USRE46166E1 - Charging system of electric vehicle and method for charging electric vehicle - Google Patents

Charging system of electric vehicle and method for charging electric vehicle Download PDF

Info

Publication number
USRE46166E1
USRE46166E1 US14/813,336 US201514813336A USRE46166E US RE46166 E1 USRE46166 E1 US RE46166E1 US 201514813336 A US201514813336 A US 201514813336A US RE46166 E USRE46166 E US RE46166E
Authority
US
United States
Prior art keywords
rechargeable battery
charging
battery
electric vehicle
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/813,336
Inventor
Tzu-Wen Soong
Ching-Tsung Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Go Tech Energy Co Ltd
Original Assignee
Go Tech Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Go Tech Energy Co Ltd filed Critical Go Tech Energy Co Ltd
Priority to US14/813,336 priority Critical patent/USRE46166E1/en
Application granted granted Critical
Publication of USRE46166E1 publication Critical patent/USRE46166E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F15/00Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity
    • G07F15/003Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity for electricity
    • G07F15/005Coin-freed apparatus with meter-controlled dispensing of liquid, gas or electricity for electricity dispensed for the electrical charging of vehicles
    • B60L11/1822
    • B60L11/1824
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging system of an electric vehicle and a method for charging the electric vehicle. More particularly, the present invention relates to a charging system of an electric vehicle and the method for charging the electric vehicle using a smart card for battery management when charging the battery.
  • An electric vehicle also referred to as an electric drive vehicle, is a moving vehicle using one or more electric motors as driving system. Unlike petroleum-based transportations which are moved by the energy from gasoline, the electric vehicles use electric power as their propulsion. They won't generate waste gas. Noise is also less. During the last few decades, increased concern over the environmental impact of the petroleum-based transportation, along with the spectre of peak oil, has led to renewed interest in electric transportation. Electric power for electric vehicles can be generated from a wide range of sources, including fossil fuels, nuclear power, and renewable sources such as tidal power, solar power, and wind or any combination of those.
  • a system for charging the batteries of the electric vehicles should be as convenient as a gas station system.
  • batteries of an electric car are in low battery, people can drive the car to a nearby charging station and get the batteries charged or replaced with full charged ones.
  • the batteries can be charged during off-peak period when cost of charge of electricity is lowest.
  • people can always know the status of the batteries and mechanics of the stations can trace the batteries for maintenance. Since the batteries are expensive, if the batteries are stolen and they can be easily found, it will be a great help for the car owners.
  • the requirements mentioned above need an integrated system to fulfill.
  • U.S. Pat. No. 7,679,366 discloses a method for recharging an electric storage battery in a charging system of an electric vehicle. Please refer to FIG. 1 .
  • Power comes from an electric utility power grid.
  • '366 Patent includes determining the length of time required to recharge the battery, determining the desired time when the recharge is to be completed, transmitting to the electric power utility the length of time required to recharge the battery and the desired time, and recharging the battery from the utility grid during a period when projected load demand is lower than peak demand and ending no later than the desired time.
  • '366 Patent is for hybrid electric vehicles, not for pure electric vehicles. The method only focuses on an optimal way to charge the batteries through a day so that time for low demand of electricity can be fully applied and charging cost can be minimal. However, no solution for battery management is mentioned.
  • FIG. 2 Another prior art is disclosed in U.S. Pat. No. 7,795,841. Please refer to FIG. 2 .
  • '841 Patent provides a charging system and method capable of starting or stopping charging a battery of a vehicle at a convenient time.
  • a portable device and a vehicle unit can communicate with each other.
  • a user is determined to be away from the vehicle based on a result of communication between the portable device and the vehicle unit.
  • a charging ECU starts charging a battery when the user is away from the vehicle. Charging of the battery can be started when the user is assumed to have stopped using the vehicle and will not use the vehicle for a period of time.
  • the system instructs the charging of the battery to be stopped. The system allows the vehicle to be ready for use.
  • '841 Patent is also applied to hybrid electric vehicles. It uses the portable device to control the process of charging. However, the portable device can not inform the user of charging or battery status. Charging schedule can not be set to utilize off-peak time of electric power source to save cost.
  • a charging system of an electric vehicle comprises: a smart card having a user identification (UID) for identifying a user of the electric vehicle; a first rechargeable battery having first battery information and stored with the UID while installed in the electric vehicle, for providing electric power to the electric vehicle; a second rechargeable battery having second battery information and stored with the UID while the first rechargeable battery in low battery is replaced with the second rechargeable battery; and a charging station, comprising: a controlling module for confirming that the first rechargeable battery is stored with the UID and then allowing replacement of the first rechargeable battery with the second rechargeable battery; an updating unit for writing the UID to the second rechargeable battery while the first rechargeable battery is replaced with the second rechargeable battery; and a charging set for charging the first and second rechargeable batteries.
  • UID user identification
  • the first and second rechargeable batteries each has a unique and unchangeable battery serial number.
  • the first and second battery information each comprises charging state, lifetime, cycle count and health state of the rechargeable battery.
  • the charging system further includes a transmitter for transmitting the charging state, lifetime, cycle count and health state of the rechargeable battery, and UID to a remote computer via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN.
  • LAN local area network
  • WAN wide area network
  • wireless LAN wireless WAN
  • the remote computer is stored with the UID, user name, user telephone number, and license plate number of the electric vehicle.
  • the charging system further includes a billing unit for billing the user while replacing the first rechargeable battery with the second rechargeable battery.
  • the charging system further includes a notifying unit for notifying the user update of battery information via instant messaging service, short message service (SMS) or email.
  • SMS short message service
  • a method for charging the electric vehicle comprises the steps of: storing in a smart card a user identification (UID) for identifying a user of the electric vehicle; determining whether the first rechargeable battery is stored with the UID; replacing the first rechargeable battery in low battery with a second rechargeable battery; and writing the UID to the second rechargeable battery while the first rechargeable battery is replaced with the second rechargeable battery.
  • UID user identification
  • the first and second rechargeable batteries each has a unique and unchangeable battery serial number.
  • the first and second rechargeable battery each has battery information which comprises charging state, lifetime, cycle count and health state of the rechargeable battery.
  • the charging method further includes a step of notifying the user update of the battery information via instant messaging service, short message service (SMS) or email.
  • SMS short message service
  • the charging method further includes a step of transmitting the charging state, lifetime, cycle count and health state of the rechargeable battery, and UID to a remote computer via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN.
