USRE45744E1 - Temperature controlled crimping - Google Patents
Temperature controlled crimping Download PDFInfo
- Publication number
- USRE45744E1 USRE45744E1 US14/074,543 US201314074543A USRE45744E US RE45744 E1 USRE45744 E1 US RE45744E1 US 201314074543 A US201314074543 A US 201314074543A US RE45744 E USRE45744 E US RE45744E
- Authority
- US
- United States
- Prior art keywords
- stent
- temperature
- polymer
- crimping
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/02—Conditioning or physical treatment of the material to be shaped by heating
- B29B13/023—Half-products, e.g. films, plates
- B29B13/024—Hollow bodies, e.g. tubes or profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7311—Thermal properties
- B29C66/73117—Tg, i.e. glass transition temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
- B29C66/91941—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9522—Means for mounting a stent or stent-graft onto or into a placement instrument
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9522—Means for mounting a stent or stent-graft onto or into a placement instrument
- A61F2/9524—Iris-type crimpers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9522—Means for mounting a stent or stent-graft onto or into a placement instrument
- A61F2/9526—Means for mounting a stent or stent-graft onto or into a placement instrument using a mandrel
-
- A61F2002/9522—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0822—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/02—Thermal after-treatment
- B29C2071/022—Annealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/56—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/76—Making non-permanent or releasable joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/912—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
- B29C66/9121—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91431—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91641—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
- B29C66/9192—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
- B29C66/91921—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
- B29C66/91941—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
- B29C66/91945—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2001/00—Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2001/00—Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
- B29K2001/08—Cellulose derivatives
- B29K2001/12—Cellulose acetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/08—Copolymers of ethylene
- B29K2023/083—EVA, i.e. ethylene vinyl acetate copolymer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/08—Copolymers of ethylene
- B29K2023/086—EVOH, i.e. ethylene vinyl alcohol copolymer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/06—PVC, i.e. polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/08—PVDC, i.e. polyvinylidene chloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/12—Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
- B29K2027/16—PVDF, i.e. polyvinylidene fluoride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2029/00—Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2031/00—Use of polyvinylesters or derivatives thereof as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2033/00—Use of polymers of unsaturated acids or derivatives thereof as moulding material
- B29K2033/04—Polymers of esters
- B29K2033/08—Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2033/00—Use of polymers of unsaturated acids or derivatives thereof as moulding material
- B29K2033/18—Polymers of nitriles
- B29K2033/20—PAN, i.e. polyacrylonitrile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2055/00—Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
- B29K2055/02—ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2063/00—Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2077/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/753—Medical equipment; Accessories therefor
- B29L2031/7542—Catheters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
- Y10T29/49865—Assembling or joining with prestressing of part by temperature differential [e.g., shrink fit]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
- Y10T428/31544—Addition polymer is perhalogenated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
Definitions
- Percutaneous transluminal coronary angioplasty is a procedure for treating heart disease.
- a surgeon introduces a catheter assembly having a balloon portion percutaneously into the cardiovascular system of a patient via the brachial or femoral artery.
- the surgeon advances the catheter assembly through the coronary vasculature until the balloon portion crosses the occlusive lesion.
- Once in position the surgeon inflates the balloon to radially compress the atherosclerotic plaque of the lesion and remodel the vessel wall. The surgeon then deflates the balloon to remove the catheter.
- stents act as scaffoldings, physically holding open and, if desired, expanding the vessel wall. Typically, stents compress for insertion through small vessels and then expand to a larger diameter once in position.
- U.S. Pat. No. 4,733,665, issued to Palmaz; U.S. Pat. No. 4,800,882, issued to Gianturco; and U.S. Pat. No. 4,886,062, issued to Wiktor disclose examples of PTCA stents.
- Stent crimping is a critical step in manufacturing this equipment in that stent retention depends on it.
- stent crimping is the act of affixing the stent to the delivery catheter or delivery balloon so that it remains affixed to the catheter or balloon until the physician desires to deliver the stent at the treatment site.
- Current stent crimping technology is sophisticated. A short time ago, one process used a roll crimper. This damaged many polymer coatings due to its inherent shearing action. Next came the collet crimper; in it, metal jaws are mounted into what is essentially a drill chuck. The jaws move in a purely radial direction.
- the stent is slid loosely onto the balloon portion of the catheter. This assembly is placed between the plates of the roll crimper. With an automated roll crimper, the plates come together and apply a specified amount of force. They then move back and forth a set distance in a direction that is perpendicular to the catheter. The catheter rolls back and forth under this motion, and the diameter of the stent is reduced.
- the process can be broken down into more than one step, each with its own level of force, translational distance, and number of cycles.
- this process imparts a great deal of shear to the stent in a direction perpendicular to the catheter or catheter wall.
- the stent is crimped, there is additional relative motion between the stent surface and the crimping plates. As a result, this crimping process tends to damage the drug eluting stent coating.
- the collet crimper is equally conceptually simple.
- a standard drill-chuck collet is equipped with several pie-piece-shaped jaws. These jaws move in a radial direction as an outer ring is turned.
- a stent is loosely placed onto the balloon portion of a catheter and inserted in the center space between the jaws. Turning the outer ring causes the jaws to move inward.
- An issue with this device is determining or designing the crimping endpoint.
- One scheme is to engineer the jaws so that when they completely close, they touch and a center hole of a known diameter remains. Using this approach, turning the collet onto the collet stops crimps the stent to the known outer diameter.
- Stent struts have a tolerance on their thickness. Additionally, the process of folding noncompliant balloons is not exactly reproducible. Consequently, the collet crimper exerts a different amount of force on each stent in order to achieve the same final dimension. Unless this force, and the final crimped diameter, is carefully chosen, the variability of the stent and balloon dimensions can yield stent coating or balloon damage.
- collet jaws move in a radial direction, they move closer together as they crimp. This action, combined with the scissoring motion of the struts, imparts tangential shear on the coatings that can also lead to damage.
- the actual contact surfaces of the collet crimper are the jaw tips. These surfaces are quite small, and only form a cylindrical surface at the final point of crimping. Before that point, the load being applied to the stent surface is discontinuous.
- the sliding wedge or iris crimper In the sliding wedge or iris crimper, adjacent pie-piece-shaped sections move inward and twist, much like the leaves in a camera aperture.
- This crimper can be engineered to have two different types of endpoints. It can stop at a final diameter, or it can apply a fixed force and allow the final diameter to float. From the discussion on the collet crimper, there are advantages in applying a fixed level of force as variabilities in strut and balloon dimension will not change the crimping force.
- the sliding wedges impart primarily normal forces, which are the least damaging to stent coatings. As the wedges slide over each other, they impart some tangential force. But the shear damage is frequently equal to or less than that of the collet crimper.
- the sliding wedge crimper presents a nearly cylindrical inner surface to the stent, even as it crimps. This means the crimping loads are distributed over the entire outer surface of the stent.
- brittle polymeric material is laser cut.
- the polymer's brittle nature and the stress induced by laser cutting often causes stress cracking in the polymeric stent.
- FIGS. 1 and 2 show an Elasteon 80A (a polyurethane) coating on poly(ethylene-co-vinyl alcohol) (EVAL) after crimp, grip, and the wet expansion test.
- EVAL poly(ethylene-co-vinyl alcohol)
- Grip is a process conducted after crimping to further increase stent retention.
- An outer sleeve restrains the crimped stent.
- pressure and heat are applied to the stent-balloon section.
- the balloon material deforms slightly, moving in between the struts.
- the final stent-on-catheter assembly is immersed in deionized water at 37° C. for 30 seconds.
- the balloon is inflated according to the device instructions to at least a nominal pressure (8 atmospheres). After holding this pressure for 30 seconds, the balloon is deflated, and the stent slides off. After drying, the stent can be examined by optical microscopy or scanning electron microscopy for coating damage.
- the primary purpose of the polymer in the stent coating is to contain the drug and control its release at a desired rate.
- Other obvious specifications for the polymer are a high level of vascular biocompatibility and the ability to flex and elongate to accommodate stent expansion without cracking or peeling. Meeting all of these objectives, while also possessing a high level of toughness and strength to withstand conventional crimping process, can be challenging.
- a crimping process that minimizes damage to the polymer coatings of stents is needed. Moreover, a crimping process that minimizes internal stress or strain in the polymeric substrate of a polymeric stent is also needed.
- the current invention comprises several embodiments, some of which relate to extracorporeal methods of making medical devices or implantable medical devices. These devices can comprise portions with coatings.
- the coating comprises a polymer or polymer combination or drug(s).
- the piece comprising the coating is crimped onto another part of the device or onto a separate device.
- crimping is done at non-ambient temperatures. Sometimes non-ambient-temperature crimping comprises changing the temperatures of the coating, the piece comprising the coating, the medical device, the crimping device, or any combination of these.
- medical devices made using these methods and devices for implementing these methods are also part of this invention.
- the medical device is or comprise a stent.
- embodiments of crimping methods include adjusting the temperature of the coating to a target temperature followed by a crimping step; adjusting the temperature of the coating to a target temperature during a crimping step; adjusting the temperature of the coating to a target temperature and maintaining the temperature of the coating within plus or minus 5° C. of the target temperature during a crimping step; adjusting the temperature of the coating to a target temperature followed by crimping such that the temperature of the coating remains within plus or minus 10° C.
- the temperature of the coating can first be adjusted to a target temperature with the crimper jaws then closing. After that, the temperature can be adjusted to a second temperature, followed by opening the crimper jaws.
- the target temperature takes values based on Tg and intervals around Tg are described, with the goal of some embodiments being to simultaneously minimize deformation- and delamination-based failure during crimping.
- the target temperature ultimately depends on the predominate failure mode of the polymer coating, Tg of the coating, shore D hardness of the polymer coating at ambient temperature, and shore hardness of the polymer coating at the target temperature, among other factors.
- invention methods relate to making medical devices comprising at least one piece wherein the piece can comprise a polymer or polymer combination.
- the piece comprises a polymer or polymer combination and drug(s).
- a typical method comprises choosing a target temperature based on the mechanical behavior of the polymeric material, sometimes the behavior during crimping. The method further comprises juxtaposing the closing of the crimping jaws with adjusting the temperature of the piece in any combination. For instance, the following heating regimes are practical:
- the heating regime can comprise closing the crimper, adjusting the temperature of the piece to a second temperature, and opening the crimper wherein the second temperature is greater than or less than the target temperature.
- Some medical devices further comprise a catheter. In those devices, the crimping step of invention methods can be used to attach the piece to the catheter.
- Invention methods can be used on a variety of polymeric materials including those characterized as having Tg above ambient temperature.
