WO1980001698A1 - Procede de symetrisation du champ magnetique vertical dans les cuves d'electrolyse ignee placees en travers - Google Patents

Procede de symetrisation du champ magnetique vertical dans les cuves d'electrolyse ignee placees en travers Download PDF

Info

Publication number
WO1980001698A1
WO1980001698A1 PCT/FR1980/000021 FR8000021W WO8001698A1 WO 1980001698 A1 WO1980001698 A1 WO 1980001698A1 FR 8000021 W FR8000021 W FR 8000021W WO 8001698 A1 WO8001698 A1 WO 8001698A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
magnetic field
vertical magnetic
vertical
tanks
Prior art date
Application number
PCT/FR1980/000021
Other languages
English (en)
Inventor
J Dugois
P Morel
Original Assignee
Pechiney Aluminium
J Dugois
P Morel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Aluminium, J Dugois, P Morel filed Critical Pechiney Aluminium
Publication of WO1980001698A1 publication Critical patent/WO1980001698A1/fr
Priority to NO802981A priority Critical patent/NO154845C/no
Priority to BR8006605A priority patent/BR8006605A/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the present invention relates to a method for symmetrizing the vertical magnetic field in high intensity electrolytic cells, connected in series and placed crosswise with respect to the axis of the series, intended for the production of aluminum by electrolysis of alumina dissolved in the molten cryolite.
  • Each tank comprises a rectangular cathode forming a crucible, the bottom of which is constituted by carbon blocks sealed on steel bars called cathode bars, which serve to evacuate the current from the cathode to the anodes of the next tank.
  • the anodes also made of carbon, are sealed on rods tightly clamped on aluminum bars, called anode bars, fixed on a superstructure which overhangs the crucible of the tank. These anode bars are connected by aluminum conductors called "mounted" to the cathode bars of the previous tank.
  • the electrolysis bath that is to say the solution of alumina in cryolite.
  • the aluminum produced is deposited on the cathode, an aluminum flywheel being constantly maintained at the bottom of the cathode crucible.
  • the anode bars supporting the anodes are, in general, parallel to its long sides, while the cathode bars are parallel to its short sides, called tank heads.
  • the tanks are arranged in rows, lengthwise or crosswise, depending on whether their long side or their short side is parallel to the axis of the file.
  • the tanks are electrically connected in series, the ends of the series being connected to the positive and negative outputs of an electrical rectification and regulation substation.
  • Each series of tanks comprises a certain number of lines connected in series, the number of lines being preferably even in order to avoid unnecessary lengths of conductors.
  • the design of the tank and its connection conductors is studied so that the magnetic fields created by the different parts of the tank and the connection conductors compensate each other: this results in a tank having for plane of symmetry the vertical plane parallel to the line of tanks and passing through the center of the crucible.
  • the tanks are also subjected to disturbing magnetic fields coming from the neighboring row or rows.
  • upstream and downstream are understood with respect to the general direction of the electric current in the queue of tanks considered.
  • neighbor file means the line closest to the line considered and by " field of the neighboring queue ", the result of the fields of all the queues other than the considered queue.
  • the object of the invention is to produce a tank whose anode system is supplied by current inlets placed on the short sides of the tank and whose pattern of conductors between tanks is such that excellent magnetic field symmetry is achieved. vertical according to the following rule:
  • the method, object of the invention which aims to symmetrize the vertical component of the magnetic field of the electrolysis cells placed across, that is to say to bring the vertical magnetic field to have substantially the same value absolute in the four angles of the tank, with alternately positive and negative signs when describing the perimeter of the tank, consists in modifying the distribution of the current in the supply conductors of the anode of a downstream tank from the cathode of the neighboring upstream tank by superimposing on the tank two electric loops producing an additional vertical magnetic field substantially equal to the average vertical magnetic field of the tank on its short side, and in opposite directions, these electric compensation loops being arranged under each short sides or "heads" of the tank and to pass, in an additional conductor a fraction or all of the current which flows through the collector r negative upstream, this additional conductor joining the same upstream collector along the large downstream side of the tank.
  • the additional conductors are placed as high as possible under the tank, horizontally and parallel to the short sides of the tank and in such a way that the planes passing through the inside and outside conductor and through the internal edge of the anode on the short sides interior and exterior respectively make with the vertical a angle substantially equal to 45o.
  • Figures 1 and 2 show schematically the position of the compensation conductor under the heads of the tank.
  • Figure 3 shows the actual geometric arrangement of the compensation loop under one of the tank heads.
  • Figure 4 shows schematically, in plan, the position of the connecting conductors between two successive tanks and the position of the compensation loops under the heads of one of the tanks (the upstream tank).
  • the vertical magnetic field is calculated in each of the angles B 1 , B 2 , B, and B, of the tank, ie (figure 4):
  • the upstream / downstream equations being understood with respect to the general direction of the current in the tank queue.
  • the calculation of these fields is made taking into account the magnetic field created by the neighboring lines and the action on the field of the ferromagnetic masses located in the vicinity of the tank.
  • Equations (1) are linear in Ii and le (the magnetic field being proportional to the intensity) and therefore make it possible to determine Ii and le.
  • the vertical field created by the neighboring lines, on the one hand, and by the magnetic loops, on the other hand, is practically independent of the abscissa x, i.e. it has a constant value bz on all the small inner side and a constant value bz! all over the outside.
  • Bz 4 Bz ' 4 + bz' - -Bz ' 1 + bz'
  • Equations (1) result in:
  • C represents the section of the compensating conductor seen at the end, and M, the point where the magnetic field to be compensated is the strongest;
  • is the angle made by the plane containing the compensation conductor C and the point M with the vertical.
  • the compensating conductor must therefore be placed, as seen in FIG. 2, in such a way that the plane defined by the conductor and by the external angle of the anode makes an angle substantially equal to 45o with the vertical.
  • FIG. 2 which diagrams a vertical section of the outer head of an electrolysis cell, (1) is the anode, (2) the molten electrolyte, (3) the layer of liquid aluminum, (4) the cathode block, (5) the lower angle of the anode in the vicinity of which the vertical magnetic field to be compensated is maximum and (6) the compensating conductor.
  • FIG 3 which is a schematic perspective view of a head of an electrolysis cell, specifies the position and the layout of the compensation conductor (7). It comprises: a descent (8) from the upstream external negative conductor (9) to the level of the bottom of the tank (10), a horizontal passage (11) under the tank parallel to its short side (12), a rise (13) to the level of the downstream external negative collector (14), placed between the latter and the tank casing, and a return (15), parallel to the long side (16) of the tank, to reach the collector upstream exterior (9).
  • the arrowed dotted line indicates how the electric loop generating the compensation field is formed.
  • the bars cathodics are designated by the reference (17).
  • An identical loop, symmetrical with respect to the axis of the series, is placed on the other head of the tank, as shown in Figure 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

