WO1986001789A1 - Separation et alimentation de pieces de tissu - Google Patents

Separation et alimentation de pieces de tissu Download PDF

Info

Publication number
WO1986001789A1
WO1986001789A1 PCT/US1985/001716 US8501716W WO8601789A1 WO 1986001789 A1 WO1986001789 A1 WO 1986001789A1 US 8501716 W US8501716 W US 8501716W WO 8601789 A1 WO8601789 A1 WO 8601789A1
Authority
WO
WIPO (PCT)
Prior art keywords
stack
parts
set forth
separated
edge
Prior art date
Application number
PCT/US1985/001716
Other languages
English (en)
Inventor
Hubert Blessing
Original Assignee
Levi Strauss & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Levi Strauss & Co. filed Critical Levi Strauss & Co.
Publication of WO1986001789A1 publication Critical patent/WO1986001789A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B33/00Devices incorporated in sewing machines for supplying or removing the work
    • D05B33/006Feeding workpieces separated from piles, e.g. unstacking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/22Separating articles from piles by needles or the like engaging the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/26Separating articles from piles by separators engaging folds, flaps, or projections of articles

Definitions

  • the present invention pertains to (apparat s for separating individual fabric parts from a stack and feeding the separated parts to a work station for further manufacturing operations.
  • the apparatus is particularly adapted for separating fabric parts for apparel from a staggered or shingled stack.
  • the present invention provides improvements in separating and feeding or transferring pieces of relatively flexible fabric such as fabric parts of various articles of apparel fr ⁇ a stack of such parts, even though the parts may be formed of various types of fabric having a tendency to cling or resist separation from adjacent parts in the stack.
  • an improved apparatus particularly adapted for separating and transferring individual fabric parts arranged in a staggered or so-called shingled stack of parts.
  • the parts are stacked such that an edge, which may be hemmed or not, or a portion of a surface of the part may be positively engaged by a member connected to a transfer mechanism for moving the part engaged by the member to separate the engaged part from a stack of similar parts.
  • an apparatus for -separating and transferring individual fabric parts which have been presented to the apparatus in a stack wherein corresponding edges of each part are staggered or arranged with respect to each other in a shingled or cascade configuration.
  • separation is carried out by utilizing a source of vacuum to hold the next to be separated part on a surface adjacent to a conveyor which has presented the edge of the stack, including the part to be separated and the next to be separated part, to a separating and transfer mechanism including a knife edge or other positive engaging mechanism which is engageable with the part to be separated.
  • an apparatus which includes a member engageable with a part to be separated from a stack and connected to means for vibrating the part engaging member to assist in separating the part to be transferred from the stack without dragging the next to be separated part along with the first mentioned part.
  • the present invention still further provides an improved method of separating and feeding fabric parts from a stack wherein a staggered or so-called shingled stack is provided and presented to a -separating and feeding apparatus wherein the uppermost part in the stack is separated from the stack and wherein the part to be separated is positively engaged by a separating and transport mechanism and the next to be separated part is held back by means including a fluid pressure generated force or by a mechanical hold back device.
  • the present invention still further contemplates the provision of a system for handling and performing operations on fabric parts wherein one or more separating and feeding apparatus in accordance with the present invention are provided and shingled stacks of fabric parts are supplied to the apparatus on a continuous basis fr ⁇ n a previous fabric -5-
  • FIG. 1 is a perspective view in somewhat schematic form of the apparatus of the invention used in conjunction with a system for performing operations on fabric parts such as harmed pocket parts for pants and other articles of apparel;
  • Figure 2 is a longitudinal side elevation, partially sectioned, of the separating and feeding apparatus;
  • Figure 2A is a detail view of a portion of Figure 2 on a larger scale and taken generally along line 2A-2A of Figure
  • Figure 2B is a detail view of another portion of
  • Figure 3 is an end view taken from the line 3-3 of Figure 2 but with the stack of fabric parts removed;
  • Figure 4 is a detail section view taken along the line 4-4 of Figure 2;
  • Figure 5 is a detail plan view taken generally from the line 5-5 of Figure 2;
  • Figure 6 is a detail plan view taken from the line 6-6 of Figure 2;
  • Figure 7 is a detail plan view taken from the line 7-7 of Figure 2;
  • Figure 8 is a detail section view taken from line 8-8 of Figure 7;
  • Figure 9 is a partial elevation taken generally fr ⁇ n the same line as Figure 3 and illustrating an alternate embodiment of the separating mechanism for the apparatus of the present invention
  • Figure 9A is a detail view of a portion of the mechanism shown in Figure 9;
  • Figure 10 is a detail section view taken along the line 10-10 of Figure 9;
  • Figure 11 is a schematic plan view of a system utilizing the apparatus and method of the present invention.
  • Figure 12 is a somewhat schematic diagram of an arrangement for aligning an edge of each part of the stack prior to separation.
