JPS6113447A - Detecting device for tracking error - Google Patents

Detecting device for tracking error

Info

Publication number
JPS6113447A
JPS6113447A JP13460384A JP13460384A JPS6113447A JP S6113447 A JPS6113447 A JP S6113447A JP 13460384 A JP13460384 A JP 13460384A JP 13460384 A JP13460384 A JP 13460384A JP S6113447 A JPS6113447 A JP S6113447A
Authority
JP
Japan
Prior art keywords
difference signal
signal
tracking error
output
focused spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13460384A
Other languages
Japanese (ja)
Inventor
Kenji Tatsumi
辰巳 賢二
Riichi Saeki
佐伯 利一
Tadashi Matsushita
松下 匡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13460384A priority Critical patent/JPS6113447A/en
Publication of JPS6113447A publication Critical patent/JPS6113447A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/094Methods and circuits for servo offset compensation

Abstract

PURPOSE:To obtain a tracking error signal having no offset error by decomposing the tracking error signal into a part generating at a land part and a part generated at a pit part, and detecting an offset quantity from the tracking error signal generated at the land part. CONSTITUTION:An RF signal 13 outputted by an operational amplifier 16 is inputted to a comparator 18 and a comparator 19. An error signal (DFT signal) outputted by an operational amplifier 17 is branched to gate circuits 20 and 21; the gate circuit 20 samples the input according to the output of the comparator 18 and the gate circuit 21 samples the input according to the output of the comparator 19. Their outputs are smoothed by LPFs 22 and 23 and inputted to a differential amplifier 9. The output of an LPF22 contains the tracking error signal and the offset quantity due to a slant of a disk, and the output of an LPF23 is a signal part picked up from the land part, so it contains only the offset quantity due to the disk slant. Consequently, the difference between the outputs of the LPFs 22 and 23 is amplified by an operational amplifier 9 to obtain the tracking error signal 10 having a small offset quantity.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は光学式ディスクプレーヤ(opticald
isk player )等における円盤状記録媒体(
以下ディスクと呼ぶ)に記録された記録ピット(pit
)から光学的に情報を読取る光ピツクアップに係シ、特
にその光ピツクアップのトラッキングのための誤差信号
を検出するトラッキング誤差検出装置に関するものであ
る。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to an optical disc player.
disk-shaped recording medium (
Recording pits (hereinafter referred to as disks) recorded on
The present invention relates to an optical pickup that optically reads information from ), and more particularly to a tracking error detection device that detects an error signal for tracking the optical pickup.

記録ピットに記録された情報を読取るためには、磁気デ
ィスクと磁気ヘッドとの関係と同じように、光ピツクア
ップの光をピックアップする点と個々のピットとの間の
相対運動を必要とし、また磁気ディスク装置におけるト
ラッキングと同様に光ピツクアップが光をピックアップ
する点を、個々のピットの中心点が移動する線上に常に
正確に保っていなけれはならない。
In order to read the information recorded in the recording pits, similar to the relationship between a magnetic disk and a magnetic head, relative movement is required between the light pickup point of the optical pickup and each pit, and magnetic Similar to tracking in a disk device, the point at which the optical pickup picks up the light must always be kept accurately on the line along which the center point of each pit moves.

このようなトラッキングのための誤差信号は光ピツクア
ップのピックアップした光自体から検出された。
Such an error signal for tracking is detected from the light itself picked up by the optical pickup.

〔従来技術〕[Prior art]

第1図は従来のこの柚のトラッキング誤差検出装置を示
す図面であって、図においてはjは半導体レーザ、(2
1はビームスプリッタ、13)はコリメータレンズ、(
4)は対物レンズ、(5)はディスク、(6)はピット
、(7a)、(7b)はそれぞれ回折光、;8)は光検
出器で(8a)、(8b)の2部分から構成され、(9
)は差動増幅器、ll01はトラッキング誤差信号、f
lvはアクチュエータ、(2)は増幅器、α譜はRF 
(radio frequency)信号でめる。
FIG. 1 is a drawing showing a conventional tracking error detection device for this Yuzu, and in the figure, j is a semiconductor laser, (2
1 is a beam splitter, 13) is a collimator lens, (
4) is the objective lens, (5) is the disk, (6) is the pit, (7a) and (7b) are the diffracted lights, respectively; 8) is the photodetector, which consists of two parts (8a) and (8b). (9
) is a differential amplifier, ll01 is a tracking error signal, f
lv is actuator, (2) is amplifier, α score is RF
(radio frequency) signal.