On dispose, sous chaque tete des cuves, une boucle de compensation produisant un champ magnetique vertical supplementaire, sensiblement egal au champ magnetique vertical moyen de la cuve sur son petit cote, et de sens contraire, et on fait passer dans chacune de ces boucles au moins une fraction du courant qui parcourt le collecteur negatif amont. Application aux series de cuves d'electrolyse ignee, a haute intensite, pour la production d'aluminium.

Description

PROCEDE DE SYMETRISATION DU CHAMP MAGNETIQUE VERTICAL DANS LES CUVES D'ELECTROLYSE IGNEE PLACEES EN TRAVERS
La présente invention concerne un procédé pour symétriser le champ magnétique vertical dans les cuves d'électrolyse à haute intensité, connectées en série et placées en travers par rapport à l'axe de la série, destinées à la production d'aluminium par électrolyse d'alumine dissoute dans la cryolithe fondue.
Pour la bonne compréhension de ce qui suit, on rappelle que la production industrielle de l'aluminium s'opère par électrolyte ignée, dans des cuves connectées électriquement en série, d'une solution d'alumine dans de la cryolithe portée à une température de l'ordre de 950 à 1000º C par l'effet Joule du courant traversant la cuve.
Chaque cuve comprend une cathode rectangulaire formant creuset, dont le fond est constitué par des blocs de carbone scellés sur des barres d'acier dites barres cathodiques, qui servent à évacuer le courant de la cathode vers les anodes de la cuve suivante.
Les anodes, également en carbone, sont scellées sur des tiges fortement serrées sur des barres en aluminium, dites barres anodiques, fixées sur une superstructure qui surplombe le creuset de la cuve. Ces barres anodiques sont reliées par des conducteurs en aluminium dits "montés" aux barres cathodiques de la cuve précédente.
Entre les anodes et la cathode se trouve le bain d'électrolyse, c'est- à-dire la solution d'alumine dans de la cryolithe. L'aluminium produit se dépose sur la cathode, un volant d'aluminium étant constamment maintenu au fond du creuset cathodique.
Le creuset étant rectangulaire, les barres anodiques supportant les anodes, sont, en général, parallèles à ses grands côtés, alors que les barres cathodiques sont parallèles à ses petits cotés, dits têtes de cuve.
Les cuves sont rangées selon des files, en long ou en travers, suivant que leur grand côté ou leur petit côté est parallèle à l'axe de la file. Les cuves sont branchées électriquement en série, les extrémité de la série étant reliées aux sorties positive et négative d'une sous station électrique de redressement et de régulation. Chaque série de cuves comprend un certain nombre de files branchées en série, le nombre des files étant, de préférence, pair afin d'éviter des longueurs inutiles de conducteurs.
Le courant électrique qui parcourt les différents conducteurs : électrolyte , métal liquide , anodes, cathodes, conducteurs de liaison, crée des champs magnétiques importants. Ces champs induisent, dans le bain d'électrolyse et dans le métal fondu contenu dans le creuset, des forces dites de Laplace qui, par les mouvements qu'elles engendrent, sont nuisibles à la bonne marche de la cuve. Le dessin de la cuve et de ses conducteurs de liaison est étudié pour que les champs magnêtiques créés par les différentes parties de la cuve et les conducteurs de liaison se compensent : on aboutit ainsi à une cuve ayant pour plan de symétrie le plan vertical parallèle à la file de cuves et passant par le centre du creuset.
Cependant, les cuves sont également soumises à des champs magnétiques perturbateurs provenant de la ou des files voisines.
Dans ce qui suit, les mots "amont" et "aval" s'entendent par rapport au sens général du courant électrique dans la file de cuves considéré On entend par "file voisine" la file la plus proche de la file considérée et par "champ de la file voisine", la résultante des champs de toutes les files autres que la file considérée.
