WO1985002227A1 - Temperature regulated fan drive for high power drives - Google Patents

Temperature regulated fan drive for high power drives Download PDF

Info

Publication number
WO1985002227A1
WO1985002227A1 PCT/EP1984/000354 EP8400354W WO8502227A1 WO 1985002227 A1 WO1985002227 A1 WO 1985002227A1 EP 8400354 W EP8400354 W EP 8400354W WO 8502227 A1 WO8502227 A1 WO 8502227A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan drive
temperature
fan
pump
machine
Prior art date
Application number
PCT/EP1984/000354
Other languages
German (de)
French (fr)
Inventor
Siegfried Winkelmann
Rudolf Schneider
Original Assignee
Zahnradfabrik Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zahnradfabrik Friedrichshafen Ag filed Critical Zahnradfabrik Friedrichshafen Ag
Publication of WO1985002227A1 publication Critical patent/WO1985002227A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/042Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using fluid couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/046Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using mechanical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/143Controlling of coolant flow the coolant being liquid using restrictions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/161Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps

Definitions

  • the invention relates to a temperature-controlled fan drive for high-performance machines. to which a temperature sensor, influenced by the coolant temperature of the machine, for controlling a coupling device between the machine and the cooling fan is assigned.
  • the cooling fan In the case of cooling fans on machines, in particular on internal combustion engines that are used in construction machines, the high design power required for these cooling fans is only required temporarily.
  • the coolant temperature is a measure of the fan power actually required.
  • a predetermined drive speed of the machine which is usually too high for the cooling fan, by changing the slip of a slip clutch, the cooling fan can be operated with the
  • the invention has for its object to provide a temperature-controlled fan drive for high-performance machines, which can be made smaller and more compact, generates less heat loss and works more wear-free and can be controlled in a simpler manner than was previously possible with known solutions.
  • the invention has the advantages over the known that the fan drive can be constructed compactly and with a small size.
  • a fixed component as part of the slip brake, compared to known solutions in which e.g. both coupling halves rotate, the setting of the torque and thus the speed considerably easier.
  • the slip brake only requires a smaller torque in relation to the gear ratio than a clutch directly in the drive train of the cooling fan.
  • the fan drive can run in continuous operation and is still wear-free.
  • the slip brake can be used for ventilation and / or cooling
  • T * fcO C «& * • serving turbo blower can also be a pump that supports the cooling medium circulation of the machine, or can supply energy as a hydraulic pump, compressor or electrical generator to any location, for example to a hydraulic accumulator, a pneumatic accumulator or an electrical accumulator, from where the energy can then be called up if necessary.
  • FIG. 1 shows a section through a fan drive according to the invention with a pump as a braking element for the differential epicyclic gear
  • FIG. 2 shows another exemplary embodiment of a fan drive according to the invention with a pump, in the inlet of which there is an expansion element which actuates a throttle valve located in its outlet,
  • FIG. 4 shows a diagram showing the course of the powers, speeds and torques of the device
  • 5 shows another embodiment of a fan drive according to the invention similar to that of FIG. 2, but the throttle valve is arranged parallel to the centrifugal pump
  • FIG. 6 shows a circuit diagram with the pump and the throttle valve according to FIG. 5 lying parallel to it
  • Fig. 7 shows another embodiment of the invention with an electrical hysteresis brake.
  • a cooling fan 1 (FIG. 1) is to be driven by a machine (not shown in the drawing) via a drive belt 3 running on a belt pulley 16.
  • a differential epicyclic gear 2 serves to transmit the torque required for this purpose.
  • An integral part of the shaft 6 is a sun gear 5 of the di ferential epicyclic gear 2, the web of which is embodied by the pulley 16.
  • Planetary wheels 20 of the differential epicyclic gear 2 are rotatably mounted on bearing bolts 21, which in turn are mounted in the pulley 16.
  • the shaft 6 and thus the sun gear 5 are operatively connected to a brake for the differential epicyclic gear 2.
  • this brake is formed by a pump 7, which is located in a housing 9.
  • the shaft 6 is rotatably connected to the rotor of the pump 7.
  • the cooling water is supplied to the pump 7 via an inlet connector 10, and the outlet via an outlet connector 11.
  • the flow resistance in the line circuit connected to the inlet connection 10 and the outlet connection 11 can be varied depending on the cooling water temperature in such a way that it also increases as the temperature of the cooling water of the machine increases ⁇ increases and decreases with falling temperature. This is achieved by a thermostatic valve which is known per se and is connected to the line circuit.
  • the increasing flow resistance of the conduit circuit, which also includes the pump 7, increases with increasing cooling water temperature, which has an increased braking effect which the pump 7 exerts on the differential epicyclic gear 2.
  • variable torque on the sun gear 5, through the translation in the differential epicyclic gear 2, produces a corresponding torque on the ring gear 4 and thus on the cooling fan 1, as a result of which the latter rotates at the corresponding speed.
  • the sun wheel 5 and thus also the rotor of the pump 7 rotate at the speed resulting from the speed difference and transmission ratio. If the cooling water temperature of the machine becomes lower, the flow resistance in the line circuit becomes smaller by opening the throttle valve 15 and thus the braking effect which the pump 7 exerts on the differential epicyclic gear 2.
  • a pump 7 is also used as the brake, in this case a centrifugal pump which is equipped with an inlet opening 12 and an outlet opening 13.
  • An expansion element 14, which is flushed with the incoming cooling water, is also installed in its housing 9 and controls a throttle valve 15 as a function of the temperature profile of the cooling water of the machine.
  • the throttle valve 15 is in the drain line of the cooling water.
  • the cooling water, coming from the drain opening 13 in the housing 9 of the pump 7, passes the throttle valve 15 and leaves the housing 9 via the drain connector 11.
  • FIG. 3 from which the series connection of the inlet connector 10, Pump 7, throttle valve 15 and outlet 11 also emerges.
  • the throttle valve 15 increases the flow resistance in the fluid circuit, in which the pump 7 is also included, by closing. This is due to an increased braking effect which the pump 7 exerts on the differential epicyclic gear 2.
  • the variable torque on the sun gear 5, due to the translation in the differential epicyclic gear 2 produces a corresponding torque on the ring gear 4 and thus on the cooling fan 1, as a result of which the latter rotates at the corresponding speed.
  • the sun gear 5 and thus also the rotor of the pump 7 rotate at the speed resulting from the speed difference and the gear ratio. If the cooling water temperature of the machine falls, the flow resistance in the line circuit decreases by opening the throttle valve 15 and thus the braking effect which the pump 7 exerts on the differential epicyclic gear 2.
  • FIG. 5 a bypass channel 22 has additionally been provided in the housing 9 of the pump 7, which bypass valve 15 is more or less released depending on the temperature of the cooling water .
  • a throttle point 19 is installed in the housing 9 of the pump 7 between the outlet opening 13 of the pump 7 and the outlet nozzle 11.
  • the expansion element 14 causes the throttle valve 15 to open, as a result of which pressure build-up in the outlet opening 13 and thus a high speed of the cooling fan 1 are prevented.
  • the throttle valve 15 closes, as a result of which a pressure builds up in the outlet opening 13.
  • a correspondingly occurring braking action in the pump 7 influences the differential epicyclic gear 2 in such a way that the cooling fan 1 runs faster.
  • the brake for the differential epicyclic gear 2 is constructed as a hysteresis brake 8 known per se, in the housing 9 of which radially pronounced and mutually offset poles 23, 24 and a shaft 6 with the shaft 6 are rotationally fixed connected rotor 25 are provided, via a connecting line 17, a winding 18 is charged with high strength current at high temperature of the cooling water of the machine and with lower current at low temperature of the cooling water.
  • the control of the current intensity according to the temperature of the cooling water of the machine can be done by an NTC resistor, by a snap switch or another suitable device, e.g. B. an electronic circuit, to which a thermal sensor is assigned, can be effected as a function of the cooling water temperature.
  • Cooling fan 1 effective, causing this with the corresponding
  • FIG. 4 The course of the powers, speeds and torques of the exemplary embodiment according to FIG. 7 are illustrated on the basis of a diagram (FIG. 4), where P is the drive power, P g is the slip power on the sun gear, M_ the torque on the sun gear, M_ the torque of the cooling fan, P_ the power consumption of the cooling fan, n g the speed at the sun gear and n_ 1_ mean the speed of the cooling fan.
  • the mounting of the cooling fan 1 and the rotor of the slip brake on the same shaft 6 (FIGS. 1, 2, 5, 7), which also forms the sun gear 5, contributes to the desired, particularly compact structure of the fan drive.
  • the cooling fan 1 could also be stored separately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Arrangements (AREA)
  • General Details Of Gearings (AREA)

