導体レーザ 等の光源 2 2から射出されたビーム 2 3 は、 ビームスプリ ッタ 2 4、 コ リ メ ー タ レ ンズ 2 5及び対物レ ンズ 2 6 を介して、 光学デイ ス ク (図示せず) へ入射する。 またこの光学ディ スクから反射されたビ -ム 2 3 は、 対物レ ンズ 2 6 、 コ リ メ ータ レ ンズ 2 5及びビームス プリ ッタ 2 4を介して、 既述の光検出部 1 〜 4へ入射する。  FIG. 5 shows the optical system of the first embodiment. A beam 23 emitted from a light source 22 such as a semiconductor laser is passed through a beam splitter 24, a collimator lens 25, and an objective lens 26 to an optical disk (not shown). ). The beam 23 reflected from the optical disc passes through the objective lens 26, the collimator lens 25, and the beam splitter 24, and the light detection units 1 to It is incident on 4.
第 6図及び第 7図は、 第 2実施例を示している。 こ の第 2実施例 は、 例えばコ ンパク トディ スクの様に、 再生出力信号をディ ジタル データ として 2値化する システムである。  FIG. 6 and FIG. 7 show a second embodiment. The second embodiment is a system for binarizing a reproduction output signal as digital data, for example, like a compact disk.
従ってこ の第 2実施例では、 第 6図に示す'様に、 再生出力信号を 得る A点の前に 2値化回路 2 7が設けられており、 更に乗算器 1 2 の前に 2極化回路 2 8、 つまり入力信号が 1 の場合には +の信号を 出力し入力信号が 0 の場合には -の信号を出力する回路が設けられ てい る。 2極化回路 2 8 としては、 ディ ジタル信号にバイ アスを加える方 式、 交流結合する方式、 第 7図に示す様なレベル変換する方式等の ものがある。 · Therefore, in the second embodiment, as shown in FIG. 6, a binarizing circuit 27 is provided before the point A for obtaining a reproduced output signal, and a two-pole circuit is provided before the multiplier 12. Circuit 28, that is, a circuit that outputs a + signal when the input signal is 1 and outputs a-signal when the input signal is 0 is provided. Examples of the polarization circuit 28 include a method of adding a bias to a digital signal, a method of AC coupling, and a method of level conversion as shown in FIG. ·
第 Ί図に示すレベル変換方式の 2極化回路 2 8 は、 N 0 T回路 3 1 、 抵抗 3 2、 ト ラ ンジスタ 3 3及び抵抗 3 4から成っている。 そ して + V ccの信号が入力されると + V ccの信号が出力され、 0 の信 号が入力されると - V の信号が出力される。  The level conversion type bipolar circuit 28 shown in FIG. 5 comprises an NOT circuit 31, a resistor 32, a transistor 33, and a resistor 34. When a + V cc signal is input, a + V cc signal is output, and when a 0 signal is input, a -V signal is output.
2極'化回路 2 8から得られた信号は、 立上り及び立下りのェ.ッ ジ が急ではあるが、 第 4 B図に示した信号と略同等の信号である。 従 つてこの第 2実施例でも、 既述の第 1実施例と同様の原理で ト ラ ッ キング誤差信号が得られる。  The signal obtained from the bipolarization circuit 28 has substantially the same rising and falling edges, but is substantially the same as the signal shown in FIG. 4B. Therefore, also in the second embodiment, a tracking error signal can be obtained based on the same principle as in the first embodiment.
と ころで、 上述の第 1及び第 2 の何れの実施例においても乗算器 1 2を用いたが、 実際の乗算器 1 2 では、 入力信号を a 、 b とする ' と、 出力信号 c は、  In this case, the multiplier 12 is used in each of the first and second embodiments.In the actual multiplier 12, the input signals are a and b, and the output signal c is ,
c = k [ a b k z a + k 3 b  c = k [a b k z a + k 3 b
k i > > k 2 , k 3  k i>> k 2, k 3
と される。 - k z , k 3 は、 通り抜け量 (フィ ー ドスルー) を決定する係数で あり、 乗算器 1 2が理想的なものである場合は 0である。 しかし、 乗算器 1 2が安価なものである場合やヌ ル調整等を省略されている 場合は、 k 2 または k 3 が比較的大き く 、 その影響を無視すること ができない。 ' And -kz and k3 are coefficients for determining the amount of feedthrough, and are 0 when the multiplier 12 is an ideal one. However, if the multiplier 1 2 are omitted or when or null adjustment is inexpensive is, k 2 or k 3 are relatively rather large, it is impossible to ignore the influence. '