- the methods act on polymeric materials comprising ABS resins; acrylic polymers and acrylic copolymers; acrylonitrile-styrene copolymers; alkyd resins; biomolecules; cellulose ethers; celluloses; copoly(ether-esters); copolymers of polycarboxylic acids and poly-hydroxycarboxylic acids; copolymers of vinyl monomers with each other and olefins; cyanoacrylates; epoxy resins; ethylene vinyl alcohol copolymers; ethylene-methyl methacrylate copolymers; ethylene-vinyl acetate copolymers; ethylene- ⁇ -olefin copolymers; poly(amino acids); poly(anhydrides); poly(butyl methacrylates); poly(ester amides); poly(ester-urethanes); poly(ether-urethanes); poly(imino carbonates
- useful polymers include the following polymers: starch, sodium alginate, rayon-triacetate, rayon, polyvinylidene fluoride, polyvinylidene chloride, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl chloride, polyvinyl acetate, polystyrene, polyisocyanate, polyisobutylene, polyethylene glycol, polydioxanone, polycaprolactone, polycaprolactam, KYNAR (brand poly(vinylidene fluoride) available from Atofina), polyacrylonitrile, poly(trimethylene carbonate), poly(L-lactic acid), poly(lactide-co-glycolide), poly(hydroxyvalerate), poly(hydroxybutyrate-co-valerate), poly(hydroxybutyrate-co-hydroxyvalerate), poly(hydroxybutyrate), poly(glycolide), poly(glycolic acid), poly(D,L-lactide-co
- the drugs are selected from the following types: antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antioxidants, or their combinations.
- the target temperature can be chosen in a number of ways.
- the target temperature can be
- Some invention embodiments choose the target temperature to avoid ambient temperature or a window around ambient temperature. Other embodiments choose the target temperature such that therapeutic agents present in the coating avoid substantial decomposition.
- target temperature is selected from a group that specifically excludes any one or any combination of the temperature range is described above.
- Some invention embodiments choose the target temperature to simultaneously minimize deformation- and delamination-based failure during crimping. Some invention embodiments choose the target temperature to yield an improvement in shore hardness.
- the annealing temperature can be selected from any of the temperature's described above for the target temperature. Moreover, in some embodiments, annealing temperature is selected from a group that specifically excludes any one or any combination of the temperature ranges described above.
- the heat source is integrated with a crimping device.
- the piece is selected from self-expandable stents, balloon-expandable stents, and stent-grafts.
- FIG. 1 shows a coating as prepared in Example 1, which is an Elasteon 80A coating on EVAL after crimp, grip, and the wet expansion test.
- FIG. 2 shows another coating as prepared in Example 1, which is Elasteon 80A coating on EVAL after crimp, grip, and the wet expansion test.
- FIG. 3 shows a topcoat of Solef 21508 on EVAL made using the procedures of Example 3.
- FIG. 4 shows another topcoat of Solef 21508 on EVAL, also made using the procedures of Example 3.
- FIG. 5 shows the tensile stress at yield of polypropylene as a function of temperature.
- FIG. 6 shows how the stress-strain curve of a thermoplastic polymer changes with temperature.
- FIG. 7 plots heat capacity versus temperature for a typical thermoplastic polymer.
- FIG. 8 shows a stent-delivery device combination, in cross-section.
- FIG. 9 shows a polymeric stent after heat crimping.
- FIG. 10 shows the polymeric stent of Ex. 3 after heat crimping.
- FIGS. 1 and 2 show that the coating on the outer surface of the stent, in one case, has been pinched or wrinkled over, while in the other, has been smeared off.
- FIGS. 3 and 4 show a topcoat of Solef 21508 on EVAL.
- Solef 21508 is the softest poly(hexafluoropropene-co-vinylidene fluoride) thermoplastic polymer commercially available.
- FIGS. 3 and 4 show dents in the high spots of the strut arms. Most high spots of these two stents show similar damage. For these reasons, polymer coatings made of lower durometer (80A for example) polymers frequently fail quality assurance tests. EVAL, a hard plastic, seems to hold up to standard crimping, but it has a hardness of 85 shore D. For comparison, the low-density polyethylene used in milk containers is 47-55 shore D.
- Some embodiments of this invention are directed at stents containing a substrate material that is polymeric in nature and methods of manufacturing those stents. Some methods pertain to crimping the stent to the delivery device or balloon.
- crimping is done at a temperature greater than Tg; in some embodiments, crimping is done at a temperature greater than ambient but not necessarily greater than Tg.
- a device for crimping the polymeric stent onto the delivery device is also contemplated as an invention embodiment.
- the device can resemble any crimping device as is known in the art or in this document. Additionally, the device is especially modified so that it can heat the stent during crimping. In some embodiments, the device can apply pressure and heat simultaneously.
- the crimping device can hold the stent at an elevated temperature, which may be selected such that it is greater than, equal to, or less than the target temperature or may be selected to specifically exclude temperatures greater than, equal to, or less than the target temperature.
- the device crimps the polymeric stent while the stent is heated by other means.
- the crimping method comprises:
- the stent can be heated for up to one hour, 30 seconds to one hour, or for 30 seconds. In some embodiments, the stent is heated long enough that the material becomes ductile enough to adequately lower the brittleness of the stent. Adequate means having a value for the parameter in question such that one of ordinary skill in the art would expect the invention to function in the particular application. For example, “adequately lower the brittleness of the stent” means that the brittleness of the stent is reduced enough to warrant the extra heating step and the extra cost and complication of the heating step, as viewed by one of ordinary skill in the art.
- the radial compression pressure is chosen so that no damage to the stent or coating occurs. In some embodiments, the radial compression pressure is chosen so that any damage or deformation that occurs is insufficient to cause one of ordinary skill in the art to reject the stent for use.
- variable temperature means a temperature above ambient. In these or other embodiments, it means a temperature equal to, above or below Tg of the material. In some embodiments, variable temperature means a temperature equal to or below ambient. In some embodiments, the stent is cooled to ambient temperature or below before the radial compression pressure is removed.
- a time sufficient to set the crimp state is any time long enough that the polymeric stent or coating has substantially assumed the new shape induced by crimping such that it substantially retain this shape until the stent is implanted. In these or other embodiments, this time is 1 second to 2 hours, 2 seconds to 1 hour, 3 seconds to 30 minutes, 4 sec to 5 minutes; 1 second to 5 minutes, 2 seconds to 5 minutes, or 3 seconds to 5 minutes.
- This procedure is believed to provide the polymer chains with increased mobility and such that they relax into a lower energy (less stressed) configuration. Using this procedure results in polymeric stents with significantly fewer cracks.
- polymeric stents are sometimes sterilized with e-beam radiation. E-beam sterilization frequently exhibits higher polymer degradation rates at high stress regions in the polymer (stent). But after the heat crimping of this invention, which relieves extrusion and laser-cutting-induced stress and strain, e-beam sterilization of treated stents results in significantly fewer cracks and exhibits less pronounced polymer degradation rates at high stress regions in the polymer.
- a crimp process in which the coated stent or polymeric stent is held at a target temperature is disclosed. Temperatures above ambient can be used in cases where the Tg is above ambient or room temperature and greater ductility is desired.
- ambient temperature is the temperature of the crimper or polymer when the crimper or polymer has not been purposely heated or cooled. Typically, this temperature will be close to room temperature or the temperature surrounding the crimping equipment or the polymer.
- a target temperature is a temperature numerically different from ambient temperature brought about by purposely heating or cooling the crimper, stent, balloon, polymer, or any combination of these.
- polymer for purposes of this disclosure, “polymer”, “polymer combination” and “polymer mixture” are synonymous, meaning a composition of one polymer or, when more than one polymer, a mixture of, a blend of, a copolymerization of, or any other combination of more than one polymer.
- the combination can occur after the polymers are polymerized or can occur during the polymerization of monomer into one or more polymers.
- a representative method includes heating a polymer on a medical device to or towards a target temperature. Next, either after the target temperature has been reached or while the polymer is changing temperature towards the target temperature, the portion of the medial device containing the polymer is crimped onto another portion of the medical device or onto another medical device. Crimping is done in a temperature region designed to minimize both cohesive and adhesive failure (or deformation- and delamination-based failure) caused by local pressure from the jaws or surfaces of the crimping device, and deformation of the stent caused by reducing its diameter. For instance, a stent can be heated with a stream of air and crimped onto a delivery catheter with an iris crimper. Moreover, in some embodiments, the temperature region is chosen so that internal stress in the polymeric stent or polymer coating diminishes over time after crimping.
- Heating is generically discussed as “adjusting” the temperature of the polymer, the crimper, or the medical device. Adjusting the temperature comprises placing the object that is to have its temperature adjusted into thermal contact with a heat source.
- thermal contact with a heat source means heat source arrangement vis-à-vis the object so that energy would flow or be carried from the heat source to the object.
- Thermal contact is a generic term at least encompassing an arrangement of the object such that radiation, conduction, or convection from the heat source would transfer energy. In some embodiments, thermal contact is defined to exclude any of radiation, conduction, convection, or any combination of these.
- Different invention embodiments employ different heating profiles. For instance, when the heating profile calls for softening the polymer by choosing a target temperature above some temperature value, the polymer is adjusted to the target temperature before crimping and then crimping occurs (with or without some amount of temperature decrease before crimping); alternatively, the polymer is adjusted to the target temperature before crimping and maintained at or near the target temperature during crimping; alternatively, crimping is started, the polymer is adjusted to the target temperature, and crimping is completed.
- “maintained near the target temperature” means that the temperature of the polymer at the instant of contact with the crimper is the target temperature plus or minus 20° C., 15° C., 10° C., 5° C., 2° C. or 1° C. In some embodiments, “maintained near the target temperature” means that the temperature of the polymer at the instant of contact with the crimper is the target temperature plus or minus 10° C.
- Polymers on crimped stents or crimped polymeric stents exhibit adhesive and cohesive failure as two main failure modes.
- adhesive failure polymer is sheared off the stent due to poor adhesion to the metal stent or between the polymer molecules in a polymeric stent. This is a failure of the polymer due to poor interaction between polymer molecules. Since at higher temperatures, particularly those above Tg, polymeric materials are softer, a higher temperature crimp process should assist in preventing adhesive failure.
- Adhesive failure is sometimes referred to as an adhesive-based failure or delamination-based failure. When a polymer exhibits adhesive failure, that polymer becomes a candidate for crimping above Tg of the polymer.
- Adhesive failure is also caused by a build-up of stress. Heating the polymer above its Tg lowers its modulus and decreases the internal stress within the polymer. When stents are crimped, whether polymer coated or substantially polymeric, certain portions of the stent undergo elongation. If too much elongation occurs, the polymer will crack. The ultimate elongation of polymers depends on the temperature, and heating the polymer above its Tg can increase the ultimate elongation, thereby preventing failure. If the polymer exhibits a cohesive failure due to insufficient elongation, it is also a candidate for crimping above the Tg of the polymer.
- the polymer is then heated to set, anneal or otherwise remove internal stresses caused by mechanically stressing the polymer during assembly of the medical device. In some embodiments, the polymer is heated to an annealing temperature.
- FIG. 5 shows tensile stress at yield of polypropylene as a function of temperature. This property is not the same as hardness, but correlates with it. Both involve the stress needed to permanently deform the polymer. For thermoplastics in general, a lower temperature leads to greater hardness.