Abstract

Temperature regulated fan drive for high power engines, particularly internal combustion engines, wherein the rotation speed of the cooling fan is changed as a function of the dissipation of heat generated by the engine. To this effect, there is provided before the cooling fan a differential planetary gear to which is adjoined an adjustable operation sliding brake. The latter may be a hydraulic pump for the cooling water of the engine, an electric hysteresis brake or an electric generator. The resulting sliding power may be used at another location or may be annihilated.

Description

Temperaturgesteuerter Lüfterantrieb für Maschinen großer Leistung Temperature controlled fan drive for high performance machines
Die Erfindung bezieht sich auf einen temperaturgesteuerten Lüfterantrieb für Maschinen großer Leistung,. dem ein von der Kühlmitteltemperatur der Maschine beeinflußter Temperatur¬ sensor zur Steuerung einer Kuppelvorrichtung zwischen der Maschine und dem Kühllüfter zugeordnet ist.The invention relates to a temperature-controlled fan drive for high-performance machines. to which a temperature sensor, influenced by the coolant temperature of the machine, for controlling a coupling device between the machine and the cooling fan is assigned.
Bei Kühllüftern an Maschinen, insbesondere an Brennkraftma¬ schinen, die in Baumaschinen benutzt werden, wird nur zeit¬ weise die auslegungsmäßig hohe Antriebsleistung für diese Kühllüfter benötigt. Ein Maß für die tatsächlich erforderli¬ che Lüfterleistung ist die Kühlmitteltemperatur. Bei vorge¬ gebener, für den Kühllüfter üblicherweise zu hoher Antriebs¬ drehzahl der Maschine kann durch Änderung des Schlupfs einer Schlupfkupplung der Kühllüfter mit derIn the case of cooling fans on machines, in particular on internal combustion engines that are used in construction machines, the high design power required for these cooling fans is only required temporarily. The coolant temperature is a measure of the fan power actually required. In the case of a predetermined drive speed of the machine, which is usually too high for the cooling fan, by changing the slip of a slip clutch, the cooling fan can be operated with the
Drehzahl betrieben werden, die der momentan erfor¬ derlichen Lüfterleistung entspricht. Es gibt eine Vielzahl von Vorrichtungen, die es erlauben, die Lüfterdrehzahl dem Bedarf anzupassen. So ist aus der DE-PS 1 176 427 eine Flüs¬ sigkeitskupplung mit in Abhängigkeit von der Temperatur ver¬ änderbarem Schlupf bekannt, bei der der Abstand zwischen den Kupplungshälften mittels eines auf Temperatur ansprechenden Elements verstellbar ist. Im Schlupfbereich dieser Kupplung tritt in ihr Verlustwärme auf, die an dieser Stelle an sich unerwünscht ist. Die Auslegung der Kühlanlage an Maschinen großer Leistung wird so gewählt, daß die volle Mo-Operating speed that corresponds to the fan power currently required. There are a variety of devices that allow the fan speed to be adapted to the needs. From DE-PS 1 176 427 a fluid coupling with slip that can be changed as a function of the temperature is known, in which the distance between the coupling halves can be adjusted by means of a temperature-responsive element. In the slip area of this clutch, heat loss occurs in it, which is undesirable per se at this point. The design of the cooling system on high-performance machines is selected so that the full mo-
Figure imgf000003_0001
torleistung auf Dauer eingesetzt werden kann. Dies hat rela¬ tiv große Lüfterleistung zur Folge, die bei ca. 5 % der Mo¬ tornennleistung liegt. Es ist verständlich, daß gerade hier regelbare Lüfterantriebe weit verbreitet sind. Andere, be¬ kannte Kupplungen zwischen einer Antriebsmaschine und einem Lüfter, wie z.B. Viskosekupplungen oder Strömungskupplungen, sind darüber hinaus wegen ihrer erheblichen Baugröße in kom¬ pakten Maschinen nicht einsetzbar.
Figure imgf000003_0001
can be used in the long term. This results in a relatively large fan output, which is approximately 5% of the nominal motor output. It is understandable that controllable fan drives are particularly widespread here. Other known couplings between a drive machine and a fan, such as eg viscous couplings or fluid couplings, cannot be used in compact machines because of their considerable size.
Der Erfindung liegt die Aufgabe zugrunde, einen temperatur¬ gesteuerten Lüfterantrieb für Maschinen großer Leistung zu schaffen, der kleiner und kompakter aufgebaut werden kann, weniger Verlustwärme erzeugt und verschleißfreier arbeitet sowie auf einfachere Weise steuerbar ist, als dies bei bekannten Lösungen bisher möglich war.The invention has for its object to provide a temperature-controlled fan drive for high-performance machines, which can be made smaller and more compact, generates less heat loss and works more wear-free and can be controlled in a simpler manner than was previously possible with known solutions.
Erfindungsgemäß wird die Aufgabe durch die im Kennzeichen des Anspruchs 1 aufgeführten Merkmale gelöst.According to the invention the object is achieved by the features listed in the characterizing part of claim 1.