普通の場合は信号によってFMした高周波をリミッタに
より振幅制限して記録信号を得ているので、増幅器(2
)の出力はRF倍信号なる。
Normally, the recording signal is obtained by limiting the amplitude of the high frequency FM signal using a limiter, so an amplifier (2
) is an RF multiplied signal.

第1図においてIII 、 121 、13) 、14
1 、 (8a)、(8b)は固定され、ディスク(5
)の回転につれてピッ)+81a光ビームの焦点位置の
近傍、すなわち集束スポットでは紙面に垂直な方向に移
動する。
In Figure 1, III, 121, 13), 14
1, (8a), (8b) are fixed, and the disk (5
) rotates, the vicinity of the focal position of the +81a light beam, that is, the focused spot, moves in a direction perpendicular to the plane of the paper.

′半導体レーザ(1)から放射される光は、ビームスプ
リッタ12j1 コリメータレンズ(3)を通り対物レ
ンズ(41に入射し、この対物レンズ(41によりピッ
ト161上に集光される。ピット(61上に集光された
光は、ピット(6)により回折光(7a)と回折光(7
b)とを生じ、それらは反射される。反射された回折光
(7a)と回折光(7b)とは対物レンズ(41、コリ
メータレンズ(3)を遡りビームスプリッタ(21によ
り光路が90゜曲げられ、光検出器181に入射する。
'The light emitted from the semiconductor laser (1) passes through the beam splitter 12j1 and the collimator lens (3), enters the objective lens (41), and is focused onto the pit 161 by the objective lens (41. The light focused on the pit (6) separates the diffracted light (7a) and the diffracted light (7
b) and they are reflected. The reflected diffracted light (7a) and diffracted light (7b) go back through the objective lens (41) and the collimator lens (3), have their optical paths bent by 90 degrees by the beam splitter (21), and enter the photodetector 181.

第2図は第1図の光検出器(8)の構成と動作を説明す
る説明図で、第1図と同一符号は同一部分を示す。受光
面Jd (8a)、(8b)に示すように2分割され、
互に電気的に絶縁されておシ、独立の光検出器(8a)
、(8b)として動作する。この明細誉では(8a)を
右側光検出器、(8b)を左側光検出器という。
FIG. 2 is an explanatory diagram illustrating the configuration and operation of the photodetector (8) in FIG. 1, and the same reference numerals as in FIG. 1 indicate the same parts. The light receiving surface Jd is divided into two as shown in (8a) and (8b),
Independent photodetectors (8a) that are electrically isolated from each other
, (8b). In this specification, (8a) is referred to as the right side photodetector, and (8b) is referred to as the left side photodetector.

オ1)図に示す例は光ビームの集束スポットがピット(
6)の中央(図面上の左右方向に関して)Kあり、すな
わちトラッキング誤差がない場合を示し、この場合はピ
ット(6)によって生じる回折光(7a)と回折光(7
b)とは光軸を中心として左右対称な形となり、反射さ
れて光検出器(8a)、(8b)に入射される光量が互
に等しくなる。従って差動増幅器(9)の両方の入力端
子の電圧は互に等しくなり、差動増幅器(9)の出力電
圧であるトラッキング誤差信号duは0となり、アクチ
ュエータdυは動作しない。増幅器(2)では光検出器
(8a)、(8b)の出力電圧が互に加算して増幅され
RF倍信号3)を出力する。
E1) In the example shown in the figure, the focused spot of the light beam is a pit (
6) (with respect to the horizontal direction in the drawing), there is K, that is, there is no tracking error. In this case, the diffracted light (7a) generated by the pit (6) and the diffracted light (7
b) is symmetrical with respect to the optical axis, and the amounts of light reflected and incident on the photodetectors (8a) and (8b) are equal to each other. Therefore, the voltages at both input terminals of the differential amplifier (9) become equal to each other, the tracking error signal du which is the output voltage of the differential amplifier (9) becomes 0, and the actuator dυ does not operate. In the amplifier (2), the output voltages of the photodetectors (8a) and (8b) are added together and amplified to output an RF multiplied signal 3).