- FIG. 6 shows how a thermoplastic's stress-strain curve changes with temperature.
- the target temperature is selected in relation to Tg of the polymer.
- Tg is the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to a plastic state at atmospheric pressure.
- Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs, and it is discernible in a heat-capacity-versus-temperature graph for a polymer, as is depicted in FIG. 7 .
- Tg of a given polymer can be dependent on the heating rate and can be influenced by the thermal history of the polymer. Furthermore, polymer chemical structure heavily influences Tg by affecting polymer mobility. Generally, flexible main-chain components lower Tg and bulky side groups raise Tg. Similarly, increasing flexible-side-group length lowers Tg and increasing main-chain polarity increases Tg. Additionally, the presence of crosslinks can increase the observed Tg for a given polymer, and the presence of a drug or therapeutic agent can alter the Tg of a polymer due to plasticization effects. The magnitude of these plasticization effects depends on the miscibility and compatibility of the drug and polymer and the loading of drug in the polymer.
- Tg is shown on the first curve, 60 , which is the temperature at which half of the increase in heat capacity has occurred.
- the crystallinity then increases rapidly after Tg and reaches a maximum at Tc (the apex of second curve, 62 ).
- Tg is somewhat arbitrarily placed on the temperature versus heat capacity curve.
- the Tg range is defined in several different ways for a polymer or polymer combination. Some invention embodiments can be predicated on any one of these Tg range definitions.
- Tg range is greater than or equal to the initial point on the polymer's (or polymer combination's) temperature-versus-heat-capacity curve showing a drop in heat capacity, indicated as Tg 1 ( 100 ) on FIG. 7 (this point is defined as lower Tg for definition 1 ). Tg range is less than or equal to Tc ( 110 ) on the curve in FIG. 7 (this point is defined as upper Tg for definition 1 ).
- Tg range definition 1 This Tg range is referred to in this disclosure as Tg range definition 1 .
- Those of ordinary skill in the art recognize that the specific curvature and temperature points in FIG. 7 depend upon the nature of the polymer or polymer combination. Therefore, the indication of a point on FIG. 7 is meant to communicate a point corresponding to the FIG. 7 point on a similar graph for the particular polymer or polymer combination being used.
- a target temperature is within Tg range definition 1 if it is above or equal to Tg 1 and below or equal to Tg 2 .
- a target temperature is below Tg range definition 1 if it is below or equal to Tg 2 .
- a target temperature is above Tg range definition 1 if it is above or equal to Tg 1 .
- a target temperature is between a higher temperature and a lower temperature if it is above or equal to the lower temperature and below or equal to the higher temperature.
- the Tg range is greater than or equal to the point Tg 1 ( 100 ) on FIG. 7 (lower Tg for definition 2 ) and less than or equal to point 140 on FIG. 7 (upper Tg for definition 2 ).
- This range is referred to in this disclosure as Tg range definition 2 .
- Point 140 corresponds to the onset of the crystallization phase transition for the material.
- the Tg range is the conventionally measured Tg ( 180 ) for the polymer (or combination) plus 40° C. (upper Tg for definition 3 ) and minus 40° C. (lower Tg for definition 3 ).
- the Tg range is the conventionally measured Tg for the polymer (or combination) plus 20° C. (upper Tg for definition 4 ) and ⁇ 20° C. (lower Tg for definition 4 ).
- the Tg range is the conventionally measured Tg for the polymer (or combination) plus 10° C. (upper Tg for definition 5 ) and minus 10° C. (lower Tg for definition 5 ).
- the Tg range is the conventionally measured Tg for the polymer (or combination) plus 5° C. (upper Tg for definition 6 ) and minus 5° C. (lower Tg for definition 6 ).
- the Tg range is greater than or equal to the point Tg 1 ( 100 ) on FIG. 7 (lower Tg for definition 7 ) and less than or equal to point 160 on FIG. 7 (upper Tg for definition 7 ).
- This range is referred to in this disclosure as Tg range definition 7 .
- Point 160 corresponds to the tail off or end of the glass phase transition for the material.
- embodiments also include embodiments in which the Tg range specifically excludes ambient temperature, ambient temperature + or ⁇ 1° C. or ambient temperature + or ⁇ 5° C.
- the target temperature has a maximum at or below the temperature at which any included therapeutic agents substantially decompose.
- substantially decompose means decomposition to the extent that one of ordinary skill in the art would conclude that the decomposition would reduce the efficacy of the therapeutic substance too much. In other words, decomposition would reduce the efficacy enough that one of ordinary skill in the art would reject the heated or cooled, crimped composition for use in vivo.
- the polymer can be improved by causing the polymer to be harder during crimping. This can be accomplished by choosing a target temperature less than upper Tg. (When this disclosure speaks of upper Tg or lower Tg, but does not specify which definition of Tg range is being used, this disclosure is intended to cover upper and lower Tg for each range definition). Alternatively, the polymer can be hardened during crimping by choosing a target temperature below lower Tg.
- choosing a target temperature below ambient temperature can harden the polymer.
- choosing a target temperature below ⁇ 30° C., ⁇ 40° C., ⁇ 50° C., or ⁇ 60° C. can harden the polymer.
- the target temperature is between ambient temperature and upper Tg; ambient temperature and lower Tg; or ⁇ 30° C., ⁇ 40° C., ⁇ 50° C., or ⁇ 60° C. and upper Tg; ⁇ 30° C., ⁇ 40° C., 50° C., or ⁇ 60° C. and lower Tg; or ⁇ 30° C., ⁇ 40° C., ⁇ 50° C., or ⁇ 60° C. and ambient temperature.
- the target temperature can be chosen based on the Tg range definitions discussed above.
- the polymer can be improved by causing the polymer to be harder during crimping. Therefore, an improvement in cohesive or deformation failures can be achieved by choosing a target temperature that yields a 50% increase in shore hardness, alternatively, a 40%, 30%, 20%, or 10% increase in shore hardness.
- invention medical devices prepared with invention crimping methods allow the use of polymers with shore D hardness as low as 30 to 80, or 35 to 60.
- invention medical devices prepared with invention crimping methods allow the use of polymers with shore D hardness less than or equal to 45, 40, 35, or 30.
- the polymer can be improved by causing the polymer to be softer during crimping or by maintaining an increased temperature in the polymer after crimping to relieve any stress. This can be accomplished by choosing a target temperature greater than upper Tg. Alternatively, the target temperature is above lower Tg. Alternatively, the target temperature is above ambient temperature. Alternatively, the target temperature is above 70° C., 80° C., 90° C., or 100° C.
- the target temperature is between ambient temperature and upper Tg; ambient temperature and lower Tg; between 70° C., 80° C., 90° C., or 100° C. and upper Tg; between 70° C., 80° C., 90° C., or 100° C. and lower Tg; or between 70° C., 80° C., 90° C., or 100° C. and ambient temperature.
- the target temperature can be chosen based on the Tg range definitions discussed above.
- the polymer can be improved by causing the polymer to be softer during crimping. Therefore, an improvement in adhesive failure can be achieved by choosing a target temperature that yields a 50% decrease in shore hardness, alternatively, a 40%, 30%, 20%, or 10% decrease in shore hardness.
- invention medical devices prepared with invention crimping methods allow the use of polymers with shore hardness as high as 60D to 90D, or 65D to 85D.
- invention medical devices prepared with invention crimping methods allow the use of polymers with shore hardness greater than or equal to 60D, 70D, 80D, or 90D.
- EVAL When EVAL is crimped at ambient temperature, it is in a glassy state ( FIG. 6 , curve A). By crimping at a temperature above its glass transition temperature (Tg) (55° C.), the ultimate elongation becomes higher ( FIG. 6 , curve B). This should reduce cracking in the tensile regions on the outside of stent junctions.
- Tg glass transition temperature
- crimping at a low temperature of 0° or less should reduce crimping damage from shear and compression.
- Tg ⁇ 30° C.
- crimping at a temperature of ⁇ 40° C. should also reduce denting and shearing damage.
- a polymeric stent is crimped onto a delivery device, such as a catheter, after being heated to a target temperature.
- the target temperature is greater than Tg range for definitions 1 - 7 , any of definitions 1 - 7 , any combination of definitions 1 - 7 , or any combination of definitions 1 - 7 that also excludes any one or any combination of definitions 1 - 7 .
- a polymeric stent is crimped onto a delivery device, such as a catheter, while being heated to a target temperature.
- the target temperature is greater than Tg range for definitions 1 - 7 , any of definitions 1 - 7 , any combination of definitions 1 - 7 , or any combination of definitions 1 - 7 that also excludes any one or any combination of definitions 1 - 7 .
- the device is designed to crimp the polymer-coated stent onto the balloon portion of a catheter for PTCA.
- the temperature may be controlled by passage of a stream of dry air, or inert gas through the bore. This air can be heated or cooled by first passing it through a tube heater or chilled heat exchanger. The stent is loosely placed onto the catheter, and then the assembly is inserted into the bore of the crimper. The passage of air would rapidly equilibrate the stent delivery system (SDS) to the crimp temperature. Continuously heated or cooled airflow would bring the crimping jaws to the desired temperature.
- SDS stent delivery system
- Alternative ways include heating or cooling the jaws of the crimper itself. Electrical heating elements can be installed into the crimper jaws. By appropriate placement of thermocouples and feedback controls, an elevated temperature can be maintained. Cooling of the crimper jaws can be accomplished by rendering them with passageways through which a cooling medium is pumped. This may also be used to heat the crimping jaws. If the jaws were composed of an electrically conductive material, application of an oscillating electric field can heat them via eddy currents. If the jaws were made of an IR transparent material, the stent on catheter can be thermostated by infrared radiation.
- the crimper is at ambient temperature, but the jaws themselves are of a material with low thermal conductivity, then processes can be considered where the stent loosely applied to the catheter is pre-equilibrated to a non-ambient temperature before crimping.
- the stent is small, with a high surface area to volume ratio, it would have to be rapidly moved from the controlled temperature environment to the crimper to maintain the desired temperature. Heating in an incubator or oven, or cooling in a refrigerator can pre-equilibrate the stent to the desired temperature before crimping.
- Processes of the current invention provide medical devices. These medical devices contain a piece or portion that is coated with or constructed of, in some embodiments, polymer(s).
- the crimping device used in invention crimping steps can be heated or cooled before it is used to crimp the piece or portion onto the remainder of the medical device or onto another medical device. This heating or cooling causes the temperature of the material to change so that the crimping effectively occurs at a target temperature other than ambient temperature.
- Other ways of modifying the temperature of the polymer include heating or cooling the substrate of the medical device or heating or cooling the material directly with forced air, among other methods.
- Some invention embodiments select medical devices to be those adapted for placement in arterial, venous, neurovascular, urethral, biliary, prostate, intravascular, ureteral, bronchial, esophageal, fallopial, tracheal, laryngeal, gastrointestinal, lymphatic, eustachiaic, pancreatic, cerebral, other genitourinary, other gastrointestinal, or other respiratory lumens or passages.
- Invention methods can be used on a variety of polymeric materials including those characterized as having Tg above ambient temperature.
- the methods act on polymeric materials comprising ABS resins; acrylic polymers and acrylic copolymers; acrylonitrile-styrene copolymers; alkyd resins; biomolecules; cellulose ethers; celluloses; copoly(ether-esters); copolymers of polycarboxylic acids and poly-hydroxycarboxylic acids; copolymers of vinyl monomers with each other and olefins; cyanoacrylates; epoxy resins; ethylene vinyl alcohol copolymers; ethylene-methyl methacrylate copolymers; ethylene-vinyl acetate copolymers; ethylene- ⁇ -olefin copolymers; poly(amino acids); poly(anhydrides); poly(butyl methacrylates); poly(ester amides); poly(ester-urethanes); poly(ether-urethanes); poly(imino carbonates
- useful polymers include the following polymers: starch, sodium alginate, rayon-triacetate, rayon, polyvinylidene fluoride, polyvinylidene chloride, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl chloride, polyvinyl acetate, polystyrene, polyisocyanate, polyisobutylene, polyethylene glycol, polydioxanone, polycaprolactone, polycaprolactam, KYNAR (brand poly(vinylidene fluoride) available from Atofina), polyacrylonitrile, poly(trimethylene carbonate), poly(L-lactic acid), poly(lactide-co-glycolide), poly(hydroxyvalerate), poly(hydroxybutyrate-co-valerate), poly(hydroxybutyrate-co-hydroxyvalerate), poly(hydroxybutyrate), poly(glycolide), poly(glycolic acid), poly(D,L-lactide-co
- the polymer for use with this invention can comprise a mixture of polymers, such as an intimate mixture of polymer molecules, or can use a combination of polymers arranged in a layered structure.
- a mixture of polymers such as an intimate mixture of polymer molecules
- a combination of polymers arranged in a layered structure can be chosen based on the overall thermal behavior of the polymers or combination of polymers.
- invention polymers add conventional drugs, such as small, hydrophobic drugs, to invention polymers (as discussed in any of the embodiments, above), making them biostable, drug systems.
- Invention polymers can serve as base or topcoat layers for biobeneficial polymer layers.
- the selected drugs can inhibit vascular, smooth muscle cell activity. More specifically, the drug activity can aim at inhibiting abnormal or inappropriate migration or proliferation of smooth muscle cells to prevent, inhibit, reduce, or treat restenosis.
- the drug can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. Examples of such active agents include antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, and antioxidant substances, as well as their combinations, and any prodrugs, metabolites, analogs, congeners, derivatives, salts and their combinations.
- an antiproliferative substance is actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, and actinomycin C1. Examples of antineoplastics include paclitaxel and docetaxel.
- antiplatelets examples include aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-pheproarg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocor).
- aspirin sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-pheproarg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudi
- antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mutamycin.
- cytostatic or anti-proliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck & Co., Whitehouse Station, N.J.), calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck &Co.), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available from Glazo
- Other useful drugs may include alpha-interferon, genetically engineered epithelial cells, dexamethasone, estradiol, clobetasol propionate, cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, and carboplatin. Exposure of the composition to the drug should not adversely alter the drug's composition or characteristic. Accordingly, drug containing embodiments choose drugs that are compatible with the composition. Rapamycin is a suitable drug. Additionally, methyl rapamycin (ABT-578), everolimus, 40-O-(2-hydroxy)ethyl-rapamycin, or functional analogs or structural derivatives thereof, is suitable, as well.
- Examples of analogs or derivatives of 40-O-(2-hydroxy)ethyl-rapamycin include, among others, 40-O-(3-hydroxy)propyl-rapamycin and 40-O-2-(2-hydroxy)ethoxyethylrapamycin.
- Those of ordinary skill in the art know of various methods and coatings for advantageously controlling the release rate of drugs, such as 40-O-(2-hydroxy)ethyl-rapamycin.
- Some embodiments choose the drug such that it does not contain at least one of or any combination of antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, or antioxidant substances, or any prodrugs, metabolites, analogs, congeners, derivatives, salts or their combinations.
- Some invention embodiments choose the drug such that it does not contain at least one of or any combination of actinomycin D, derivatives and analogs of Actinomycin D, dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, actinomycin C1, paclitaxel, docetaxel, aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin, prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor and 7E-3B, methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, mutamycin, angiopeptin, an
- Some invention embodiments comprise a drug or drug combination, and some require a drug or combination of drugs. Of the drugs specifically listed above, some invention embodiments exclude a single or any combination of these drugs.
- Some embodiments comprise polymers combined with other polymers in multilayer arrangements.
- one polymer can under- or over-lay another polymer such as a polymer coated on a device, a medical device, an implantable medical device, or a stent.
- the polymer can be used neat in this regard, or it can first be mixed with another polymer.
- implantable devices useful in the present invention include self-expandable stents, balloon-expandable stents, and stent-grafts.
- the underlying structure of the device can be of virtually any design.
- the device can comprise a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316 L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
- cobalt chromium alloy ELGILOY
- stainless steel 316 L
- high nitrogen stainless steel e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-i
- MP35N and MP20N are trade names for alloys of cobalt, nickel, chromium, and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Of course, one of ordinary skill in the art recognizes that the invention method is only useful for medical devices that use a crimping step in their production.
- Various, specialized tests are used to assay the integrity of a drug eluting stent coating.
- completed units are tested which have been though all stent-catheter assembly processes, including crimping and any heat-pressure processes.
- One test is inspection of the coated stents by scanning electron microscopy. This can be done on the completed units by cutting the stent-balloon section from the catheter, or the stent can be removed from the catheter by dry expansion in air or wet expansion in aqueous solution. Under SEM, the fraction of compromised coating surface area can be estimated. Compromised coating is coating that has been deformed, torn, or removed. When this fraction of surface area exceeds 5-10%, the drug-release rate properties, and total drug content can be affected.
- Another measure of coating integrity is the number and size of particles shed when the stent is expanded in aqueous solution.
- the stent is deployed in a solution of previously filtered water and the particles shed are counted by one of several available particle-counting instruments.
- Example instruments would be those produced by Malvern that work by light scattering, instruments that work by light obscuration, such as the Hiac-Royco, or the Coulter counter which works by electrical conductivity. Elevated numbers, and sizes, of particles shed are indicative of coating failure, which is affected by crimping damage either in the form of coating pieces that are completely shorn off, or cracks in the coating which propagated during stent expansion to liberate particles.
- a first composition was prepared by mixing the following components:
- the first composition was applied onto the surface of bare 13 mm TETRA stents (available from Guidant Corporation), which were first pre-expanded by passing them over a 0.071 inch, tapered mandrel. Coating was sprayed and dried to form a primer layer.
- a spray coater was used having a 0.046 fan nozzle maintained at about 60 C with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). Coating was applied at 10 ⁇ g per pass, in between which the stent was dried for 10 seconds in a flowing air stream at 60 C. Approximately 70 ⁇ g of wet coating was applied.
- the stents were baked at 140 C for one hour, yielding a primer layer composed of approximately 50 ⁇ g of EVAL.
- a simulated reservoir layer was applied onto the primer layer, using the same spraying technique, equipment, and formulation used for the applying the primer. In this case, approximately 340 ⁇ g of wet coating is applied, followed by drying, e.g., baking at 50 C for about two hours, yielding about 300 ⁇ g of simulated drug-polymer reservoir layer.
- a second composition can be prepared by mixing the following components:
- the second composition can be applied onto the dried simulated drug reservoir layer to form a topcoat layer. Using the same spraying technique and equipment used for applying the simulated drug reservoir layer. Approximately 340 ⁇ g of wet topcoat is applied followed by baking at 80 C for two hours, yielding a 300 ⁇ g Elast-Eon 80A topcoat layer.
- the stents were crimped onto 13 mm Tetra catheters (available from Guidant Corporation).
- the stents were expanded in deionized water at 37 C with a balloon deployment pressure of 12 atm. Examination by SEM yielded FIGS. 1 &2 .
- a first composition was prepared by mixing the following component
- the first composition was applied onto the surface of bare 13 mm TETRA stents (available from Guidant Corporation), which were first pre-expanded by passing them over a 0.071 inch, tapered mandrel. Coating was sprayed and dried to form a primer layer.
- a spray coater was having a 0.046 fan nozzle maintained at about 60 C with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). Coating was applied at 10 ⁇ g per pass, in between which the stent was dried for 10 seconds in a flowing air stream at 60 C. Approximately 65 ⁇ g of wet coating was applied. The stents were baked at 140 C for one hour, yielding a primer layer composed of approximately 60 ⁇ g of EVAL.
- a simulated reservoir layer was applied onto the primer layer, using the same spraying technique, equipment, and formulation used for the applying the primer. In this case approximately 340 ⁇ g of wet coating is applied, followed by drying, e.g., baking at 80 C for about two hours, yielding about 315 ⁇ g of a simulated drug-polymer reservoir layer.
- a second composition can be prepared by mixing the following components:
- AMS Defluxer is a blend of dichloropentafluoropropanes and methanol available from Tech Spray Inc. of Amarillo Tex.
- the second composition can be applied onto the dried simulated drug reservoir layer to form a topcoat layer. Using the same spraying technique and equipment used for applying the simulated drug reservoir layer. Approximately 345 ⁇ g of wet topcoat is applied followed by baking at 50 C for two hours, yielding a 325 ⁇ g Solef 21508 topcoat layer.
- the stents were crimped onto 13 mm Tetra catheters (available from Guidant Corporation). After this, they were subjected to a heat and pressure process wherein the balloon was restrained by a sheath, air pressure was applied to the catheter, and heat was applied to the balloon. Units were packaged and sterilized by electron beam radiation at a dose of 35 KGy.
- the stent coating performance was evaluated in an apparatus where a guiding catheter was connected to flexible silicone tubing embedded in a block with three gradual 90-degree bends. Deionized water at 37 C was recirculated through the guiding catheter.
- the stents were passed through a rotating hemostatic valve attached to the guiding catheter, through the guiding catheter, through the tortuous silicone tubing, and deployed at a pressure of 12 atmospheres. After the stents were removed from the tubing, examination by SEM yielded FIGS. 3 & 4 .
- Stents are laser cut from polymer tubing, then crimped to the desired diameter. A sliding wedge style heated crimper is used. The stents are supported on a wire mandrel during the crimping process.
- Tubing material 100% poly(L-lactide) Tubing OD: 0.084′′ Tubing ID: 0.070′′ Pre-heat temp: 30 C. Pre-heat time: 30 seconds Crimp temperature: 30 C. Descent time: 3-5 seconds Mandrel diameter: 0.031′′ Post crimp dwell time: 99.9 seconds Number of crimp cycles: 1
- ranges When this is done, it is meant to disclose the ranges as a range, and to disclose each and every point within the range, including end points.
- supplementary embodiments exist that are otherwise identical, but that specifically exclude the value or the conditions for the aspect.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials For Medical Uses (AREA)
- Control Of Heat Treatment Processes (AREA)
- Control Of Temperature (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
-
- adjusting the temperature of the piece to a target temperature followed by a crimping step;
- adjusting the temperature of the piece to a target temperature during a crimping step;
- adjusting the temperature of the piece to a target temperature and maintaining that temperature within plus or minus 5° C. of the target temperature during a crimping step;
- adjusting the temperature of the piece to a target temperature followed by crimping such that the temperature of the piece remains within plus or minus 10° C. of the target temperature during the crimping step; and
- adjusting the temperature of the piece to a temperature other than ambient towards a target temperature and continuing to adjust the temperature of the piece towards the target temperature during a crimping step.
- Any of these regimes can optionally be coupled with continued heating for a time after crimping—either while crimping pressure is applied or after pressure is removed.
-
- within or above the range defined by definition 1,
definition 2, definition 3,definition 4, definition 5,definition 6, or definition 7 of the Tg range of the polymer or polymer combination; - above ambient temperature;
- above room temperature;
- between ambient temperature and upper Tg of the Tg range;
- between ambient temperature and lower Tg of the Tg range;
- between −40° C. and upper Tg of the Tg range;
- between −40° C. and lower Tg of the Tg range;
- between −40° C. and ambient temperature;
- at or above 60° C.;
- between 60° C. and upper Tg of the Tg range;
- between 60° C. and lower Tg of the Tg range; or
- between 60° C. and ambient temperature.
- within or above the range defined by definition 1,
-
- contacting the polymeric material or piece with a heat source.
- directing a heated gas at the polymeric material or piece;
- placing the polymeric material or piece near a heated surface for emitting thermal or infrared radiation to the coating or coated piece;
- placing the polymeric material or polymeric material or piece near a heated surface to enable convection to the coating or coated piece from the surface;
- heating the jaws of the crimper and thermally contacting the polymeric material or piece with the crimper jaws;
- for crimper jaws that allow the passage of infrared radiation, bathing the stent on catheter with infrared radiation;
- heating the stent on catheter in an incubator or oven to pre-equilibrate the stent on catheter to the desired temperature before crimping.
-
- placing the stent in the crimping device;
- heating the stent to a target temperature long enough that the stent substantially reaches the target temperature;
- applying pressure (radial compression pressure) to the stent to attach it to a delivery device;
- holding the stent at a radial compression pressure adequate to affix it to the delivery device and holding the stent at an annealing temperature for a time sufficient to set the crimp state into the polymeric stent or coating;
- removing the stent-delivery-device combination.
| Durometer | Temperature | Temperature | ||||
| Hardness | Range for | Range | ||||
| Polymer | Tg ° C. | Shore D | Greater Hardness | for Ductility | ||
| Solef 21508 | −29 | 60 | −62 to 10 | Ambient to 60 | ||
| | − | 100, 0 | 30-35 | −110 to −10 | Ambient to 60 | |
| Elasteon 55D | −100, 0 | 55 | −110 to −10 | Ambient to 60 | ||
| EVAL-E151 | 55 | 85 | Zero to Ambient | 50 to 100 | ||
| Kynar-Flex | −30 | 65-70 | −62 to 10 | Ambient to 60 | ||
| 2800 | ||||||
| Butvar B-90 | 72-78 | 85-90 | Zero to Ambient | Ambient to 100 | ||
| Kynar 710 | −30 | 76-80 | −62 to 10 | Ambient to 60 | ||
| Poly(n- |
20 | NA | −30 to 15 | Ambient to 60 | ||
| methacrylate) | ||||||
- (a) 2.0 mass % of poly(ethylene-co-vinyl alcohol) (EVAL) EC-151A and
- (b) the balance, dimethylacetamide
- (a) 2.0 mass % of Elast-Eon 80A and
- (b) the balance dimethylacetamide.
- (a) 4.0 mass % of poly(ethylene-co-vinyl alcohol) (EVAL) EC-151A and
- (b) the balance, an 80/20 weight blend of dimethylacetamide and pentane.
- (a) 2.0 mass % of Solef 21508 and
- (b) the balance a 50/25/25, by weight, blend of acetone, cyclohexanone, and AMS Defluxer.
| Parameters: |
| Tubing material: | 100% poly(L-lactide) | ||
| Tubing OD: | 0.084″ | ||
| Tubing ID: | 0.070″ | ||
| Pre-heat temp: | 30 C. | ||
| Pre-heat time: | 30 seconds | ||
| Crimp temperature: | 30 C. | ||
| Descent time: | 3-5 seconds | ||
| Mandrel diameter: | 0.031″ | ||
| Post crimp dwell time: | 99.9 seconds | ||
| Number of crimp cycles: | 1 | ||
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/074,543 USRE45744E1 (en) | 2003-12-01 | 2013-11-07 | Temperature controlled crimping |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/725,698 US20050118344A1 (en) | 2003-12-01 | 2003-12-01 | Temperature controlled crimping |
| US10/957,022 US8052912B2 (en) | 2003-12-01 | 2004-10-01 | Temperature controlled crimping |
| US14/074,543 USRE45744E1 (en) | 2003-12-01 | 2013-11-07 | Temperature controlled crimping |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/957,022 Reissue US8052912B2 (en) | 2003-12-01 | 2004-10-01 | Temperature controlled crimping |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE45744E1 true USRE45744E1 (en) | 2015-10-13 |
Family
ID=34620322
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/725,698 Abandoned US20050118344A1 (en) | 2003-06-25 | 2003-12-01 | Temperature controlled crimping |
| US10/957,022 Ceased US8052912B2 (en) | 2003-12-01 | 2004-10-01 | Temperature controlled crimping |
| US13/846,859 Abandoned US20130333193A1 (en) | 2003-06-25 | 2013-03-18 | Temperature controlled crimping |
| US14/074,543 Expired - Fee Related USRE45744E1 (en) | 2003-12-01 | 2013-11-07 | Temperature controlled crimping |
Family Applications Before (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/725,698 Abandoned US20050118344A1 (en) | 2003-06-25 | 2003-12-01 | Temperature controlled crimping |
| US10/957,022 Ceased US8052912B2 (en) | 2003-12-01 | 2004-10-01 | Temperature controlled crimping |
| US13/846,859 Abandoned US20130333193A1 (en) | 2003-06-25 | 2013-03-18 | Temperature controlled crimping |
Country Status (4)
| Country | Link |
|---|---|
| US (4) | US20050118344A1 (en) |
| AT (1) | ATE492390T1 (en) |
| DE (1) | DE602004030716D1 (en) |
| ES (1) | ES2356466T3 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10010653B2 (en) * | 2016-02-05 | 2018-07-03 | Abbott Cardiovascular Systems Inc. | Methods for increasing coating strength to improve scaffold crimping yield |
| US10232147B2 (en) | 2011-05-27 | 2019-03-19 | Abbott Cardiovascular Systems Inc. | Method for assembling a scaffold-balloon catheter |
| US10660773B2 (en) | 2017-02-14 | 2020-05-26 | Abbott Cardiovascular Systems Inc. | Crimping methods for thin-walled scaffolds |
| US10967556B2 (en) | 2018-06-11 | 2021-04-06 | Abbott Cardiovascular Systems Inc. | Uniform expansion of thin-walled scaffolds |
Families Citing this family (104)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2178541C (en) | 1995-06-07 | 2009-11-24 | Neal E. Fearnot | Implantable medical device |
| US6001067A (en) | 1997-03-04 | 1999-12-14 | Shults; Mark C. | Device and method for determining analyte levels |
| US8527026B2 (en) | 1997-03-04 | 2013-09-03 | Dexcom, Inc. | Device and method for determining analyte levels |
| US7208010B2 (en) | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
| US7179289B2 (en) * | 1998-03-30 | 2007-02-20 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
| US6241762B1 (en) | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
| US7807211B2 (en) | 1999-09-03 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of an implantable medical device |
| US20070032853A1 (en) | 2002-03-27 | 2007-02-08 | Hossainy Syed F | 40-O-(2-hydroxy)ethyl-rapamycin coated stent |
| US7682647B2 (en) * | 1999-09-03 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of a drug eluting implantable medical device |
| EP1498084B1 (en) | 2000-10-16 | 2014-06-18 | Innovational Holdings, LLC | Expandable medical device for delivery of beneficial agent |
| US8632845B2 (en) * | 2000-12-28 | 2014-01-21 | Abbott Cardiovascular Systems Inc. | Method of drying bioabsorbable coating over stents |
| US20030032874A1 (en) | 2001-07-27 | 2003-02-13 | Dexcom, Inc. | Sensor head for use with implantable devices |
| US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution |
| US7056338B2 (en) | 2003-03-28 | 2006-06-06 | Conor Medsystems, Inc. | Therapeutic agent delivery device with controlled therapeutic agent release rates |
| US6863683B2 (en) | 2001-09-19 | 2005-03-08 | Abbott Laboratoris Vascular Entities Limited | Cold-molding process for loading a stent onto a stent delivery system |
| US7379765B2 (en) | 2003-07-25 | 2008-05-27 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
| US8364229B2 (en) | 2003-07-25 | 2013-01-29 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
| US7613491B2 (en) | 2002-05-22 | 2009-11-03 | Dexcom, Inc. | Silicone based membranes for use in implantable glucose sensors |
| US7226978B2 (en) | 2002-05-22 | 2007-06-05 | Dexcom, Inc. | Techniques to improve polyurethane membranes for implantable glucose sensors |
| US20090093875A1 (en) | 2007-05-01 | 2009-04-09 | Abbott Laboratories | Drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations |
| AU2004226327A1 (en) | 2003-03-28 | 2004-10-14 | Innovational Holdings, Llc | Implantable medical device with beneficial agent concentration gradient |
| US20050118344A1 (en) | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
| WO2007120442A2 (en) | 2003-07-25 | 2007-10-25 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
| US9763609B2 (en) | 2003-07-25 | 2017-09-19 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
| US7591801B2 (en) | 2004-02-26 | 2009-09-22 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
| US7920906B2 (en) | 2005-03-10 | 2011-04-05 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
| ATE480761T1 (en) | 2003-12-05 | 2010-09-15 | Dexcom Inc | CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTICAL SENSOR |
| US11633133B2 (en) | 2003-12-05 | 2023-04-25 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
| US8423114B2 (en) | 2006-10-04 | 2013-04-16 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
| WO2009048462A1 (en) | 2007-10-09 | 2009-04-16 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
| US8808228B2 (en) | 2004-02-26 | 2014-08-19 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
| US20050208093A1 (en) | 2004-03-22 | 2005-09-22 | Thierry Glauser | Phosphoryl choline coating compositions |
| US8277713B2 (en) | 2004-05-03 | 2012-10-02 | Dexcom, Inc. | Implantable analyte sensor |
| US20070045902A1 (en) | 2004-07-13 | 2007-03-01 | Brauker James H | Analyte sensor |
| US7654956B2 (en) | 2004-07-13 | 2010-02-02 | Dexcom, Inc. | Transcutaneous analyte sensor |
| US7971333B2 (en) * | 2006-05-30 | 2011-07-05 | Advanced Cardiovascular Systems, Inc. | Manufacturing process for polymetric stents |
| US8597716B2 (en) | 2009-06-23 | 2013-12-03 | Abbott Cardiovascular Systems Inc. | Methods to increase fracture resistance of a drug-eluting medical device |
| US8980300B2 (en) | 2004-08-05 | 2015-03-17 | Advanced Cardiovascular Systems, Inc. | Plasticizers for coating compositions |
| US8744546B2 (en) | 2005-05-05 | 2014-06-03 | Dexcom, Inc. | Cellulosic-based resistance domain for an analyte sensor |
| US7763198B2 (en) * | 2005-04-12 | 2010-07-27 | Abbott Cardiovascular Systems Inc. | Method for retaining a vascular stent on a catheter |
| US8099851B2 (en) * | 2005-06-27 | 2012-01-24 | Boston Scientific Scimed, Inc. | Crimping and edge protection elements |
| US7658880B2 (en) | 2005-07-29 | 2010-02-09 | Advanced Cardiovascular Systems, Inc. | Polymeric stent polishing method and apparatus |
| US7621192B2 (en) * | 2005-07-29 | 2009-11-24 | Dynatek Laboratories, Inc. | Medical device durability test apparatus having an integrated particle counter and method of use |
| US7526849B2 (en) * | 2005-10-07 | 2009-05-05 | Boston Scientific Scimed, Inc. | Stent loader |
| WO2007120381A2 (en) | 2006-04-14 | 2007-10-25 | Dexcom, Inc. | Analyte sensor |
| US8333000B2 (en) | 2006-06-19 | 2012-12-18 | Advanced Cardiovascular Systems, Inc. | Methods for improving stent retention on a balloon catheter |
| US7998404B2 (en) | 2006-07-13 | 2011-08-16 | Advanced Cardiovascular Systems, Inc. | Reduced temperature sterilization of stents |
| US8685430B1 (en) | 2006-07-14 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Tailored aliphatic polyesters for stent coatings |
| EP3047860B1 (en) | 2006-07-20 | 2024-08-28 | OrbusNeich Medical Pte. Ltd. | Bioabsorbable polymeric composition for a medical device |
| US8691321B2 (en) | 2006-10-20 | 2014-04-08 | Orbusneich Medical, Inc. | Bioabsorbable polymeric composition and medical device background |
| US7959942B2 (en) | 2006-10-20 | 2011-06-14 | Orbusneich Medical, Inc. | Bioabsorbable medical device with coating |
| US8099849B2 (en) * | 2006-12-13 | 2012-01-24 | Abbott Cardiovascular Systems Inc. | Optimizing fracture toughness of polymeric stent |
| US20200037874A1 (en) | 2007-05-18 | 2020-02-06 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
| US10155881B2 (en) * | 2007-05-30 | 2018-12-18 | Abbott Cardiovascular Systems Inc. | Substituted polycaprolactone for coating |
| WO2008154312A1 (en) | 2007-06-08 | 2008-12-18 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
| US7812941B2 (en) * | 2007-06-15 | 2010-10-12 | Abbott Cardiovascular Systems Inc. | Systems and methods for the inspection of cylinders |
| US8003157B2 (en) | 2007-06-15 | 2011-08-23 | Abbott Cardiovascular Systems Inc. | System and method for coating a stent |
| US9737638B2 (en) | 2007-06-20 | 2017-08-22 | Abbott Cardiovascular Systems, Inc. | Polyester amide copolymers having free carboxylic acid pendant groups |
| US20090004243A1 (en) | 2007-06-29 | 2009-01-01 | Pacetti Stephen D | Biodegradable triblock copolymers for implantable devices |
| US8046897B2 (en) * | 2007-09-28 | 2011-11-01 | Abbott Cardiovascular Systems Inc. | Method and apparatus for stent retention on a balloon catheter |
| US9814553B1 (en) | 2007-10-10 | 2017-11-14 | Abbott Cardiovascular Systems Inc. | Bioabsorbable semi-crystalline polymer for controlling release of drug from a coating |
| US20090104241A1 (en) * | 2007-10-23 | 2009-04-23 | Pacetti Stephen D | Random amorphous terpolymer containing lactide and glycolide |
| US20090306120A1 (en) * | 2007-10-23 | 2009-12-10 | Florencia Lim | Terpolymers containing lactide and glycolide |
| US8642062B2 (en) * | 2007-10-31 | 2014-02-04 | Abbott Cardiovascular Systems Inc. | Implantable device having a slow dissolving polymer |
| US20090163985A1 (en) * | 2007-12-19 | 2009-06-25 | Vipul Dave | Method of Retaining a Polymeric Stent on an Expansion Member |
| US8583204B2 (en) | 2008-03-28 | 2013-11-12 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
| US8682408B2 (en) | 2008-03-28 | 2014-03-25 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
| WO2009121026A1 (en) * | 2008-03-28 | 2009-10-01 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
| US11730407B2 (en) | 2008-03-28 | 2023-08-22 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
| US8128983B2 (en) * | 2008-04-11 | 2012-03-06 | Abbott Cardiovascular Systems Inc. | Coating comprising poly(ethylene glycol)-poly(lactide-glycolide-caprolactone) interpenetrating network |
| US20090297584A1 (en) * | 2008-04-18 | 2009-12-03 | Florencia Lim | Biosoluble coating with linear over time mass loss |
| US8916188B2 (en) * | 2008-04-18 | 2014-12-23 | Abbott Cardiovascular Systems Inc. | Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block |
| US20090285873A1 (en) * | 2008-04-18 | 2009-11-19 | Abbott Cardiovascular Systems Inc. | Implantable medical devices and coatings therefor comprising block copolymers of poly(ethylene glycol) and a poly(lactide-glycolide) |
| US8697113B2 (en) * | 2008-05-21 | 2014-04-15 | Abbott Cardiovascular Systems Inc. | Coating comprising a terpolymer comprising caprolactone and glycolide |
| US8042251B2 (en) * | 2008-05-21 | 2011-10-25 | Boston Scientific Scimed, Inc. | Systems and methods for heating and cooling during stent crimping |
| US8765040B2 (en) | 2008-08-11 | 2014-07-01 | Abbott Cardiovascular Systems Inc. | Medical device fabrication process including strain induced crystallization with enhanced crystallization |
| US8642063B2 (en) | 2008-08-22 | 2014-02-04 | Cook Medical Technologies Llc | Implantable medical device coatings with biodegradable elastomer and releasable taxane agent |
| EP4227675B1 (en) | 2008-09-19 | 2024-12-11 | DexCom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
| US20100152027A1 (en) * | 2008-12-15 | 2010-06-17 | Chevron U.S.A., Inc. | Ionic liquid catalyst having a high molar ratio of aluminum to nitrogen |
| US8183337B1 (en) | 2009-04-29 | 2012-05-22 | Abbott Cardiovascular Systems Inc. | Method of purifying ethylene vinyl alcohol copolymers for use with implantable medical devices |
| US8697110B2 (en) | 2009-05-14 | 2014-04-15 | Abbott Cardiovascular Systems Inc. | Polymers comprising amorphous terpolymers and semicrystalline blocks |
| US8261423B2 (en) | 2010-04-30 | 2012-09-11 | Abbott Cardiovascular Systems Inc. | Methods for crimping a polymeric stent onto a delivery balloon |
| US8844113B2 (en) * | 2010-04-30 | 2014-09-30 | Abbott Cardiovascular Systems, Inc. | Methods for crimping a polymeric stent scaffold onto a delivery balloon |
| US8752261B2 (en) | 2010-07-07 | 2014-06-17 | Abbott Cardiovascular Systems Inc. | Mounting stents on stent delivery systems |
| US8539663B2 (en) | 2010-08-23 | 2013-09-24 | Abbott Cardiovascular Systems Inc. | Reducing crimping damage to polymer scaffold |
| US8595913B2 (en) | 2010-09-30 | 2013-12-03 | Advanced Cardiovascular Systems, Inc. | Stent crimping methods |
| US8496865B2 (en) | 2010-10-15 | 2013-07-30 | Abbott Cardiovascular Systems Inc. | Method to minimize chain scission and monomer generation in processing of poly(L-lactide) stent |
| US8961848B2 (en) | 2011-04-18 | 2015-02-24 | Abbott Cardiovascular Systems Inc. | Methods for increasing a retention force between a polymeric scaffold and a delivery balloon |
| US9199408B2 (en) | 2012-04-03 | 2015-12-01 | Abbott Cardiovascular Systems Inc. | Uniform crimping and deployment methods for polymer scaffold |
| US20120290063A1 (en) | 2011-05-09 | 2012-11-15 | Abbott Cardiovascular Systems Inc. | Method of Increasing Stent Retention of Bioabsorbable Scaffolding with a Sheath |
| US8752265B2 (en) | 2011-05-13 | 2014-06-17 | Abbott Cardiovascular Systems Inc. | Methods for crimping a polymeric scaffold to a delivery balloon and achieving stable mechanical properties in the scaffold after crimping |
| US8632847B2 (en) | 2011-07-13 | 2014-01-21 | Abbott Cardiovascular Systems Inc. | Methods of manufacture of bioresorbable and durable stents with grooved lumenal surfaces for enhanced re-endothelialization |
| US8726483B2 (en) | 2011-07-29 | 2014-05-20 | Abbott Cardiovascular Systems Inc. | Methods for uniform crimping and deployment of a polymer scaffold |
| US8574283B1 (en) * | 2011-08-30 | 2013-11-05 | Suraj Govind Kamat | Deployment of stents within bifurcated vessels |
| US9724219B2 (en) | 2012-10-04 | 2017-08-08 | Abbott Cardiovascular Systems Inc. | Method of uniform crimping and expansion of medical devices |
| CA2887903C (en) * | 2012-10-25 | 2021-10-19 | Beatrice Vial | Crimping method for bioresorbable stents |
| US9364588B2 (en) | 2014-02-04 | 2016-06-14 | Abbott Cardiovascular Systems Inc. | Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating |
| US9381280B2 (en) | 2014-06-13 | 2016-07-05 | Abbott Cardiovascular Systems Inc. | Plasticizers for a biodegradable scaffolding and methods of forming same |
| US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
| US20190120785A1 (en) | 2017-10-24 | 2019-04-25 | Dexcom, Inc. | Pre-connected analyte sensors |
| US10555825B2 (en) | 2017-11-09 | 2020-02-11 | Abbott Cardiovascular Systems Inc. | Rotation of a medical device during crimping |