Le but de l'invention est de réaliser une cuve dont le système anodique soit alimenté par des arrivées de courant placées sur les petits côtés de la cuve et dont le dessin des conducteurs entre cuve soit tel qu'on réalise une excellente symétrie du champ magnétique vertical suivant la règle suivante :
- la valeur absolue de la composante Bz est la même dans les quatre angles,
- le signe de Bz est alternativement positif et négatif quand on passe d'un angle de la cuve à l'autre en suivant son périmètre,
Ce résultat est obtenu : a) compte tenu du champ magnétique crée par les files de cuves voisines, b) compte tenu de la modification du champ magnétique due à la présence des pièces ferromagnétiques situées à proximité de la cuve. Bz désigne la composante du champ magnétique selon l'axe vertical Oz, dans un trièdre trirectangle de référence dont l'axe Ox est parallèle à l'axe de la série dans le sens du courant, le point 0 étant fixé au centre du plan cathodique.
Dans le brevet français 2 333 060 et le certificat d' addition 2 343 826 à ce brevet, on a décrit des moyens visant à compenser le champ magnétique créé par les files de cuves voisines en plaçant une boucle de courant sous la tête extérieure, c'est-à-dire sous le petit côté de la cuve le plus éloigné de la file la plus proche. Le dispositif utilisé consiste à dévier une partie du courant contournant la tête extérieure de la cuve en la faisant passer par un conducteur situé sous la cuve.
Le procédé, objet de l'invention, qui a pour but de symétriser la composante verticale du champ magnétique des cuves d'électrolyse placées en travers, c'est-à-dire d'amener le champ magnétique vertical à avoir sensiblement la même valeur absolue dans les quatres angles de la cuve, avec des signes alternativement positif et négatif quand on décrit le périmètre de la cuve, consiste à modifier la répartition du courant dans les conducteurs d'alimentation de l'anode d'une cuve aval à partir de la cathode de la cuve amont voisine en superposant à la cuve deux boucles électriques produisant un champ magnétique vertical supplémentaire sensiblement égal au champ magnétique vertical moyen de la cuve sur son petit côté, et de sens contraire, ces boucles électriques de compensation étant disposées sous chacun des petits côtés ou "têtes" de la cuve et à faire passer, dans un conducteur supplémentaire une fraction ou la totalité du courant qui parcourt le collecteur négatif amont, ce conducteur supplémentaire rejoignant le même collecteur amont en longeant le grand côté aval de la cuve.
Les conducteurs supplémentaires sont placés le plus haut possible sous la cuve, horizontalement et parallèlement aux petits côtés de la cuve et de façon telle que les plans passant par le conducteur intérieur et extérieur et par l'arête intérieure de l'anode sur les petits côtés intérieur et extérieur respectivement fassent avec la verticale un angle sensiblement égal à 45º.
Les figures 1 et 2 schématisent la position du conducteur de compensation sous les têtes de la cuve.
La figure 3 montre la disposition géométrique réelle de la boucle de compensation sous l'une des têtes de la cuve.
La figure 4 schématise, en plan, la position des conducteurs de liaison entre deux cuves successives et la position des boucles de compensation sous les têtes de l'une des cuves (la cuve amont).
Pour la mise en oeuvre de l'invention, il faut tout d'abord déterminer les intensités Ii et le dans les boucles de compensation.
On calcule le champ magnétique vertical dans chacun des angles B1, B2, B, et B, de la cuve soit (figure 4) :
Bz1 dans l'angle intérieur amont
Bz2 dans l'angle intérieur aval Bz3 dans l'angle extérieur aval Bz4 dans l'angle extérieur amont.
Les équations amont/aval étant entendues par rapport au sens général du courant dans la file de cuve. Le calcul de ces champs est fait en tenant compte du champ magnétique créé par les files voisines et de l'action sur le champ des masses ferromagnétiques situées au voisinage de la cuve.