第3図は第1図に示す装置でトラッキング誤差が生じた
場合を示す図面であって、第1図と同一符号は同一部分
を示し、光ビームの集光点がピット(6)の中央より左
(図面上で)にずれた場合を表している。ピットの左側
に入射したレーザ光の回折効果が少くなって回折光(7
b)と回折光(7a)は非対称にな多1反射光は左側が
強くなる。したがって、光検出9 (8b)に入射する
光量が光検出器(8a)に入射する光量より大きくなり
、その結果トラッキング誤差信号1)01は負になる。
FIG. 3 is a diagram showing a case where a tracking error occurs in the apparatus shown in FIG. 1, where the same reference numerals as in FIG. This shows the case where it is shifted to the left (on the drawing). The diffraction effect of the laser beam incident on the left side of the pit is reduced and the diffracted light (7
b) and the diffracted light (7a) are asymmetrical, and the reflected light becomes stronger on the left side. Therefore, the amount of light incident on the photodetector 9 (8b) becomes greater than the amount of light incident on the photodetector (8a), and as a result, the tracking error signal 1)01 becomes negative.

逆に光ビームの集光点がピット(6)の中央より右にず
れた場合にはトラッキング誤差信号Q[mは正になる。
Conversely, when the focal point of the light beam is shifted to the right from the center of the pit (6), the tracking error signal Q[m becomes positive.

ところで、ピット(6)は第1図及び第3図に示すとお
りディスク(5)の半径方向(ピットの移動方向と直角
な方向で、この明細書ではこの方向を仮に左右方向とい
う。)に互に等間隔に配列されているので、光ビームの
焦点位置がディスク(5)の半径方向に移動すると(相
対的にピット位置がディスク(51の半径方向に移動す
ると)、トラッキング誤差信号II[lIは第4図に示
すように変化する。すなわち、トラッキング誤差信号Q
lは光ビームの焦点が1つのピット(6)の中央にある
ときと、ピット(61とピット(6)の間(ランドとい
う)の中央にある時とで0になる。この現象を利用して
光ビームの焦点をピット(6)の中央に保つようにアク
チュエータαυを介してフィードバック制御することが
できる。
By the way, as shown in FIGS. 1 and 3, the pits (6) are aligned in the radial direction of the disk (5) (a direction perpendicular to the direction of movement of the pits; in this specification, this direction is temporarily referred to as the left-right direction). Therefore, when the focal position of the light beam moves in the radial direction of the disk (5) (relatively, when the pit position moves in the radial direction of the disk (51)), the tracking error signal II[lI changes as shown in Fig. 4. That is, the tracking error signal Q
l becomes 0 when the focus of the light beam is at the center of one pit (6) and at the center between the pit (61) and the pit (6) (referred to as a land).Using this phenomenon, Feedback control can be performed via the actuator αυ to keep the focus of the light beam at the center of the pit (6).

上記のような従来の装置ではディスク(5)が傾いたと
きトラッキング精度が不良になるという欠点がありた。
The conventional device as described above has a drawback in that tracking accuracy becomes poor when the disk (5) is tilted.

第5図は従来の装置においてディスク(51が光軸に直
角な平面から傾いた場合を示している。第5図において
第3図と同一符号は同一部分を示す。第5図に示す場合
、ピット(6)によって回折された回折光(7a’)、
(7b)はほぼ同じ光量であるが、光軸に対して対称で
なく、角度をもって反射される。そのため、回折光(7
a)は対物レンズ(4)の外周を外れてその外へ飛出す
部分が生じ、したがって対物レンズ(4)を通過する光
量が減少する。
FIG. 5 shows a conventional device in which the disk (51) is tilted from a plane perpendicular to the optical axis. In FIG. 5, the same reference numerals as in FIG. 3 indicate the same parts. In the case shown in FIG. Diffracted light (7a') diffracted by the pit (6),
(7b) has almost the same amount of light, but is not symmetrical with respect to the optical axis and is reflected at an angle. Therefore, the diffracted light (7
In a), there is a portion that deviates from the outer periphery of the objective lens (4) and protrudes to the outside, so that the amount of light passing through the objective lens (4) decreases.

これに対し、回折光(7b)は全部の光が対物レンズ(
41を通過するので光量の減少はない。そのため光検出
器(8a)に入射する光量は光検出器(8b)に入射す
る光量より少くなり、光ビームの焦点位置が正しくピッ
ト(6)の中央にある場合でも信号f101は零になら
ない。
On the other hand, in the case of diffracted light (7b), all the light is reflected by the objective lens (
41, so there is no decrease in the amount of light. Therefore, the amount of light incident on the photodetector (8a) is smaller than the amount of light incident on the photodetector (8b), and even if the focal position of the light beam is correctly located at the center of the pit (6), the signal f101 does not become zero.

