WO1980002681A1 - Vertical take-off and landing aircraft and jet engine therefor - Google Patents

Vertical take-off and landing aircraft and jet engine therefor Download PDF

Info

Publication number
WO1980002681A1
WO1980002681A1 PCT/JP1979/000145 JP7900145W WO8002681A1 WO 1980002681 A1 WO1980002681 A1 WO 1980002681A1 JP 7900145 W JP7900145 W JP 7900145W WO 8002681 A1 WO8002681 A1 WO 8002681A1
Authority
WO
WIPO (PCT)
Prior art keywords
jet engine
aircraft
fuselage
jet
engine
Prior art date
Application number
PCT/JP1979/000145
Other languages
English (en)
French (fr)
Inventor
Y Wada
Original Assignee
Y Wada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Y Wada filed Critical Y Wada
Priority to PCT/JP1979/000145 priority Critical patent/WO1980002681A1/ja
Publication of WO1980002681A1 publication Critical patent/WO1980002681A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft

Definitions

  • Aircraft capable of vertical take-off and landing and its jet engines
  • the present invention relates to an aircraft capable of vertical take-off and landing and a jet engine used for the aircraft.
  • FIG. 1 is a partially cutaway front view showing a first embodiment of an aircraft according to the present invention
  • FIG. 2 is a partially cutaway side view showing the same first embodiment.
  • Spherical fuselage 1 is hollow and provides space to accommodate crew, passengers, machinery, cargo and other loads.
  • the diameter of the cylinder is as follows. Put a large-diameter cylindrical jet engine 2 so that the injection port is down. Get it to Giant Engine 2! ) A pair of handles for lowering 3, 5
  • the handle parts 3 and 3 of the rotor are rotationally connected to each other by a pair of shafts 6 and 6 which are substantially perpendicular to the shafts 5 and 5.o That is, the fuselage 1 and the jet engine 2 are o therefore Ruwake bonded di down bar Le and via Le ring 4, even until maintaining body 1 horizontally or, orient inclined only di We Tsu DOO et emissions di emissions 2 in any direction
  • Fig. 3 is a front cross-sectional view of the jet engine used in this embodiment.o It has a large diameter and is flattened. Ordinary ⁇ ⁇ Same as the set engine.
  • the compressor 7 and the turbine 8 are integrally fixed to the shaft 10 of the motor 9 which also functions as a generator, and rotate on the shaft.
  • the motor 9 is mounted on the case: L1. [Attached].
  • the space between the injection ports 13 is appropriately connected, and the inside and outside of the case 11 are integrated.
  • the air is taken in from above, compressed by the compressor 7 and sent to the combustion chamber 12.
  • the heated and expanded air rotates the turbine 8 and then the jet 13! ) Accelerated injection into the atmosphere.
  • the aircraft according to the invention solves this problem by using a large-diameter jet engine.
  • the thrust required for the aircraft to levitate can be obtained by slightly accelerating a large amount of air.o
  • a large amount of high- By slightly accelerating and jetting obliquely backward, it is possible to obtain the thrust required for levitation and forward flight of this aircraft.
  • Low thrust output and large ⁇ thrust can be obtained economically.
  • Injection gas speed is relatively low, so noise due to injection gas is low.
  • the thrust of this aircraft is limited by the annular injection.
  • FIG. 4 is a partially cutaway front view showing a second embodiment of the aircraft according to the present invention. ⁇ Two round plates are faced to each other.
  • the outer edge 14 is kept horizontal to the flight direction, and only the jet engine 2 is tilted, the air resistance is reduced and the flight is reduced.
  • air inlet i 5, ⁇ ⁇ ! Also acts to decelerate and pressurize the air that enters at high speed and supply it to the jet engine o
  • FIG. 5 shows a third embodiment of the aircraft according to the present invention.
  • the diameter of the Jet * engine is larger than that of the fuselage.] O The larger diameter is more advantageous for better fuel efficiency and stability, 1 may be slightly smaller. It is difficult to determine the limit
  • the area of the plane perpendicular to the rotary axis of the jet engine should be about half or more of the plane area of the fuselage 1 ⁇
  • Fig. 6 is a front sectional view of the jet and engine used in the following modes. O As the diameter of the jet and engine in Fig. 3 is increased, The central part, which is not directly related to the generation of thrust, also increases. O This part is extracted concentrically with the turbine 8], and the resulting surface is designated as the inner surface 16. The rotation of the turbine 8 was not affected even if the center part was removed.
  • Rollers 17, 17 inscribed on the inner surface 16 are provided at more than 3 / places around the entire circumference.
  • o Rollers 17, 17 are the shafts 10 of the motors 9, 9 whose center is also a generator. O motor stuck to the 10,
  • FIG. 7 is a front view showing a fourth embodiment of the aircraft according to the present invention. O Using a jet engine shown in FIG. The point that the jet engine 2 is pulled up to the side of the fuselage 1 differs from the first embodiment.