  • the apparatus of the present invention is particularly adapted for use in conjunction with the automated manufacture of articles of apparel such as denim trousers or jeans and for handling certain parts of the trousers in the various stages of the manufacturing process, m particular, the embodiments of the apparatus described in detail herein are utilized for separating precut pieces of fabric for pocket parts for denim trousers, which pieces nay be hemmed along the top edge of the pocket part and stacked in a staggered or shingled configuration wherein the parts are oriented relative to each other in the same direction and the corresponding edges are staggered so that an edge of a hem of each part, if provided, is presented to the apparatus for separation of the top part of a stack from the remainder of the stack.
  • the apparatus may be used in conjunction with separating and feeding various other stacked fabric parts of different sizes and configurations and composed of other fabric material.
  • the parts may not necessarily need -7-
  • the separating and feeding apparatus 10 may be used in conjunction with various manufacturing processes requiring the handling of a stack of parts of relatively soft flexible fabric material.
  • the apparatus 10 is adapted for use in separating articles such as fabric parts used to form rear pockets on denim trousers.
  • the apparatus 10 is . interposed between a machine 21 which folds one edge of a pocket part 22 and sews a hem along the folded edge.
  • the apparatus 21 includes a suitable feeding and folding mechanism, generally designated by the numeral 26 which feeds successive pocket parts 22 to a sewing machine 28 wherein the aforementioned hem is sewn by a double row of stitching, for exai ⁇ ple.
  • the sewn or he ⁇ med part is then ejected from the mechanism 26 and deposited on conveyor means such as a circular conveyor 30, for exa ⁇ ple.
  • conveyor means such as a circular conveyor 30, for exa ⁇ ple.
  • T-he transport rate of the conveyor 30 and the feed irate of the mechanism 26 are timed such that a somewhat staggered or shingled stack 32 of parts 22 is formed substantially continuously and wherein the he ⁇ ed edge of the part 22 previously formed protrudes in front of the harmed edge of the next part deposited on the conveyor 30.
  • the apparatus 21 may be similar to that disclosed and claimed in my U.S. Patent 4,204,492 assigned to the assignee of this invention.
  • the conveyor 34 is arranged to feed a continuous shingled stack 35 of fabric parts 22 toward a second conveyor 38 which is preferably inclined so that as the stack traversing the conveyor 38 approaches the surface 14 the parts do not protrude substantially above the surface 14.
  • the conveyors 34 and 38 are both preferably endless flexible belt type conveyors which are arranged relative to each other in such a way that the stack 35 is transferred directly to the conveyor 38 with the hemmed edges 32 of the parts 22 facing upwardly as will be shown and described further herein.
  • Figure 1 further includes a sewing apparatus 40 which is arranged with respect to the surface 14 to receive individual separated fabric parts 22 which have been aligned and conveyed toward the apparatus 40 by conveyor or transport means 44 on the apparatus 10 which will also be described in further detail herein.
  • the apparatus 40 includes a conveyor mechanism 42 aligned with the surface 14 and the conveyor means 44 to receive a plurality of parts 22 arranged spaced apart side-by-side and which are successively fed by the conveyor mechanism 42 to a sewing machine 46 forming a part of the apparatus 40 for performing additional sewing operations such as the sewing of a label or trademark on the parts 22.
  • the apparatus 10 is particularly suited for separating and feeding parts having a generally straight edge which may be formed by a hem such as the hem 32 and which may be brought in registration with means to maintain the parts 22 properly oriented with respect to the further conveyor mechanism 42.
  • Ttxe actuator 62 may c ⁇ prise a so-called double acting rodless compressed air cylinder such as made by the Festo Corporation, Hauppauge, New York. Those skilled in the art will recognize that similar types of actuators may be used to reciprocate the carriage 16 between its limit positions.
  • the carriage 16 further includes an upper support plate 64 secured to the actuator 62 and a lower support plate 66.
  • ⁇ -ie plates 64 and 66 are interconnected by a flexible member 68 which may be a relatively thin plate of spring steel suitably secured to the adjacent ends 67 and 69 of the respective plates 64 and 66.
  • a double acting pneumatic cylinder and piston type actuator 70 is interconnected between the plates 64 and 66 and is operable to extend its piston rod 72 to depress the end 74 of the plate 66 downwardly toward the surface 14.
  • the cylinder 70 is pivotally connected to plate 64 by a pivot pin 71 and piston rod 72 is pivotally connected to plate 66 by a pivot pin 73.
  • the plate 64 includes an upstanding bearing member 76 which is supported by the shaft 50 for sliding movement therealong.
  • an elongated manifold member 80 is secured to the plate 66 at its end 74 and has a plurality of spaced apart orifices 82 formed in a bottom wall 84.
  • An elongated fabric part engaging bar 86 is secured to the manifold member 80 and projects downwardly below the wall 84 and forms a somewhat blunt knife edge 88.
  • the manifold member 80 is connected to a vacuum source such as a vacuum pu ⁇ p 90, illustrated schematically in Figure 2.
  • a vacuum pu ⁇ p 90 illustrated schematically in Figure 2.
  • the manifold 80 and bar 86 are lowered into engagement with a fabric part 22 which is presented in position directly below the manifold manber in accordance with feeding the stack 35 toward a predetermined position on the surface 14 by the conveyor 38.