第6図はディスク(5;が傾いた場合のトラッキング誤
差信号alJlを示す図で、第6図(atは第5図に示
す方向にディスク(51が傾いた場合で、負のオフセッ
トを生じ、i16図1blは第5図とは逆方向にディス
クが傾いた場合で、正のオフセットを生じている。
FIG. 6 is a diagram showing the tracking error signal alJl when the disk (5;) is tilted. i16 Figure 1bl shows a case where the disk is tilted in the opposite direction to that in Figure 5, resulting in a positive offset.

従来の装置はオ6藺に示すような誤差信号のオフセット
を生じそのためトラッキング精度が低下するという欠点
があった。
The conventional device has the drawback that an offset occurs in the error signal as shown in Fig. 6, resulting in a decrease in tracking accuracy.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、この発明ではトラッキング誤差信
号をランド部で発生する部分とピット部で発生する部分
とに分解し、ランド部で発生するトラッキング誤差信号
からオフセット荒を検出して、この検出したオフセット
量をピット部で発生するトラッキング誤差信号から差引
くことによってオフセット誤差のないトラッキング誤差
信号を得た。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.In this invention, the tracking error signal is divided into a part generated in the land part and a part generated in the pit part, and the tracking error signal is divided into the part generated in the land part and the part generated in the pit part. A tracking error signal free of offset error was obtained by detecting the offset roughness from the tracking error signal and subtracting the detected offset amount from the tracking error signal generated at the pit portion.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の実施例を図面について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

オフ図は第1図の装置におけるRF倍信号ランド部とピ
ット部とで変化する状況を示し、オフ図(atで斜線金
施した部分がピットでそれ以外の部分がランド部である
。同図(b)はRF信号13の強度変化、同図(clは
同図(b)の強度の平均値より大きい領域を取出すコン
パレータ1の出力で、この明細書ではこれを第2の矩形
波と称し、同図(dlは同図(b)の強度の平均値より
小さい領域を取出すコンパレータ2の出力でこの明細畳
ではこれを第1の矩形波という。光ビームの集束スポッ
トがランドに当るとtlぼ鏡面反射して対物レンズ(4
;に入射するが、ピット(6)に当ると回折されて1部
は対物レンズ(4)に入射しなくなるため、RF倍信号
3はピットの部分では弱くなり、オフ図(blに示すよ
うになる。オフ図(blからオフ図1cl 、 (d)
の信号を生成してトラッキング誤差信号+101をピッ
ト部とランド部に分離することができる。
The off-line diagram shows the situation that changes between the RF double signal land and the pit in the device shown in Figure 1. (b) shows the change in the intensity of the RF signal 13, and (cl) is the output of the comparator 1 that extracts a region larger than the average value of the intensity shown in (b), which is referred to as the second rectangular wave in this specification. , in the same figure (dl is the output of the comparator 2 which extracts the region whose intensity is smaller than the average value of the same figure (b). In this specification, this is called the first rectangular wave. When the focused spot of the light beam hits the land, tl The objective lens (4
; However, when it hits the pit (6), it is diffracted and a part of it does not enter the objective lens (4), so the RF multiplied signal 3 becomes weak at the pit part, and as shown in the off diagram (bl) Off figure (off figure 1cl from bl, (d)
It is possible to generate a signal and separate the tracking error signal +101 into pit portions and land portions.

第8図はこの発明の一実施例を示すブロック図であって
、第1図と同一符号は同−又は相当部分を示し、(81
は光検出器(8c)、(8d)、(8e)、(8f)か
らなる4分割光検出器でろる。a→、αi 、 a* 
、卸はそれぞ・れ演算増幅器で、光検出器(8c)、(
8d)の出力が演算増幅器a4で加算され、光検出器(
8e)、(8f)の出力が演算増幅器(2)で加算され
ているので演算増幅器Q4 、 (1!liの出力は第
2図の光検出器(8a)。
FIG. 8 is a block diagram showing an embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate the same or corresponding parts, and (81
is a four-part photodetector consisting of photodetectors (8c), (8d), (8e), and (8f). a→, αi, a*
, wholesalers are each an operational amplifier, a photodetector (8c), (
The outputs of 8d) are added by operational amplifier a4, and the outputs of photodetector (
Since the outputs of 8e) and (8f) are added by the operational amplifier (2), the output of the operational amplifier Q4 and (1!li) is the photodetector (8a) in FIG.