  • the side surface area is reduced by the amount of the overlap of the fuselage 1 and the jet engine 2 ] 9, so that the air resistance when flying in the side direction can be reduced accordingly o
  • the point of generation of thrust moves upward as the jet and engine 2 are moved upward, so that the stability of the aircraft increases accordingly.
  • Fig. 8 is a partially cutaway front view showing a fifth embodiment of the aircraft according to the present invention. O The center of a single inverted circular dish is removed, and the When the point of providing the outer portion I 4 which also serves as a bar Le ring is intends 0 this that different from the fourth embodiment, similarly to the 3-0 third embodiment, stable air resistance reduction on the level flight
  • FIG. 9 is a partially cutaway front view showing a sixth embodiment of the aircraft according to the present invention.
  • the left and right sides of the circular outer edge 14 are cut off.
  • the oval point is different from the fifth embodiment in that it is short so that it can be dropped. ⁇
  • This aircraft can fly in any direction.
  • FIG. 10 is a partially cut-away side view showing a seventh embodiment of the aircraft according to the present invention.o An outer edge portion 14 having a circular dish is provided above the fuselage 1, and the The fourth embodiment differs from the fourth embodiment in that the ball ring 4 is connected at the connecting portions 18 and 18 .In the previous embodiments having the outer edge 14, the outer edge 14 is kept parallel to the flight direction. By the way, the outer edge 14 is in the way
  • the outer edge 14 and the Jet Engine 2 are separated. Since the jet engine 2 can be largely tilted while the outer edge portion 14 is kept parallel to the flight direction, it is advantageous for stable high-speed flight.
  • FIG. 11 is a partially cut-away side view showing an eighth embodiment of the aircraft according to the present invention]
  • FIG. 12 is a view of the same eighth embodiment during high-speed flight. It is a partial cut-away front view.
  • the mounting parts 3 and 3 of the fourth embodiment are widened vertically and horizontally to make a cylinder with an arc, and the jet engine 2 and the body: L The shape surrounding. That provided the outer edge I 4 obtained by the Jo is Ruru fourth embodiment and different.
  • the outer rim 14 served to reduce flight stability and reduce air resistance, but in this embodiment they did not work. Mostly useless when flying at a slight angle to
  • the jet engine is of the centrifugal compression type, but may be of the axial flow type.o In this aircraft, the rotating shaft is opposite to the jet * engine for general aircraft.
  • the outer edge has three shapes: circular, elliptical, and cylindrical, but the circumference of the fuselage is used for purposes such as flight stability, reduced air resistance, and deceleration of air. You don't need to stick to it if it surrounds you. Occasionally it generates lift like wings.
  • the landing gear is not shown, but you can put a bar-shaped foot, a car, etc. in any position, or you can omit it.
  • the aircraft according to the present invention has a simple structure because it basically consists of only the fuselage and the jet engine, compared to the conventional vertical landing aircraft. . Step
  • Mocha River Raz to have a direct lift thrust di et Tsu DOO et emissions di emissions, since adopts a method of small teeth accelerates a large amount of air, both fuel efficiency at low fast flight Good 0 Since the injection gas speed is relatively low, noise due to the injection gas is small.
  • the gimbal connection was shown as a variable mechanism connecting the fuselage and the jet engine. There are various other mechanisms. S is conceivable, but the structure is simple, it is easy to operate,
  • FIG. 3 is a front sectional view of a jet engine used from the first embodiment to the third embodiment of the aircraft according to the present invention.
  • FIG. 6 is a partially cut front view showing the second embodiment and the S-th embodiment of the present invention. Front cross section of engine
  • FIG. 7 is a front view showing a fourth embodiment of the aircraft according to the present invention.
  • FIG. 8 and 9 are partially cutaway front views respectively showing a fifth embodiment and a sixth embodiment of the aircraft according to the present invention.
  • FIG. 10 shows a seventh embodiment of the aircraft according to the present invention.
  • FIGS. 11 and 12 are a partially cut-away side view and a high-speed flight, respectively, showing an eighth embodiment of the aircraft according to the present invention.
  • 1 is the fuselage
  • 2 is the jet engine
  • 4 is the gimbal ring
  • S 14 is the outer edge o
  • the present invention shows a very basic principle.] Its application range is very wide, and it depends on many required design conditions! ), The best of which is completely different
  • the center of rotation is hollow and uses a jet engine.
  • This aircraft shall be in the form of the No. 3 embodiment shown in FIG.
  • This aircraft which uses a jet engine with a hollow center of rotation, has the form of the fifth embodiment s shown in Fig. 8.
  • the ginite engine with a hollow center of rotation has the form shown in Fig. 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Description

