WO1986005353A1 - Exploitation agricole - Google Patents

Exploitation agricole Download PDF

Info

Publication number
WO1986005353A1
WO1986005353A1 PCT/GB1986/000151 GB8600151W WO8605353A1 WO 1986005353 A1 WO1986005353 A1 WO 1986005353A1 GB 8600151 W GB8600151 W GB 8600151W WO 8605353 A1 WO8605353 A1 WO 8605353A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
field
eguipment
location
value
Prior art date
Application number
PCT/GB1986/000151
Other languages
English (en)
Inventor
Dennis Anthony Colvin
Jens Overgard
Jan Peters
Original Assignee
Dronningborg Maskinfabrik A/S
Massey-Ferguson Manufacturing Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dronningborg Maskinfabrik A/S, Massey-Ferguson Manufacturing Limited filed Critical Dronningborg Maskinfabrik A/S
Publication of WO1986005353A1 publication Critical patent/WO1986005353A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/005Precision agriculture
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • This invention relates to agricultural husbandry processes and means for carrying out these processes.
  • An object of the present invention is to provide improved agricultural husbandry processes and eguipment that will give the farmer better control of chemical crop treatments.
  • the invention is based on the fact that once the location of mobile agricultural eguipment is identified in a field, this can advantageously be related to a husbandry process value that varies as the eguipment traverses the field, the location either being recorded in conjunction with the process value to produce a map of the process value in the field, or being used to determine said process value by reference to a map of the process value in the field.
  • the word map should be taken to mean a record of values and associated spatial locations capable of being depicted as a two dimensional array (e.g. on a sheet of paper) , though not necessarily so depicted. It may, for instance, consist of a succession of values recorded electronically.
  • the husbandry process value may comprise a crop yield measurement made during harvesting so as to produce a map of crop yield in the field, or the result of an agricultural husbandry examination carried out when traversing the field so as to produce a map of examination results in the field, or the value of an arable husbandry treatment incorporated in a predetermined treatment map of treatment values for many locations in the field so as to derive a corresponding treatment value for each location.
  • a crop yield map is a useful tool that allows a farmer to decide on subsequent husbandry treatment in that field. For example, low yield in one part of the field may be remedied by selective treatment of that part of the field with fertilizer in a subsequent season.
  • a yield map can therefore be interpreted and used to form a corresponding treatment map, and this may be conveniently done using a suitably programmed data processor.
  • a map of examination results derived from examination of the field can be used to form a corresponding treatment map.
  • the examination may take the form of a test such as a soil test, and the results may be automatically recorded in relation to the location of the test site, or an operator may carry out a visual inspection (e.g. for pests) and derive the results from a personal assessment.
  • a husbandry treatment map can be used directly to control a treatment process according to the location of mobile treatment equipment in a field so that the treatment is varied as desired to suit each part of the field.
  • a field may have identified low spots which are high in humus and require less fertilizer than the rest of the field.
  • a treatment map can therefore be produced and used to control the application rate of fertilizer in the field, thereby avoiding harmful over- treatment of the low spots or under-treat ent of the surrounding higher ground.
  • the treatment map may divide the field into a plurality of adjoining patches of predetermined size and shape, and a treatment value associated with each.
  • the movement of the treatment eguipment across the boundaries between adjoining patches is then detected and used to set the treatment value for the next patch to be treated.
  • the location of eguipment in the field is preferably determined by location means carried on the equipment and operating with reference to independent datum means.
  • the location means may take the form of a radio receiver and data processor and the datum means may comprise a plurality of satellites emitting radio signals that are detected by the radio receiver and used to determine the location of the eguipment.
  • a combine harvester can readily be fitted with such location means, a yield measuring device, and recording means to record successive yield measurements in conjunction with the corresponding locations of the combine for each measurement, thereby forming a grain yield map.
  • agricultural treatment eguipment can readily be fitted with the same location means and programmable control means that is responsive to location information from said location means in accordance with a predetermined treatment programme so as to identify the treatment value for the equipment as it traverses the field.
  • Figure 2 is a schematic representation of monitoring and control apparatus that is used in conjunction with a combine harvester and a fertilizer distributor in carrying out the invention. Best Mode of Carrying out the Invention
  • the distance measuring device D takes the form of a transducer that produces pulses in response to rotation of the drive wheels of the combine so as to produce a number of pulses corresponding to the distance travel. This device D is also used to trigger periodic readouts of the yield measurements Y and these are recorded in a data processor unit PI that is provided on the combine.
  • Location means L is also provided on the combine that can give a reading X of the location of the combine in the field at any time.
  • This may take the form of a radio receiver and data processor unit that receives and decodes radio signals from a plurality of space satellites.
  • Such systems are known and are already in use for marine navigation purposes, for example, as supplied by Polytechnic Marine PLC.
  • Alternative location means may employ fixed radio beacons or a radar system or an inertial direction sensing system.