(8b)の出力にそれぞれ相当する。第8図におに第2
図と異なる4分割光検出器(81ヲ用いる理由は、実際
の装置では光ビームの焦点制御等を光検出器+81から
の信号によって行うためであり、この発明には直接は関
係ないのでその説明を省略する。
(8b), respectively. Figure 8 Nioni 2nd
The reason why a 4-split photodetector (81) is used, which is different from the one shown in the figure, is that in the actual device, focus control of the light beam, etc. is performed by the signal from the photodetector +81, and it is not directly related to this invention, so please explain it. omitted.

第8図の(14、(16の出力が第1図の(8a)、(
8b)の出力に相当するので、第8図のa* 、 出力
は第1図の*’21 、 +91にそれぞれ相当する。
The outputs of (14, (16) in Fig. 8 are (8a), (
8b), the a* and outputs in FIG. 8 correspond to *'21 and +91 in FIG. 1, respectively.

また第8図においてu81.aqハそレソレコンハレー
タ、(20) 、 (21) Ia ソhぞれゲート回
路、(22) 、 (23)はそれぞれローパスフィル
タ(以下LPFと略記する)である。
Also, in FIG. 8, u81. (20) and (21) Ia and soh are gate circuits, and (22) and (23) are low-pass filters (hereinafter abbreviated as LPF), respectively.

演算増幅器(ill)の出力のRF倍信号13)はコン
パレータ1)81及びコンパレータα9に入力され、オ
フ図(C)。
The RF multiplied signal 13) of the output of the operational amplifier (ill) is input to the comparator 1) 81 and the comparator α9, and the off diagram (C) is shown.

(dlに示す第1及び第2の矩形波電圧を発生する。(Generates first and second rectangular wave voltages shown at dl.

演算増幅器u9の出力である誤差信号(以下DFT信号
という)はゲート回路(2θ) 、 (21)に分けら
れ、ゲート回路(20)ではコンパレータ(1秒の出力
でサンプルされ、ゲート回路(21)ではコンパレータ
1)の出力でサンプルされてそれぞれLPF (22)
 、 (23)により平滑化されてそれぞれ差動増幅器
(9)に入力する。
The error signal (hereinafter referred to as DFT signal) which is the output of the operational amplifier u9 is divided into the gate circuit (2θ) and (21). Then, the output of comparator 1) is sampled and each LPF (22)
, (23) and input to the differential amplifier (9).

LPF (22)の出力はトラッキング誤差信号とディ
スク傾斜によるオフセット量とを含んでおり、LPF(
23)の出力はランドの部分からピックアップされた信
号部分であるのでディスク傾斜によるオフセット量だけ
を含んでいるので、演算増幅器(9)によ#)LPF 
(22)とLPF (23)の出力の差を増幅すればオ
フセット量の少ないトラッキング誤差信号[1を得るこ
とができる。
The output of the LPF (22) includes a tracking error signal and an offset amount due to the disk tilt, and the output of the LPF (
Since the output of 23) is the signal portion picked up from the land portion, it contains only the offset amount due to the disk tilt, so it is applied to the operational amplifier (9) by the LPF.
By amplifying the difference between the outputs of (22) and LPF (23), it is possible to obtain a tracking error signal [1 with a small amount of offset.

第9図は第8図の各部の動作を説明する波形図で、四回
(a)はピット列(ピットの部分は斜線で示す)と集光
スポットとの相対移動(矢印直線で示す)との関係を示
し、第9図(blは演算増幅器(IQの出力であるRF
信号1)3、第9図1clは演算増幅器(171の出力
であるDFT信号、第9図(d)はゲート回路(4)の
出力、第9図(e)はLPF (22)の出力、第9図
(flはゲート回路(21)の出力、第9図(g)はL
PF’ (23)の出力、第9図(hlはトラッキング
誤差信号d01である。
FIG. 9 is a waveform diagram explaining the operation of each part in FIG. Figure 9 (bl is the RF output of the operational amplifier (IQ)
Signal 1) 3, Fig. 9 1cl is the DFT signal that is the output of the operational amplifier (171), Fig. 9 (d) is the output of the gate circuit (4), Fig. 9 (e) is the output of the LPF (22), Figure 9 (fl is the output of the gate circuit (21), Figure 9 (g) is L
The output of PF' (23) in FIG. 9 (hl is the tracking error signal d01).