/ 明 細 垂直離着陸でき る航空機及びその ジ エ ツ ト ェ ン シ ン
「技術分野」 こ の発明は、 垂直離着陸でき る航空機及びそれに使わ 5 れる ジ ェ ッ ト · エ ン ジ ンに関する。
「背景技術」
現在実用化されている垂直離着陸機 と してヘ リ コ ブタ 一力 あるカ 、 ¾速飛行ができ .ない欠点がある o 高速飛行でき る も の と して、 固定翼を持つも のが多 く /ク 試作研究されてき たが、 いずれも試作機の域を出ず、 ご く わずかの実用化されたも の も経済性、 安定性、 操縦性、 騷音等の点に多 く の未解決の問題を持ってお ]?、 これ ら の制約の少 い特殊用途の軍用機に限 られ、 一般の輸送 機への進出は、 当分考え られないのが現状である O
/ 「発明の開示」 こ の発明は、 垂直、 停空、 高速水平前進飛行は勿論の こ と、 どの よ う 飛行状態か らで も任意の方向への飛行 を ご く 短時間に行える う えに、 安定性、 操縦性が良 く 、 低騷音で経済性 も 良い、 垂直離着陸でき る航空機 とそれ 。 を よ ] 効果的に達成するための ジ ヱ ッ ト · エ ン ジ ンを得 る こ と を 目 的 とする o こ の発明 に よ る航空機を図面に も とずいて説明すれば、 次の通 ]9 であ る o
-BU EAU,
OMPI 、 7/IPO 第 1 図は、 こ の発明に よ る航空機の第 1 実施態様を示 す一部切断正面図であ ]?、 第 2 図は、 同 じ第 1 実施態様 を示す一部切断側面図である o
球形を した胴体 1 は、 中空に成っていて、 乗務員、 乗 客、 機械装置、 貨物その他の積載物を収容するための容 積を与える も のであ る O 胴体: L の下に、 胴体: L の直径 よ ]? も大き い直径の円筒形を したジ ヱ ッ ト 《 ェ ン ジ ン 2 を、 噴射 口が下に る よ う に置 く 。 ジ - ッ ト · ヱ ン ジ ン 2 には、 それをつ !)下げるための一対の取手部 3 、 5
/ 0 がある o 胴体 1 の中程を囲.う よ う に帯状を した輪を置 き、 それを ジ ン パ ル環 4 とする。 胴体 1 の周 ]) をジ ン パ ル環 4 が回転でき る よ う に、 両者を一対の軸 5 、 5 で 回転結合する。 胴体 1 の周 !) を ジヱ ッ.ト · エ ン ジ ン 2 が回転でき る よ う に、 ジ ン パ ル環 4 と ジ ヱ ッ ト · ェ ン ジ
/ S ン の取手部 3 、 3 と を軸 5 、 5 とほぼ直角 を成す一対の 軸 6 、 6 で回転結合する o 即ち、 胴体 1 と ジ ェ ッ ト · エ ン ジ ン 2 はジ ン バ ル環 4 を介 して ジ ン バ ル結合 してい るわけである o 従って、 胴体 1 を水平に保ったま ま で も、 ジ ヱ ッ ト · エ ン ジ ン 2 だけを任意の方向へ傾むける
20 こ とができ る よ う にな つている ο ジンパ ル結合の作動 機構については十分知 られている こ と ので、 図の簡略 化のため省略 した0
第 3 図は、 こ の態様に使われている ジ ヱ ッ ト · ェ ン ジ ン の正面断面図である o 直径が大き いため平た く な つ ているだけで、 作動原理、 構造 と も ご く 普通の ヱ ッ ト · エ ン ジ ン と 同 じであ る。 圧縮機 7 及びタ 一 ビ ン 8 は一体 と な って発電機を兼ねたモー タ ー 9 の軸 10に 固着 して、 それを軸に回転する o モー タ ー 9 はケー ス : L 1に取 ] 付け られている。 噴射口 13の間が適当につ がって、 ケー ス 11の内外は一体と る っている。 空気は 上方 よ 取 ]?入れ られ、 圧縮機 7 で圧縮され、 燃焼室 12 へ送 ]?込ま れる。 そこで加熱膨張された空気はター ビ ン 8 を回転させたのち、 噴射口 13よ !)大気中へ加速噴射 される。
/ 上記の よ う に構成された航.空機が離陸するには、 噴射 口 13を下に向けガ スを噴射すれば、 上方への推力を得て 浮き上がる し、 推力を調節すれば、 空中停止も でき る。 次に噴射口 13をいずれかの方向へ少 し傾むければ、 この 航空機は、 それ と反対方向に推力を受け、 この推力と こ