  • LAN local area network
  • WAN wide area network
  • wireless LAN wireless WAN
  • the remote computer is stored with the UID, user name, user telephone number, and license plate number of the electric vehicle.
  • the charging method further includes a step of billing the user while replacing the first rechargeable battery with the second rechargeable battery.
  • FIG. 1 shows a prior art of a charging system.
  • FIG. 2 shows another prior art of a charging system.
  • FIG. 3 illustrates an embodiment of the present invention.
  • FIG. 4 describes detailed structure of a charging station in the embodiment.
  • FIG. 5 describes another detailed structure of the charging station in the embodiment.
  • FIG. 6 describes still another detailed structure of the charging station in the embodiment.
  • FIG. 7 is a flowchart of a charging method according to the present invention.
  • FIG. 3 to FIG. 6 illustrate a charging system 100 of an electric vehicle 200 and detailed structure of the charging system 100 .
  • FIG. 7 is a flowchart showing how the charging system 100 operates.
  • the charging system 100 is composed of a first rechargeable battery 202 , a second rechargeable battery 204 , a smart card 300 and a charging station 400 .
  • the smart card 300 has a user identification (UID) for identifying a user of the electric vehicle 200 .
  • the smart card 300 can only be used for the electric vehicle 200 , and therefore, if the user buys a new electric vehicle, the smart card 300 can not be used for the new electric vehicle and a new smart card is needed.
  • the first rechargeable battery 202 contains first battery information and is stored with the UID while installed in the electric vehicle 200 for providing electric power to the electric vehicle 200 .
  • the second rechargeable battery 204 has second battery information. It is used for replacing the first rechargeable battery 202 when the first rechargeable battery 202 is in low battery (solid arrows in FIG. 3 ). According to the spirit of the invention, the first rechargeable battery 202 in low battery is exchanged with the fully charged second rechargeable battery 204 .
  • the first battery information and the second battery information each comprises charging state, lifetime, cycle count and health state of the first rechargeable battery 202 or the second rechargeable battery 204 .
  • the smart card 300 conforms to ISO7810 and has near field communication (NFC) function for data transmission. Only when a smart card having a UID that matches with the electric vehicle 200 , can the battery be exchanged. Hence, if a person doesn't own the smart card 300 or the electric vehicle 200 and takes the electric vehicle 200 or the first rechargeable battery 202 to charge, the charging station 400 will deny battery exchange and inform the original owner of this issue.
  • NFC near field communication
  • the charging station 400 comprises a controlling module 404 , an updating unit 406 and a charging set 408 .
  • the controlling module 404 confirms that the first rechargeable battery 202 is stored with the UID and then allows replacement of the first rechargeable battery 202 with the second rechargeable battery 204 .
  • the confirming process proceeds (dashed arrows in FIG. 3 ).
  • the updating unit 406 writes the UID to the second rechargeable battery 204 while the first rechargeable battery 202 is replaced with the second rechargeable battery 204 .
  • the updating unit 406 is located in the charging station 400 where the smart card 300 can get close up to 5-10 cm for completing writing process.
  • the charging set 408 is used for charging the first and second rechargeable batteries 202 and 204 .
  • the second rechargeable battery 204 is charged before battery exchange.
  • the charging set 408 will then charge the first rechargeable battery 202 .
  • the first and second rechargeable batteries 202 and 204 can be charged anytime. Therefore, the first and second rechargeable batteries 202 and 204 are usually charged during off-peak period of electricity supply when charge of electricity is lowest such that cost of charging can be reduced.
  • a display unit 410 outside of the charging station 400 , there is a display unit 410 . It displays the first battery information and the second battery information. If there is something wrong with charging processes, error information can be clearly displayed for check.
  • the charging system 100 further comprises a transmitter 412 .
  • the transmitter 412 retrieves battery information from the rechargeable battery while the charging set 408 is connected to the rechargeable battery and transmits the charging state, lifetime, cycle count and health state of the first and second rechargeable batteries 202 and 204 , and UID to a remote computer 450 via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN. Management job can be done outside of the charging station 400 .
  • the transmitting method can be wired or wireless communication.
  • the remote computer 450 is also stored with the UID, user name, user telephone number, and license plate number of the electric vehicle 200 .
  • the charging system 100 further comprises a notifying unit 414 . It can notify the user update of battery information via instant messaging service, short message service (SMS) or email. Instant messaging service includes skype, facebook, msn, and so on.
  • SMS is sent via telecommunications.
  • the email is sent via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN.
  • the notifying unit 414 is connected to the remote computer 450 and can be either inside or outside the charging station 400 .
  • the charging system 100 can also have a billing unit 416 for billing the user while replacing the first rechargeable battery 202 with the second rechargeable battery 204 . All costs can be summed up to the user. In the present invention, cost can be paid by a credit card or be deducted from the smart card which is used as a prepaid card.
  • the first rechargeable battery 202 and the second rechargeable battery 204 each have a unique and unchangeable battery serial number. Therefore, even though UID of a rechargeable battery changes every time during battery exchange, the rechargeable battery can still be traced by its battery serial number. By this way, the rechargeable battery can be easily found if it is stolen. Furthermore, if the rechargeable battery is stolen, then the unchangeable battery serial number of the stolen rechargeable battery will be listed in a “black list” in the remote computer 450 . By this way, the stolen rechargeable battery can be easily found since the stolen rechargeable battery has to be charged at the charging station 400 which has access to the “black list” of the remote computer 450 .
  • the smart card 300 is stored with the UID for identifying a user of the electric vehicle 200 (Step S 101 ). Then, whether the first rechargeable battery is stored with the UID is determined (Step S 102 ). If the first rechargeable battery 202 is not stored with the UID, then battery exchange request will be denied and the original owner will be informed of this issue (Step S 103 ). If the first rechargeable battery 202 is confirmed stored with the UID, then battery exchange request will be accepted and the first rechargeable battery 202 in low battery will be replaced with the second rechargeable battery 204 (Step S 104 ).
  • the UID will be written to the second rechargeable battery 204 while the first rechargeable battery 202 is replaced with the second rechargeable battery 204 (Step S 105 ). Finally, the first rechargeable battery 202 is charged (Step S 106 ).
  • the method may further include the following steps:
  • the charging state, lifetime, cycle count and health state of the rechargeable batteries 202 and 204 , and UID are transmitted to the remote computer 450 via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN. This step can be done after Step S 106 .
  • LAN local area network
  • WAN wide area network
  • wireless LAN wireless WAN
  • the first user information, the first battery information, and the second battery information are displayed. This step can be done among any step after Step S 102 .
  • the user is billed after replacement of the first rechargeable battery with the second rechargeable battery. This step can be done between Step S 104 and Step S 106 .
  • Step S 104 The user is notified of update of battery information via instant messaging service, short message service (SMS) or email. This step can be done between Step S 104 and Step S 106 .
  • SMS short message service