Die Erfindung weist gegenüber dem Bekannten die Vorteile auf, daß der Lüfterantrieb kompakt und mit geringer Baugröße aufgebaut werden kann . Durch die Verwendung eines feststehenden Bauteils als Bestandteil der Schlupfbremse wird gegenüber bekannten Lösungen, bei denen z.B. beide Kupplungshälften rotieren, die Einstellung des Drehmoments und damit der Drehzahl erheblich erleich¬ tert. Die Schlupfbremse benötigt nur ein im Verhältnis der Getriebeübersetzung kleineres Drehmoment als eine Kupplung direkt im Antriebsstrang des Kühllüfters. Der Lüfterantrieb kann im Dauerbetrieb laufen und ist dennoch verschleißfrei. Die Schlupfbremse kann ein der Lüftung und/oder KühlungThe invention has the advantages over the known that the fan drive can be constructed compactly and with a small size. By using a fixed component as part of the slip brake, compared to known solutions in which e.g. both coupling halves rotate, the setting of the torque and thus the speed considerably easier. The slip brake only requires a smaller torque in relation to the gear ratio than a clutch directly in the drive train of the cooling fan. The fan drive can run in continuous operation and is still wear-free. The slip brake can be used for ventilation and / or cooling
T*fcO C «&* dienendes Turbogebläse sein. Sie kann aber auch eine Pumpe sein, die den Kühlmediumumlauf der Maschine unterstützt, oder als Hydropumpe, Kompressor bzw. elektrischer Generator Energie an eine beliebige Stelle liefern, z.B. an einen Hydrospeicher, einen Pneumatikspeicher oder einen elektri¬ schen Akkumulator, von wo aus die Energie dann bedarfsweise abgerufen werden kann.T * fcO C «& * serving turbo blower. However, it can also be a pump that supports the cooling medium circulation of the machine, or can supply energy as a hydraulic pump, compressor or electrical generator to any location, for example to a hydraulic accumulator, a pneumatic accumulator or an electrical accumulator, from where the energy can then be called up if necessary.
Weitere, vorteilhafte Ausgestaltungen der Erfindung gehen aus der nachfolgenden Beschreibung, den Ansprüchen und der Zeichnung hervor.Further advantageous embodiments of the invention are evident from the following description, the claims and the drawing.
Die Erfindung wird an Ausführungsbeispielen anhand der Zeichnung erläutert. Es zeigenThe invention is explained using exemplary embodiments with reference to the drawing. Show it
Fig. 1 einen Schnitt durch einen erfindungs¬ gemäßen Lüfterantrieb mit einer Pumpe als Bremselement für das Differential-Umlaufgetriebe,1 shows a section through a fan drive according to the invention with a pump as a braking element for the differential epicyclic gear,
Fig. 2 ein anderes Ausführungsbeispiel ei¬ nes erfindungsgemäßen Lüf erantriebs mit einer Pumpe, in deren Zulauf ein Dehnstof element liegt, das ein in ihrem Ablauf liegendes Drosselventil betätigt,2 shows another exemplary embodiment of a fan drive according to the invention with a pump, in the inlet of which there is an expansion element which actuates a throttle valve located in its outlet,
Fig. 3 einen Stromlaufplan mit der Pumpe und dem in Reihe zu ihr liegenden Drosselventil,3 shows a circuit diagram with the pump and the throttle valve lying in series with it,
Fig. 4 ein den Verlauf der Leistungen, Dreh¬ zahlen und Drehmomente der Vorrichtung zeigendes Diagramm, Fig. 5 ein anderes Ausführungsbeispiel eines erfindungsgemäßen Lüfterantriebs ähnlich demjenigen nach Fig. 2, wobei das Drosselventil aber parallel zur Kreisel¬ pumpe angeordnet ist,4 shows a diagram showing the course of the powers, speeds and torques of the device, 5 shows another embodiment of a fan drive according to the invention similar to that of FIG. 2, but the throttle valve is arranged parallel to the centrifugal pump,
Fig. 6 einen Stromlaufplan mit der Pumpe und dem zu ihr parallel liegenden Drosselventil gemäß Fig. 5 ,6 shows a circuit diagram with the pump and the throttle valve according to FIG. 5 lying parallel to it,
Fig. 7 ein weiteres Ausführungsbeispiel der Erfindung mit einer elektrischen Hysteresebremse.Fig. 7 shows another embodiment of the invention with an electrical hysteresis brake.
Ein Kühllüfter 1 (Fig. 1) soll über einen auf einer Riemen¬ scheibe 16 laufenden Antriebsriemen 3 von einer (nicht in der Zeichnung dargestellten) Maschine angetrieben werden. Der Übertragung des hierzu notwendigen Drehmoments dient ein Differential-Umlaufgetriebe 2, dessen Hohlrad 4 drehfest mit dem auf einer Welle 6 frei drehbar gelagerten Kühllüfter 1 verbunden ist. Integrierender Bestandteil der Welle 6 ist ein Sonnenrad 5 des Di ferential-Umlaufgetriebes 2, dessen Steg durch die Riemenscheibe 16 verkörpert ist. Planetenrä¬ der 20 des Differential-Umlaufgetriebes 2 sind auf Lagerbol¬ zen 21 drehbar gelagert, die ihrerseits in der Riemenscheibe 16 gelagert sind. Die Welle 6 und damit das Sonnenrad 5 stehen mit einer Bremse für das Differential-Umlaufgetriebe 2 in Wirkverbindung. Diese