On écrit alors les deux équations suivantes : Bz1 + Bz2 = 0
(1) Bz3 + Bz4 = 0
Les équations (1) sont linéaires en Ii et le (le champ magnétique étant proportionnel à l'intensité) et permettent donc de déterminer Ii et le.
Or, on sait qu'en l'absence des files voisines, la composante verticale Bz'1, Bz'2, Bz'3, Bz'4, du champ magnétique dans les quatre angles de la cuve est antisymétrique en y , la cuve étant, par construction, symétrique par rapport au plan xOz ; on a donc :
Bz' 1 = - Bz' 4
Bz ' 2 = -Bz ' 3
Le champ vertical créé par les files voisines, d'une part, et par les boucles magnétiques, d'autre part, est pratiquement indépendant de l'abscisse x, c'est-à-dire qu'il a une valeur constante bz sur tout le petit côté intérieur et une valeur constante bz! sur tout le côté extérieur.
On a donc :
Bz1 = Bz' 1 + bz
Bz2 = Bz' 2 + bz Bz3 = Bz' 3 + bz' = - Bz'2 + bz'
Bz4 = Bz' 4 + bz' - -Bz'1 + bz'
Les équations ( 1 ) entraînent :
Figure imgf000007_0001
Le but étant de modifier, en l'améliorant, le champ magnétique vertical sur le petit côté de la cuve, on placera le conducteur passant sous la cuve de façon qu'il ait une action maximale sur cette zone. Sur la figure 1 , C représente la section du conducteur de compensation vue en bout, et M, le point où le champ magnétique à compenser est le plus intense ; α est l'angle que fait le plan contenant le conducteur de compensation C et le point M avec la verticale. Si on appelle I l'intensité du courant dans le conducteur C, le champ magnétique B au point M vaut :
Figure imgf000008_0001
Si l'on appelle Bz la composante verticale du champ au point M, on a :
Figure imgf000008_0002
Bz est maximal pour sin 2 α = 1 , donc pour α = 45 °
Le conducteur de compensation doit donc être placé, comme on le voit figure 2, de façon telle que le plan défini par le conducteur et par l'angle extérieur de l'anode fasse un angle sensiblement égal à 45º avec la verticale.
Sur cette figure 2 qui schématise une coupe verticale de la tête extérieure d'une cellule d'électrolyse, (1) est l'anode, (2) l'électrolyte fondu, (3) la couche d'aluminium liquide, (4) le bloc cathodique, (5) l'angle inférieur de l'anode au voisinage duquel le champ magnétique vertical à compenser est maximal et (6) le conducteur de compensation.
La figure 3, qui est une vue schématique en perspective d'une tête d'une cellule d'électrolyse, précise la position et le tracé du conducteur de compensation (7). Il comporte : une descente (8) à partir du conducteur négatif extérieur amont (9) jusqu'au niveau du fond de la cuve (10), un passage horizontal (11) sous la cuve parallèlement à son petit côté (12), une remontée (13) jusqu'au niveau du collecteur négatif extérieur aval (14), placée entre ce dernier et le caisson de la cuve, et un retour (15), parallèlement au grand côté (16) de la cuve, pour rejoindre le collecteur extérieur amont (9). Le tracé en pointillé fléché indique comment se forme la boucle électrique génératrice du champ de compensation. Les barres cathodiques sont désignées par le repère (17). Une boucle identique et symétrique par rapport à l'axe de la série, est disposée sur l'autre tête de la cuve, comme le montre la figure 4.
Sur une série du cuves de 90 kA, avec 14 m de distance entre files de cuves, on utilise le dispositif indiqué ci-dessus et on calcule, à partir des équations (1) :
Ii = 9 kA environ le = 22,5 kA environ
On a mesuré sur ces cuves les champs magnétiques verticaux suivants, dans les angles :
Bz1 = 31 Gauss
Bz2 = -40 Gauss Bz3 = 30 Gauss
Bz4 = -40 Gauss
La symétrie est donc réalisée de façon tout à fait satisfaisante. Sur une série de cuves identiques, mais non compensées, on a mesuré par comparaison les champs magnétiques verticaux suivants, dans les angles :
Bz1 = 55 Gauss
Bz2 = -25 Gauss Bz3 = 15 Gauss
Bz4 = -75 Gauss
Un tel déséquilibre affecte la bonne marche des cuves et se traduit par un rendement Faraday insuffisant.