/ の航空機の重力 と の合力方向へ飛行する ο 推力 と噴射 口 13の方向を調節すれば、 任意の方向へ、 任意の加速度 を も って飛行する こ とが容易にでき る。
この よ う に、 この航空機は揚力を空中停止時だけでな く 、 低高速飛行時共ジ エ ツ ト · エ ン ジ ン の推力だけで得 20 ている 0
従来か らジ エ ツ ト · エ ン ジ ン の推力だけで飛行する と い う考えはある。 そ ·のために軽量、 小型、 高出力の ジ ヱ ッ ト · エ ン ジ ン の開発 も積極的に進め られている。
しか し、 噴射ガ ス速度の早い ジ ュ ッ ト · エ ン ジ ン の推力 ^ を直接航空機の揚力に使 う のは、 燃料効率、 即ち経済性
3ΜΡΪ ,、 W1PO が非常に悪 く 、 特殊用途は別 と して、 一般の輸送機への 適用は と て も考え られ のが現状である o
この発明に よ る航空機は、 この問題を直径の大き なジ エ ツ ト · エ ン ジ ンを使 う こ と で解決 してい る o こ うす
S る と垂直飛行や低速飛行時に、 この航空機が浮揚するた めに必要な推力は、 大量の空気を少 し加速する こ とで得 られる o 高速飛行時には、 取 ]9 入れた大量の高速空気 を少 し加速 し、 斜め後方へ噴射する こ と で、 こ の航空機 の浮揚と前進飛行に要する推力 と を得る こ とができ る o / 0 そのため低高速飛行時共に推.力当た ]) の出力が少 く て すみ、 大き ¾推力が経済性良 く 得 られる o 噴射ガス速 度は比較的低いので、 噴射ガス に よ る騒音も少 ¾い O ま た噴射ガ スは大き 直径の ジエ ツ ト · ·エ ン ジ ン の外周 部分 よ ]?環状に噴射される こ とか ら、 推力は この航空機
/ S の周辺に環状に発生する o そのため、 この航空機の安 定性は非常に良 く ¾ つている o - こ の よ う 禾 IJ点がある代 ]9 、 ジ ェ ッ ト · エ ン ジンの直 径を大き く しただけ、 ジ - ッ ト · エ ン ジ ン の重量が増す 欠点がある。 しか し、 こ の代 ])主翼や尾翼が不要に 0 るばか ] で ¾ く 、 従来の垂直離着陸機が垂直か ら水平へ の飛行遷移時に必要 とする特別 ¾安定装置や操縦装置も 不要にな るので、 この航空機全体の重量は従来の垂直離 着陸機 よ !) ずっ と輊 く でき る。
第 4 図は、 この発明に よ る航空機の第 2 実施態様を示 S す一部切断正面図である ο 丸い皿を二枚向い合わせに
α?ΛΡΐ IPO 置き、 その中央を く ] 抜いた形状の外縁部 14を ジ ン バ ル 環 4 の上部に取 ] 9 付けて、 胴体 1 の一部 と ジ ヱ ッ ト · ェ ン ジ ン 2 の側面を囲んだ点が先き の態様と異る る。 外 縁部 I4の外周には空気口 15、 · ·が開いている。
この航空機は、 その重量のため、 傾むけたジ ヱ ッ ト · エ ン ジ ン 2 の方向 と飛行方向 とが異な るため、 胴体 1 と ジ エ ツ ト , エ ン ジ ン 2 は一般に側面 よ ] 空気抵抗を受け る形と る o これは形状的に大き 空気抵抗を受け易 い し、 ま た飛行方向に対 し不対称 ¾ため、 その作用点は 10 飛行状態に よ って複雑に変ィ匕.し易い o この こ とは高速
飛行時に大き る空気抵抗を受けるだけでる く 、 その作用 点が複雑に変化するので飛行姿勢を安定的に保ちに く い 欠点がある ο
そこでこの態様の よ う に外縁部 14を設け、 それを飛行 方向に対 し水平に保ち、 ジ ッ ト · エ ン ジ ン 2 だけを傾 むける よ う に飛行すれば、 空気抵抗の低下 と飛行姿勢の 安定が得 られる o ま た外縁部 14はその内部で高速飛行 時、 空気口 i 5、 · · よ !)高速で入ってき た空気を減速加圧 してジ ッ ト · エ ン ジ ン に供給する働き もする o
。 第 5 図は、 こ の発明に よ る航空機の第 3 実施態様を示