Bremse wird beim Ausführungsbei- spiel durch eine Pumpe 7 gebildet, die sich in einem Gehäuse 9 befindet. Die Welle 6 ist drehfest mit dem Rotor der Pumpe 7 verbunden. Diese liegt in einem Fluidkreislauf, der vor¬ zugsweise Kühlwasser der Maschine führt. Der Zulauf des Kühlwassers zu der Pumpe 7 erfolgt über einen Zulaufstutzen 10, der Ablauf über einen Ablaufstutzen 11. Der Strömungswiderstand in dem an den Zulaufstutzen 10 und den Ablaufstutzen 11 angeschlossenen (nicht in Fig. 1 darge¬ stellten) Leitungskreis ist in Abhängigkeit von der Kühlwas¬ sertemperatur in der Weise veränderlich, daß er bei steigen¬ der Temperatur des Kühlwassers der Maschine ebenfalls an¬ steigt und bei fallender Temperatur abnimmt. Dies wird durch ein in den Leitungskreis eingeschaltetes, an sich be¬ kanntes Thermostatventil erreicht. Der bei steigender Kühl¬ wassertemperatur ansteigende Strömungswiderstand des Lei¬ tungskreises, in den auch die Pumpe 7 einbezogen ist, wirkt sich durch eine erhöhte Bremswirkung aus, die die Pumpe 7 auf das Differential-Umlaufgetriebe 2 ausübt. Das veränder¬ liche Drehmoment am Sonnenrad 5 bewirkt durch die Überset¬ zung im Differential-Umlaufgetriebe 2 ein entsprechendes Drehmoment am Hohlrad 4 und damit am Kühllüfter 1 , wodurch dieser mit der entsprechenden Drehzahl dreht. Das Sonnenrad 5 und damit auch der Rotor der Pumpe 7 drehen bei diesem Betriebszustand mit der aus Drehzahldifferenz und Überset¬ zungsverhältnis resultierenden Drehzahl. Wird die Kühlwas¬ sertemperatur der Maschine kleiner, werden der Strömungswi¬ derstand in dem Leitungskreis durch Öffnen des Drosselven¬ tils 15 und damit die Bremswirkung kleiner, die die Pumpe 7 auf das Differential-Umlaufgetriebe 2 ausübt.A cooling fan 1 (FIG. 1) is to be driven by a machine (not shown in the drawing) via a drive belt 3 running on a belt pulley 16. A differential epicyclic gear 2 serves to transmit the torque required for this purpose. An integral part of the shaft 6 is a sun gear 5 of the di ferential epicyclic gear 2, the web of which is embodied by the pulley 16. Planetary wheels 20 of the differential epicyclic gear 2 are rotatably mounted on bearing bolts 21, which in turn are mounted in the pulley 16. The shaft 6 and thus the sun gear 5 are operatively connected to a brake for the differential epicyclic gear 2. In the exemplary embodiment, this brake is formed by a pump 7, which is located in a housing 9. The shaft 6 is rotatably connected to the rotor of the pump 7. This lies in a fluid circuit which preferably carries cooling water from the machine. The cooling water is supplied to the pump 7 via an inlet connector 10, and the outlet via an outlet connector 11. The flow resistance in the line circuit connected to the inlet connection 10 and the outlet connection 11 (not shown in FIG. 1) can be varied depending on the cooling water temperature in such a way that it also increases as the temperature of the cooling water of the machine increases ¬ increases and decreases with falling temperature. This is achieved by a thermostatic valve which is known per se and is connected to the line circuit. The increasing flow resistance of the conduit circuit, which also includes the pump 7, increases with increasing cooling water temperature, which has an increased braking effect which the pump 7 exerts on the differential epicyclic gear 2. The variable torque on the sun gear 5, through the translation in the differential epicyclic gear 2, produces a corresponding torque on the ring gear 4 and thus on the cooling fan 1, as a result of which the latter rotates at the corresponding speed. In this operating state, the sun wheel 5 and thus also the rotor of the pump 7 rotate at the speed resulting from the speed difference and transmission ratio. If the cooling water temperature of the machine becomes lower, the flow resistance in the line circuit becomes smaller by opening the throttle valve 15 and thus the braking effect which the pump 7 exerts on the differential epicyclic gear 2.
Bei einem anderen Ausführungsbeispiel (Fig. 2) wird als Bremse ebenfalls eine Pumpe 7 eingesetzt, in diesem Fall eine Kreiselpumpe, die mit einer Zulauföffnung 12 und einer Ablauföffnung 13 ausgestattet ist. In ihr Gehäuse 9 ist fer¬ ner ein vom zulaufenden Kühlwasser umspültes Dehnstoffele¬ ment 14 eingebaut, das ein Drosselventil 15 in Abhängigkeit vom Temperaturverlauf des Kühlwassers der Maschine steuert. Hierzu liegt das Drosselventil 15 im Ablaufsträng des Kühl¬ wassers. Das Kühlwasser passiert dabei, von der AblaufÖff¬ nung 13 im Gehäuse 9 der Pumpe 7 kommend, das Drosselventil 15 und verläßt das Gehäuse 9 über den Ablaufstutzen 11. Der entsprechende Stromlauf ergibt sich aus Fig. 3, aus der die Reihenschaltung aus Zulaufstutzen 10, Pumpe 7, Drosselventil 15 und Ablaufstutzen 11 ebenfalls hervorgeht. Steigt die Temperatur des Kühlwassers der Maschine, dann erhöht das Drosselventil 15 durch Schließen den Strömungswiderstand in dem Fluidkreislauf, in den auch die Pumpe 7 einbezogen ist. Dies wirkt sich durch eine erhöhte Bremswirkung