k 2 または k 3 が比較的大きいと、 キャ リ アが漏れて、 ト ラ ツキ ング誤差信号の S が悪化する。 特にピッ ト長が長い場合は、 漏 れ信号のスぺク ト ラムが低い周波数成分にまで広がるので、 低域濾 波器 1 3で十分に濾波することができない場合がある。 第 8図及び第 9図は、 この様な事態にも対処するこ とができる第 3実施例を示している。 第 9 A図〜第 9 H図が第 8図の夫々 A〜 H 点における信号の波形を示しており、 N O T回路 3 5、 A N D回路 3 6、 N 0 R回路 3 7及び減算器 3 8 の出力信号は、 夫々第 9 B図、 第 9 D図、 第 9 E図及び第 9 F図に示す様な波形を有している。 従 つて、 この第 3実施例でも既述の第 1実施例と同様の原理で ト ラ ッ キング誤差信号が得られる。 When k 2 or k 3 is relatively large, leaks calibration Li A, S bets la luck ring error signal is deteriorated. In particular, when the pit length is long, the spectrum of the leakage signal spreads to low frequency components, so that the low-pass filter 13 may not be able to sufficiently filter. FIG. 8 and FIG. 9 show a third embodiment capable of coping with such a situation. 9A to 9H show the waveforms of the signals at points A to H in FIG. 8, respectively.The NOT circuit 35, the AND circuit 36, the NOR circuit 37, and the subtractor 38 The output signal has a waveform as shown in FIGS. 9B, 9D, 9E, and 9F, respectively. Therefore, also in the third embodiment, a tracking error signal can be obtained on the same principle as in the first embodiment described above.
しかし乗算器 1 2へのキヤ リ ャ入力である F点における ¾号は、 第 9 F図に示す様に、 スぺク ト ラムが低い周波数成分が除去されて いる。 このために、 ト ラ ッ キ ング誤差信号の S / Nの悪化を防止す る こ とができる。  However, the symbol at the point F which is the carrier input to the multiplier 12 has a frequency component with a low spectrum removed as shown in FIG. 9F. For this reason, it is possible to prevent the S / N of the tracking error signal from deteriorating.
第 i 0図〜第 1 2図は、 第 4実施例を示している。 この第 4実施 例は、 第 6図に示した第 2実施例の 2極化回路 2 8及び乗算器 1 2 の替わりに、 位相切換増幅器 4 1 を用いたものである。  FIGS. I0 to 12 show a fourth embodiment. In the fourth embodiment, a phase switching amplifier 41 is used in place of the bipolar circuit 28 and the multiplier 12 of the second embodiment shown in FIG.
二の位相切換増幅器 4 1 は入力信号である第 1 0図の A点におけ る信号の^ f里が 1 のとき :.ま非反転増幅器となり 、 0 のときは反転増 幅器となる ^に. ϋ成されている。  The second phase switching amplifier 41 is a non-inverting amplifier when the signal at the point A in FIG. 10 which is an input signal is 1: 1 is a non-inverting amplifier, and when it is 0, it is an inverting amplifier. In. It has been established.
つまり、 第 i 2 A図に示す様な第 1 0図の A点における信号のォ ン—オフによって、 第 1 2 B図に示す様な第 i 0図の B点における 信号が検波され、 第 1 0図の C点では第 1 2 C図に示す様な信号が 得られる。 従って、 低域濾波器 1 3からは平滑された ト ラ ッキ ング 誤差信号が得られる。  That is, the signal at point B in FIG. 12B as shown in FIG. 12B is detected by turning on and off the signal at point A in FIG. 10 as shown in FIG. At point C in FIG. 10, a signal as shown in FIG. 12C is obtained. Accordingly, a smoothed tracking error signal is obtained from the low-pass filter 13.
第 1 1 図は、 位相切換増幅器 4 1 の具体的な回路例を示しており、 この位相切換増幅器 4 1 は、 演算増幅器 4 2 、 スィ ッチ 4 3、 及び 抵抗 R , 〜 R 3 から成っている。 The first 1 Figure shows a specific circuit example of the phase switching amplifier 4 1, this phase switching amplifier 4 1, consists operational amplifier 4 2, sweep rate pitch 4 3, and a resistor R, ~ R 3 ing.
スィ ッチ 4 3 は、 A点における信号が 1 のときにオフとなり、 0 のときはオ ンになる様に構成されている。 従って、 A点における信 号が 1 のときの位相切換増幅器 4 1 の増幅度 Aは、 Switch 4 3 is off when the signal at point A is 1 and 0 It is configured to turn on when. Therefore, when the signal at point A is 1, the amplification A of the phase switching amplifier 41 is
R 2 R 2  R 2 R 2
A = 1 + = 1  A = 1 + = 1
• R i R 1  • R i R 1
となり、 A点における信号が 0 のときば、 R z When the signal at point A is 0, R z
A = =一 1 ( R , = R 2 ) A = = 1 1 (R, = R 2 )
R 1 R 1
となる。 つま り、 この位相切換増幅器 4 1 によ って、 位相を 1 8 0 だけ切換える こ とができ る。 Becomes That is, the phase switching amplifier 41 can switch the phase by 180.