Abstract

A charging system of an electric vehicle and a method for charging the electric vehicle are described in the present invention. The system uses a smart card for battery management when charging a battery. Furthermore, the system can prevent the battery or the electric vehicle from being stolen. Compared to existing charging systems for electric vehicles, the present invention can save more cost for users and provide safety mechanism for battery or electric vehicle.

Description

FIELD OF THE INVENTION
The present invention relates to a charging system of an electric vehicle and a method for charging the electric vehicle. More particularly, the present invention relates to a charging system of an electric vehicle and the method for charging the electric vehicle using a smart card for battery management when charging the battery.
BACKGROUND OF THE INVENTION
An electric vehicle, also referred to as an electric drive vehicle, is a moving vehicle using one or more electric motors as driving system. Unlike petroleum-based transportations which are moved by the energy from gasoline, the electric vehicles use electric power as their propulsion. They won't generate waste gas. Noise is also less. During the last few decades, increased concern over the environmental impact of the petroleum-based transportation, along with the spectre of peak oil, has led to renewed interest in electric transportation. Electric power for electric vehicles can be generated from a wide range of sources, including fossil fuels, nuclear power, and renewable sources such as tidal power, solar power, and wind or any combination of those.
In the past, an electric vehicle consumes huge electric power due to their power system. The electric power can only be transmitted to the car through overhead lines. This infrastructure makes the electric vehicles impossible to be popular. Only some of public transportations have access to it. Routes of the public transportation are strictly limited by the lined arrangement. With the development in power systems of electric vehicles, especially in batteries, the electric vehicles become a future star and more and more sources are devoted in this field.
People are used to their existing life experience. Hence, a system for charging the batteries of the electric vehicles should be as convenient as a gas station system. When batteries of an electric car are in low battery, people can drive the car to a nearby charging station and get the batteries charged or replaced with full charged ones. Preferably, the batteries can be charged during off-peak period when cost of charge of electricity is lowest. Meanwhile, with a device to manage batteries that are used in the car, people can always know the status of the batteries and mechanics of the stations can trace the batteries for maintenance. Since the batteries are expensive, if the batteries are stolen and they can be easily found, it will be a great help for the car owners. However, the requirements mentioned above need an integrated system to fulfill.
U.S. Pat. No. 7,679,366 discloses a method for recharging an electric storage battery in a charging system of an electric vehicle. Please refer to FIG. 1. Power comes from an electric utility power grid. '366 Patent includes determining the length of time required to recharge the battery, determining the desired time when the recharge is to be completed, transmitting to the electric power utility the length of time required to recharge the battery and the desired time, and recharging the battery from the utility grid during a period when projected load demand is lower than peak demand and ending no later than the desired time.
'366 Patent is for hybrid electric vehicles, not for pure electric vehicles. The method only focuses on an optimal way to charge the batteries through a day so that time for low demand of electricity can be fully applied and charging cost can be minimal. However, no solution for battery management is mentioned.
Another prior art is disclosed in U.S. Pat. No. 7,795,841. Please refer to FIG. 2. '841 Patent provides a charging system and method capable of starting or stopping charging a battery of a vehicle at a convenient time. A portable device and a vehicle unit can communicate with each other. A user is determined to be away from the vehicle based on a result of communication between the portable device and the vehicle unit. A charging ECU starts charging a battery when the user is away from the vehicle. Charging of the battery can be started when the user is assumed to have stopped using the vehicle and will not use the vehicle for a period of time. When the user is determined to be close to the vehicle it is assumed that use of the vehicle will be resumed at which point the system instructs the charging of the battery to be stopped. The system allows the vehicle to be ready for use.
'841 Patent is also applied to hybrid electric vehicles. It uses the portable device to control the process of charging. However, the portable device can not inform the user of charging or battery status. Charging schedule can not be set to utilize off-peak time of electric power source to save cost.
None of the prior arts can provide an integrated system and method for charging the electric vehicle using a smart card for battery management when charging the battery, preventing the batteries from being stolen, or save charging expense for users. Hence, an integrated system and a method for charging electric vehicles having above features are still desired.
SUMMARY OF THE INVENTION
This paragraph extracts and compiles some features of the present invention; other features will be disclosed in the follow-up paragraphs. It is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims.