  • the bar 86 is advantageous for engaging harmed edges other part engaging means may be provided on the mainfold 80 such as downward projecting needles or other members which are operable to positively engage a fabric part.
  • the shaft 96 is also drivably connected to a second rotatable shaft 104 by inter eshing gears 106 keyed to the respective shafts 96 and 104, respectively.
  • the shaft 104 is si ⁇ ported by the bearing support 102 and a second bearing support 108.
  • the shaft 104 is drivably connected to a second eccentric weight 99 for rotation therewith.
  • Tfoe weights 99 are oriented with respect to each other -such that in response to rotation of the shafts 96 and 104 in opposite directions and in timed relationship to each other the inertia forces exerted on the plate 66 by the rotation of the weights 99 provides for vibratory or oscillating motion in the direction of the double headed arrow 110, Figure 2.
  • the positional relationship of the weights 99 may, of course, be adjusted in accordance with the timing of the gears 106 so that the inertia forces exerted by the respective weights 99 oppose each other in the vertical direction as vrell as inclined directions and are in the same direction in the horizontal plane.
  • the plate 66 is operable to vibrate or oscillate relative to plate 64 in a generally horizontal direction to assist in separating one of the parts 22 from an adjacent part on stack 35 ⁇ _p ⁇ n engagement of the uppermost part 22a, viewing Figure 2 or 2A.
  • the vibrator 92 is particularly advantageous other vibrator mechanisms may be utilized to impart the desired motion to plate 66.
  • the actuator 70 may be energized to lower plate 66 to the position indicated by dashed lines in Figure 2A whereby the bar 86 yieldably engages part 22a to be separated from stack 35.
  • the impartation of a vibratory motion to the part 22a when engaged with the bar 86 has been determined to be a particularly advantageous feature in providing for the separation of the part engaged by the bar 86 without dragging the adjacent part 22b in the stack 35 with the part engaged by the bar. Suffice it to say for purposes of description herein that the vibrator 92 is adapted to ii-part longitudinal oscillatory motion to the plate 66 in accordance with the direction of the arrow U0.
  • T_he a ⁇ plitude of motion is, of course, dependent on the mass of the rotating weights 106, the speed of the vibrator mechanism and the stiffness of the spring steel connecting member 68 which permits longitudinal oscillation of the plate 66 with respect to the plate 64.
  • a first row of spaced apart primary vacuum orifices 120 are formed in the plate 46 and extend through replaceable plate inserts 122 and 123.
  • the inserts 122 and 123 include somewhat arcuate recesses 124 and 125 formed therein which increase the area of the orifices in the plane of surface 14 subject to the flow of air into a chamber 126 formed by a vacuum manifold member 127.
  • the manifold member 127 is suitably attached to the bottom side 47 of the plate 46 and also forms a manifold for respective secondary and tertiary rows of orifices 130 and 132 parallel to the row of orifices 120 and spaced apart as shown in Figure 5.
  • the manifold 127 is also suitably connected to the vacuum pump 90 whereby air is drawn through the orifices 120, 130 and 132 from the surface 14 to assist in holding the fabric parts being separated and fed by the apparatus 10.
  • the stack 35 of fabric parts 22 is shown in position just prior to engagement of the part 22a by the bar 86 for separation from the stack and transport along the surface 14 to a reference surface for orienting the parts for subsequent conveyance to the apparatus 40, for exa ⁇ ple.
  • the conveyor 38 is adapted for intermittent operation to feed the stack 35 into a position such that a part 22a to be separated and a part 22b next to be separated from stack 35 are oriented as indicated with respect to the orifices 120.
  • T-he placement of the leading edge 33 of the hem 32 of part 22a is determined by a suitable position sensor such as a photoelectric cell 136, Figure 2, mounted on an arm 137 -secured to the bracket 20 above the insert member 123.
  • a light source 138 is positioned in the insert 123 and is interrupted by the presence of the edge 33 of the part 22a to effect operation of a suitable control circuit, not shown, for arresting movement of the conveyor 38.
  • the conveyor 38 is activated to advance the stack 35 until the leading edge of a next to be separated part is in the position of the part 22a indicated in Figure
  • the precise location of the leading part 22 is not critical as long as the hem edge 36 is positioned with respect to the bar 86 so that the bar may engage the hem to positively separate the part 22a, for exai ⁇ ple, from the stack 35.
  • the surface 14 may be provided with a relatively high friction surface strip 142 disposed along and parallel to the row of orifices 130 to prevent overfeeding the part 22a or slippage of the part upon arresting the motion of the conveyor 38.
  • the cylinder 70 When the first to be separated fabric part such as the part 22a is in position to be engaged by the bar 86, as indicated in Figure 2A, the cylinder 70 is actuated to lower the plate 66 so that the bar 86 engages the surface of the part 22a and is positioned for forcible engage with the hem edge 36 upon movement of the actuator 62 to the left, viewing Figures 2 or 2A.
  • the vacuum pu ⁇ rp 90 is substantially continuously operated to provide a vacuum pressure force acting on the second to be separated part 22b, Figure 2A to hold that part and the remainder of the stack 35 in the position indicated in Figure 2A as the part 22a is being separated.