aus, welche die Pumpe 7 auf das Differential-Umlaufgetriebe 2 ausübt. Das veränderliche Drehmoment am Sonnenrad 5 bewirkt durch die Übersetzung im Differential-Umlaufgetriebe 2 ein ent¬ sprechendes Drehmoment am Hohlrad 4 und damit am Kühllüfter 1, wodurch dieser mit der entsprechenden Drehzahl dreht. Das Sonnenrad 5 und damit auch der Rotor der Pumpe 7 drehen in diesem Betriebszustand mit aus Drehzahldifferenz und Über¬ setzungsverhältnis resultierender Drehzahl. Fällt die Kühl¬ wassertemperatur der Maschine, sinkt der Strömungswiderstand in dem Leitungskreis durch öffnen des Drosselventils 15 und damit die Bremswirkung, die die Pumpe 7 auf das Differen¬ tial-Umlaufgetriebe 2 ausübt.In another exemplary embodiment (FIG. 2), a pump 7 is also used as the brake, in this case a centrifugal pump which is equipped with an inlet opening 12 and an outlet opening 13. An expansion element 14, which is flushed with the incoming cooling water, is also installed in its housing 9 and controls a throttle valve 15 as a function of the temperature profile of the cooling water of the machine. For this purpose, the throttle valve 15 is in the drain line of the cooling water. The cooling water, coming from the drain opening 13 in the housing 9 of the pump 7, passes the throttle valve 15 and leaves the housing 9 via the drain connector 11. The corresponding current flow results from FIG. 3, from which the series connection of the inlet connector 10, Pump 7, throttle valve 15 and outlet 11 also emerges. If the temperature of the cooling water of the machine rises, the throttle valve 15 increases the flow resistance in the fluid circuit, in which the pump 7 is also included, by closing. This is due to an increased braking effect which the pump 7 exerts on the differential epicyclic gear 2. The variable torque on the sun gear 5, due to the translation in the differential epicyclic gear 2, produces a corresponding torque on the ring gear 4 and thus on the cooling fan 1, as a result of which the latter rotates at the corresponding speed. In this operating state, the sun gear 5 and thus also the rotor of the pump 7 rotate at the speed resulting from the speed difference and the gear ratio. If the cooling water temperature of the machine falls, the flow resistance in the line circuit decreases by opening the throttle valve 15 and thus the braking effect which the pump 7 exerts on the differential epicyclic gear 2.
Bei einem weiteren Ausführungsbeispiel (Fig. 5) , das dem nach Fig. 2 ähnlich ist, hat man im Gehäuse 9 der Pumpe 7 zusätzlich einen Bypaßkanal 22 vorgesehen, der von dem Dros¬ selventil 15 je nach Temperatur des Kühlwassers mehr oder weniger freigegeben wird. Zwischen der AblaufÖffnung 13 der Pumpe 7 und dem Ablaufstutzen 11 ist im Gehäuse 9 der Pumpe 7 eine Drosselstelle 19 eingebaut. Bei geringer Temperatur des Kühlwassers der Maschine bewirkt das Dehnstoffelement 14 ein öffnen des Drosselventils 15, wodurch ein Druckaufbau in der AblaufÖffnung 13 und damit eine hohe Drehzahl des Kühl¬ lüfters 1 verhindert werden. Bei steigender Temperatur des Kühlwassers der Maschine schließt das Drosselventil 15, wodurch sich in der AblaufÖffnung 13 ein Druck aufbaut. Durch eine dementsprechend einsetzende Bremswirkung in der Pumpe 7 wird das Differential-Umlaufgetriebe 2 so beein¬ flußt, da£ der Kühllüfter 1 schneller läuft.In a further embodiment (FIG. 5), which is similar to that of FIG. 2, a bypass channel 22 has additionally been provided in the housing 9 of the pump 7, which bypass valve 15 is more or less released depending on the temperature of the cooling water . A throttle point 19 is installed in the housing 9 of the pump 7 between the outlet opening 13 of the pump 7 and the outlet nozzle 11. At low temperature of the cooling water of the machine, the expansion element 14 causes the throttle valve 15 to open, as a result of which pressure build-up in the outlet opening 13 and thus a high speed of the cooling fan 1 are prevented. When the temperature of the cooling water of the machine increases, the throttle valve 15 closes, as a result of which a pressure builds up in the outlet opening 13. A correspondingly occurring braking action in the pump 7 influences the differential epicyclic gear 2 in such a way that the cooling fan 1 runs faster.
Die Schaltung aus Pumpe 7, dazu parallel angeordnetem Dros¬ selventil 15 und zu der Parallelschaltung reihengeschalteter Drosselstelle 19 zeigt auch der Stromlaufplan in Fig. 6.The circuit of pump 7, throttle valve 15 arranged in parallel thereto and throttle point 19 connected in series with the parallel connection is also shown in the circuit diagram in FIG. 6.