す一部切断正面図である o 胴体 1 と外縁部 14を軸 5 で 回転結合 し、 外縁部 I 4と ジ ヱ ッ ト ' エ ン ジ ン 2 を軸 6 で 回転結合 している点が第 2 実施態様 と異な る 0 言いか えれば、 外縁部 14がジ ン バ ル環の働き を兼ねているわけ =2 である。 作用効果は先き の態様と 同 じである o ―
OMPI
WIP0 、 以上の態様では、 ジ ヱ ッ ト * エ ン ジ ン の直径は胴体 1 よ ] 大き な も のを示 した o 燃料効率や安定性を良く す るには直径の大き い方が有利だが、 胴体 1 よ 多少小さ く て も 良い。 一概にその限度を決める こ と は困難であ
J- る力 実用的にはジ ヱ ッ ト · エ ン ジ ン の回転軸に直角 な 面の面積は、 胴体 1 の平面面積の半分程度以上が望ま し い ο
第 6 図は、 以下の態様に使われる ジ エ ツ ト , エ ン ジ ン の正面断面図である o 第 3 図の ジ ヱ ッ ト , エ ン ジ ン の , 0 直径を広げてい く と、 推力発生に直接関係の い中央部 分も増大 して く る o そこでこ の部分を タ ー ビ ン 8 と 同 心円状に抜き取 ]?、 でき た面を内側面 16 とする。 中央 ' 部分を抜き取って も タ ー ビ ン 8 の回転に支障を き たさ
い よ う に、 内側面 16に内接する ロ ー ラ 17、 17 を全周で 3 / ケ所以上設ける o ロ ー ラ 17、 17 は中心を発電機を兼ね るモー タ 一 9、 9の軸 10、 10に固着 してある o モーター
9、 9はケー ス 11に取 付けてある o
この よ う る構成である力 ら、 モー タ 一 9、 9を回転させ ロ ー ラ 17、 17 を介 してタ ー ビ ン S を回転させれば、 その ュ。 後のジ ェ ッ ト · エ ン ジ ン の作動原理は第 3 図の も の と全 く 同 じと ¾ る。 ロ ー ラや内側面を歯車にすれば、 タ ー ビ ン と モ ー タ ー の動き は確実にな る。
この よ う に して、 ジ ッ ト · エ ン ジ ン の中央部分を抜 く とそれだけ輊量化でき るだけでる く 、 回転部分の慣性 S モ ー メ ン ト も小さ く でき る o この こ と は、 回転中の ジ
0 Ρ エ ツ ト · エ ン ジ ン の向 き を変え易 く 、 又、 回転数も変え 易い こ と と る。 ジ ヱ ッ ト · エ ン ジ ン の推力は回転数 に よ って大き く 変るので、 推力の変化も させ易い こ と と る。 その う え以下の態様に示す よ う に、 その中央の 空間を有効に利用でき る利点 も あ る o
第 7 図は、 この発明に よ る航空機の第 4 実施態様を示 す正面図であ る o 第 6 図に示すジ エ ツ ト · エ ン ジ ンを 使って、 胴体 1 の下方にあ ったジ ェ ッ ト · エ ン ジ ン 2 を 胴体 1 の側面にま で引 き 上げた点が第 1 実施態様と異
/ 0 る。 こ う する と、 胴体 1 と .ジ ヱ ッ ト · エ ン ジ ン 2 の重 な ]9 合った分だけ側面面積が減るので、 それだけ側面方 向へ飛行する と き の空気抵抗が低減でき る o ま たジ ェ ッ ト , エ ン ジ ン 2 を上方へ持ってい った'だけ推力の発生 点が上方へ移動するので、 それだけ航空機の安定性も増 す o
第 8 図は、 こ の発明に よ る航空機の第 5 実施態様を示 す一部切断正面図である o 逆さ に した一枚の円形の皿 の中央を く ]9抜いた形状で、 ジ ン バ ル環を兼ねた外縁部 I4を設けた点が第 4 実施態様 と異な る 0 こ う する と、 3-0 第 3 実施態様 と 同様に、 空気抵抗が減 ] 水平飛行の安定
性が増す o
第 9 図は、 この発明に よ る航空機の第 6 実施態様を示 す一部切断正面図である。 円形を した外縁部 14の左右 両側を切 ]? 落す よ う に短 く し、 だ円状に した点が第 5 実 ^ 施態様 と異な る ο この航空機は どの方向へも飛行でき