In accordance with an aspect of the present invention, a charging system of an electric vehicle, comprises: a smart card having a user identification (UID) for identifying a user of the electric vehicle; a first rechargeable battery having first battery information and stored with the UID while installed in the electric vehicle, for providing electric power to the electric vehicle; a second rechargeable battery having second battery information and stored with the UID while the first rechargeable battery in low battery is replaced with the second rechargeable battery; and a charging station, comprising: a controlling module for confirming that the first rechargeable battery is stored with the UID and then allowing replacement of the first rechargeable battery with the second rechargeable battery; an updating unit for writing the UID to the second rechargeable battery while the first rechargeable battery is replaced with the second rechargeable battery; and a charging set for charging the first and second rechargeable batteries.
Preferably, the first and second rechargeable batteries each has a unique and unchangeable battery serial number.
Preferably, the first and second battery information each comprises charging state, lifetime, cycle count and health state of the rechargeable battery.
Preferably, the charging system further includes a transmitter for transmitting the charging state, lifetime, cycle count and health state of the rechargeable battery, and UID to a remote computer via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN.
Preferably, the remote computer is stored with the UID, user name, user telephone number, and license plate number of the electric vehicle.
Preferably, the charging system further includes a billing unit for billing the user while replacing the first rechargeable battery with the second rechargeable battery.
Preferably, the charging system further includes a notifying unit for notifying the user update of battery information via instant messaging service, short message service (SMS) or email.
In accordance with an aspect of the present invention, in an electric vehicle having a first rechargeable battery, a method for charging the electric vehicle, comprises the steps of: storing in a smart card a user identification (UID) for identifying a user of the electric vehicle; determining whether the first rechargeable battery is stored with the UID; replacing the first rechargeable battery in low battery with a second rechargeable battery; and writing the UID to the second rechargeable battery while the first rechargeable battery is replaced with the second rechargeable battery.
Preferably, the first and second rechargeable batteries each has a unique and unchangeable battery serial number.
Preferably, the first and second rechargeable battery each has battery information which comprises charging state, lifetime, cycle count and health state of the rechargeable battery.
Preferably, the charging method further includes a step of notifying the user update of the battery information via instant messaging service, short message service (SMS) or email.
Preferably, the charging method further includes a step of transmitting the charging state, lifetime, cycle count and health state of the rechargeable battery, and UID to a remote computer via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN.
Preferably, the remote computer is stored with the UID, user name, user telephone number, and license plate number of the electric vehicle.
Preferably, the charging method further includes a step of billing the user while replacing the first rechargeable battery with the second rechargeable battery.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a prior art of a charging system.
FIG. 2 shows another prior art of a charging system.
FIG. 3 illustrates an embodiment of the present invention.
FIG. 4 describes detailed structure of a charging station in the embodiment.
FIG. 5 describes another detailed structure of the charging station in the embodiment.
FIG. 6 describes still another detailed structure of the charging station in the embodiment.
FIG. 7 is a flowchart of a charging method according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will now be described more specifically with reference to the following embodiment. Please refer to FIG. 3 to FIG. 7. FIG. 3 to FIG. 6 illustrate a charging system 100 of an electric vehicle 200 and detailed structure of the charging system 100. FIG. 7 is a flowchart showing how the charging system 100 operates.
Please see FIG. 3 first. The charging system 100 is composed of a first rechargeable battery 202, a second rechargeable battery 204, a smart card 300 and a charging station 400. The smart card 300 has a user identification (UID) for identifying a user of the electric vehicle 200. The smart card 300 can only be used for the electric vehicle 200, and therefore, if the user buys a new electric vehicle, the smart card 300 can not be used for the new electric vehicle and a new smart card is needed.
The first rechargeable battery 202 contains first battery information and is stored with the UID while installed in the electric vehicle 200 for providing electric power to the electric vehicle 200. The second rechargeable battery 204 has second battery information. It is used for replacing the first rechargeable battery 202 when the first rechargeable battery 202 is in low battery (solid arrows in FIG. 3). According to the spirit of the invention, the first rechargeable battery 202 in low battery is exchanged with the fully charged second rechargeable battery 204. The first battery information and the second battery information each comprises charging state, lifetime, cycle count and health state of the first rechargeable battery 202 or the second rechargeable battery 204.
According to the spirit of the present invention, any kind of smart card can be applied. In the embodiment, the smart card 300 conforms to ISO7810 and has near field communication (NFC) function for data transmission. Only when a smart card having a UID that matches with the electric vehicle 200, can the battery be exchanged. Hence, if a person doesn't own the smart card 300 or the electric vehicle 200 and takes the electric vehicle 200 or the first rechargeable battery 202 to charge, the charging station 400 will deny battery exchange and inform the original owner of this issue.