  • the surface 150 is formed on a plate manber 152 which extends substantially perpendicular to the path of reciprocation of the carriage 16 and has mounted thereon a retractable shield member 154 which is operate to form a guide channel or enclosure 153 for guiding the parts 22 as they are separated from the stack 35 and fed seriatim into registration with the surface 150.
  • the cam followers 164 are retained in the slots 162 by the head portions 165 which engage a shoulder formed by recessed portions 163 of the cam slots 162, respectively.
  • the cam plate 156 is moved to cause the cam follows 164 to translate linearly to the left, viewing Figures 7 and 2B, in the slots 166 to retract the shield 154 to the alternate position indicated by the dashed lines in Figure 2B.
  • the cam plate 154 and the cam followers 164 are operable to position the shield 154 in the original position described in conjunction with Figure 2B.
  • the shield 154 comprises part of the conveyor means 44 for conveying the parts 22 along the guide surface 150 to be engaged by the conveyor 42 on the apparatus 40 or subsequent conveyor means for other operations, depending on the configuration of the parts being separated and fed or transferred by the apparatus 10.
  • the shield member 154 includes a pressure air manifold member 170 mounted thereon and connected to a plurality of elongated conduits 172, and 174 the distal ends of which include jet nozzles 173 and 175, respectively.
  • 0_he nozzles 173 are oriented to i ⁇ part a pressure air jet force on a part 22 to hold the part in engagement with the surface 150 but to also translate the part downward, viewing Figure 7, in the direction of the arrow 177.
  • the nozzle 175 is positioned such that a jet of air is isrparted downward toward the surface 14 adjacent a side edge of a part 22 to slightly lift or float the part 22 on the surface 14 when it is in registration with the surface 150 to assist in conveying the part in the direction of the arrow 177.
  • the shield members 154 and 184 are provided with air bleed ports 187 and 189, respectively, to prevent the build up of pressure in the enclosures or channels such as the channel 153, Figure 2B, to facilitate the ease with which the parts 22 may be fed along the guide surfaces 150 and 182.
  • the conveyor means 44 provided by the movable shield 154, the fixed shield 184 and the nozzles 173, 175 and 188 provides a reliable and mechanically unconplicated means for conveying the separated parts 22 seriatim along the apparatus 10 to a succeeding operation
  • other forms of conveyors may be used to transfer the parts 22 laterally along the path indicated by the arrow 177 to further conveyor means or to another operating station.
  • O-he conveyor 38 is responsive to sensing the absence of a part 22 generally aligned with the position sensor 136, 138 to feed the stack 35 into position such that a hem edge 36 of a part 22, such as part 22a, or at least a sufficient portion of a part 22 is in position to be engaged by the bar 86 and the second to be dispensed or separated part, such as the part 22b, is disposed over the recesses 124 and 125 to be held by the pressure force acting downward on the hem 32b of the part 22b, for example.
  • the position sensor 136, 138 senses the absence of a part and the stack 35 is advanced accordingly.
  • the vacuum punp 90 is typically continuously operated to create a pressure differential at the wall 84 and on the surface 14 in proximity to the orifices 82, 120, 130 and 132, respectively.
  • Proximity sensors 192 and 194 are preferably provided on a .support member 196 for sensing the position of the actuator 62 and, in particular, a signal generating manber 198 mounted on top of the bearing member 76, Figure 4. Accordingly, when the actuator 62 is in the position shown in Figure 2 and a signal from the position sensor 194 is read along with a signal from the position sensor 136, 138, indicating the proper position of a part 22a to be engaged by the .separator mechanism, the actuator 70 is energized to lower the distal end 74 of the plate 66 to cause engagement of the bar 86 with part 22a.
  • the motor 94 may be energized to commence operation of the vibrator mechanian 92 to oscillate the plate 66 longitudinally in the general direction of the double headed arrow 110 in an oscillatory motion to assist in separating the part 22a engaged by the bar 86 from the part 22b which is contiguous with the stack 35.
  • the amplitude and rate of vibration of the plate 66 may be adjusted in accordance with the materials and surface finish of the parts being separated. fed along the guide surfaces 150 and 182.
  • the conveyor means 44 provided by the movable shield 154, the fixed shield 184 and the nozzles 173, 175 and 188 provides a reliable and mechanically uncomplicated means for conveying the separated parts 22 seriatim along the apparatus 10 to a succeeding operation
  • the actuator 70 is energized to translate the carriage 16 to the left, viewing Figures 2 and 2B, whereupon the bar 86 will forcibly engage the hem edge 36 to pull the part 22a, for example, away from the stack 35.
  • the actuator 62 After deenergization of the motor 94 and retraction of the plate 66, the actuator 62 is energized to return the carriage 16 to the position indicated in Figure 2.
  • the actuator 152 Upon energization of the actuator 62 to return to the Figure 2 position, the actuator 152 is energized in timed relationship to energization of the actuator 62 to move the shield 154 into the position indicated by the solid lines in Figure 2B.
  • pressure air is jetted through the nozzles 173 and 175 to convey a part 22 downward, viewing Figure 7, where it is further conveyed by the pressure jetting forces acting on the part due to the nozzles 188.
  • the nozzles 188 may be operated in timed relationship to further conveying means such as the conveyor 42 and the actuation of the carriage 16 to separate and convey the next part from the stack 35 may also be controlled in accordance with the proper feeding of parts in series along the surface 150 to maintain a suitable spacing between the parts and to prevent over running one part with another.
  • the actuator 70 and the motor 94 are again energized to engage and vibrate a part 22 with the bar 86 followed by energization of the actuator 62 to -separate the next part from the stack 35 and repeat the abovedescribed operating cycle.
  • Figure 9 illustrates a modification of the apparatus 10, generally designated by the numeral 200 and comprising essentially all of the c ⁇ arponents of the apparatus 10 including the conveyor 38 but also including a modified carriage, generally designated by the numeral 202.
  • the carriage 202 is similar to the carriage 16 except that the manifold member 80 has been removed from the distal end 74 of plate 66 and a support member 204 mounted thereon.
  • the parts 206 are provided with edges 207 which present themselves on the surface 14 and are arranged in a shingled or staggered configuration in the same manner as the parts 22 are arranged in the stack 35.
  • the separating mechanism disposed on the carriage 202 is similar to that described in my U.S. Patent 4,143,871 also assigned to the assignee of the present invention.
  • the support member 204 is adapted to support a pair of opposed cylindrical part engaging manbers 210 which are rotatably mounted on the support member 204 on suitable opposed spaced apart brackets 212.
  • Each of the members 210 are cperably connected to an actuator 214 having a crank arm 216, one shown, connected to the members 210 for rotating the members in opposite directions to positively engage a part 206 to be separated from the stack 208 by opposed fabric engaging needles 218, see Figure 9A, for example.
  • the needles 218 are suitably supported on the members 210 and extend generally radially outward through a foam rubber outer shell portion 220.
  • the support member 204 may also be provided with a part engaging manber 222 centered between the cylinder members 210 and including a third needle or knife edge 224 which engages the uppermost part 206a in the stack 208 while the cylinder members 210 are being rotated to engage the part to be separated and tension the part so that it may be lifted or separated from the stack 208.
  • the cylinder members 210 are mounted eccentrically with respect to their longitudinal axes on the brackets 212 and, in response to energization of the actuators 214 may be rotated into a position wherein the needles 218 positively engage opposite sides of a fabric part 206a and tend to lift the opposite sides of the part into the alternate position illustrated in Figure 9 whereby the part is positively engaged and ready to be separated from the stack in response to linear reciprocation of the carriage 202.
  • the carriage 202 includes the support plate 64, the flexible plate 68 interconnecting plates 64 and 66, and the actuator 70 for raising and lowering the plates 66 so that the cylinder members 210 may engage the fabric part to be separated from the stack 208.
  • the alternate embodiment of a part engaging and separating mechanism as illustrated in Figures 9 and 9A may be better suited to separating parts without hemmed edges such as the parts 206.
  • the apparatus 200 is further modified with regard to the provision of means for positively engaging and holding back the next to be separated part, such as the part 206b shown by way of exa ⁇ ple in Figure 10.
  • the plate 12 is adapted to include one or more cylinder bores 224 in which are disposed reciprocable pressure fluid responsive pistons 226 having a rod portion 227 with a needle point 228 disposed on its distal end and projecting upward from the surface 14 in response to the introduction of pressure air into the cylinder bore 224 through a supply conduit 230.
  • a coil spring 232 is operable to bias the piston 226 into a retracted position wherein the needle point 228 is flush with or disposed below the surface 14.
  • the plate 12 is provided with one or more modified inserts 223 similar to the insert 123 and closing one end of the cylinder bore 224 but providing a suitable bore for accommodating the piston rod 227 for reciprocating motion between the extended and retracted positions.
  • the apparatus 200 can, of course, include a plurality of orifices, not shown, similar to the orifices 120 whereby the parts 206 may be held back by both a vacuum induced force as well as being positively engaged with one or more pressure fluid actuated needle points 228.
  • Pressure fluid is suitably introduced into and exhausted from the bore 224 to effect actuation of the piston 226 in timed relationship with the operation of the conveyor 38 and/or the cylinder actuator 70.
  • ⁇ _pon feeding the stack 208 into the position shown in Figure 10 the cylinder actuator 70 and the piston 226 may be energized simultaneously to lower the plate 66 and extend the needle point 228 into engagement with the part 206b.
  • the cylinder elements 210 may be rotated to cause the needles 218 to engage part 206a prior to transport of the carriage 202 linearly along its support.
  • the cylinder 70 may actually be retracted somewhat to assist in lifting the part 206a slightly away from the surface 14 in addition to transporting the part to the left, viewing Figure 10, away from part 206b and the stack 208.
  • the hold back cylinder actuator cooprising the bore 224 and piston 226 may be deenergized once the part 206a is separated fr ⁇ n the stack 208 so that the stack may be advanced to position the next part for separation from the stack.