先に説明したように第9図(clのDFT信号にはトラ
ッキング誤差信号の外にオフセット量を含んでいるが、
ゲート回路(21)の出力を平滑化したLPF(21)
の出力(第9図−))にはオフセット量だけが抽出され
るので、差動増幅器(9)により、オフセット量を除去
したトラッキング誤差信号面(第9図(h))を得るこ
とができる。
As explained earlier, the DFT signal in FIG. 9 (cl) includes an offset amount in addition to the tracking error signal.
LPF (21) that smoothes the output of the gate circuit (21)
Since only the offset amount is extracted from the output (Fig. 9-)), the tracking error signal plane (Fig. 9 (h)) from which the offset amount has been removed can be obtained using the differential amplifier (9). .

第10図はこの発明の他の実施例を示すブロック図であ
って、第8図と同一符号は同−又は相当部分を示し、(
24)はπ/2移相器、(25) 、 (26)はそれ
ぞれゼロクロス検出回路で、(25)は入力電圧が上昇
してゼロクロスする場合、(26) tj入力電圧が下
降してゼロクロスする場合それぞれパルスを発生する。
FIG. 10 is a block diagram showing another embodiment of the present invention, in which the same reference numerals as in FIG. 8 indicate the same or corresponding parts, and (
24) is a π/2 phase shifter, (25) and (26) are each zero cross detection circuit, (25) is when the input voltage rises and crosses zero, (26) tj input voltage falls and crosses zero. A pulse is generated in each case.

したがって、ゼロクロス検出回路(25)は第9図(b
lに示すRF倍信号極大点(集光スポットがランドの中
央にあるときに相当する)でパルス(この明細誉では第
2のパルスという)発生し、ゼロクロス検出回路(26
)はRF倍信号極小点(集光スポットがピットの中央に
あるときに相当する)でパルス(この明細書では第1の
パルスという)を発生するので、これらの出力によりゲ
ート回路(20) 。
Therefore, the zero cross detection circuit (25) is
A pulse (referred to as the second pulse in this specification) is generated at the maximum point of the RF multiplied signal (corresponding to when the focused spot is at the center of the land) shown in 1, and the zero cross detection circuit (26
) generates a pulse (referred to as the first pulse in this specification) at the RF multiplied signal minimum point (corresponding to when the focused spot is at the center of the pit), so these outputs are used to generate a gate circuit (20).

(21) k制御すれば第8図に示す回路と同一の効果
を得ることができる。
(21) By performing k control, the same effect as the circuit shown in FIG. 8 can be obtained.

なお、第8図及び第10図のゲート回路(20) # 
(21)の出力をサンプルホールドするサンプルホール
ド回路を設けてもよい。
In addition, the gate circuit (20) in FIGS. 8 and 10 #
A sample and hold circuit may be provided to sample and hold the output of (21).