  • the data processor PI can use successive readings X from the location means L to determine the distance travelled by the combine, thereby making it unnecessary to provide the separate distance sensing device D.
  • the distance to be travelled by the combine in determining a yield measurement is pre-selected, and a succession of such distances along the path of the combine may be defined by the location of the boundaries between them.
  • the data processor Pi then simply detects the movement of the combine across each of these boundaries in turn and triggers completion of one yield measurement and commencement of the next.
  • the grain measuring device M may continuously measure the rate at which grain is harvested and delivered to the grain tank of the combine.
  • a suitable device is disclosed in International Application No.85/00087.
  • the speed of the combine is also monitored so that the crop yield at any instant is given by the ratio of the grain harvesting rate and the speed of the combine.
  • the speed can be determined by a separate sensor, such as a radar sensor unit, or by using the readings from the location means and a timer to compute speed in the data processor Pi.
  • the fertilizer distributor F is shown in Figure 1 mounted on the rear links of a tractor T and has an adjustable control mechanism V to vary the fertilizer application rate.
  • the tractor T is provided with the data processor P3 and carries location means L which conventionally is the same as that provided on the combine C.
  • the tractor and fertilizer distributor combination T,F traverses the field B in a systematic manner so as to treat the whole field, but the route chosen may be different to that taken by the combine harvester C in the previous season's harvest.
  • the setting of the fertilizer rate control mechanism V is determined by the data processor P3 by reference to the treatment map TM and the readings X of the location of the tractor in the field so that each square treatment area has fertilizer applied to it at the corresponding rate recorded on the treatment map.
  • the control mechanism V may be controlled directly by a control signal from the data processor P3 or may be controlled by the tractor driver in response to readings produced on a visual display unit operated by the data processor P3.
  • the actual treatment applied to the field by the fertilizer distributor may be monitored independently of the control mechanism V, for example, by using a fertilizer flow sensor S so as to give an accurate measure of the actual treatment. These measurements can be taken for each square treatment area and recorded in the data processor P3 together with the corresponding location reading for each treatment area so as to produce a map AM of the applied treatment. A record of this map AM can be removed from the data processor P3 on a portable memory unit for future reference.
  • the yield map YM is modified in the data processor P2 by superimposing on it a rectangular array of square treatment areas and averaging the yield measurements that occur within each treatment area.
  • this step may not be necessary if each yield measurement is made over a large enough area which is then designated as a treatment area.
  • the treatment areas are then necessarily the same width as the table of the combine, but may be as long as required.
  • the subsequent treatment process is then such that the same width or a sub-multiple of this width is treated in one pass, and the treatment equipment follows along the same passes as the combine.
  • the treatment map TM is produced from a yield map YM but treatment maps produced in other ways can equally well be used in the data processor P3 to control the treatment process.
  • the tractor T can be driven across the field B and a direct assessment made of the value of a treatment process needed for each part of the field and recorded in conjunction with the location information from the location means L.
  • these treatment values can be presented on a rectangular array of square treatment areas.
  • the treatment values may be derived from an actual test carried out on the soil or crop, or may simply be an assessment based on a visual inspection.
  • the record of the yield map YM is loaded directly into the data processor P3 on the tractor T and is used to determine appropriate treatment values according to the location of the tractor as the treatment proceeds.
  • the data processor P3 uses the tractor location reading to select the corresponding yield measurements for that part of the field that is about to be treated. The selected measurements are those that lie within the treatment width for a predetermined distance ahead of the actual treatment process and these are averaged to give an average yield value that is constantly updated as the tractor traverses the field.
  • the average yield values are then converted into corresponding treatment values by the data processor P3 using the husbandry programme that is now loaded in the data processor P3 instead of data processor P2. As before, the treatment values are then used to determine the setting of the treatment control mechanism V.
  • the yield map could be replaced by maps based on other field examination results that are used with the appropriate husbandry programme in the data processor P3 to produce treatment values.
  • a treatment map may be loaded into the data processor P3 in place of the yield map and husbandry programme, and treatment values are taken directly from this map and averaged to produce a control signal for the control mechanism V.
  • Drills and planters with a variable sowing rate can also be controlled according to a predetermined plant population map for optimum plant development in different parts of the field.
  • Cultivators, such as ploughs with a variable depth setting can also be controlled according to a predetermined cultivation map.
  • the invention should not be thought of a being confined for use with vehicles which are in contact with the ground.
  • the invention is clearly suitable and adaptable for rapidly varying the rate at which a helicopter or other airborne vehicle carrying a location means might treat a growing crop by spraying or dusting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