In order to describe the charging station 400 in detail, please further refer to FIG. 4. The charging station 400 comprises a controlling module 404, an updating unit 406 and a charging set 408.
The controlling module 404 confirms that the first rechargeable battery 202 is stored with the UID and then allows replacement of the first rechargeable battery 202 with the second rechargeable battery 204. When the smart card 300 gets close to 5-10 cm from the controlling module 404, the confirming process proceeds (dashed arrows in FIG. 3).
The updating unit 406 writes the UID to the second rechargeable battery 204 while the first rechargeable battery 202 is replaced with the second rechargeable battery 204. Like the controlling module 404, the updating unit 406 is located in the charging station 400 where the smart card 300 can get close up to 5-10 cm for completing writing process.
The charging set 408 is used for charging the first and second rechargeable batteries 202 and 204. In this embodiment, the second rechargeable battery 204 is charged before battery exchange. Of course, after the first rechargeable battery 202 is uninstalled from the electric vehicle 200, the charging set 408 will then charge the first rechargeable battery 202. By battery exchange, the first and second rechargeable batteries 202 and 204 can be charged anytime. Therefore, the first and second rechargeable batteries 202 and 204 are usually charged during off-peak period of electricity supply when charge of electricity is lowest such that cost of charging can be reduced.
Outside of the charging station 400, there is a display unit 410. It displays the first battery information and the second battery information. If there is something wrong with charging processes, error information can be clearly displayed for check.
Please refer to FIG. 5. According to the spirit of the present invention, the charging system 100 further comprises a transmitter 412. The transmitter 412 retrieves battery information from the rechargeable battery while the charging set 408 is connected to the rechargeable battery and transmits the charging state, lifetime, cycle count and health state of the first and second rechargeable batteries 202 and 204, and UID to a remote computer 450 via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN. Management job can be done outside of the charging station 400. The transmitting method can be wired or wireless communication. The remote computer 450 is also stored with the UID, user name, user telephone number, and license plate number of the electric vehicle 200.
Additionally, the charging system 100 further comprises a notifying unit 414. It can notify the user update of battery information via instant messaging service, short message service (SMS) or email. Instant messaging service includes skype, facebook, msn, and so on. The SMS is sent via telecommunications. The email is sent via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN. The notifying unit 414 is connected to the remote computer 450 and can be either inside or outside the charging station 400.
The charging system 100 can also have a billing unit 416 for billing the user while replacing the first rechargeable battery 202 with the second rechargeable battery 204. All costs can be summed up to the user. In the present invention, cost can be paid by a credit card or be deducted from the smart card which is used as a prepaid card.
Moreover, the first rechargeable battery 202 and the second rechargeable battery 204 each have a unique and unchangeable battery serial number. Therefore, even though UID of a rechargeable battery changes every time during battery exchange, the rechargeable battery can still be traced by its battery serial number. By this way, the rechargeable battery can be easily found if it is stolen. Furthermore, if the rechargeable battery is stolen, then the unchangeable battery serial number of the stolen rechargeable battery will be listed in a “black list” in the remote computer 450. By this way, the stolen rechargeable battery can be easily found since the stolen rechargeable battery has to be charged at the charging station 400 which has access to the “black list” of the remote computer 450.
Please see FIG. 7. The method for charging the electric vehicle 200 by the charging system 100 is described below. First, the smart card 300 is stored with the UID for identifying a user of the electric vehicle 200 (Step S101). Then, whether the first rechargeable battery is stored with the UID is determined (Step S102). If the first rechargeable battery 202 is not stored with the UID, then battery exchange request will be denied and the original owner will be informed of this issue (Step S103). If the first rechargeable battery 202 is confirmed stored with the UID, then battery exchange request will be accepted and the first rechargeable battery 202 in low battery will be replaced with the second rechargeable battery 204 (Step S104). Subsequently, the UID will be written to the second rechargeable battery 204 while the first rechargeable battery 202 is replaced with the second rechargeable battery 204 (Step S105). Finally, the first rechargeable battery 202 is charged (Step S106).
According to the spirit of the present invention, the method may further include the following steps:
1. The charging state, lifetime, cycle count and health state of the rechargeable batteries 202 and 204, and UID are transmitted to the remote computer 450 via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN. This step can be done after Step S106.
2. The first user information, the first battery information, and the second battery information are displayed. This step can be done among any step after Step S102.
3. The user is billed after replacement of the first rechargeable battery with the second rechargeable battery. This step can be done between Step S104 and Step S106.
4. The user is notified of update of battery information via instant messaging service, short message service (SMS) or email. This step can be done between Step S104 and Step S106.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims, which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.

Claims (23)

What is claimed is:
1. A charging system of an electric vehicle, comprising:
a smart card memory device having a user identification (UID) for identifying a user of the electric vehicle;
a first rechargeable battery having first battery information and stored with the UID while installed in the electric vehicle, for providing electric power to the electric vehicle;
a second rechargeable battery having second battery information and stored with the UID while the first rechargeable battery in low battery is replaced with the second rechargeable battery; and
a charging station, comprising:
a controlling module for confirming that the first rechargeable battery is stored with the UID and then allowing replacement of the first rechargeable battery with the second rechargeable battery;
an updating unit for writing the UID to the second rechargeable battery while the first rechargeable battery is replaced with the second rechargeable battery; and
a charging set for charging the first and second rechargeable batteries.
2. The charging system according to claim 1, wherein the first and second rechargeable batteries each has a unique and unchangeable battery serial number.
3. The charging system according to claim 1, wherein the first and second battery information each comprises charging state, lifetime, cycle count and health state of the rechargeable battery.
4. The charging system according to claim 1, further comprising a transmitter for transmitting the charging state, lifetime, cycle count and health state of the rechargeable battery, and UID to a remote computer local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN.
5. The charging system according to claim 4, wherein the remote computer is stored with the UID, user name, user telephone number, and license plate number of the electric vehicle.
6. The charging system according to claim 1, further comprising a billing unit for billing the user while replacing the first rechargeable battery with the second rechargeable battery.
7. The charging system according to claim 1, further comprising a notifying unit for notifying the user update of battery information via instant messaging service, short message service (SMS) or email.
8. In an electric vehicle having a first rechargeable battery, a method for charging the electric vehicle, comprising the steps of:
storing in a smart card device a user identification (UID) for identifying a user of the electric vehicle;
determining whether the first rechargeable battery is stored with the UID;
replacing the first rechargeable battery in low battery with a second rechargeable battery; and
writing the UID to the second rechargeable battery while the first rechargeable battery is replaced with the second rechargeable battery.
9. The charging method according to claim 8, wherein the first and second rechargeable batteries each has a unique and unchangeable battery serial number.
10. The charging method according to claim 8, wherein the first and second rechargeable battery each has battery information which comprises charging state, lifetime, cycle count and health state of the rechargeable battery.
11. The charging method according to claim 10, further comprising a step of notifying the user update of the battery information via instant messaging service, short message service (SMS) or email.
12. The charging method according to claim 8, further comprising a step of transmitting the charging state, lifetime, cycle count and health state of the rechargeable battery, and UID to a remote computer via local area network (LAN), wide area network (WAN), wireless LAN or wireless WAN.
13. The charging method according to claim 12, wherein the remote computer is stored with the UID, user name, user telephone number, and license plate number of the electric vehicle.
14. The charging method according to claim 8, further comprising a step of billing the user while replacing the first rechargeable battery with the second rechargeable battery.
15. The charging system according to claim 1, wherein the smart card is further used for matching with one of the electric vehicle and the first rechargeable battery.
16. The charging system according to claim 15, wherein when the user is performing the replacement of the first rechargeable battery with the second rechargeable battery, if there is one of cases that the user is not an owner of the smart card and the user is not an owner of the electric vehicle, the charging station performs at least one of denying the replacement and informing the case to at least one owner of the smart card and the electric vehicle.
17. The charging system according to claim 8, wherein the smart device is a smart card.
18. A method for charging an electric vehicle having a first rechargeable battery, comprising the steps of:
determining whether the first rechargeable battery is stored with a user identification (UID) for identifying a user of one of the first rechargeable battery and the electric vehicle;
replacing the first rechargeable battery with a second rechargeable battery; and
storing the UID in the second rechargeable battery while the first rechargeable battery is replaced with the second rechargeable battery.
19. The charging method according to claim 18, further comprising a step of: providing a smart device for matching with one of the electric vehicle and the first rechargeable battery.
20. The charging method according to claim 19, further comprising a step of: when the replacing step is performed, if there is one of cases that the user is not an owner of the smart device and the user is not an owner of the electric vehicle, performing at least one of disabling the replacing step and informing the case to at least one owner of the smart device and the electric vehicle.
21. The charging method according to claim 20, wherein the smart device is stored with the UID for matching with one of the electric vehicle and the first rechargeable battery.
22. The charging method according to claim 21, wherein:
the smart device is a smart card;
the first and second rechargeable batteries each has a unique and unchangeable battery serial number; and
the first and second rechargeable battery each has battery information which includes charging state, lifetime, cycle count and health state of the respective rechargeable battery.
23. The charging method according to claim 22, further comprising steps of:
notifying the user update of the battery information via one selected from a group consisting of instant messaging service, short message service (SMS) and email;
transmitting the battery information and UID to a remote computer via one selected from a group consisting of local area network (LAN), wide area network (WAN), wireless LAN and wireless WAN; and
billing the user while replacing the first rechargeable battery with the second rechargeable battery.
US14/813,336 2011-04-12 2015-07-30 Charging system of electric vehicle and method for charging electric vehicle Active 2032-04-10 USRE46166E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/813,336 USRE46166E1 (en) 2011-04-12 2015-07-30 Charging system of electric vehicle and method for charging electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/084,710 US8497660B2 (en) 2011-04-12 2011-04-12 Charging system of electric vehicle and method for charging electric vehicle
US14/813,336 USRE46166E1 (en) 2011-04-12 2015-07-30 Charging system of electric vehicle and method for charging electric vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/084,710 Reissue US8497660B2 (en) 2011-04-12 2011-04-12 Charging system of electric vehicle and method for charging electric vehicle

Publications (1)

Publication Number Publication Date
USRE46166E1 true USRE46166E1 (en) 2016-09-27

Family

ID=46993859

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/084,710 Ceased US8497660B2 (en) 2011-04-12 2011-04-12 Charging system of electric vehicle and method for charging electric vehicle
US14/813,336 Active 2032-04-10 USRE46166E1 (en) 2011-04-12 2015-07-30 Charging system of electric vehicle and method for charging electric vehicle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/084,710 Ceased US8497660B2 (en) 2011-04-12 2011-04-12 Charging system of electric vehicle and method for charging electric vehicle

Country Status (3)

Country Link
US (2) US8497660B2 (en)
CN (1) CN102738848B (en)
TW (1) TWI443030B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229234A (en) * 2010-04-16 2011-11-10 Nec Corp Power generation amount leveling system and power generation amount leveling method
TWI479772B (en) * 2013-02-21 2015-04-01 台達電子工業股份有限公司 Charging system for electric vehicle and charging method thereof
BR112015023244A2 (en) * 2013-03-12 2017-07-18 Gogoro Inc apparatus, process and article for changing plans for portable electric storage devices
KR102205841B1 (en) 2014-04-28 2021-01-21 삼성전자주식회사 Method and apparatus for estimating state of battery
CN104377772B (en) * 2014-11-20 2016-08-17 刘同鑫 A kind of charging mobile phone battery changes system and charging method
US9446682B2 (en) 2015-01-20 2016-09-20 Atieva, Inc. Method of operating a preemptive EV battery pack temperature control system
US9840156B2 (en) 2015-08-14 2017-12-12 Siemens Industry, Inc. Automatically selecting charging routine for an electric vehicle by balancing utility and user considerations
CN105071498B (en) * 2015-08-31 2018-06-01 国网北京市电力公司 The charging method and device of electric car
US10204511B2 (en) * 2016-04-01 2019-02-12 Caavo Inc Remote control device usage detection based on power consumption
US9620896B1 (en) 2016-04-21 2017-04-11 Nikhil Dubbaka Vehicle and base station assembly
TWI564827B (en) * 2016-04-29 2017-01-01 致伸科技股份有限公司 Battery charging method and system of battery electric vehicle
US10846674B2 (en) * 2016-06-15 2020-11-24 Dignan Rayner Rechargeable devices and kiosks for same
JP6267761B1 (en) 2016-09-20 2018-01-24 本田技研工業株式会社 Power supply management device, transaction management system, charging tool and program
US10701284B2 (en) 2017-02-10 2020-06-30 Caavo Inc Determining state signatures for consumer electronic devices coupled to an audio/video switch
JP6322744B1 (en) * 2017-03-23 2018-05-09 本田技研工業株式会社 Management device, management system, vehicle, and program
US10195956B2 (en) 2017-06-02 2019-02-05 United Arab Emirates University Secure charging method for electric vehicles
TWI653597B (en) * 2018-03-02 2019-03-11 光陽工業股份有限公司 Power supply device exchange method and sales-side mobile device thereof
TWI678111B (en) * 2018-03-06 2019-11-21 光陽工業股份有限公司 Tracking method of stolen battery and electric vehicle system
TWI685765B (en) * 2018-03-07 2020-02-21 光陽工業股份有限公司 Method for changing vehicle binding of power supply device and its server
TWI690889B (en) * 2018-06-11 2020-04-11 拓連科技股份有限公司 Systems and methods for battery management of electronic vehicles, and related computer program products
CN111951474A (en) * 2020-07-01 2020-11-17 深圳供电局有限公司 Intelligent management system for charging station