Claims

REVENDICATIONS
1º) Procédé pour symétriser la composante verticale du champ magnétique des cuves d'électrolyse placées en travers, c'est-à-dire pour amener le champ magnétique vertical à avoir sensiblement la même valeur absolue dans les quatre angles de la cuve, avec des signes alternativement positif et négatif quand on décrit le périmètre de la cuve, selon lequel on modifie la répartition du courant dans les conducteurs d'alimentation de l'anode d'une cuve aval à partir de la cathode de la cuve amont voisine de façon à superposer à la cuve deux boucles électriques produisant un champ magnétique vertical supplémentaire sensiblement égal au champ magnétique vertical moyen de la cuve sur son petit côté, et de sens contraire, caractérisé en ce que les boucles électriques sont situées sous chacun des petits côtés de la cuve.
2º) Procédé pour symétriser le champ magnétique vertical des cuves, selon revendication 1, caractérisé en ce que l'on forme une boucle de courant sous chaque tête de cuve, en faisant passer dans un conducteur supplémentaire au moins une fraction du courant qui parcourt le collecteur négatif amont, ce conducteur supplémentaire rejoignant le même collecteur amont en longeant le grand côté aval de la cuve .
3º) Procédé pour symétriser le champ magnétique vertical des cuves, selon revendication 1, caractérisé en ce que les conducteurs supplémentaires sont placés le plus haut possible sous la cuve, horizontale ment et parallèlement aux petits côtés de la cuve, de façon telle que les plans passant par le conducteur intérieur et extérieur et par l'arête intérieure de l'anode sur les petits côtés intérieur et extérieur respectivement fassent avec la verticale un angle sensiblement égal à 45º.
PCT/FR1980/000021 1979-02-14 1980-02-11 Procede de symetrisation du champ magnetique vertical dans les cuves d'electrolyse ignee placees en travers WO1980001698A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO802981A NO154845C (no) 1979-02-14 1980-10-07 Fremgangsmaate til symmetrisering av den vertikale komponenten i det magnetiske feltet i en elektrolysebeholder.
BR8006605A BR8006605A (pt) 1979-02-14 1980-10-09 Processo de simetrizacao do campo magnetico vertical nas cubas de eletrolise ignea dispostas atravessadas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR7904476 1979-02-14
FR7904476A FR2456792A1 (fr) 1979-02-14 1979-02-14 Procede de symetrisation du champ magnetique vertical dans les cuves d'electrolyse ignee placees en travers