WIPO s- るが、 高速飛行する方向をだ円の長軸方向だけに限定す るな らば、 この よ う に飛行方向 と 直角を ¾す面の断面積 を少な く して、 空気抵抗を減 らすこ とができ る o
第 10図は、 この発明に よ る航空機の第 7 実施態様を示 す一部切断側面図である o 胴体 1 の上方に円形の皿を 伏せた形状を した外縁部 14を設け、 それと ジ ン バル環 4 を接続部 18、 18 で結んだ点が第 4 実施態様と異 る o いま ま での態様の う ち外縁部 14を持つも のは、 外縁部 14 を飛行方向に平行に保ったま ま では、 外縁部 14に邪魔さ
/ 0 れて、 ジ ヱ ッ ト * ヱ ン ジ ン 2 .を大き く 傾むける こ とがで き い欠点がある o こ の態様では外縁部 14と ジ ッ ト • エ ン ジ ン 2 が離れてい る の で、 外縁部 14を飛行方向に 平行に保ったま ま ジ ュ ッ ト · エ ン ジ ン 2 を大き く 傾むけ る こ とができ るので、 安定した高速飛行に有利である。
/ 第 11図は、 こ の発明に よ る航空機の第 8 実施態様を示 す一部切断側面図であ ])、 第 12図は同 じ第 8 実施態様の も のの、 高速飛行時の一部切断正面図である ο 第 4 実 施態様の取付部 3、 3の縦横を広げて、 円弧をえがいた円 筒状に し、 ジ ェ ッ ト · エ ン ジ ン 2 と胴体: L と を囲 った形 。 状を した外縁部 I4を設けた点が第 4 実施態様と異るる。
いま ま での態様では、 外縁部 14は飛行時の安定 と空気抵 抗を減 らす役目 を していたが、 この態様ではそれらの働 き は してい い ο ジ ヱ ッ ト · エ ン ジ ン 2 を少 し傾むけ て飛行する時には、 ほ とんど役に立たないが、 大き く 傾
^ むけざるを得 い高速時には、 高速空気を減速加圧 して、 て ビ 4 0Γ ΓΙ . 7
ジ ヱ ッ ト · エ ン ジ ン 2 へ供給する役を,する o
以上の態様に於いては、 胴体に対 して ジ エ ツ ト · ェ ン ジ ンを任意の方向へ傾むける方法 と して、 一番適 してい る と思われる ジ ンパル結合だけを示 したが、 他に も方法
S は沢山 ある o 要はその 目 的さえ達するな らばどの方法 で も 良い o
ジ エ ツ ト · エ ン ジ ンは遠心圧縮式の も のを示 したが、 軸流式でも 良い o この航空機では、 一般航空機用の ジ エ ツ ト * エ ン ジ ン と反対に、 回転軸に直角な面の面積を
/ 広 く 、 厚みを薄 く する方が良.いので、 構造の簡易 遠心 圧縮式の方が適 している o
胴体と して球形の も のだけ示 したが、 ジ : n ッ ト · ェン ' ジ ンを必要 とする角度に傾むけ られる らば、 どの よ う な形状で も よい 0
/ S 外縁部の形状 と して、 円形、 だ円、 円筒の三態様を示 したが、 飛行の安定、 空気抵抗の低減、 空気の減速加圧 等の 目的を も って胴体の周 ]? を囲 う も のであれば、 これ にこだわる必要は い O たま たま それが翼の よ う に揚 力を発生させる こ と に ¾ つ て もさ しっかえ ¾い。
20 着陸装置は図示 していないが、 棒状の足や、 車等を任 意の位置につけて も 良い し、 ま た無 く て も 良い o
こ の発明に よ る航空機は、 以上説明 した よ う に従来の 垂直難着陸機に比べ、 基本的には胴体 と ジ ッ ト · ェ ン ジンだけか ら成っているので、 構造が簡単である。 プ
2S 口 ペ ラ や ロ ー タ ーの よ う る も のが いので、 機体 よ 少 / 0
し広い場所があれば安全に離着陸でき、 停空か ら高速飛 行ま ででき る o どの よ う な飛行状態に於いて も、 任意 の方向への強力な加速、 減速飛行ができ る o 特別 装 置が く て も、 従来の垂直離着陸機が困難と した垂直か - ら水平への飛行遷移時に於ける安定性、 操縦性が良い。