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209375A1 (en) * 1999-01-25 2003-11-13 Zip Charge Corporation Electrical vehicle energy supply system, electrical vehicle battery, electrical vehicle battery charging apparatus, battery supply apparatus, and electrical vehicle battery management system
US20040073440A1 (en) * 2002-04-26 2004-04-15 Jeffrey Garbers System for vehicle assignment and pickup
US20040169489A1 (en) * 2003-02-28 2004-09-02 Raymond Hobbs Charger, vehicle with charger, and method of charging
US20080281732A1 (en) * 2005-02-22 2008-11-13 Kazuo Yamada Battery Exchange Service System and Charging Method Therefor, and Portable Device
US8183826B2 (en) * 2009-05-15 2012-05-22 Battelle Memorial Institute Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems
US8319358B2 (en) * 2008-06-30 2012-11-27 Demand Energy Networks, Inc. Electric vehicle charging methods, battery charging methods, electric vehicle charging systems, energy device control apparatuses, and electric vehicles
US8928273B2 (en) * 2011-04-08 2015-01-06 Go-Tech Energy Co. Ltd. Display device for displaying information of rechargeable battery of electric vehicle and charging module having the display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150809A (en) * 1997-09-15 1999-06-02 Honda Motor Co Ltd Battery rental system
JP2010154635A (en) * 2008-12-25 2010-07-08 Chubu Electric Power Co Inc Charging management system for vehicle
CN201414012Y (en) * 2009-05-21 2010-02-24 富阳通宁科技工程有限公司 Unique identifier charger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209375A1 (en) * 1999-01-25 2003-11-13 Zip Charge Corporation Electrical vehicle energy supply system, electrical vehicle battery, electrical vehicle battery charging apparatus, battery supply apparatus, and electrical vehicle battery management system
US20040073440A1 (en) * 2002-04-26 2004-04-15 Jeffrey Garbers System for vehicle assignment and pickup
US20040169489A1 (en) * 2003-02-28 2004-09-02 Raymond Hobbs Charger, vehicle with charger, and method of charging
US20080281732A1 (en) * 2005-02-22 2008-11-13 Kazuo Yamada Battery Exchange Service System and Charging Method Therefor, and Portable Device
US8319358B2 (en) * 2008-06-30 2012-11-27 Demand Energy Networks, Inc. Electric vehicle charging methods, battery charging methods, electric vehicle charging systems, energy device control apparatuses, and electric vehicles
US8183826B2 (en) * 2009-05-15 2012-05-22 Battelle Memorial Institute Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems
US8928273B2 (en) * 2011-04-08 2015-01-06 Go-Tech Energy Co. Ltd. Display device for displaying information of rechargeable battery of electric vehicle and charging module having the display device

Also Published As

Publication number Publication date
TWI443030B (en) 2014-07-01
TW201240848A (en) 2012-10-16
CN102738848B (en) 2015-08-26
CN102738848A (en) 2012-10-17
US8497660B2 (en) 2013-07-30
US20120262111A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
USRE46166E1 (en) Charging system of electric vehicle and method for charging electric vehicle
US11772493B2 (en) Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
JP4466726B2 (en) Eco point management system
KR101995577B1 (en) Device and method for controlling energy of vehicle according to storage state level
CN104112219A (en) System And Method For Electric Vehicle Charging Analysis And Feedback
TW201319995A (en) Apparatus, method and article for providing information regarding availability of power storage devices at a power storage device collection, charging and distribution machine
CN102570537A (en) Charging device, electric vehicle charging system and control method thereof
CN103516034A (en) Add-on communication apparatus attached to in-cable charging control device and operating method thereof
CN103218874B (en) Electric automobile fills and changes electric charge system and method
CN103171446A (en) Onboard battery management system
KR20130006949A (en) Method for charging electric vehicle and apparatus thereof
CN102664431A (en) Equipment and method adapted to remote control of charging process
KR20120107810A (en) Charge system of electric vehicle and charge apparatus of electric vehicle
CN103368218A (en) Detachable modulized battery charging assembly
KR20210032107A (en) Chargin management device, charging system having the same and charging method for electric vehicle
CN108198342A (en) A kind of charging pile management method based on Internet of Things
US11315140B2 (en) Charging processing system
CN104617630A (en) Unattended electric vehicle charging power station
KR102328844B1 (en) A movable charging device for electric vehicles
KR101197569B1 (en) Intelligent Power Source Charging System and Control Method thereof
RU2662332C1 (en) Charging system for the vehicles with electric drive
KR20110129517A (en) Service method and the system for electric motorcar battery pack charging
JP2012029518A (en) Electric car battery utilization system
KR20110087624A (en) System and method for recharging of electric car
KR20110044006A (en) Managing system for charging a electromobile and method thereof

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8