産業上の利用分野 Industrial applications
上述の如く 、 本発明によれば、 再生出力 i 号の周期が変化するコ ンパク トディ スクやキヤ リ ャ周波数が変動する形で信号が記録され ている光学デイ スクに対しても正確な ト ラ ツキ ング誤差信号が得ら れる。  As described above, according to the present invention, an accurate track can be obtained even for a compact disc in which the period of the reproduction output signal i changes or an optical disc in which a signal is recorded in a form in which the carrier frequency fluctuates. A kicking error signal is obtained.
従って、 構成が ¾であり [ C化.も容易であるの 、 正確な ト ラ ッ キ ング誤差信号を fgコ ス ト の装置で得る こ とができ るつ  Therefore, the configuration is ¾, and it is easy to change to C. It is possible to obtain an accurate tracking error signal with the fg cost device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光学ディ スクの記録 ト ラ ッ ク の接線方向とこの接線方向に直 角な方向とに夫々分割されることによつて形成されている第 1 、 第 2 、 第 3及び第 4 の光検出部から成っており前記光学デイ スクから の反射光を検出する光検出器と、 1. The first, second, third and fourth light beams formed by being divided into a tangential direction of a recording track of an optical disc and a direction perpendicular to the tangential direction, respectively. A photodetector comprising a detection unit for detecting reflected light from the optical disk;
前記第 1 、 第 2、 第 3及び第 4の光検出部の夫々の検出出力の和 信号である第 1 の信号に基づく第 2 の信号と、対角線上にある前記第 丄及び第 3 の光検出部の夫々の検出出力の和信号及び前記第 2及び 第 4の光検出部の夫々の検出出力の和信号の差である第 3 の信号と を乗ずる乗算器と、  A second signal based on a first signal, which is a sum signal of the respective detection outputs of the first, second, third, and fourth light detection units, and the third and third lights on a diagonal line; A multiplier for multiplying a sum signal of the respective detection outputs of the detection unit and a third signal which is a difference between the sum signals of the respective detection outputs of the second and fourth light detection units;
この乗算器の出力が供給される低域濾波器とを夫々具備し、 この低域濾波器の出力から ト ラ ツキング'誤差信号を得る様にした 光学ディ スク の ト ラ ッキ ング誤差検出装置において、  A tracking error detecting device for an optical disc, comprising a low-pass filter to which the output of the multiplier is supplied, and a tracking error signal obtained from the output of the low-pass filter. At
前記光学デイ スク には前記第 1 の信号の周期が変化する形で信号 が記^されており 、  A signal is written on the optical disk such that the period of the first signal changes.
前記第 2 の信号は遅延回路によつて前記第 1 の信号をその最小周 期の略 1 / 4周期だけ遅延させた信号であることを特徵とする光学 ディ スクの ト ラ ッ キ ング誤差検出装置。  The second signal is a signal obtained by delaying the first signal by a delay circuit by approximately 1/4 period of its minimum period, and the tracking error detection of an optical disc is performed. apparatus.
2 . 前記第 2 の信号は前記第 1 の信号を 2値化回路によつて 2値 化させこの 2値化した信号を遅延回路によって前記第 1 の信号の最 小周期の略 1 / 4周期だけ遅延させこの遅延した信号を 2極化回路 によって 2極化させた信号であることを特徴とする請求の範囲第 1 項に記載の光学デイ スクの ト ラ ツキング誤差検出装置。  2. The second signal is obtained by binarizing the first signal by a binarizing circuit, and the binarized signal is delayed by a delay circuit to approximately one-fourth of the minimum period of the first signal. 2. The tracking error detecting device for an optical disk according to claim 1, wherein the signal is a signal obtained by delaying the delayed signal only by a bipolar circuit.
PCT/JP1986/000160 1985-04-05 1986-04-03 Tracking error detecting apparatus for optical disks WO1986005914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60/72361 1985-04-05
JP7236185A JPS61230637A (en) 1985-04-05 1985-04-05 Tracking error detecting device