Bei einem anderen Ausführungsbeispiel (Fig. 7) ist die Brem¬ se für das Differential-Umlaufgetriebe 2 als an sich bekann¬ te Hysteresebremse 8 aufgebaut, in deren Gehäuse 9 radial ausgeprägte und gegeneinander versetzte Pole 23, 24 sowie ein mit der Welle 6 drehfest verbundener Rotor 25 vorgesehen sind, über eine Anschlußleitung 17 wird eine Wicklung 18 bei hoher Temperatur des Kühlwassers der Maschine mit Strom hoher Stärke, bei niedriger Temperatur des Kühlwassers mit ge¬ ringerem Strom beaufschlagt. Die Steuerung der Stromstärke entsprechend der Temperatur des Kühlwassers der Maschine kann durch einen NTC-Widerstand, durch einen Schnappschalter oder eine andere, geeignete Vorrichtung, z. B. eine elektro¬ nische Schaltung, der ein Thermosensor zugeordnet ist, in Abhängigkeit von der Kühlwassertemperatur bewirkt werden.In another exemplary embodiment (FIG. 7), the brake for the differential epicyclic gear 2 is constructed as a hysteresis brake 8 known per se, in the housing 9 of which radially pronounced and mutually offset poles 23, 24 and a shaft 6 with the shaft 6 are rotationally fixed connected rotor 25 are provided, via a connecting line 17, a winding 18 is charged with high strength current at high temperature of the cooling water of the machine and with lower current at low temperature of the cooling water. The control of the current intensity according to the temperature of the cooling water of the machine can be done by an NTC resistor, by a snap switch or another suitable device, e.g. B. an electronic circuit, to which a thermal sensor is assigned, can be effected as a function of the cooling water temperature.
Bei steigender Temperatur des Kühlwassers der Maschine steigt der Strom durch die Wicklung 18, was sich durch eine erhöhte Bremswirkung auswirkt, über den Rotor 25 und dieWith increasing temperature of the cooling water of the machine, the current through the winding 18 increases, which has an effect through an increased braking effect, via the rotor 25 and
Welle 6 gelangt das von der Hysteresebremse 8 koiπmendeShaft 6 arrives from the hysteresis brake 8
Bremsmoment an das Differential-Umlaufgetriebe 2. Es wird ein entsprechendes Drehmoment am Hohlrad 4 und damit amBraking torque to the differential epicyclic gear 2. There is a corresponding torque on the ring gear 4 and thus on
Kühllüfter 1 wirksam, wodurch dieser mit der entsprechendenCooling fan 1 effective, causing this with the corresponding
Drehzahl dreht. Das Sonnenrad 5 und damit der Rotor 25 drehen bei diesem Betriebszustand mit der aus Drehzahldif¬ ferenz und Übersetzungsverhältnis resultierenden Drehzahl. Sinkt die Temperatur des Kühlwassers der Maschine, dann wird über ein entsprechendes Sensorelement, gegebenenfalls in Verbindung mit einer elektronischen Schaltung, der Strom¬ durchfluß durch die Wicklung 18 reduziert, die Bremswirkung der Hysteresebremse 8 wird kleiner, und der Kühllüfter 1 läuft langsamer.Speed turns. The sun gear 5 and thus the rotor 25 rotate in this operating state with the speed resulting from the speed difference and gear ratio. If the temperature of the cooling water of the machine drops, then the current flow through the winding 18 is reduced via a corresponding sensor element, possibly in conjunction with an electronic circuit, the braking effect of the hysteresis brake 8 becomes smaller, and the cooling fan 1 runs more slowly.
Anhand eines Diagramms (Fig. 4) sind der Verlauf der Lei¬ stungen, Drehzahlen und Drehmomente des Ausführungsbeispiels nach Fig. 7 verdeutlicht, wobei P die Antriebsleistung, Pg die Schlupfleistung am Sonnenrad, M_ das Drehmoment am Son¬ nenrad, M_ das Drehmoment des Kühllüfters, P_ die Leistungs¬ aufnahme des Kühllüfters, ng die Drehzahl am Sonnenrad und n_ 1_ die Drehzahl des Kühllüfters bedeuten.The course of the powers, speeds and torques of the exemplary embodiment according to FIG. 7 are illustrated on the basis of a diagram (FIG. 4), where P is the drive power, P g is the slip power on the sun gear, M_ the torque on the sun gear, M_ the torque of the cooling fan, P_ the power consumption of the cooling fan, n g the speed at the sun gear and n_ 1_ mean the speed of the cooling fan.
Die Lagerung des Kühllüfters 1 und des Rotors der Schlupf¬ bremse auf der gleichen Welle 6 (Fig. 1, 2, 5, 7), die ferner das Sonnenrad 5 bildet, trägt zu dem angestrebten, besonders kompakten Aufbau des Lüfterantriebs bei. Der Kühl¬ lüfter 1 könnte aber auch separat gelagert sein. The mounting of the cooling fan 1 and the rotor of the slip brake on the same shaft 6 (FIGS. 1, 2, 5, 7), which also forms the sun gear 5, contributes to the desired, particularly compact structure of the fan drive. The cooling fan 1 could also be stored separately.
' 3- ' 3-
Bezugszeichenreference numeral
1 Kühllüfter1 cooling fan
2 Differential-Umlaufgetriebe2 differential planetary gears
3 Antriebsriemen3 drive belts
4 Hohlrad4 ring gear
5 Sonnenrad5 sun gear
6 Welle6 wave
7 Pumpe7 pump
8 Hysteresebremse8 hysteresis brake
9 Gehäuse9 housing
10 Zulaufstutzen10 inlet connection
11 Ablaufstutzen11 drain connector
12 ZulaufÖffnung12 Inlet opening
13 Ablauföffnung13 drain opening
14 Dehnstoffelement14 expansion element
15 Drosselventil15 throttle valve
16 Riemenscheibe16 pulley
17 Anschlußleitung17 connecting line
18 Wicklung18 winding
19 Drosselstelle19 throttling point
20 Planetenrad20 planet gear
21 Lagerbolzen21 bearing bolts
22 Bypaßkanal22 bypass channel
23 Pol23 pin
24 Pol24 pin
25 Rotor 25 rotor