ジ エ ツ ト · エ ン ジ ンの推力を直接揚力に しているに もか かわ らず、 大量の空気を少 し加速する方式を採っている ので、 低高速飛行時共に燃料効率が良い 0 噴射ガス速 度が比較的低いので、 噴射ガスに よ る騷音は小さい等の
/ 0 多 く の長所がある o
さ らに、 第 6 図に示すよ う ¾回転中央部を中空にした ジ ェ ッ ト · エ ン ジ ンを こ の航空機に使 う と、 ジ ヱ ッ ト · エ ン ジ ン が輊 く な つただけ、 こ の航空機も輊 く る る o ジ ェ ッ ト · エ ン ジ ン の中空部分に胴体を置けば、 両者の / 重 ]?合った分だけ側面面積が減 ]9、 飛行時の空気抵抗 をそれだけ減 らせる。 ジ ヱ ッ ト · エ ン ジ ンを胴体側面 へ引 き上げただけ、 推力発生部分が上方へ移るので、 そ れだけ安定性が増す。 ジ ェ ッ ト · ヱ ン ジ ン の回転部分 の憒性モー メ ン ト が小さ く な るの で、 ジ ヱ ッ ト 《 ェ ン ジ 0 ン の推力及び方向の変更が容易 と る る o そのためこの 航空機の方向変更及び加速、 減速飛行が一層容易 と ¾ る 等の長所を増すこ とができ る。
全態様と も、 胴体と ジ ッ ト · エ ン ジ ンを結ぶ可変機 構 と して ジ ン バル結合を示 した。 他にいろい ろの機構 . S が考え られるが、 構造が簡単で、' 作動 し易 く 、 任意の方
OMPI / / 向へジ ヱ ッ 卜 • エ ン ジ ンを傾むける こ とができ る もの と しては 、 ジ ン パ ル結合が最適である。 部を設ける と、 飛行の安定性が増 し、 空気抵抗を 減 らすこ とができ る ο 高速飛行時には高速空気を減速、 加圧して ジ ュ ッ ト · エ ン ジ ン へ供給する働き も する o 外縁部にジン バ ル環の働き を兼ねさせれば、 それだけ 重量の輊減ができ る o 「図面の簡単 ¾説明」 第 1 図及び第 2 図は、 それぞれこの発明に よ る航空機
/ 0 の第 1 実施態様を示す一部切.断正面図及び一部切断側面
O
第 3 図は、 この発明に よ る航空機の第 1 実施態様か ら 第 3 実施態様ま でに使われてい る ジ ェ ッ ト · エ ン ジ ン の 正面断面図 o
/ 第 4 図及び第 5 図は、 それぞれこの発明に よ る航空機
の第 2 実施態様及び第 S 実施態様を示す一部切断正面図 o 第 6 図は、 この発明に よ る航空機の第 4 実施態様か ら 第 8 実施態様ま でに使われる ジ ヱ ッ ト ' エ ン ジ ン の正面 断面図
20 第 7 図は、 この発明に よ る航空機の第 4実施態様を示 す正面図 o
第 8 図及び第 9 図は、 それぞれこの発明に よ る航空機 の第 5 実施態様及び第 6 実施態様を示す一部切鞒正面図。 第 10図は、 この発明に よ る航空機の第 7 実施態様を示
=2J- す一部切断側面図 o
麵 Ρϊ Ά IPO 、 / 2
第 11図及び第 12図は、 それぞれこの発明に よ る航空機 の第 8 実施態様を示す一部切断側面図及び高速飛行時の
—部切新正面図 o
1 は胴体、 2 はジ ヱ ッ ト · エ ン ジ ン、 4 はジ ン バル環、
S 14 は外縁部 o
「発明を実施するための最良の形態」
この発明は、 ご く 基礎的な原理を示した ものであ ] そ の応用範囲は非常に広 く 、 求め られる多 く の設計条件に よ !)、 その最良の形態は全 く 異 った も の と ってしま
/ O う ο そこで、 こ こでは垂直.か ら任意の方向へ亜音速飛 行ま ででき る、 この発明に よ る航空機を仮定 して述べる o ま た単一の一般的発明概念を形成する S つの発明を含 むので、 各々 について最良の形態を示す- o
回転中央部が中空で ¾ ジ ッ ト · エ ン ジ ンを使った
/ この航空機については、 第 5 図に示す第 : 3 実施態様の形 態の もの o
回転中央部が中空にな っている ジュ ッ ト · エ ン ジ ンを 使ったこの航空機については、 第 8 図に示す第 5 実施態 s 様の形態の も の o
0 回転中央部を中空に したジ ニ ッ ト · エ ン ジ ンについて は、 第 6 図に示す形態の も の。
OMP!