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、記録媒体中のピットの
存在する部分の信号から、ピットが存在しないランド部
分の信号を差引くことによってディスク傾斜のためのオ
フセット量が補正されたトラッキング誤差信号を得るこ
とができる。なお、この発明VCよれは対物レンズが軸
ずれしたときに生じるオフセット分も除去される。
As described above, according to the present invention, the tracking error signal is obtained by subtracting the signal of the land portion where no pit exists from the signal of the portion of the recording medium where the pit exists, thereby correcting the offset amount due to the disk tilt. can be obtained. Note that the VC deflection of the present invention also eliminates the offset that occurs when the objective lens is axially misaligned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の装置を示すブロック図、第2図は第1図
の光検出器の構成と動作を示す説明図、第3図は第1図
に示す装置でトラッキング誤差が生じた場合を示す図、
第4図は第3図の場合のトラッキング誤差の変化を示す
図、第5図はディスクが光軸に直角な平面から傾いた場
合を示す図、第6図は第5図の場合のトラッキング誤差
の変化を示す図、オフ図は第1図の場合のRF倍信号変
化を示す図、第8図はこの発明の一実施例を示すブロッ
ク図、第9図は第8図の各部の動作を説明する波形図、
第10図はこの発明の他の実施例を示すブロック図であ
る。 (8c)、(8d)−・・右側光検出器、(8e)、(
8f) −左側光検出器、(9)・・・差動増幅器、1
)01・・・トラッキング誤差信号、([3)・・・f
(F信号、1)81 、 (19・・・それぞれコンパ
レータ、(20) 、 (21)・・・それぞれゲート
回路、(24)・・・π/2移相器、(25) 、 (
26)・・・それぞれゼロクロス検出回路。 尚、各図中同一符号は同−又は相当部分を示す。
Fig. 1 is a block diagram showing a conventional device, Fig. 2 is an explanatory diagram showing the configuration and operation of the photodetector shown in Fig. 1, and Fig. 3 shows a case where a tracking error occurs in the device shown in Fig. 1. diagram showing,
Figure 4 shows the change in tracking error in the case of Figure 3, Figure 5 shows the case when the disc is tilted from a plane perpendicular to the optical axis, and Figure 6 shows the tracking error in the case of Figure 5. The OFF diagram is a diagram showing the RF multiplication signal change in the case of FIG. 1, FIG. 8 is a block diagram showing an embodiment of the present invention, and FIG. Waveform diagram to explain,
FIG. 10 is a block diagram showing another embodiment of the invention. (8c), (8d)--Right side photodetector, (8e), (
8f) - Left side photodetector, (9)...Differential amplifier, 1
)01...Tracking error signal, ([3)...f
(F signal, 1) 81, (19... each comparator, (20), (21)... each gate circuit, (24)... π/2 phase shifter, (25), (
26)...Zero cross detection circuit respectively. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)情報記録媒体上にピット列の形で情報が記録され
ており、光ビームの集束スポットを上記ピット列に照射
し、上記集束スポットとこの集束スポットによって照射
されるピットとの関係位置をピット列の方向に移動して
上記ピット列から情報を読取る場合、上記集束スポット
を上記ピット列の軸上に正しく保つよう制御するため、
上記集束スポットの上記軸上から当該軸に対し直角な方
向(以下この方向を左右方向とする)への偏差を検出す
るトラッキング誤作検出装置において、上記集束スポッ
トの右半分に対する反射光が所定の光学系を経て入力さ
れる右側光検出器と、上記集束スポットの左半分に対す
る反射光が上記所定の光学系を経て入力される左側光検
出器と、この左側光検出器の出力と上記右側光検出器の
出力との差信号を出力する手段と、 上記差信号を上記集束スポットがピット部分にあるとき
の第1の差信号と上記集束スポットがランド部分にある
ときの第2の差信号とに分離する差信号分離手段と、 上記第1の差信号から上記第2の差信号を減算してトラ
ッキング誤差信号を得る手段とを備えたことを特徴とす
るトラッキング誤差検出装置。
(1) Information is recorded in the form of a pit row on an information recording medium, and a focused spot of a light beam is irradiated onto the pit row, and the relative position between the focused spot and the pit irradiated by this focused spot is determined. When moving in the direction of the pit row and reading information from the pit row, control is performed to keep the focused spot correctly on the axis of the pit row.
In a tracking error detection device that detects a deviation of the focused spot from on the axis to a direction perpendicular to the axis (hereinafter referred to as the left-right direction), the reflected light to the right half of the focused spot is a right photodetector into which light is input via an optical system; a left photodetector into which reflected light from the left half of the focused spot is input via the predetermined optical system; and an output from the left photodetector and the right light means for outputting a difference signal between the output of the detector, and converting the difference signal into a first difference signal when the focused spot is on the pit portion and a second difference signal when the focused spot is on the land portion; A tracking error detection device comprising: difference signal separation means for separating the second difference signal from the first difference signal; and means for subtracting the second difference signal from the first difference signal to obtain a tracking error signal.
(2)差信号分離手段は、右側光検出器の出力と左側光
検出器の出力とを加算した信号の振幅が当該信号の平均
レベルより小さな部分で第1の矩形波を発生し、上記加
算した信号の振幅が当該信号の平均レベルより大きな部
分で、第2の矩形波を発生し、上記第1の矩形波の間の
差信号を第1の差信号とし、上記第2の矩形波の間の差
信号を第2の差信号とする手段を備えたことを特徴とす
る特許請求の範囲第(1)項記載のトラッキング誤差検
出装置。
(2) The difference signal separation means generates a first rectangular wave in a portion where the amplitude of the signal obtained by adding the output of the right photodetector and the output of the left photodetector is smaller than the average level of the signal, and A second rectangular wave is generated in a portion where the amplitude of the signal is larger than the average level of the signal, the difference signal between the first rectangular waves is used as the first difference signal, and the difference signal of the second rectangular wave is 2. A tracking error detection device according to claim 1, further comprising means for converting a difference signal between them into a second difference signal.
(3)差信号分離手段は、右側光検出器の出力と左側光
検出器の出力とを加算した信号の交流分の位相を90°
移相した信号が負から正に変化するゼロクロス点におい
て第1のパルスを発生し、正から負に変化するゼロクロ
ス点において第2のパルスを発生し、差信号を上記第1
のパルスでサンプルしたものを第1の差信号とし、上記
差信号を上記第2のパルスでサンプルしたものを第2の
差信号とする手段を備えたことを特徴とする特許請求の
範囲第(1)項記載のトラッキング誤差検出装置。
(3) The difference signal separation means separates the phase of the alternating current component of the signal obtained by adding the output of the right photodetector and the output of the left photodetector by 90°.
A first pulse is generated at a zero-crossing point where the phase-shifted signal changes from negative to positive, a second pulse is generated at a zero-crossing point where the phase-shifted signal changes from positive to negative, and the difference signal is converted to the first pulse.
Claim 1, characterized in that it is provided with means for determining a first difference signal by sampling the difference signal with the second pulse, and determining a second difference signal by sampling the difference signal with the second pulse. 1) Tracking error detection device described in section 1).
JP13460384A 1984-06-29 1984-06-29 Detecting device for tracking error Pending JPS6113447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13460384A JPS6113447A (en) 1984-06-29 1984-06-29 Detecting device for tracking error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13460384A JPS6113447A (en) 1984-06-29 1984-06-29 Detecting device for tracking error