L'emplacement d'un équipement agricole mobile dans un champ est identifié et mis en relation avec une valeur de traitement agricole qui varie à mesure que l'équipement se déplace dans le champ. L'emplacement est enregistré en association avec la valeur de traitement pour produire une carte des valeurs de traitement sur le champ, ou est utilisé pour déterminer ladite valeur de traitement par référence à une carte de valeurs de traitement sur le champ. La valeur de traitement agricole peut comprendre une mesure du rendement d'une culture réalisée pendant la récolte de façon à établir une carte du rendement des cultures dans le champ, ou peut être le résultat d'un examen de l'exploitation agricole réalisé pendant que l'on traverse le champ de façon à établir une carte des résultats de l'examen sur le champ, ou peut être la valeur d'un traitement d'exploitation agricole arable incorporée à une carte prédéterminée des valeurs de traitement pour de nombreux emplacements dans le champ, pour que l'on puisse en déduire une valeur de traitement correspondante à chaque emplacement.
PCT/GB1986/000151 1985-03-22 1986-03-14 Exploitation agricole WO1986005353A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8507546 1985-03-22
GB08507546A GB2178934A (en) 1985-03-22 1985-03-22 Agricultural husbandry

Publications (1)

Publication Number Publication Date
WO1986005353A1 true WO1986005353A1 (fr) 1986-09-25

Family

ID=10576484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1986/000151 WO1986005353A1 (fr) 1985-03-22 1986-03-14 Exploitation agricole

Country Status (5)

Country Link
EP (1) EP0216842A1 (fr)
AU (1) AU5624286A (fr)
GB (1) GB2178934A (fr)
WO (1) WO1986005353A1 (fr)
ZA (1) ZA862028B (fr)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003148A1 (fr) * 1989-08-30 1991-03-21 Knudsen Joergen Elkjaer Procede et dispositif de dosage, par exemple, d'engrais, de produits chimiques et/ou de grains de semence dans un champ
EP0576121A1 (fr) * 1992-06-22 1993-12-29 Ag-Chem Equipment Co., Inc. Dispositif de dosage d'épandage variable
EP0578988A1 (fr) * 1992-07-17 1994-01-19 Amazonen-Werke H. Dreyer GmbH & Co. KG Dispositif pour épandre des matériaux en agriculture
WO1994006271A1 (fr) * 1992-09-16 1994-03-31 Micro-Trak Systems, Inc. Appareil de mesure de rendement d'une recolte
WO1994024845A2 (fr) * 1993-05-05 1994-11-10 Same S.P.A. Machine agricole, notamment presse automotrice a faire des balles de grande dimension
WO1995002318A2 (fr) * 1993-07-17 1995-01-26 Duerrstein Georg Procede permettant de travailler des terres exploitables
EP0702891A1 (fr) * 1994-09-07 1996-03-27 CLAAS KGaA Opération de moissonneuse-batteuse à registre de données opératoires
EP0723740A1 (fr) * 1995-01-25 1996-07-31 Massey Ferguson Manufacturing Limited Moissonneuse
WO1997009696A1 (fr) * 1995-09-05 1997-03-13 Massey Ferguson Limited Tracteur avec systeme de surveillance
FR2741236A1 (fr) * 1995-11-22 1997-05-23 Claas Ohg Procede et dispositif de determination du poids de produit recolte pour des machines agricoles, notamment pour des presses a balles
GB2318652A (en) * 1996-10-23 1998-04-29 New Holland Tillage control
US5754137A (en) * 1993-07-17 1998-05-19 Duerrstein; Georg Process for taking action on productive lands
WO1998021931A1 (fr) * 1996-11-22 1998-05-28 Case Corporation Reglage en hauteur d'un outil agricole dans un systeme agricole propre a un site
WO1998021926A1 (fr) * 1996-11-22 1998-05-28 Case Corporation Identification automatique des limites d'un champ dans un systeme d'exploitation agricole specifique a un site
WO1998021928A1 (fr) * 1996-11-22 1998-05-28 Case Corporation Mise a l'echelle automatique de cartes agricoles gps
EP0916245A1 (fr) * 1997-11-06 1999-05-19 Amazonen-Werke H. Dreyer GmbH & Co. KG Méthode pour engager des machines agricoles
EP0917816A1 (fr) * 1997-11-20 1999-05-26 Amazonen-Werke H. Dreyer GmbH & Co. KG Procédé pour ajuster et/ou régler des machines agricoles de traitement ou d'épandage
EP0960558A1 (fr) * 1998-05-26 1999-12-01 New Holland Belgium N.V. Procédés de génération de cartes de rendement de végétaux
US6115481A (en) * 1998-10-22 2000-09-05 Centrak, Llc User modifiable land management zones for the variable application of substances thereto
US6119442A (en) * 1999-05-14 2000-09-19 Case Corporation Combine setting autoadjust with machine vision
NL1015800C2 (nl) * 2000-07-25 2002-01-28 Lely Entpr Ag Inrichting voor het bewerken van een bodemoppervlak.
NL1015801C2 (nl) * 2000-07-25 2002-01-28 Lely Entpr Ag Inrichting voor het bewerken van een bodemoppervlak.
DE4322293C2 (de) * 1993-07-05 2003-05-28 Amazonen Werke Dreyer H Verfahren zum elektronischen Managen von landwirtschaftlichen Maschinen
AU2005201526B1 (en) * 2005-04-12 2006-09-07 Anthony Girgenti A Method for Improving the Harvesting Efficiency of Crops
EP2197171A2 (fr) * 2008-12-10 2010-06-16 CLAAS Selbstfahrende Erntemaschinen GmbH Procédé d'assistance de l'automatisation de services agricoles
CN109414005A (zh) * 2016-06-28 2019-03-01 巴斯夫欧洲公司 害虫控制方法
EP3557972B1 (fr) 2016-12-21 2020-09-16 B-Hive Innovations Limited Système et procédé de surveillance de récoltes
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
DE102022110185A1 (de) 2022-04-27 2023-11-02 Deere & Company Verfahren und Anordnung zur Messung einer kornspezifischen Größe an einer Erntemaschine
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
EP4368969A1 (fr) 2022-11-11 2024-05-15 Deere & Company Procédé et dispositif pour déterminer une taille spécifique à la masse et/ou à la taille de céréales

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342171C2 (de) * 1993-07-17 1996-01-25 Georg Duerrstein Verfahren zur Bodenbearbeitung, insbesondere zur Düngung landwirtschaftlicher Nutzflächen
US6195604B1 (en) 1996-09-09 2001-02-27 Agco Limited Tractor with monitoring system
US6823249B2 (en) 1999-03-19 2004-11-23 Agco Limited Tractor with monitoring system
FI107368B (fi) 1999-12-20 2001-07-31 Kemira Agro Oy Viljelykasvien lannoitusmenetelmä, jolla optimoidaan sadon määrä ja laatu
GB2372105B (en) * 2001-02-13 2004-10-27 Agco Ltd Improvements in Mapping Techniques
GB2377034B (en) 2001-06-27 2005-03-02 Agco Gmbh & Co Apparatus & method for the variable rate application of substances to land
GB2386969A (en) * 2002-03-26 2003-10-01 Mcmurtry Ltd Autonomous vehicle for ground maintenance with a ground marking means
US7194965B2 (en) 2005-01-06 2007-03-27 Deere & Company Variety locator
US11140807B2 (en) 2017-09-07 2021-10-12 Deere & Company System for optimizing agricultural machine settings

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015366A (en) * 1975-04-11 1977-04-05 Advanced Decision Handling, Inc. Highly automated agricultural production system
DE2658820A1 (de) * 1976-12-24 1978-06-29 Fahr Ag Maschf Verfahren und vorrichtung zur erfassung von erntegutmengen bei einer selbstfahrenden oder gezogenen erntemaschine, insbesondere maehdrescher
FR2391642A1 (fr) * 1977-05-27 1978-12-22 Noertoft Gunnar Appareil d'irrigation pour l'agriculture
GB2087704A (en) * 1980-06-14 1982-06-03 Claydon Jeffrey Thomas Crop metering device
US4396149A (en) * 1980-12-30 1983-08-02 Energy Management Corporation Irrigation control system
WO1985000087A1 (fr) * 1983-06-21 1985-01-17 Dronningborg Maskinfabrik A/S Mesure du debit de grains dans une moissonneuse-batteuse
GB2143714A (en) * 1983-07-22 1985-02-20 Fortschritt Veb K Equipment for determining grain losses in harvester operation
EP0181308A1 (fr) * 1984-11-06 1986-05-14 Soil Teq. Inc. Méthode et appareil pour l'épandage d'engrais

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015366A (en) * 1975-04-11 1977-04-05 Advanced Decision Handling, Inc. Highly automated agricultural production system
DE2658820A1 (de) * 1976-12-24 1978-06-29 Fahr Ag Maschf Verfahren und vorrichtung zur erfassung von erntegutmengen bei einer selbstfahrenden oder gezogenen erntemaschine, insbesondere maehdrescher
FR2391642A1 (fr) * 1977-05-27 1978-12-22 Noertoft Gunnar Appareil d'irrigation pour l'agriculture
GB2087704A (en) * 1980-06-14 1982-06-03 Claydon Jeffrey Thomas Crop metering device
US4396149A (en) * 1980-12-30 1983-08-02 Energy Management Corporation Irrigation control system
WO1985000087A1 (fr) * 1983-06-21 1985-01-17 Dronningborg Maskinfabrik A/S Mesure du debit de grains dans une moissonneuse-batteuse
GB2143714A (en) * 1983-07-22 1985-02-20 Fortschritt Veb K Equipment for determining grain losses in harvester operation
EP0181308A1 (fr) * 1984-11-06 1986-05-14 Soil Teq. Inc. Méthode et appareil pour l'épandage d'engrais

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003148A1 (fr) * 1989-08-30 1991-03-21 Knudsen Joergen Elkjaer Procede et dispositif de dosage, par exemple, d'engrais, de produits chimiques et/ou de grains de semence dans un champ
USRE35100E (en) * 1992-06-22 1995-11-28 Ag-Chem Equipment Co., Inc. Variable rate application system
EP0576121A1 (fr) * 1992-06-22 1993-12-29 Ag-Chem Equipment Co., Inc. Dispositif de dosage d'épandage variable
EP0578988A1 (fr) * 1992-07-17 1994-01-19 Amazonen-Werke H. Dreyer GmbH & Co. KG Dispositif pour épandre des matériaux en agriculture
WO1994006271A1 (fr) * 1992-09-16 1994-03-31 Micro-Trak Systems, Inc. Appareil de mesure de rendement d'une recolte
WO1994024845A3 (fr) * 1993-05-05 1995-02-16 Kloeckner Humboldt Deutz Ag Machine agricole, notamment presse automotrice a faire des balles de grande dimension
WO1994024845A2 (fr) * 1993-05-05 1994-11-10 Same S.P.A. Machine agricole, notamment presse automotrice a faire des balles de grande dimension
DE4322293C2 (de) * 1993-07-05 2003-05-28 Amazonen Werke Dreyer H Verfahren zum elektronischen Managen von landwirtschaftlichen Maschinen
US5754137A (en) * 1993-07-17 1998-05-19 Duerrstein; Georg Process for taking action on productive lands
WO1995002318A3 (fr) * 1993-07-17 1995-03-09 Georg Duerrstein Procede permettant de travailler des terres exploitables
WO1995002318A2 (fr) * 1993-07-17 1995-01-26 Duerrstein Georg Procede permettant de travailler des terres exploitables
EP0702891A1 (fr) * 1994-09-07 1996-03-27 CLAAS KGaA Opération de moissonneuse-batteuse à registre de données opératoires
DE4431824C1 (de) * 1994-09-07 1996-05-02 Claas Ohg Mähdrescherbetrieb mit Betriebsdatenkataster
US5666793A (en) * 1994-09-07 1997-09-16 Claas Ohg Beschrankt Haftende Offene Handelsgesellschaft Combine operation with operating data register
EP0723740A1 (fr) * 1995-01-25 1996-07-31 Massey Ferguson Manufacturing Limited Moissonneuse
WO1997009696A1 (fr) * 1995-09-05 1997-03-13 Massey Ferguson Limited Tracteur avec systeme de surveillance
FR2741236A1 (fr) * 1995-11-22 1997-05-23 Claas Ohg Procede et dispositif de determination du poids de produit recolte pour des machines agricoles, notamment pour des presses a balles
DE19543343C5 (de) * 1995-11-22 2007-01-18 Claas Kgaa Mbh Landwirtschaftliche Ballenpresse
US5913801A (en) * 1995-11-22 1999-06-22 Robert Bosch Gmbh Agricultural baler, and method of baling
DE19543343C2 (de) * 1995-11-22 2000-04-27 Claas Ohg Landwirtschaftliche Ballenpresse
GB2318652A (en) * 1996-10-23 1998-04-29 New Holland Tillage control
WO1998021931A1 (fr) * 1996-11-22 1998-05-28 Case Corporation Reglage en hauteur d'un outil agricole dans un systeme agricole propre a un site
WO1998021926A1 (fr) * 1996-11-22 1998-05-28 Case Corporation Identification automatique des limites d'un champ dans un systeme d'exploitation agricole specifique a un site
WO1998021928A1 (fr) * 1996-11-22 1998-05-28 Case Corporation Mise a l'echelle automatique de cartes agricoles gps
US5961573A (en) * 1996-11-22 1999-10-05 Case Corporation Height control of an agricultural tool in a site-specific farming system
US5978723A (en) * 1996-11-22 1999-11-02 Case Corporation Automatic identification of field boundaries in a site-specific farming system
EP0916245A1 (fr) * 1997-11-06 1999-05-19 Amazonen-Werke H. Dreyer GmbH & Co. KG Méthode pour engager des machines agricoles
EP0917816A1 (fr) * 1997-11-20 1999-05-26 Amazonen-Werke H. Dreyer GmbH & Co. KG Procédé pour ajuster et/ou régler des machines agricoles de traitement ou d'épandage
EP0960558A1 (fr) * 1998-05-26 1999-12-01 New Holland Belgium N.V. Procédés de génération de cartes de rendement de végétaux
US6185990B1 (en) 1998-05-26 2001-02-13 New Holland North America, Inc. Method of measuring crop humidity in a harvester
US6266432B1 (en) 1998-10-22 2001-07-24 Centrak, Llc User modifiable land management zones for the variable application of substances thereto
US6434258B2 (en) 1998-10-22 2002-08-13 Centrak Llc User modifiable geographical zones for the variable application of substances thereto
US6115481A (en) * 1998-10-22 2000-09-05 Centrak, Llc User modifiable land management zones for the variable application of substances thereto
US6119442A (en) * 1999-05-14 2000-09-19 Case Corporation Combine setting autoadjust with machine vision
NL1015800C2 (nl) * 2000-07-25 2002-01-28 Lely Entpr Ag Inrichting voor het bewerken van een bodemoppervlak.
NL1015801C2 (nl) * 2000-07-25 2002-01-28 Lely Entpr Ag Inrichting voor het bewerken van een bodemoppervlak.
EP1190613A2 (fr) * 2000-07-25 2002-03-27 Lely Enterprises AG Outil pour le travail d'une surface de sol
EP1190614A2 (fr) * 2000-07-25 2002-03-27 Lely Enterprises AG Outil pour le travail d'une surface de sol
EP1190614A3 (fr) * 2000-07-25 2003-11-26 Lely Enterprises AG Outil pour le travail d'une surface de sol
EP1190613A3 (fr) * 2000-07-25 2003-11-26 Lely Enterprises AG Outil pour le travail d'une surface de sol
AU2005201526B1 (en) * 2005-04-12 2006-09-07 Anthony Girgenti A Method for Improving the Harvesting Efficiency of Crops
EP2197171A3 (fr) * 2008-12-10 2014-06-25 CLAAS Selbstfahrende Erntemaschinen GmbH Procédé d'assistance de l'automatisation de services agricoles
EP2197171A2 (fr) * 2008-12-10 2010-06-16 CLAAS Selbstfahrende Erntemaschinen GmbH Procédé d'assistance de l'automatisation de services agricoles
CN109414005B (zh) * 2016-06-28 2022-08-23 巴斯夫欧洲公司 害虫控制方法
CN109414005A (zh) * 2016-06-28 2019-03-01 巴斯夫欧洲公司 害虫控制方法
US11533843B2 (en) 2016-12-21 2022-12-27 B-Hive Innovations Limited Crop monitoring system and method
EP3557972B1 (fr) 2016-12-21 2020-09-16 B-Hive Innovations Limited Système et procédé de surveillance de récoltes
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
DE102022110185A1 (de) 2022-04-27 2023-11-02 Deere & Company Verfahren und Anordnung zur Messung einer kornspezifischen Größe an einer Erntemaschine
EP4368969A1 (fr) 2022-11-11 2024-05-15 Deere & Company Procédé et dispositif pour déterminer une taille spécifique à la masse et/ou à la taille de céréales
DE102022129876A1 (de) 2022-11-11 2024-05-16 Deere & Company Verfahren und Anordnung zur Ermittlung einer massen- und/oder größenspezifischen Größe von Körnerfrüchten

Also Published As

Publication number Publication date
GB2178934A (en) 1987-02-25
GB8507546D0 (en) 1985-05-01
AU5624286A (en) 1986-10-13
ZA862028B (en) 1987-10-28
EP0216842A1 (fr) 1987-04-08

Similar Documents

Publication Publication Date Title
WO1986005353A1 (fr) Exploitation agricole
US11154018B2 (en) Method for optimizing an operating parameter of a machine for application of agricultural material to a field and a corresponding machine
EP3476216B1 (fr) Procédé de traitement de plantes par rapport aux zones de racine estimées
US11968973B2 (en) Method for applying a spray to a field based on analysis of evaluation portion of monitored field section
Mulla et al. Historical evolution and recent advances in precision farming
US6553312B2 (en) Method and apparatus for ultra precise GPS-based mapping of seeds or vegetation during planting
US6941225B2 (en) Method and apparatus for ultra precise GPS-based mapping of seeds or vegetation during planting
Godwin et al. A review of the technologies for mapping within-field variability
US20030019151A1 (en) Process for in-season fertilizer nitrogen application based on predicted yield potential
EP3298385B1 (fr) Détecteur de matière végétale
US5050771A (en) Repeatable pattern field spraying control
Zaman et al. Development of prototype automated variable rate sprayer for real-time spot-application of agrochemicals in wild blueberry fields
US5771169A (en) Site-specific harvest statistics analyzer
US20040231239A1 (en) Use of within-field-element-size CV for improved nutrient fertilization in crop production
Koch et al. The role of precision agriculture in cropping systems
Dammer et al. Sensor-based weed detection and application of variable herbicide rates in real time
CA2336694A1 (fr) Systeme et procede d'exploitation agricole assistee par ordinateur
Bakhtiari et al. Precision farming technology, opportunities and difficulty
Ahmad et al. Satellite Farming
AU2022271449B2 (en) Dynamic tank management based on previous environment and machine measurements
Hamrita et al. Toward fulfilling the robotic farming vision: Advances in sensors and controllers for agricultural applications
US20220034859A1 (en) Methods for improved agricultural procedures
Swain et al. Detecting weed and bare-spot in wild blueberry using ultrasonic sensor technology
US20240142980A1 (en) Agronomy Data Utilization System And Method
RU2807735C2 (ru) Способ обработки почвы, способ управления оборудованием для обработки почвы и энергонезависимый читаемый компьютером носитель для хранения информации (варианты)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR DK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1986901946

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986901946

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1986901946

Country of ref document: EP