Claims

Temperaturgesteuerter Lüfterantrieb für Maschinen großer LeistungA n s p r ü c h e Temperature-controlled fan drive for high-performance machines
1. Temperaturgesteuerter Lüfterantrieb für Maschinen großer Leistung, dem ein von der Kühlmitteltempe¬ ratur der Maschine beeinflußter Temperatursensor zur Steue¬ rung einer Kuppelvorrichtung zwischen der Maschine und dem Kühllüfter zugeordnet ist, dadurch g e k e n n z e i c h¬ n e t , daß dem Kühllüfter (1) der Maschine ein Dif¬ ferential-Umlaufgetriebe (2) vorgeschaltet ist, dessen ei¬ ner Teil (Steg) mit dem Antrieb (Riemenscheibe 16) der Maschine, dessen anderer Teil (Hohlrad 4) mit dem Kühllüfter (1) drehfest verbunden ist, und dessen dritter Teil (Sonnen¬ rad 5) mit einer in ihrer Wirkung einstellbaren Schlupfbrem¬ se (Pumpe 7; Hysteresebremse 8) in Wirkverbindung steht.1. Temperature-controlled fan drive for high-performance machines, to which a temperature sensor influenced by the coolant temperature of the machine for controlling a coupling device between the machine and the cooling fan is assigned, characterized in that the cooling fan (1) of the machine has a dif ¬ differential epicyclic gear (2) is connected upstream, one part (web) of which is connected to the drive (pulley 16) of the machine, the other part (ring gear 4) of which is connected to the cooling fan (1) in a rotationally fixed manner, and the third part ( Sun wheel 5) is in operative connection with an adjustable slip brake (pump 7; hysteresis brake 8).
2. Lüfterantrieb nach Anspruch 1, dadurch g e k e n n z e i c h n e t , daß als Schlupfbremse eine fluidische Pumpe (7) vorgesehen ist.2. Fan drive according to claim 1, characterized in that a fluidic pump (7) is provided as a slip brake.
3. Lüfterantrieb nach einem der Ansprüche 1 und 2, dadurch g e k e n n z e i c h n e t , daß die Pum¬ pe (7) als Förderpumpe für das Kühlmedium der Maschine dient.3. Fan drive according to one of claims 1 and 2, characterized in that the pump (7) serves as a feed pump for the cooling medium of the machine.
fcrV° Q LγG^ fcrV ° Q L γG ^
4. Lüfterantrieb nach einem der Ansprüche 1 bis 3, dadurch g e k e n n z e i c h n e t , daß die Pumpe (7) Mittel (Dehnstoffelement 14, Drosselventil 15) zur Ver¬ änderung des Strömungswiderstands für das Kühlmedium in Ab¬ hängigkeit von dessen Temperatur umfaßt.4. Fan drive according to one of claims 1 to 3, characterized in that the pump (7) comprises means (expansion element 14, throttle valve 15) for changing the flow resistance for the cooling medium as a function of its temperature.
5. Lüfterantrieb nach Anspruch 1, dadurch g e k e n n z e i c h n e t , daß als Schlupfbremse eine Hysteresebremse (8) vorgesehen ist (Fig. 7).5. Fan drive according to claim 1, characterized in that a hysteresis brake (8) is provided as a slip brake (Fig. 7).
6. Lüfterantrieb nach Anspruch 5, dadurch g e k e n n z e i c h n e t , daß die Hysteresebremse (8) bei höherer Kühlwassertemperatur der Maschine mit Strom hoher Stromstärke, bei niedriger Kühlwassertemperatur mit niedrigerer Stromstärke beaufschlagt wird.6. Fan drive according to claim 5, characterized g e k e n n z e i c h n e t that the hysteresis brake (8) at higher cooling water temperature of the machine with current of high current, at low cooling water temperature with a lower current is applied.
7. Lüfterantrieb nach Anspruch 5, dadurch g e k e n n z e i c h n e t , daß die Stromstärke für die Hysteresebremse (8) von einem vom Kühlwasser beaufschlagten, temperaturabhängigen Stellglied gesteuert wird.7. Fan drive according to claim 5, characterized in that the current for the hysteresis brake (8) is controlled by a temperature-dependent actuator acted upon by the cooling water.
8. Lüfterantrieb nach Anspruch 7, dadurch g e k e n n z e i c h n e t , daß der Kühllüfter ( 1 ) auf der Welle (6) gelagert ist.8. Fan drive according to claim 7, characterized in that the cooling fan (1) is mounted on the shaft (6).
9- Lüfterantrieb nach einem der vorange¬ henden Ansprüche, dadurch g e k e n n z e i c h n e t , daß als Schlupfbremse ein elektrischer Generator dient. 9- fan drive according to one of the preceding claims, characterized in that an electrical generator serves as a slip brake.
PCT/EP1984/000354 1983-11-17 1984-11-08 Temperature regulated fan drive for high power drives WO1985002227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LUPCT/EP83/00312 1983-11-17
EP8300312 1983-11-17

Publications (1)

Publication Number Publication Date
WO1985002227A1 true WO1985002227A1 (en) 1985-05-23

Family

ID=8164920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1984/000354 WO1985002227A1 (en) 1983-11-17 1984-11-08 Temperature regulated fan drive for high power drives

Country Status (2)