Publications (1)

Publication Number Publication Date
WO1986005914A1 true WO1986005914A1 (en) 1986-10-09

Family

ID=13487098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000160 WO1986005914A1 (en) 1985-04-05 1986-04-03 Tracking error detecting apparatus for optical disks

Country Status (2)

Country Link
JP (1) JPS61230637A (en)
WO (1) WO1986005914A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793220A2 (en) * 1992-07-31 1997-09-03 Matsushita Electric Industrial Co., Ltd. Optical data recording/reproducing apparatus
US7113461B2 (en) * 2003-02-14 2006-09-26 Industrial Technology Research Institute Circuit for tracking error signal detection on an optical storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695190B2 (en) * 1988-07-04 1997-12-24 株式会社リコー Tracking error signal detection method and optical information recording medium
DE69727989T2 (en) 1996-09-25 2004-07-22 Victor Company of Japan, Ltd., Yokohama Device for determining the type of a disk, device for reproducing an optical disk

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191839A (en) * 1981-05-20 1982-11-25 Trio Kenwood Corp Information reader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191839A (en) * 1981-05-20 1982-11-25 Trio Kenwood Corp Information reader

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793220A2 (en) * 1992-07-31 1997-09-03 Matsushita Electric Industrial Co., Ltd. Optical data recording/reproducing apparatus
EP0793220A3 (en) * 1992-07-31 1998-08-19 Matsushita Electric Industrial Co., Ltd. Optical data recording/reproducing apparatus
US7113461B2 (en) * 2003-02-14 2006-09-26 Industrial Technology Research Institute Circuit for tracking error signal detection on an optical storage medium

Also Published As

Publication number Publication date
JPS61230637A (en) 1986-10-14

Similar Documents

Publication Publication Date Title
KR970001373B1 (en) Magnet-optical disk reproducing apparatus
JPH0368456B2 (en)
JPH0460927A (en) Optical pickup
USRE43105E1 (en) Tracking error detection method and optical disc reproduction apparatus using the same
JP2630151B2 (en) Optical disk drive
WO1986005914A1 (en) Tracking error detecting apparatus for optical disks
US4845701A (en) Optical disc player for optically reproducing recorded information on an optical information disc into an RF signal
JP2710709B2 (en) Optical recording / reproducing device
JPH0836773A (en) Method and apparatus for detecting tilt of optical information head
JPS6134769A (en) Read signal correcting device of disc device
JP3011491B2 (en) Tracking error detection device
KR100516725B1 (en) Method of producing tracking error signals in optical pickup and apparatus thereof
JPS6113447A (en) Detecting device for tracking error
JPS6220144A (en) Tracking controller
JPS6052936A (en) Generating circuit of tracking error signal for disk record
JPS61940A (en) Method of tracking of optical disk reproducing device
KR100556692B1 (en) Reproductive Apparatus For Optical Disc
JP2823017B2 (en) Optical disc playback device
JPS58203636A (en) Method and device for detection of tracking error signal with information reading device
JPH02254635A (en) Pregroup crossing signal detector
JPH09265642A (en) Tracking error detecting circuit and method therefor
JPH07129972A (en) On-track detection circuit for optical desk device
JPS63241772A (en) Disk reproducing device
JPS6185674A (en) Read signal correcting device of disk device
JPH08235765A (en) Optical recording medium discriminating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL