WO1980002874A1 - Dispositif de mesure et de controle de debits gazeux - Google Patents

Dispositif de mesure et de controle de debits gazeux Download PDF

Info

Publication number
WO1980002874A1
WO1980002874A1 PCT/FR1980/000094 FR8000094W WO8002874A1 WO 1980002874 A1 WO1980002874 A1 WO 1980002874A1 FR 8000094 W FR8000094 W FR 8000094W WO 8002874 A1 WO8002874 A1 WO 8002874A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
flow
enclosure
measurement
Prior art date
Application number
PCT/FR1980/000094
Other languages
English (en)
Inventor
L Guadagnin
C Grossiord
Original Assignee
Cricket Sarl
L Guadagnin
C Grossiord
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cricket Sarl, L Guadagnin, C Grossiord filed Critical Cricket Sarl
Priority to AU60533/80A priority Critical patent/AU6053380A/en
Priority to DE19803049640 priority patent/DE3049640A1/de
Priority to BR8008713A priority patent/BR8008713A/pt
Publication of WO1980002874A1 publication Critical patent/WO1980002874A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/48Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by a capillary element

Definitions

  • the present invention relates to improvements made to devices for measuring and controlling gas flow rates and, more particularly, low flow rates.
  • Some known devices use, to measure and control the gas flow, the deformation of two deformable enclosures supplied under the same gas pressure, greater than atmospheric pressure.
  • one of the chambers is supplied under said gas pressure by means of a flow restrictor, the flow rate of which is substantially of the same order of magnitude as that to be measured.
  • This enclosure is, moreover, capable of being placed in communication with the ambient atmosphere and therefore with atmospheric pressure, when the device is in the rest position, and in communication with the system whose flow rate it is desired to measure, when the device is in measurement position.
  • the pressure existing in the first enclosure is the supply pressure and the pressure in the second enclosure is close to atmospheric pressure.
  • the pressure existing in the first enclosure remains equal to the supply pressure, and the pressure in the second enclosure increases to a value slightly lower than the supply pressure, the pressure difference resulting from the pressure drop undergone by the gas flow in passing through the system whose flow rate is desired and therefore dependent on the flow rate thereof.
  • the present invention aims to provide a device for measuring and controlling low gas flow rates, which has. both a short response time and a high sensitivity.
  • the device according to the invention comprises two deformable enclosures, the first being exclusively and permanently, in direct communication with a pressure source, and the second being, on the one hand, permanently, in communication with a source of the same pressure by means of a flow restrictor, the flow rate of which is substantially equal to that desired for the system to be controlled and, on the other hand, when the device is in the measurement position, in communication with the atmosphere via the system to be controlled, characterized in that a valve is arranged on the gas path between the second enclosure and the system to be controlled, this valve being closed when the device is in the rest position and open when the device is in measurement or control position.
  • a first advantage of such a device is the reduction in response time thanks, essentially, to the small difference between, the pressures at rest and in measurement position. Because of this small difference, it suffices to pass a small volume of gas through the flow restrictor to put the device in measurement state.
  • a second advantage, which follows from the first, is that, thanks to its rapidity of response, a device according to the invention can be used continuously to control an adjustment operation while it is in progress, as will be explained by the after.
  • the device comprises two enclosures 1 and 2 separated by a deformable membrane 3.
  • the enclosure 1 is directly connected by a conduit 4 to a pressure source P, not shown, greater than atmospheric pressure.
  • the enclosure 2 is connected to the same pressure source P via a bypass 5 and a restrictor 6. It also includes an outlet pipe 7 connected to a system 9 to be controlled by means of a valve 8.
  • valve 8 In the rest position (FIG. 1), the valve 8 is closed, so that the pressure is identical inside the two chambers 1 and 2 and equal to the pressure P of the source. It follows that the membrane 3 is not deformed.
  • the opening of the valve 8 places the enclosure 2 in communication with the atmosphere via the system 9 to be controlled and, as a result, there is a pressure drop in this enclosure. This is still in communication with the pressure source P, but due to the pressure drop caused by the flow restrictor 6, the pressure remains below P. It is precisely the pressure difference existing in the two enclosures 1 and 2 which measures the flow of the system 9.
  • This pressure difference causes a deformation of the membrane 3, a deformation which can be amplified and converted into a measurement of the mange flow inside the system 9 to be controlled, by conventional means, for example mechanical, electronic or other, not shown. .
  • This valve essentially comprises a body 12, a valve 14, a plug 20 and a spring 18.
  • the body 12 includes. its lower part a cavity 13, at the bottom of which is housed an O-ring 15.
  • the upper part of the body 11 comprises a second cylindrical cavity 17 communicating with the cavity 13 by a channel 19 and in which the valve 14 is housed. This is applied against the bottom 16 of the cavity 17 by a spring 18, which bears on a plug 20, screwed into the upper part of said cavity 17, the lower part of the valve 14 is provided with a feeler 22 which crosses the channel 19 and opens into the lower cavity 13.
  • the cavity 17 communicates with the second enclosure 2 of the measuring device by a conduit 23 which is connected to a tubular end piece 21 from manufacturing with the plug 20.
  • the assembly 26 for which it is desired to measure the flow consists of a bell 25, the bottom of which is pierced with a channel 27 and inside which is a washer 29 made of a permeable, compressible material. This washer is compressed against the bottom of said bell by a pin 31 provided with longitudinal grooves 33 on its periphery and with a central stud 35.
  • valve 14 is applied to its seat 16, so that the enclosure 2 of the measurement device in FIG. 1 is under pressure.
  • the assembly 26 is then introduced into the cavity 13 and it is brought into abutment against the bottom of this cavity.
  • the stud 35 pushes the probe 22 and lifts the valve 14, putting the enclosure 2 in communication with the atmosphere by means of the permeable compressible washer 29, the channel 19, the cavity 17, the tubular end piece 21 and the pipe 23,
  • FIG. 4 shows another embodiment of the valve according to the invention which makes it possible not only to measure the flow rate through a permeable washer being in a given state of compression, but also to continuously control the operation of the adjustment. the state of compression of the permeable washer until the desired flow is obtained. This case arises in particular when we want to adjust the flow rate of a liquefied gas lighter regulator, This regulator, designated by the general reference
  • a compressible permeable pad 66 Inside this envelope are successively disposed a compressible permeable pad 66, a metal washer 64 and a compression element 62 provided with a slot 69 and which is screwed into the cylindrical casing 60.
  • the compression element 62 is more or less screwed in using the slot 69 and the compressible permeable pad 66 is thus compressed between the metal washer 64 and the bottom of the cylindrical envelope 60.
  • the gas arrives at the periphery of the permeable compressible pellet 66, of which it must pass through the compressed part.
  • the central part of the pellet can be used, thanks to the large orifice 70 provided in the bottom of the cylindrical envelope 60, to make a second adjustment below the limit imposed by the compressed part of the pellet.
  • 61 consists of a cylindrical body 50 comprising successive- sively, at its upper part, a housing receiving a valve 55 provided at its end with a seal 57, in the middle, a chamber 56 connected by a channel 58 to the enclosure 2 of Figures 1 and 2 and a channel 54 and, at its lower part, a cavity 52.
  • the latter receives, for adjustment, the regulator 61 whose periphery is isolated from the channel 54 by an O-ring 68.
  • the chamber 56 is at the same pressure P as the enclosure 2 in FIG. 1.
  • the chamber 56 When the valve 55 is opened, by any means not forming part of the present invention, the chamber 56 is placed in communication with the atmosphere by means of the compressible permeable patch 66 and by the grooves 71, and as a result, the pressure in enclosure 2 drops. If this pressure drop does not correspond to the desired flow rate, it can be varied by screwing or unscrewing the compression element 62. In the case for example where. the pressure drop is too strong, the compression element 62 is screwed in and, thanks to the gas arriving in the enclosure 2 from the pressure source, the pressure rises in this enclosure as and when the l compression element 62.
  • the screwing is stopped and the regulator can be removed from the device according to the invention. It is obvious that it is the speed of the reaction of the device according to the invention which makes it possible to use this to control an adjustment operation while it is in progress.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Fluid-Driven Valves (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Safety Valves (AREA)

Abstract

Le dispositif utilise deux enceintes deformables, la premiere enceinte (1) etant en communication avec une source de pression (P) et la seconde enceinte (2) etant en communication avec une source de meme pression par l'intermediaire d'un restricteur de debit (6) et avec l'atmosphere a travers un systeme (9) dont on veut mesurer ou controler le debit. Entre la seconde enceinte (2) et le systeme (9) est montee une vanne (8). Application a la mesure de tres faibles debits gazeux. Figure 2.

Description

Dispositif do mesure et do contrôle de débits gazeux.
La présente invention concerne des perfectionnements apportés aux dispositifs, de mesure et de contrôle de débits gazeux et, plus particulièrement, de faibles débits. Certains dispositifs connus utilisent, pour mesurer et contrôler le débit gazeux, la déformation de deux enceintes déformables alimentées sous une même pression de gaz, supérieure à la pression atmosphérique.
Dans ces dispositifs, l'une des enceintes est alimentée sous ladite pression de gaz par l'intermédiaire d'un restricteur de débit, dont le débit est sensiblement du même ordre de grandeur que celui à mesurer. Cette enceinte est, de plus, susceptible d'être mise en communication avec l'atmosphère ambiante et donc de la pression atmosphérique, lorsque le dispositif est en position de repos, et en communication avec le système dont on désire mesurer le débit, lorsque le dispositif est en position de mesure.
En position de repos, la pression existant dans la première enceinte est la pression d'alimentation et la pression dans la seconde enceinte est voisine de la pression atmosphérique.
En position de mesure, la pression existant dans la première enceinte reste égale à la pression d'alimentation, et la pression dans la seconde enceinte augmente jusqu'à une valeur légèrement inférieure à la pression d'alimentation, la différence de pression résultant de la perte de charge subie par le flux gazeux en traversant le système dont on désire mesurer le débit et dépendant donc du débit de ce dernier.
C'est donc la différence de pression existant dans les deux enceintes qui permet de mesurer le débit à contrôler et, à cet effet, on détecte la déformation desdites enceintes, déformation que l'on peut amplifier d'une manière quelconque, mécanique, électronique ou autre. L'inconvénient de ce genre de dispositif réside dans le fait qu'il a un temps, de réponse relativement long, ce qui est inhérent à sa conception même, puisque c'est à travers le restricteur de débit que le gaz sous pression est envoyé dans la seconde enceinte au moment de la mesure. Pour effectuer une mesure plus précise, il faudrait diminuer le débit du restricteur par rapport à celui à. mesurer, ce qui allongerait davantage le temps de réponse, tandis que pour diminuer le temps de réponse, il faudrait prévoir un restricteur assurant un débit plus élevé par rapport à celui à mesurer, mais alors la mesure serait moins précise.
La présente invention a pour but de fournir un dispositif de mesure et de contrôle de faibles débits gazeux, qui possède à. la fois un temps de réponse court et une grande sensibilité.
Le dispositif selon l'invention comporte deux enceintes déformables, la première étant exclusivement et de façon permanente, en communication directe avec une source de pression, et la seconde étant, d'une part, de façon permanente, en communication avec une source de même pression par l'intermédiaire d'un restricteur de débit dont le débit est sensiblement égal à celui que l'on souhaite pour le système à contrôler et, d'autre part, lorsque le dispositif est en position de mesure, en communication avec l'atmosphère par l'intermédiaire du système à contrôler, caractérisé en ce qu'une vanne est disposée sur le trajet de gaz entre la seconde enceinte et le système à contrôler, cette vanne étant fermée lorsque le dispositif est en position de repos et ouverte lorsque le dispositif est en position de mesure ou de contrôle.
Un premier avantage, d'un tel dispositif est la diminution du temps de réponse grâce, essentiellement, au faible écart entre, lesi pressions au repos et en position de mesure. En raison de ce faible écart, il suffit de faire passer un faible volume de gaz à travers le restricteur de débit pour mettre le dispositif en état de mesure. Un second avantage, qui découle du premier est que, grâce à sa rapidité de réponse, un dispositif suivant l'invention peut être utilisé en continu pour contrôler une opération de réglage pendant qu'elle est en cours, comme on l'expliquera par la suite. D'autres avantages apparaîtront au cours de la description qui va suivre en regard des dessins annexés qui donnent, à titre indicatif et non limitatif, quelques exemples de réalisation de l'invention, et dans lesque'ls : les figures 1 et 2 montrent schématiquement l'application de l'Invention au procédé de mesure de débit, respectivement en position de repos et en position de mesure ; les figures 3 et 4 donnent deux variantes d'application de l'invention.
Sur les figures 1 et 2, le dispositif comprend deux enceintes 1 et 2 séparées par une membrane déformable 3.
L'enceinte 1 est reliée directement par un conduit 4 à une source de pression P, non représentée, supérieure à la pression atmosphérique.
L'enceinte 2 est reliée à la même source de pression P par l'intermédiaire d'une dérivation 5 et d'un restricteur 6. Elle comporte également une canalisation de sortie 7 reliée à un système 9 à contrôler par l'intermédiaire d'une vanne 8.
En position de repos (figure 1) , la vanne 8 est fermée, de sorte que la pression est identique à l'inté- rieur des deux enceintes 1 et 2 et égale à la pression P de la source. Il s'ensuit que la membrane 3 n'est pas déformée. L'ouverture de la vanne 8 (figure 2) met l'enceinte 2 en communication avec l'atmosphère via le système 9 à contrôler et, de ce fait, il y a chute de pression dans cette enceinte. Celle-ci est toujours en communication avec la source de pression P,mais du fait de la perte de charge provoquée par le restricteur 6 de débit, la pression reste inférieure à P. C'est précisément la différence de pression existant dans les deux enceintes 1 et 2 qui permet de mesurer le débit du système 9.
Cette différence de pression provoque une déformation de la membrane 3, déformation qui peut être amplifiée et convertie en une mesure du débit galeux à l'intérieur du système 9 à contrôler, par des moyens classiques, par exemple mécaniques, électroniques ou autres, non représentés.
Du fait que, dans chaque enceinte, les pressions sont les mêmes au repos et au début de la mise en état de mesure, le temps de réponse est évidemment réduit par rapport aux dispositifs connus dans lesquels l'enceinte 2 doit passer de la pression atmosphérique qui est sa pression à l'état de repos, à la pression de l'autre enceinte pour que l'opération de mesure puisse avoir lieu. Pour diminuer davantage le temps de réponse du dispositif, la Demanderesse a conçu et mis au point la vanne illustrée par la figure 3.
Cette vanne, désignée par la référence générale 11, comprend essentiellement un corps 12, un clapet 14, un bouchon 20 et un ressort 18.
Le corps 12 comprend à. sa partie inférieure une cavité 13, au fond de laquelle est logé un joint torique 15. La partie supérieure du corps 11 comprend une seconde cavité cylindrique 17 communiquant avec la cavité 13 par un canal 19 et dans laquelle le clapet 14 est logé. Celui-ci est appliqué contre le fond 16 de la cavité 17 par un ressort 18, qui prend appui sur un bouchon 20, vissé dans la partie supérieure de ladite cavité 17, La partie inférieure du clapet 14 est pourvue d'un palpeur 22 qui traverse le canal 19 et débouche dans la cavité Inférieure 13.
La cavité 17 communique avec la seconde enceinte 2 du dispositif de mesure par un conduit 23 se raccordant à un embout tubulalre 21 venant de fabrication avec le bouchon 20.
L'ensemble 26 dont on désire mesurer le débit est constitué par une cloche 25, dont le fond est percé d'un canal 27 et à l'intérieur de laquelle est disposée une rondelle 29 faite d'une matière perméable compressible. Cette rondelle est comprimée contre le fond de ladite cloche par un pion 31 pourvu de cannelures longitudinales 33 sur sa périphérie et d'un téton central 35.
Le fonctionnement de l'ensemble formé par le dispositif de la figure 1 et de la vanne de la figure 3 est le suivant :
Initialement, le clapet 14 est appliqué sur son siège 16,de sorte que l'enceinte 2 du dispositif de mesure de la figure 1 est sous pression. On introduit alors l'ensemble 26 dans la cavité 13 et on l'amène en butée contre le fond de cette cavité. Au cours de cette mise en place, le téton 35 repousse le palpeur 22 et soulève le clapet 14, mettant en communication l'enceinte 2 avec l'atmosphère par l'intermédiaire de la rondelle perméable compressibile 29, du canal 19, de la cavité 17, de l'embout tubulaire 21 et du tuyau 23,
Comme on l'a déjà expliqué, il se produit dans l'enceinte 2 une chute de pression qui se traduit par une déformation de la membrane 3 et la mesure de cette déformation permettra de connaître, le débit du système 26, Il est à. noter que le téton 35 et le palpeur 22, par leur présence dans les canaux 19 et 27, contribuent à diminuer le volume mort existant entre les moyens d'obturation constitués par le clapet 14, le joint 15 et la rondelle 29.
La figure 4 montre une autre forme de réalisa- tion de vanne selon l'invention qui permet non seulement de mesurer le débit à travers une rondelle perméable se trouvant dans un état de compression donnée, mais également de contrôler en continu l'opération du réglage de l'état de compression de la rondelle perméable jusqu'à l'obtention du débit désiré. Ce cas se présente notamment lorsqu'on veut régler le débit d'un détendeur de briquet à gaz liquéfié, Ce détendeur, désigné par la référence générale
61, est constitué par une enveloppe cylindrique 60 filetée Intérieurement et comprenant plusieurs rainures longitudinales 71. A l'intérieur de cette enveloppe sont disposés successivement une pastille perméable compressible 66, une rondelle métallique 64 et un élément de compression 62 muni d'une fente 69 et qui se visse dans l'enveloppe cylindrique 60.
Pour régler un tel détendeur, on visse plus ou moins l'élément de compression 62 en utilisant la fente 69 et on comprime ainsi la pastille perméable compressible 66 entre la rondelle métallique 64 et le fond de l'enveloppe cylindrique 60.
A travers les rainures 71, le gaz arrive à la périphérie de la pastille perméable compressible 66, dont il devra traverser la partie comprimée. Eventuellement, la partie centrale de la pastille peut être utilisée, grâce au large orifice 70 prévu dans le fond de l'enveloppe cylindrique 60, pour opérer un second réglage en deçà de la limite Imposée par la partie comprimée, de la pastille. Le dispositif utilisé pour régler le détendeur
61 se compose d'un corps cylindrique 50 comportant succes- sivement, à sa partie supérieure, un logement recevant un clapet 55 pourvu à son extrémité d'un joint d'étanchéité 57, en son milieu, une chambre 56 reliée par un canal 58 à l'enceinte 2 des figures 1 et 2 et un canal 54 et, à sa partie Inférieure, une cavité 52.
Celle-ci reçoit, en vue du réglage, le détendeur 61 dont la périphérie est isolée du canal 54 par un joint torique 68.
Le fonctionnement du dispositif de la figure 4 est le suivant :
Avant l'opération de mesure, la chambre 56 est à la même pression P que l'enceinte 2 de la figure 1.
Au moment de l'ouverture du clapet 55, par un moyen quelconque ne faisant pas partie de la présente invention, la chambre 56 est mise en communication avec l'atmosphère par l'intermédiaire de la pastille perméable compressible 66 et par les rainures 71, et de ce fait, la pression dans l'enceinte 2 baisse. Si cette chute de pression ne correspond pas au débit que l'on désire, on peut la faire varier en vissant ou en dévissant l'élément de compression 62. Dans le cas par exemple où. la chute de pression est trop forte, on visse l'élément de compression 62 et, grâce au gaz arrivant dans l'enceinte 2 depuis la source de pression, la pression monte dans cette enceinte au fur et à mesure que l'on visse l'élément de compression 62.
Lorsque l'on atteint la valeur désirée, on arrête de visser et le détendeur peut être retiré du dispositif suivant l'invention, Il est bien évident que c'est la rapidité de la réaction du dispositif suivant l'invention qui permet d'utiliser celui-ci pour contrôler une opération de réglage alors qu'elle est en cours.