  • Those skilled in the art will recognize that other mechanisms for separating the parts fr ⁇ n a shingled stack may be utilized including a conveyor type separator similar to that disclosed in my U.S. Patent 4,203,590 assigned to the assignee of the present invention.
  • T_he conveyor 238 includes two sets of spaced apart conveyor belts 39 which are trained around spaced apart pulleys 240 supported on the plate 46 and pulleys 242 suitably supported on a frame 239 of the conveyor 238.
  • the pulleys 242 are each drivenly connected to suitable electric motors 244 and 245 which are suitably electrically connected to a source of electric energy through switches 246 and 248, respectively, and a master switch 250.
  • the switches 246 and 248 are adapted to be controlled by a control circuit 252 which includes photoelectric sensor elements 254 and 256 which are positioned with respect to the belts 39 of each of the separate conveyor belt arrangements such that they are aligned with each other along a line generally perpendicular to the direction of movement of the belts 39.
  • the sensors 254 and 256 are operable to detect the presence of a leading edge 33 of a fabric part 22a on top of the stack 35 and, accordingly, positioned to be next separated frcm the stack.
  • the orientation of the edges 33 of each of the parts 22a and 22b may be such that, upon engagement of the part to be separated from the stack by the -separating mechanisms described herein, the leading edge of the part may remain skewed with respect to the direction of travel of the part and thereby be i ⁇ prcperly gripped or engaged by the separating mechanism which would tend to foul the operation of the separating and feeding apparatus.
  • the sensors 254 and 256 may operate the switches 246 and 248 through the control circuit 252 to effect operation of the motors 244 and 245 independently of each other whereby the stack 35 may be oriented to position the leading edge 33 generally perpendicular to the line of travel of the stack 35 as it approaches the position on the support surface 14 wherein it is arrested further movement such as in response to a signal from the sensor 136-138 indicating that the part to be separated has reached the predetermined position on the surface 14.
  • the control system illustrated in Figure 12 is preferably arranged to be operable as follows.
  • the switch 250 may be actuated to energize both motors 244 and 245 to advance the stack 35 toward the surface 14. If either of the sensors 254 or 256 senses the presence of the edge 33 of the leading part 22a of stack 35, the motor associated with that sensor will be deenergized through its associated switch while the other motor is allowed to continue operating to drive the conveyor belts 39 connected thereto until the other sensor detects the presence of the leading edge 33 whereby both motors will be energized to advance J the stack toward surface 14.
  • the stack will be oriented such that the leading edge 33 of a part 22 will be turned to align the edge generally perpendicular to the intended direction of travel of the stack as provided by the conveyor 238.
  • a plurality of separating and feeding apparatus 10 may be arranged in conjunction with, for exa ⁇ ple, a hemming machine 21 which would feed a linear conveyor 260.
  • Tlie conveyor 260 is operable to supply a shingled stack 35 to a conveyor 262 similar to the conveyor 34 but mounted on suitable means for traversing a trackway 264 whereby a plurality of separating and feeding apparatus 10 are operable to receive stacks 35 of predetermined length on their respective feed conveyors 38.
  • each separator and feeder apparatus 10 may be associated with an apparatus 40 for performing further operations on the fabric parts supplied by the machine 21.
  • conveyors 38, separator and feeder apparatus 10, and machines 40 are disposed on opposite sides of the trackway 264.
  • the conveyor 262 is preferably provided with a turntable substructure 263 for rotating the conveyor so that the same leading edge of each of the fabric parts in a stack is presented to all of the separator and feeder apparatus 10 in the same manner as described in conjunction with the arrangement of Figure 1.
  • the parts making up the stacks 35 may or may not require inversion before being loaded on the conveyor 262 depending on whether or not the hem edge 84 of each fabric part 22 is turned upward or downward during the hemming operation performed by the machines 21.
  • the operation of the conveyor 260 would be controlled to load the conveyor 262 only when it is present at the conveyor 260 as illustrated. Once the conveyor 262 has moved along the trackway 264 to one or more stations at which an apparatus 10 and conveyor 38 is disposed, the conveyor 260 would shut down if a stack 35 approached the end of the conveyor normally adjacent to conveyor 262.
  • the relative sizes of the conveyors 260 and 262 could, of course, be adjusted to provide for timed loading of the conveyor 262 and transport of the conveyor 262 to one or more of the conveyors 38, unloading of the conveyor 262 and return to the station for receiving additional stacks 35 from conveyor 260 so that a substantially continuous feeding of a respective apparatus 10 may be obtained.
  • the overall arrangement of utilizing a vibratory feeder in accordance with the present invention together with retention of the second to be fed part by a vacuum induced or mechanical force provides a particularly unique separating and feeding mechanism.
  • the conveyance of fabric parts along a reference or guide surface utilizing pressure air jet conveyor means in combination with the other aspects of the invention also provides a particularly uncomplicated and reliable -system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)