Country Link
DE (1) DE3440428A1 (en)
WO (1) WO1985002227A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492141A2 (en) * 1990-12-21 1992-07-01 Mercedes-Benz Ag Driving device
DE4216135A1 (en) * 1991-05-16 1992-11-19 Mazda Motor CONTROL DEVICE FOR A ROTATION BODY FOR COOLING A MOTOR
WO2014195001A1 (en) * 2013-06-06 2014-12-11 Brose Fahrzeugteile Gmbh & Co Kommanditgesellschaft, Würzburg Electric coolant pump
CN114667395A (en) * 2019-12-31 2022-06-24 哈里伯顿能源服务公司 Predicting brake horsepower for a viscous application pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419307A1 (en) * 1994-06-01 1994-12-15 Fischer Stefan Dipl Ing Hysteresis brake for adjusting braking force in fixed training devices and ergometers
US6439172B1 (en) * 2001-01-24 2002-08-27 Borg Warner, Inc. Water-cooled remote fan drive
JP2005207357A (en) * 2004-01-26 2005-08-04 Honda Motor Co Ltd Variable capacity type fluid pump of engine
DE102004043304A1 (en) * 2004-09-08 2006-03-30 Voith Turbo Gmbh & Co. Kg braking device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR781150A (en) * 1934-10-18 1935-05-09 Automatic and progressive clutch and gear change device
FR924950A (en) * 1946-01-16 1947-08-20 Eaton Mfg Co Improvements to cooling systems for internal combustion engines
US3447400A (en) * 1967-06-30 1969-06-03 Melius Serniuk Speed control apparatus
DE1476382A1 (en) * 1965-04-09 1969-10-23 Klein Schanzlin & Becker Ag Fan drive for a supercharged internal combustion engine, which has a distributor gear for driving a supercharging fan, preferably with a supercharging system with two drives
US3502056A (en) * 1968-03-26 1970-03-24 James W Dillard R.p.m. multiplier for automobile fan
FR2047176A5 (en) * 1969-05-02 1971-03-12 Borg Warner
FR2414626A1 (en) * 1978-01-17 1979-08-10 Daimler Benz Ag TORQUE TRANSMISSION DEVICE TO SUB-ASSEMBLIES OF INTERNAL COMBUSTION ENGINES, IN PARTICULAR TO SUB-ASSEMBLIES OF VEHICLE ENGINES
FR2422844A1 (en) * 1978-04-12 1979-11-09 Volkswagenwerk Ag Vehicle engine cooling fan - is driven by turbine, itself driven by liq. coolant flow o heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR781150A (en) * 1934-10-18 1935-05-09 Automatic and progressive clutch and gear change device
FR924950A (en) * 1946-01-16 1947-08-20 Eaton Mfg Co Improvements to cooling systems for internal combustion engines
DE1476382A1 (en) * 1965-04-09 1969-10-23 Klein Schanzlin & Becker Ag Fan drive for a supercharged internal combustion engine, which has a distributor gear for driving a supercharging fan, preferably with a supercharging system with two drives
US3447400A (en) * 1967-06-30 1969-06-03 Melius Serniuk Speed control apparatus
US3502056A (en) * 1968-03-26 1970-03-24 James W Dillard R.p.m. multiplier for automobile fan
FR2047176A5 (en) * 1969-05-02 1971-03-12 Borg Warner
FR2414626A1 (en) * 1978-01-17 1979-08-10 Daimler Benz Ag TORQUE TRANSMISSION DEVICE TO SUB-ASSEMBLIES OF INTERNAL COMBUSTION ENGINES, IN PARTICULAR TO SUB-ASSEMBLIES OF VEHICLE ENGINES
FR2422844A1 (en) * 1978-04-12 1979-11-09 Volkswagenwerk Ag Vehicle engine cooling fan - is driven by turbine, itself driven by liq. coolant flow o heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492141A2 (en) * 1990-12-21 1992-07-01 Mercedes-Benz Ag Driving device
DE4041158C1 (en) * 1990-12-21 1992-08-20 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
EP0492141A3 (en) * 1990-12-21 1992-09-23 Mercedes-Benz Ag Driving device
DE4216135A1 (en) * 1991-05-16 1992-11-19 Mazda Motor CONTROL DEVICE FOR A ROTATION BODY FOR COOLING A MOTOR
WO2014195001A1 (en) * 2013-06-06 2014-12-11 Brose Fahrzeugteile Gmbh & Co Kommanditgesellschaft, Würzburg Electric coolant pump
CN114667395A (en) * 2019-12-31 2022-06-24 哈里伯顿能源服务公司 Predicting brake horsepower for a viscous application pump

Also Published As

Publication number Publication date
DE3440428A1 (en) 1985-05-30

Similar Documents

Publication Publication Date Title
EP0681656B1 (en) Process for regulating the capacity of lubricant pumps and lubricant pump therefor
DE3916979C2 (en) Torque transmission unit for driving connection of an auxiliary unit with an internal combustion engine
DE4408349C2 (en) Drive unit with a motor and a retarder
DE4216135A1 (en) CONTROL DEVICE FOR A ROTATION BODY FOR COOLING A MOTOR
DE4420841A1 (en) Motor vehicle heater
EP1356208B1 (en) Pump system comprising a hydraulic pump, particularly for a steering system
EP1308359A2 (en) Hydrodynamic retarder
DE102006041687A1 (en) Coolant pump for cooling circuit of internal combustion engine, has planetary gear arranged between pump shaft and belt drive, where planetary gear has internal gear which is connected with drive wheel of belt drive in fixed manner
EP1288093B1 (en) Hydrodynamic retarder
DE19538633A1 (en) Pump unit
EP0724068A1 (en) Oilfeeder system
WO1985002227A1 (en) Temperature regulated fan drive for high power drives
DE10355499B4 (en) Water pump and method for controlling the flow rate of coolant
DE19614545B4 (en) Continuously variable transmission system for a motor vehicle
WO2003058071A1 (en) Device for pressure regulation of hydraulic pumps
DE19709484A1 (en) Unit for regulating coolant temperature of internal combustion engine in motor vehicle
DE10318711A1 (en) Arrangement for driving coolant pump for internal combustion engine has planetary gear components, coupling and brake structurally integrated into common housing
DE69918906T2 (en) Device and method for generating electrical power in vehicles
DE4128543C2 (en)
DE1802456A1 (en) Adjustable drive device
EP1282762A1 (en) Cooling system for vehicles
DE19743012A1 (en) Heating system for vehicle
DE3321636C2 (en)
DE1903512A1 (en) Gas turbine engine with aerodynamic torque converter drive
DE19816101C2 (en) Hydraulic retarder

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AT GB US