Publications (1)

Publication Number Publication Date
JPS6113447A true JPS6113447A (en) 1986-01-21

Family

ID=15132257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13460384A Pending JPS6113447A (en) 1984-06-29 1984-06-29 Detecting device for tracking error

Country Status (1)

Country Link
JP (1) JPS6113447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0270118A2 (en) * 1986-12-03 1988-06-08 Fujitsu Limited Apparatus for recording and reading an optical disc, having reduced offset in its tracking error signal
JPH09270137A (en) * 1996-04-01 1997-10-14 Nec Corp Lens position detecting device for optical disk device
JPH09282681A (en) * 1996-04-12 1997-10-31 Nec Corp Method and device for generating tracking error signal for disk device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0270118A2 (en) * 1986-12-03 1988-06-08 Fujitsu Limited Apparatus for recording and reading an optical disc, having reduced offset in its tracking error signal
JPH09270137A (en) * 1996-04-01 1997-10-14 Nec Corp Lens position detecting device for optical disk device
JPH09282681A (en) * 1996-04-12 1997-10-31 Nec Corp Method and device for generating tracking error signal for disk device

Similar Documents

Publication Publication Date Title
US4506149A (en) Tracking servo signal generating device in an apparatus for reading recorded information
JP2866160B2 (en) Optical disc player
JP3545181B2 (en) Optical information recording / reproducing device
JPS606014B2 (en) information detection device
JPH0514968B2 (en)
JP2716569B2 (en) Optical information reader
JP2845224B2 (en) Land / groove detector
JPS58118039A (en) Tracking device of optical disk track
JPS6113447A (en) Detecting device for tracking error
JPH11232666A (en) Apparatus for reading from optical record medium or writing to the medium
JPH031750B2 (en)
JPH06195790A (en) Magneto-optical disk reproducing device
JPS6252735A (en) Optical information recording and reproducing device
JPS6134769A (en) Read signal correcting device of disc device
JP3443839B2 (en) Magneto-optical disk device and dielectric optical path member
JP2743127B2 (en) Error detection device for optical disk device
JPS62167628A (en) Tracking error detector in optical recording and reproduction device
KR100293522B1 (en) Optical Pickup Apparatus
JPH0644352B2 (en) Light spot control device
JP2001266385A (en) Tilt detecting method and optical disk device using the method
JPH06251404A (en) Tilt detecting device for optical pickup
JPH0154779B2 (en)
JPS6185674A (en) Read signal correcting device of disk device
JPH05325304A (en) Magneto-optical reproducing device
JPH08235765A (en) Optical recording medium discriminating device