Publications (1)

Publication Number Publication Date
WO1980001698A1 true WO1980001698A1 (fr) 1980-08-12

Family

ID=9222287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1980/000021 WO1980001698A1 (fr) 1979-02-14 1980-02-11 Procede de symetrisation du champ magnetique vertical dans les cuves d'electrolyse ignee placees en travers

Country Status (20)

Country Link
JP (1) JPS5853078B2 (fr)
KR (1) KR850000134B1 (fr)
AU (1) AU538792B2 (fr)
CA (1) CA1130756A (fr)
CH (1) CH643601A5 (fr)
ES (1) ES488533A1 (fr)
FR (1) FR2456792A1 (fr)
GB (1) GB2041409B (fr)
GR (1) GR72478B (fr)
HU (1) HU184717B (fr)
IN (1) IN151875B (fr)
MX (1) MX152250A (fr)
MY (1) MY8400357A (fr)
NL (1) NL8020036A (fr)
OA (1) OA06467A (fr)
PL (1) PL121660B1 (fr)
RO (1) RO81528B (fr)
SU (1) SU1093255A3 (fr)
WO (1) WO1980001698A1 (fr)
YU (1) YU42501B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313811A (en) * 1980-06-23 1982-02-02 Swiss Aluminium Ltd. Arrangement of busbars for electrolytic cells
FR2522021A1 (fr) * 1982-02-19 1983-08-26 Sumitomo Aluminium Smelting Co Cellules electrolytiques pour la production d'aluminium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642779U (fr) * 1987-06-23 1989-01-10
GB0200438D0 (en) 2002-01-10 2002-02-27 Univ Coventry Stabilisation of liquid metal electrolyte systems
RU2288976C1 (ru) * 2005-05-04 2006-12-10 Общество с ограниченной ответственностью "Инженерно-технологический центр" Ошиновка модульная мощных электролизеров для производства алюминия
GB2563641A (en) * 2017-06-22 2018-12-26 Dubai Aluminium Pjsc Electrolysis plant using the Hall-Héroult process, with vertical magnetic field compensation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617454A (en) * 1969-11-12 1971-11-02 Arthur F Johnson Bus structure from aluminum reduction cells
US3969213A (en) * 1973-10-26 1976-07-13 Nippon Light Metal Company Limited Aluminum electrolytic cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2333060A1 (fr) * 1975-11-28 1977-06-24 Pechiney Aluminium Procede et dispositif pour la compensation des champs magnetiques des files voisines de cuves d'electrolyse ignee placees en travers
US4090930A (en) * 1976-03-08 1978-05-23 Aluminum Pechiney Method of and an apparatus for compensating the magnetic fields of adjacent rows of transversely arranged igneous electrolysis cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617454A (en) * 1969-11-12 1971-11-02 Arthur F Johnson Bus structure from aluminum reduction cells
US3969213A (en) * 1973-10-26 1976-07-13 Nippon Light Metal Company Limited Aluminum electrolytic cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313811A (en) * 1980-06-23 1982-02-02 Swiss Aluminium Ltd. Arrangement of busbars for electrolytic cells
FR2522021A1 (fr) * 1982-02-19 1983-08-26 Sumitomo Aluminium Smelting Co Cellules electrolytiques pour la production d'aluminium
US4462885A (en) * 1982-02-19 1984-07-31 Sumitomo Aluminium Smelting Company, Limited Conductor arrangement of electrolytic cells for producing aluminum