Claims

R E V E N D I C A T I O N S
1. Dispositif de mesure et de contrôle du débit gazeux à travers un système, à partir de deux enceintes déformables, la première étant exclusivement et de façon permanente, en communication directe avec une source de pression et la seconde étant, d'une part, de façon permanente, en communication avec une source de même pression par l'intermédiaire d'un restricteur de débit dont le débit est sensiblement égal à celui que l'on souhaite pour le système à contrôler, et d'autre part, lorsque, le dispositif est en position de mesure, en communication avec l'atmosphère par l'intermédiaire du système à contrôler, caractérisé en ce qu'une vanne est disposée sur le trajet du gaz entre la seconde enceinte et le système dont on veut mesurer ou contrôler le débit, cette vanne étant fermée lorsque le dispositif est en position de repos, et ouverte lorsque le dispositif est en position de mesure ou de contrôle.
2. Dispositif selon la revendication 1, caractérisé en ce que la seconde enceinte communique, avec l'atmosphère ambiante par une valve dont l'ouverture est commandée par le système même dont on veut mesurer le débit.
3. Dispositif selon la revendication 2, caractérisé en ce que le volume mort compris entre les moyens d'obturation de la valve et le système dont on désire mesurer le débit est occupé au moins partiellement par des organes de commande desditε moyens d'obturation.
PCT/FR1980/000094 1979-06-15 1980-06-13 Dispositif de mesure et de controle de debits gazeux WO1980002874A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU60533/80A AU6053380A (en) 1979-06-15 1980-06-13 Device for measuring and controlling gas flows
DE19803049640 DE3049640A1 (de) 1979-06-15 1980-06-13 Device for measuring and controlling gas flows
BR8008713A BR8008713A (pt) 1979-06-15 1980-06-13 Dispositivo para medida e controle de fluxo gasoso

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7915438 1979-06-15
FR7915438A FR2459457A1 (fr) 1979-06-15 1979-06-15 Dispositif de mesure et de controle de debits gazeux

Publications (1)

Publication Number Publication Date
WO1980002874A1 true WO1980002874A1 (fr) 1980-12-24

Family

ID=9226699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1980/000094 WO1980002874A1 (fr) 1979-06-15 1980-06-13 Dispositif de mesure et de controle de debits gazeux

Country Status (9)

Country Link
US (1) US4413530A (fr)
JP (1) JPS56500819A (fr)
BE (1) BE883827A (fr)
BR (1) BR8008713A (fr)
ES (1) ES492422A0 (fr)
FR (1) FR2459457A1 (fr)
GB (1) GB2064786B (fr)
IT (1) IT1129092B (fr)
WO (1) WO1980002874A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252716A (zh) * 2010-05-19 2011-11-23 乐金电子(天津)电器有限公司 毛细管流量的检测装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2188158A (en) * 1986-03-20 1987-09-23 Cambridge Instr Inc Flowmeter
US5377524A (en) * 1992-06-22 1995-01-03 The Regents Of The University Of Michigan Self-testing capacitive pressure transducer and method
US6544192B2 (en) 1998-02-25 2003-04-08 Respironics, Inc. Patient monitor and method of using same
US6915705B1 (en) 2002-04-03 2005-07-12 Ric Investments, Inc. Flow sensor and flow resistive element
CN109506723B (zh) * 2018-11-21 2021-05-28 中国航发西安动力控制科技有限公司 一种变压差计量方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1049117B (de) * 1955-11-16 1959-01-22 Frantisek Heyduk Geraet zur Messung der Momentan-Durchflussmenge eines durch eine Leitung stroemenden Mediums
DE1062443B (de) * 1957-08-03 1959-07-30 Vdo Schindling Differenzdruckmesser fuer Durchflussmengenmessung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1653438A (en) * 1920-06-25 1927-12-20 Engineer Company Regulator or controller
US2867757A (en) * 1953-09-25 1959-01-06 Honeywell Regulator Co Electrical apparatus
US3562782A (en) * 1968-05-08 1971-02-09 Zyco Mfg Inc Restrictor
US3621866A (en) * 1969-11-25 1971-11-23 Honeywell Inc Fluid-mixing system
US4096746A (en) * 1977-02-25 1978-06-27 The Perkin-Elmer Corporation Flow controller-flow sensor assembly for gas chromatographs and the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1049117B (de) * 1955-11-16 1959-01-22 Frantisek Heyduk Geraet zur Messung der Momentan-Durchflussmenge eines durch eine Leitung stroemenden Mediums
DE1062443B (de) * 1957-08-03 1959-07-30 Vdo Schindling Differenzdruckmesser fuer Durchflussmengenmessung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Review of Scientific Instruments, vol. 21, no. 5, May 1950, (American Institute of Physics, New York, US), A.C. Burton et al.: "The design of a simple microflowmeter for biological perfusion experiments" see figures 2,4,7, pages 485-490 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252716A (zh) * 2010-05-19 2011-11-23 乐金电子(天津)电器有限公司 毛细管流量的检测装置