Abstract

Transporteur de séparation et de transfert de pièces de tissu empilées. Un transporteur sans fin (38) alimente la pile (35) dans une position où la pièce en haut de la pile peut être séparée. Un mécanisme ayant une barre à lame de couteau (86) ou des aiguilles opposées (218) de pénétration du tissu est abaissé et accroche la pièce pour la tirer et la séparer de la pile. La deuxième pièce sur la pile est retenue sur la pile par une force de pression exercée par une série d'orifices ou d'évidements d'aspiration (124 et 125) formés dans une surface horizontale de support et/ou par des aiguilles relevables (228) de percement du tissu. La barre de séparation et de transfert des pièces est connectée à une plaque de support qui peut être mise en vibration sur un plan généralement horizontal afin d'aider à couper la connexion par friction entre la pièce que l'on veut séparer et les autres pièces de la pile lorsqu'on les sépare. Les pièces séparées se présentent successivement à une surface de guidage (14) qui guide la pièce sous l'impulsion d'un jet d'air le long d'un trajet d'alimentation jusqu'à un autre poste de travail (40).
PCT/US1985/001716 1984-09-11 1985-09-06 Separation et alimentation de pieces de tissu WO1986001789A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/649,503 US4688781A (en) 1984-09-11 1984-09-11 Separating and feeding fabric parts
US649,503 1984-09-11

Publications (1)

Publication Number Publication Date
WO1986001789A1 true WO1986001789A1 (fr) 1986-03-27

Family

ID=24605074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1985/001716 WO1986001789A1 (fr) 1984-09-11 1985-09-06 Separation et alimentation de pieces de tissu

Country Status (4)

Country Link
US (1) US4688781A (fr)
EP (1) EP0193600A4 (fr)
JP (1) JPS62500297A (fr)
WO (1) WO1986001789A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262578A2 (fr) * 1986-10-03 1988-04-06 LEVI STRAUSS & CO. Séparation et transport d'eléments de vêtement

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039078A (en) * 1986-10-03 1991-08-13 Levi Strauss & Co. Separating and feeding garment parts
JPS645891A (en) * 1987-06-29 1989-01-10 Sony Corp Page turn-over device
US5816177A (en) * 1995-12-04 1998-10-06 Sew Simple Systems, Inc. Material feeding, aligning cutting and edge finishing system
US6058556A (en) * 1997-12-22 2000-05-09 Bns Engineering, Inc. Movable head bristle block cleaner
DK1044154T3 (da) * 1997-12-30 2002-07-08 Ferag Ag Anordning til forvandling af en skællet stabel af genstande til en skælformation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2151228A (en) * 1936-10-31 1939-03-21 Charles F Pflanze Sheet feeding and forwarding mechanism
US3442505A (en) * 1966-12-22 1969-05-06 Ivanhoe Research Corp Automatic apparatus for separating the top workpiece from a stack of fabric workpieces and for delivering the separated workpieces
US3545741A (en) * 1966-04-29 1970-12-08 Baeuerle Gmbh Mathias Collator with sheet feeders assisted by vibration
US3738645A (en) * 1971-11-26 1973-06-12 Usm Corp Top sheet separating, hold-back-down mechanism
CA998406A (en) * 1974-01-21 1976-10-12 Ralph A. Nyborg Bag handling equipment
US4049260A (en) * 1976-08-04 1977-09-20 General Corrugated Machinery Co., Inc. Apparatus for feeding sheets
US4506876A (en) * 1982-02-13 1985-03-26 Sharp Kabushiki Kaisha Sheet paper attracting system
US4544149A (en) * 1982-02-04 1985-10-01 Diebold, Incorporated Multi-picker mechanism for automatic banking machines