Claims

/ 3 求 の 範 囲
1. 胴体(1)の下に ジ ヱ ッ ト · ェ ン ジ ン の回転軸に直角 ¾面の面積が胴体(1)の平面面積の半分以上 と ¾ る ジェ ッ ト · エ ン ジ ン )を噴射口 を下に して置き、 胴体 (1)と ジ ニ
S ッ ト , エ ン ジ ン(2)の間を可変機構で結んだ航空機 o
2. 胴体(1) と ジ ヱ ッ ト · エ ン ジ ン )を結ぶ可変機構を ジ ン バ ル結合と した、 請求の範囲第 1項記載の航空機 o
3. 胴体(1) の周 ]) に外縁部(14 )を設けた、 請求の範囲 第 1項又は第 2 項記載の航空櫸0
/ 0 4. 外緣部(I4 )を ジ ン バ ル環に した、 請求の範囲第 3 項記載の航空機 ο
5. 胴体(1) の周 ]? に、 ジ ェ ッ ト · ェ ン.ジ ン の回転中央 部分を中空に したジ エ ツ ト · ェ ン ジ ン(2)を噴射口を下に して置き 、 胴体(1) と ジ ヱ ッ ト · ェ ン ジン の間を可変機 ノ 構で結んだ航空機。
6. B同体 ) と ジ ェ ッ ト · エ ン ジ ン (2)を結ぶ可変機構を ジ ン バ ル結合 と した、 請求の範囲第 5 項記載の航空機 0
7. 胴体(1)の周 ] に、 外縁部(14 )を設けた、 請求の範 囲第 5 項又は第 6 項記載の航空機 o
8. 外縁部(14 ) を ジ ン バ ル環に した、 請求の範囲第 マ 項記載の航空機 ο
9. ジ ヱ ッ ト · エ ン ジ ン の回転中央部分を広 く 中空に したジ ヱ ッ ト · エ ン ジ ン 0
PCT/JP1979/000145 1979-06-07 1979-06-07 Vertical take-off and landing aircraft and jet engine therefor WO1980002681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1979/000145 WO1980002681A1 (en) 1979-06-07 1979-06-07 Vertical take-off and landing aircraft and jet engine therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1979/000145 WO1980002681A1 (en) 1979-06-07 1979-06-07 Vertical take-off and landing aircraft and jet engine therefor
WOJP79/00145 1979-06-07

Publications (1)

Publication Number Publication Date
WO1980002681A1 true WO1980002681A1 (en) 1980-12-11

Family

ID=13677663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1979/000145 WO1980002681A1 (en) 1979-06-07 1979-06-07 Vertical take-off and landing aircraft and jet engine therefor

Country Status (1)

Country Link
WO (1) WO1980002681A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123320A (en) * 1964-03-03 slaughter
US3469804A (en) * 1968-04-08 1969-09-30 Steven T Rowan Rotary and circular saucer-shaped airfoil aircraft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3123320A (en) * 1964-03-03 slaughter
US3469804A (en) * 1968-04-08 1969-09-30 Steven T Rowan Rotary and circular saucer-shaped airfoil aircraft

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENDO KOJI: "Rocket Kogaku", NIKKAN KOGYO SHINBUNSHA, 25 March 1960 (1960-03-25), pages 340 *
MATSUOKA MASUJI: "Koku Kogaku Koza", NIPPON KOKU SEIBI KYOKAI (JET ENGINE (KOUZO-HEN)), vol. 11 *

Similar Documents

Publication Publication Date Title
US8302903B2 (en) Aircraft attitude control configuration
US5039031A (en) Turbocraft
CN103144769B (zh) 一种倾转涵道垂直起降飞行器的气动布局
US20040144890A1 (en) VSTOL vehicle
CN106988926B (zh) 涡轴涡扇组合循环发动机
US4214720A (en) Flying disc
US5149012A (en) Turbocraft
US3677503A (en) Reaction--impulse--counterrotating--airfoil
US8991743B1 (en) Helicopter with blade-tip thrusters and annular centrifugal fuel supply tank and concentric cabin and fuselage
US12006032B2 (en) Personal flight apparatus with vertical take-off and landing
WO2018072757A1 (zh) 自旋控制系统及飞行器
CN107448325A (zh) 一种大摆角矢量喷管混联机构
US20200354054A1 (en) A vertical take off and landing flying machine
WO1980002681A1 (en) Vertical take-off and landing aircraft and jet engine therefor
US3170285A (en) Vertical takeoff aerial lifting device
JP3774764B2 (ja) 有人飛行船
CN108408040B (zh) 一种舵控喷气双旋翼飞行器
CN1335248A (zh) 主动旋翼直升飞行器
US2823875A (en) Convertible aircraft with jet-driven lifting rotors
RU2814979C1 (ru) Пилотируемый летательный аппарат вертикального взлета-посадки с кольцевым крылом и приводом от мотор-колеса
JP2019189194A (ja) 飛翔体
CN113247244A (zh) 一种垂直起降飞行器
RU24988U1 (ru) Летательный аппарат
CN114715413A (zh) 一种流体曲率引擎及流体曲率引擎装备及其控制方法
Cozma The vacuum-propulsion technology-concept and applications

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR JP SU US

AL Designated countries for regional patents

Designated state(s): CH DE FR GB LU SE