Also Published As

Publication number Publication date
RO81528B (ro) 1984-06-30
CH643601A5 (fr) 1984-06-15
IN151875B (fr) 1983-08-27
JPS5853078B2 (ja) 1983-11-26
MX152250A (es) 1985-06-13
YU34880A (en) 1983-02-28
YU42501B (en) 1988-10-31
FR2456792B1 (fr) 1981-05-29
ES488533A1 (es) 1980-10-01
PL221979A1 (fr) 1980-11-03
RO81528A (fr) 1984-05-12
NL8020036A (nl) 1980-11-28
KR830002065A (ko) 1983-05-21
OA06467A (fr) 1981-07-31
JPS55501185A (fr) 1980-12-25
GB2041409B (en) 1983-03-09
CA1130756A (fr) 1982-08-31
SU1093255A3 (ru) 1984-05-15
KR850000134B1 (ko) 1985-02-27
FR2456792A1 (fr) 1980-12-12
GB2041409A (en) 1980-09-10
PL121660B1 (en) 1982-05-31
AU5545280A (en) 1980-08-21
GR72478B (fr) 1983-11-11
HU184717B (en) 1984-10-29
AU538792B2 (en) 1984-08-30
MY8400357A (en) 1984-12-31

Similar Documents

Publication Publication Date Title
Yu et al. Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy fabricated by wire+ arc additive manufacturing
FR2583069A1 (fr) Dispositif de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
US6074545A (en) Process for the electrolytic production of metals
CA1178921A (fr) Procede et dispositif de reglage du plan anodique d'une cuve d'electrolyse pour la production d'aluminium
CA1075638A (fr) Procede et dispositif pour la compensation des champs magnetiques des files voisines de cuves d'electrolyse ignee placees au travers
CA1125226A (fr) Procede de compensation du champ magnetique induit par la file voisine dans les series de cuves d'electrolyse a haute intensite
CH619006A5 (fr)
Cohen Some prospective applications of silicon electrodeposition from molten fluorides to solar cell fabrication
WO1980001698A1 (fr) Procede de symetrisation du champ magnetique vertical dans les cuves d'electrolyse ignee placees en travers
CA1232869A (fr) Cuve d'electrolyse a intensite superieure a 250 000 amperes pour la production d'aluminium par le procede hall-heroult
CA1100906A (fr) Procede pour ameliorer l'alimentation en courant de cuves d'electrolyse alignees en long
CA2841297A1 (fr) Aluminerie comprenant des cuves a sortie cathodique par le fond du caisson et des moyens de stabilisation des cuves
CN103459675A (zh) 电解方法和装置
CA1123786A (fr) Pile electrolytique de reduction avec composants compensateurs dans son champ magnetique
AU693391B2 (en) Busbar arrangement for electrolytic cells
EP0047246A1 (fr) Procede et dispositif pour la suppression des perturbations magnetiques dans les cuves d'electrolyse.
WO2015017924A1 (fr) Aluminerie comprenant un circuit électrique de compensation
CA3000482C (fr) Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
EP0003712B1 (fr) Procédé de réduction des perturbations magnétiques dans les séries de cuves d'électrolyse à haute intensité
FR2583068A1 (fr) Circuit de connexion electrique de series de cuves d'electrolyse pour la production d'aluminium sous tres haute intensite
CA2808355C (fr) Dispositif de connexion electrique entre deux cellules successives d'une serie de cellules pour la production d'aluminium
CA2975962A1 (fr) Aluminerie et procede de compensation d'un champ magnetique cree par la circulation du courant d'electrolyse de cette aluminerie
FR2505368A1 (fr) Dispositif pour la production d'aluminium par electrolyse ignee sous tres haute densite
FR2522021A1 (fr) Cellules electrolytiques pour la production d'aluminium
JPH01168890A (ja) 電気めつき装置

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): BR CH JP NL NO RO SU US