Also Published As

Publication number Publication date
ES8102350A1 (es) 1980-12-16
GB2064786A (en) 1981-06-17
BE883827A (fr) 1980-12-15
JPS56500819A (fr) 1981-06-18
IT1129092B (it) 1986-06-04
FR2459457B1 (fr) 1981-10-30
FR2459457A1 (fr) 1981-01-09
BR8008713A (pt) 1981-04-28
IT8067924A0 (it) 1980-06-13
GB2064786B (en) 1983-08-24
US4413530A (en) 1983-11-08
ES492422A0 (es) 1980-12-16

Similar Documents

Publication Publication Date Title
EP1931959B1 (fr) Vanne de commande d'ecoulement de fluide
FR2687540A1 (fr) Appareil d'irrigation goutte a goutte.
EP0050822A1 (fr) Vanne pour le prélèvement d'un gaz
WO1980002874A1 (fr) Dispositif de mesure et de controle de debits gazeux
EP0214023B1 (fr) Dispositif limiteur de débit pour robinets de bouteilles à gaz comprimé ou liquéfié sous pression
EP2005273B1 (fr) Composant pneumatique pour la micro-diffusion contrôlée de gaz
CH419460A (fr) Appareil de thérapie à oxygène sous pression
WO2006108931A1 (fr) Ensemble valve régulé pour systèmes d'extincteurs d'incendie
EP3002499B1 (fr) Dispositif de fermeture de vanne par actionnement du clapet de détente
CH512041A (fr) Procédé d'allumage d'un gaz combustible sous pression et dispositif pour sa mise en oeuvre
FR2573658A1 (fr) Dispositif de pression expiratoire positive
EP0227541B1 (fr) Soupape de sûreté à pilotage intégré
FR2508799A1 (fr) Appareil de respiration artificielle destine a etre utilise dans des chambres sous pression
EP0116247B1 (fr) Soupape de sûreté à pilotage intégré
EP0100732B1 (fr) Dispositif de réglage du débit de gaz d'un briquet à gaz liquéfié
FR2502729A1 (fr) Vanne en tout ou rien a declenchement pyrotechnique
EP0066510A1 (fr) Dispositif de stockage et de production d'hydrogène à partir d'un composé solide
EP0701841B1 (fr) Installation de protection contre l'incendie
WO1982000197A1 (fr) Dispositif de mesure et de controle de debits gazeux
FR2486234A1 (fr) Dispositif de mesure et de controle de debits gazeux
FR2564560A1 (fr) Disjoncteur pneumatique pour circuit de distribution de gaz
FR2563888A1 (fr) Systeme de clapet antiretour ultra-rapide pour transducteurs de pression et similaires
FR2495316A2 (fr) Dispositif de mesure et de controle de debits gazeux
FR2513327A1 (fr) Dispositif entierement pneumatique, generateur d'impulsions temporisees de gaz
FR2466800A1 (fr) Soupape

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AT AU BR DE GB JP US

RET De translation (de og part 6b)

Ref document number: 3049640

Country of ref document: DE

Date of ref document: 19820225

WWE Wipo information: entry into national phase

Ref document number: 3049640

Country of ref document: DE