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1116992A (en) * 1913-12-06 1914-11-10 Silas W Bennett Envelop-feeding device.
DE413450C (de) * 1922-08-25 1925-05-07 Georg Spiess Vorrichtung zum Abtrennen einzelner Bogen aus Papier, Karton u. dgl. von einem Stapel mittels Nadeln
DE516768C (de) * 1930-04-03 1931-01-27 Rationell Maschb Ges M B H Bogenanleger
US2584730A (en) * 1950-10-02 1952-02-05 Smithe Machine Co Inc F L Envelope feeding mechanism
US3149835A (en) * 1962-10-11 1964-09-22 Sperry Rand Corp Document sensing device
US3908983A (en) * 1973-02-07 1975-09-30 John Albert Long Card feeder
FR2249008B1 (fr) * 1973-10-26 1978-06-09 Bijttebier Gaspar
US4046369A (en) * 1976-05-05 1977-09-06 Willi Kluge Machine for feeding inserts to a separating device
JPS56122739A (en) * 1980-02-28 1981-09-26 Toshiba Corp Paper sheets transport device
US4591140A (en) * 1983-03-12 1986-05-27 Agfa-Gevaert Aktiengesellschaft Arrangement for separating and transporting uppermost sheets of a stack of sheets or sheet-like objects

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2151228A (en) * 1936-10-31 1939-03-21 Charles F Pflanze Sheet feeding and forwarding mechanism
US3545741A (en) * 1966-04-29 1970-12-08 Baeuerle Gmbh Mathias Collator with sheet feeders assisted by vibration
US3442505A (en) * 1966-12-22 1969-05-06 Ivanhoe Research Corp Automatic apparatus for separating the top workpiece from a stack of fabric workpieces and for delivering the separated workpieces
US3738645A (en) * 1971-11-26 1973-06-12 Usm Corp Top sheet separating, hold-back-down mechanism
CA998406A (en) * 1974-01-21 1976-10-12 Ralph A. Nyborg Bag handling equipment
US4049260A (en) * 1976-08-04 1977-09-20 General Corrugated Machinery Co., Inc. Apparatus for feeding sheets
US4544149A (en) * 1982-02-04 1985-10-01 Diebold, Incorporated Multi-picker mechanism for automatic banking machines
US4506876A (en) * 1982-02-13 1985-03-26 Sharp Kabushiki Kaisha Sheet paper attracting system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0193600A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262578A2 (fr) * 1986-10-03 1988-04-06 LEVI STRAUSS & CO. Séparation et transport d'eléments de vêtement
EP0262578A3 (en) * 1986-10-03 1990-03-14 Levi Strauss & Co. Separating and feeding garment parts

Also Published As

Publication number Publication date
JPS62500297A (ja) 1987-02-05
EP0193600A4 (fr) 1987-02-12
US4688781A (en) 1987-08-25
EP0193600A1 (fr) 1986-09-10

Similar Documents

Publication Publication Date Title
US3871309A (en) Shirt front assembly, method and apparatus
US5865135A (en) Method and apparatus for producing a hemmed folded and seamed finished workpiece
US4579330A (en) Pneumatic sheet feeder
US3785638A (en) Fabric pickup and transfer device
KR870000490B1 (ko) 플라이 스트립을 슬라이드 파스너 체인에 부착하는 방법 및 장치
US4688781A (en) Separating and feeding fabric parts
US4526501A (en) Sheet pile replenishment apparatus
EP0159507B1 (fr) Dispositif de tirage d'un article cousu de grande longueur hors du point de couture
US3531103A (en) Fabric handling
JP2574708B2 (ja) 衣服生地片の分離および送り装置
AU2014349198B2 (en) Apparatus for inserting documents into envelopes and associated method
WO1988006512A1 (fr) Appareil coupe-feuilles pour tissus souples
US4871161A (en) Separating and feeding garment parts
US3970021A (en) Method of fabricating shirt cuffs
US20050072127A1 (en) Envelope-filling station for mail processing systems
EP1738923A2 (fr) Appareil pour perforer et coudre des parties de livre ou magazine
US3759508A (en) Apparatus and method for feeding blanks
US4820375A (en) Screw type rod feeding and placement mechanism
US3698704A (en) Folded newspaper opening mechanism for multiple section inserting machine
CN214140725U (zh) 一种用于卡片纸防伪标的烫印装置
US20160159140A1 (en) Apparatus for inserting documents into envelopes and associated method
CA1111872A (fr) Methode et dispositif de manutention, de positionnement et d'assemblage de couches de tissus
JP2550761Y2 (ja) 板材搬送装置
WO1986000944A1 (fr) Dispositif de transport et de guidage pour coudre un tissu mou
WO1989010321A1 (fr) Appareil d'alimentation automatique de petites pieces de tissu

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1985904716

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1985904716

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1985904716

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1985904716

Country of ref document: EP