| CN112239567B (en) * | 2020-08-31 | 2021-08-31 | 中国科学院兰州化学物理研究所 | A kind of polycaprolactone/sodium alginate composite material and its preparation method and application |
| WO2022167651A1 (en) | 2021-02-08 | 2022-08-11 | Stentit Bv | Crimping of fibrous implants by heat treatment |
Citations (511)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2072303A (en) | 1932-10-18 | 1937-03-02 | Chemische Forschungs Gmbh | Artificial threads, bands, tubes, and the like for surgical and other purposes |
| US2386454A (en) | 1940-11-22 | 1945-10-09 | Bell Telephone Labor Inc | High molecular weight linear polyester-amides |
| US3178399A (en) | 1961-08-10 | 1965-04-13 | Minnesota Mining & Mfg | Fluorine-containing polymers and preparation thereof |
| US3773737A (en) | 1971-06-09 | 1973-11-20 | Sutures Inc | Hydrolyzable polymers of amino acid and hydroxy acids |
| US3849514A (en) | 1967-11-17 | 1974-11-19 | Eastman Kodak Co | Block polyester-polyamide copolymers |
| US3855638A (en) | 1970-06-04 | 1974-12-24 | Ontario Research Foundation | Surgical prosthetic device with porous metal coating |
| US3929992A (en) | 1972-09-29 | 1975-12-30 | Ayerst Mckenna & Harrison | Rapamycin and process of preparation |
| US4101984A (en) | 1975-05-09 | 1978-07-25 | Macgregor David C | Cardiovascular prosthetic devices and implants with porous systems |
| US4151413A (en) | 1977-06-29 | 1979-04-24 | Texaco Inc. | Method of measuring horizontal fluid flow behind casing in subsurface formations with sequential logging for interfering isotope compensation and increased measurement accuracy |
| US4226243A (en) | 1979-07-27 | 1980-10-07 | Ethicon, Inc. | Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids |
| SU872531A1 (en) | 1979-08-07 | 1981-10-15 | Институт Физиологии Им.И.С.Бериташвили Ан Гсср | Method of producing polyurethans |
| SU876663A1 (en) | 1979-11-11 | 1981-10-30 | Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср | Method of producing polyarylates |
| SU905228A1 (en) | 1980-03-06 | 1982-02-15 | Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср | Method for preparing thiourea |
| US4316885A (en) | 1980-08-25 | 1982-02-23 | Ayerst, Mckenna And Harrison, Inc. | Acyl derivatives of rapamycin |
| US4321711A (en) | 1978-10-18 | 1982-03-30 | Sumitomo Electric Industries, Ltd. | Vascular prosthesis |
| US4325903A (en) | 1980-07-15 | 1982-04-20 | Celanese Corporation | Processing of melt processible liquid crystal polymer by control of thermal history |
| US4329383A (en) | 1979-07-24 | 1982-05-11 | Nippon Zeon Co., Ltd. | Non-thrombogenic material comprising substrate which has been reacted with heparin |
| US4343931A (en) | 1979-12-17 | 1982-08-10 | Minnesota Mining And Manufacturing Company | Synthetic absorbable surgical devices of poly(esteramides) |
| US4355426A (en) | 1975-05-09 | 1982-10-26 | Macgregor David C | Porous flexible vascular graft |
| SU790725A1 (en) | 1979-07-27 | 1983-01-23 | Ордена Ленина Институт Элементоорганических Соединений Ан Ссср | Process for preparing alkylaromatic polyimides |
| US4374669A (en) | 1975-05-09 | 1983-02-22 | Mac Gregor David C | Cardiovascular prosthetic devices and implants with porous systems |
| SU1016314A1 (en) | 1979-12-17 | 1983-05-07 | Институт Физиологии Им.И.С.Бериташвили | Process for producing polyester urethanes |
| SU811750A1 (en) | 1979-08-07 | 1983-09-23 | Институт Физиологии Им.С.И.Бериташвили | Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same |
| US4529792A (en) | 1979-12-17 | 1985-07-16 | Minnesota Mining And Manufacturing Company | Process for preparing synthetic absorbable poly(esteramides) |
| US4611051A (en) | 1985-12-31 | 1986-09-09 | Union Camp Corporation | Novel poly(ester-amide) hot-melt adhesives |
| SU1293518A1 (en) | 1985-04-11 | 1987-02-28 | Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий | Installation for testing specimen of cross-shaped structure |
| US4650803A (en) | 1985-12-06 | 1987-03-17 | University Of Kansas | Prodrugs of rapamycin |
| US4656242A (en) | 1985-06-07 | 1987-04-07 | Henkel Corporation | Poly(ester-amide) compositions |
| US4693721A (en) | 1984-10-17 | 1987-09-15 | Paul Ducheyne | Porous flexible metal fiber material for surgical implantation |
| US4729871A (en) | 1985-06-21 | 1988-03-08 | Hiroshi Kawaguchi | Process for preparing porous metal plate |
| US4733665A (en) | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
| JPS63160645U (en) | 1987-04-09 | 1988-10-20 | ||
| US4800882A (en) | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
| US4816339A (en) | 1987-04-28 | 1989-03-28 | Baxter International Inc. | Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation |
| EP0323042A1 (en) | 1987-12-09 | 1989-07-05 | FISONS plc | Process to macrocyclic compounds |
| US4882168A (en) | 1986-09-05 | 1989-11-21 | American Cyanamid Company | Polyesters containing alkylene oxide blocks as drug delivery systems |
| US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
| WO1990001969A1 (en) | 1988-08-24 | 1990-03-08 | Slepian Marvin J | Biodegradable polymeric endoluminal sealing |
| US4931287A (en) | 1988-06-14 | 1990-06-05 | University Of Utah | Heterogeneous interpenetrating polymer networks for the controlled release of drugs |
| US4941870A (en) | 1986-11-10 | 1990-07-17 | Ube-Nitto Kasei Co., Ltd. | Method for manufacturing a synthetic vascular prosthesis |
| US4977901A (en) | 1988-11-23 | 1990-12-18 | Minnesota Mining And Manufacturing Company | Article having non-crosslinked crystallized polymer coatings |
| JPH0314516Y2 (en) | 1986-09-16 | 1991-03-29 | ||
| US5019096A (en) | 1988-02-11 | 1991-05-28 | Trustees Of Columbia University In The City Of New York | Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same |
| WO1991012846A1 (en) | 1990-02-26 | 1991-09-05 | Slepian Marvin J | Method and apparatus for treatment of tubular organs |
| US5059211A (en) | 1987-06-25 | 1991-10-22 | Duke University | Absorbable vascular stent |
| EP0475230A1 (en) | 1990-09-11 | 1992-03-18 | Research Corporation Technologies, Inc. | Methods of conjugating actinomycin D |
| US5100883A (en) | 1991-04-08 | 1992-03-31 | American Home Products Corporation | Fluorinated esters of rapamycin |
| US5100992A (en) | 1989-05-04 | 1992-03-31 | Biomedical Polymers International, Ltd. | Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same |
| US5102876A (en) | 1991-05-07 | 1992-04-07 | American Home Products Corporation | Reduction products of rapamycin |
| US5112457A (en) | 1990-07-23 | 1992-05-12 | Case Western Reserve University | Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants |
| US5118678A (en) | 1991-04-17 | 1992-06-02 | American Home Products Corporation | Carbamates of rapamycin |
| US5118677A (en) | 1991-05-20 | 1992-06-02 | American Home Products Corporation | Amide esters of rapamycin |
| US5120727A (en) | 1991-05-29 | 1992-06-09 | American Home Products Corporation | Rapamycin dimers |
| US5120842A (en) | 1991-04-01 | 1992-06-09 | American Home Products Corporation | Silyl ethers of rapamycin |
| US5120725A (en) | 1991-05-29 | 1992-06-09 | American Home Products Corporation | Bicyclic rapamycins |
| US5133742A (en) | 1990-06-15 | 1992-07-28 | Corvita Corporation | Crack-resistant polycarbonate urethane polymer prostheses |
| JPH04215768A (en) | 1990-02-08 | 1992-08-06 | Pfizer Hospital Prod Group Inc | Expansion type stent |
| US5138051A (en) | 1991-08-07 | 1992-08-11 | American Home Products Corporation | Rapamycin analogs as immunosuppressants and antifungals |
| US5151413A (en) | 1991-11-06 | 1992-09-29 | American Home Products Corporation | Rapamycin acetals as immunosuppressant and antifungal agents |
| US5162333A (en) | 1991-09-11 | 1992-11-10 | American Home Products Corporation | Aminodiesters of rapamycin |
| US5163952A (en) | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
| US5163958A (en) | 1989-02-02 | 1992-11-17 | Cordis Corporation | Carbon coated tubular endoprosthesis |
| US5165919A (en) | 1988-03-28 | 1992-11-24 | Terumo Kabushiki Kaisha | Medical material containing covalently bound heparin and process for its production |
| US5169851A (en) | 1991-08-07 | 1992-12-08 | American Home Products Corporation | Rapamycin analog as immunosuppressants and antifungals |
| US5219980A (en) | 1992-04-16 | 1993-06-15 | Sri International | Polymers biodegradable or bioerodiable into amino acids |
| US5221740A (en) | 1992-01-16 | 1993-06-22 | American Home Products Corporation | Oxepane isomers of rapamycin useful as immunosuppressive agents |
| US5258389A (en) | 1992-11-09 | 1993-11-02 | Merck & Co., Inc. | O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives |
| US5258020A (en) | 1990-09-14 | 1993-11-02 | Michael Froix | Method of using expandable polymeric stent with memory |
| US5272012A (en) | 1989-06-23 | 1993-12-21 | C. R. Bard, Inc. | Medical apparatus having protective, lubricious coating |
| DE4224401A1 (en) | 1992-07-21 | 1994-01-27 | Pharmatech Gmbh | New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd. |
| EP0514406B1 (en) | 1990-01-30 | 1994-03-02 | Akzo Nobel N.V. | Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances |
| US5292516A (en) | 1990-05-01 | 1994-03-08 | Mediventures, Inc. | Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers |
| US5298260A (en) | 1990-05-01 | 1994-03-29 | Mediventures, Inc. | Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality |
| US5300295A (en) | 1990-05-01 | 1994-04-05 | Mediventures, Inc. | Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH |
| US5306501A (en) | 1990-05-01 | 1994-04-26 | Mediventures, Inc. | Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers |
| US5306786A (en) | 1990-12-21 | 1994-04-26 | U C B S.A. | Carboxyl group-terminated polyesteramides |
| WO1994009760A1 (en) | 1992-11-05 | 1994-05-11 | Massachusetts Institute Of Technology | Biodegradable polymers for cell transplantation |
| WO1994013268A1 (en) | 1992-12-04 | 1994-06-23 | Kaplan Aaron V | Method and device for treating and enlarging body lumens |
| EP0604022A1 (en) | 1992-12-22 | 1994-06-29 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method for its manufacture |
| US5328471A (en) | 1990-02-26 | 1994-07-12 | Endoluminal Therapeutics, Inc. | Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens |
| US5330768A (en) | 1991-07-05 | 1994-07-19 | Massachusetts Institute Of Technology | Controlled drug delivery using polymer/pluronic blends |
| US5370682A (en) | 1993-04-26 | 1994-12-06 | Meadox Medicals, Inc. | Solid woven tubular prosthesis |
| US5370684A (en) | 1986-12-12 | 1994-12-06 | Sorin Biomedica S.P.A. | Prosthesis of polymeric material coated with biocompatible carbon |
| US5380299A (en) | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
| US5383928A (en) | 1992-06-10 | 1995-01-24 | Emory University | Stent sheath for local drug delivery |
| WO1995010989A1 (en) | 1993-10-19 | 1995-04-27 | Scimed Life Systems, Inc. | Intravascular stent pump |
| WO1995011817A1 (en) | 1993-10-27 | 1995-05-04 | Hoffman & Co. Elektrokohle Ges. Mbh | Rubbing contact component and process for connecting an electrical connection lead to a rubbing contact component |
| US5417981A (en) | 1992-04-28 | 1995-05-23 | Terumo Kabushiki Kaisha | Thermoplastic polymer composition and medical devices made of the same |
| EP0301856B1 (en) | 1987-07-28 | 1995-05-24 | Biomeasure, Inc. | Delivery system |
| US5419760A (en) | 1993-01-08 | 1995-05-30 | Pdt Systems, Inc. | Medicament dispensing stent for prevention of restenosis of a blood vessel |
| US5433909A (en) | 1992-03-13 | 1995-07-18 | Atrium Medical Corporation | Method of making controlled porosity expanded polytetrafluoroethylene products |
| US5437834A (en) | 1992-10-08 | 1995-08-01 | Kyocera Corporation | Porous living body repairing member, and a method of imparting elasticity to it |
| US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
| US5447724A (en) | 1990-05-17 | 1995-09-05 | Harbor Medical Devices, Inc. | Medical device polymer |
| US5455040A (en) | 1990-07-26 | 1995-10-03 | Case Western Reserve University | Anticoagulant plasma polymer-modified substrate |
| US5462990A (en) | 1990-10-15 | 1995-10-31 | Board Of Regents, The University Of Texas System | Multifunctional organic polymers |
| US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
| US5468253A (en) | 1993-01-21 | 1995-11-21 | Ethicon, Inc. | Elastomeric medical device |
| WO1995031104A1 (en) | 1994-05-13 | 1995-11-23 | The General Hospital Corporation | Inhibition of insulin-induced adiposis |
| EP0687008A2 (en) | 1994-06-06 | 1995-12-13 | Motorola, Inc. | Method and apparatus for improving interfacial adhesion between a polymer and a metal |
| WO1995024929A3 (en) | 1994-03-15 | 1995-12-28 | Univ Brown Res Found | Polymeric gene delivery system |
| US5480599A (en) | 1992-04-09 | 1996-01-02 | Huels Aktiengesellschaft | Method of manufacturing foam beads |
| US5485496A (en) | 1994-09-22 | 1996-01-16 | Cornell Research Foundation, Inc. | Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties |
| JPH0821306B2 (en) | 1985-07-19 | 1996-03-04 | イートン コーポレイション | Circuit breaker |
| EP0401747B1 (en) | 1989-06-06 | 1996-03-13 | Roy Calne | Use of rapamycin and derivatives and prodrugs thereof in the manufacture of a medicament for inhibiting transplant rejection in mammals |
| JPH0833718B2 (en) | 1989-12-04 | 1996-03-29 | 三菱電機株式会社 | Television screen display |
| WO1996013273A1 (en) | 1994-10-26 | 1996-05-09 | Novartis Ag | Pharmaceutical compositions |
| US5516781A (en) | 1992-01-09 | 1996-05-14 | American Home Products Corporation | Method of treating restenosis with rapamycin |
| US5516881A (en) | 1994-08-10 | 1996-05-14 | Cornell Research Foundation, Inc. | Aminoxyl-containing radical spin labeling in polymers and copolymers |
| US5522894A (en) | 1984-12-14 | 1996-06-04 | Draenert; Klaus | Bone replacement material made of absorbable beads |
| US5527907A (en) | 1993-11-19 | 1996-06-18 | Abbott Laboratories | Macrolide immunomodulators |
| US5527337A (en) | 1987-06-25 | 1996-06-18 | Duke University | Bioabsorbable stent and method of making the same |
| WO1996028115A1 (en) | 1995-03-10 | 1996-09-19 | Impra, Inc. | Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery |
| US5563145A (en) | 1994-12-07 | 1996-10-08 | American Home Products Corporation | Rapamycin 42-oximes and hydroxylamines |
| EP0414632B1 (en) | 1989-07-24 | 1996-10-23 | Sandoz Ltd. | Cyclosporin derivatives |
| US5571187A (en) | 1992-02-27 | 1996-11-05 | Zimmer, Inc. | Implant having a metallic porous surface |
| US5575818A (en) | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
| US5578073A (en) | 1994-09-16 | 1996-11-26 | Ramot Of Tel Aviv University | Thromboresistant surface treatment for biomaterials |
| US5583139A (en) | 1993-11-19 | 1996-12-10 | Abbott Laboratories | Marcolide immunomodulators |
| US5584877A (en) | 1993-06-25 | 1996-12-17 | Sumitomo Electric Industries, Ltd. | Antibacterial vascular prosthesis and surgical suture |
| WO1996040174A1 (en) | 1995-06-07 | 1996-12-19 | The American National Red Cross | Supplemented and unsupplemented tissue sealants, methods of their production and use |
| WO1996040140A1 (en) | 1995-06-07 | 1996-12-19 | Guilford Pharmaceuticals Inc. | Inhibitors of rotamase enzyme activity |
| US5605693A (en) | 1991-10-18 | 1997-02-25 | Seare, Jr.; William J. | Methods of making a porous device |
| US5605696A (en) | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
| US5607463A (en) | 1993-03-30 | 1997-03-04 | Medtronic, Inc. | Intravascular medical device |
| US5610241A (en) | 1996-05-07 | 1997-03-11 | Cornell Research Foundation, Inc. | Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers |
| US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
| WO1997010011A1 (en) | 1995-09-11 | 1997-03-20 | Schneider (Usa) Inc. | Drug release stent coating process |
| WO1997003654A3 (en) | 1995-07-14 | 1997-03-20 | Sandoz Ltd | Pharmaceutical compositions |
| JPH0985028A (en) | 1995-09-25 | 1997-03-31 | Sintokogio Ltd | Filter for treating carbon-based particulates in exhaust gas and carbon-based particulates processing apparatus using the same |
| US5628730A (en) | 1990-06-15 | 1997-05-13 | Cortrak Medical, Inc. | Phoretic balloon catheter with hydrogel coating |
| US5630840A (en) | 1993-01-19 | 1997-05-20 | Schneider (Usa) Inc | Clad composite stent |
| US5632779A (en) | 1989-07-25 | 1997-05-27 | Smith & Nephew, Inc. | Zirconium oxide and zirconium nitride coated vascular grafts |
| US5644020A (en) | 1993-08-12 | 1997-07-01 | Bayer Aktiengesellschaft | Thermoplastically processible and biodegradable aliphatic polyesteramides |
| US5649977A (en) | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
| US5651174A (en) * | 1992-03-19 | 1997-07-29 | Medtronic, Inc. | Intravascular radially expandable stent |
| US5658995A (en) | 1995-11-27 | 1997-08-19 | Rutgers, The State University | Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide) |
| WO1997029793A1 (en) | 1996-02-13 | 1997-08-21 | Massachusetts Institute Of Technology | Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices |
| WO1997031020A1 (en) | 1996-02-22 | 1997-08-28 | The General Hospital Corporation | METHODS AND COMPOSITIONS FOR ENHANCING CELLULAR RESPONSE TO TGF-β LIGANDS |
| US5665772A (en) | 1992-10-09 | 1997-09-09 | Sandoz Ltd. | O-alkylated rapamycin derivatives and their use, particularly as immunosuppressants |
| US5667767A (en) | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
| US5670161A (en) | 1996-05-28 | 1997-09-23 | Healy; Kevin E. | Biodegradable stent |
| US5670558A (en) | 1994-07-07 | 1997-09-23 | Terumo Kabushiki Kaisha | Medical instruments that exhibit surface lubricity when wetted |
| US5674242A (en) | 1995-06-06 | 1997-10-07 | Quanam Medical Corporation | Endoprosthetic device with therapeutic compound |
| WO1997045105A1 (en) | 1996-05-24 | 1997-12-04 | Angiotech Pharmaceuticals, Inc. | Compositions and methods for treating or preventing diseases of body passageways |
| WO1997046590A1 (en) | 1996-06-03 | 1997-12-11 | Gore Enterprise Holdings, Inc. | Materials and methods for the immobilization of bioactive species onto polymeric substrates |
| US5697967A (en) | 1992-03-19 | 1997-12-16 | Medtronic, Inc. | Drug eluting stent |
| US5700286A (en) | 1994-12-13 | 1997-12-23 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
| US5702754A (en) | 1995-02-22 | 1997-12-30 | Meadox Medicals, Inc. | Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings |
| US5707867A (en) | 1993-10-27 | 1998-01-13 | The Regents Of The University Of California | Antiviral compounds |
| US5707385A (en) | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
| US5711958A (en) | 1996-07-11 | 1998-01-27 | Life Medical Sciences, Inc. | Methods for reducing or eliminating post-surgical adhesion formation |
| US5713949A (en) | 1996-08-06 | 1998-02-03 | Jayaraman; Swaminathan | Microporous covered stents and method of coating |
| WO1998004256A1 (en) | 1996-07-30 | 1998-02-05 | Novartis Nutrition Ag | Amino acid compositions and use thereof in immunosuppression |
| US5716981A (en) | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
| US5721131A (en) | 1987-03-06 | 1998-02-24 | United States Of America As Represented By The Secretary Of The Navy | Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells |
| US5723219A (en) | 1995-12-19 | 1998-03-03 | Talison Research | Plasma deposited film networks |
| WO1998008463A1 (en) | 1996-08-30 | 1998-03-05 | Helix Medical Corporation | Medical devices having microbial resistant material properties |
| WO1998002441A3 (en) | 1996-07-12 | 1998-03-05 | Ariad Pharma Inc | Non immunosuppressive antifungal rapalogs |
| US5725567A (en) | 1990-02-28 | 1998-03-10 | Medtronic, Inc. | Method of making a intralumenal drug eluting prosthesis |
| WO1998009523A1 (en) | 1996-09-05 | 1998-03-12 | Massachusetts Institute Of Technology | Compositions and methods for treatment of neurological disorders and neurodegenerative diseases |
| WO1998010747A1 (en) | 1996-09-12 | 1998-03-19 | Galena As | Immunomodulatory formulation |
| WO1998017331A1 (en) | 1995-06-07 | 1998-04-30 | Cook Incorporated | Silver implantable medical device |
| US5746998A (en) | 1994-06-24 | 1998-05-05 | The General Hospital Corporation | Targeted co-polymers for radiographic imaging |
| US5746691A (en) | 1997-06-06 | 1998-05-05 | Global Therapeutics, Inc. | Method for polishing surgical stents |
| US5755771A (en) | 1994-11-03 | 1998-05-26 | Divysio Solutions Ulc | Expandable stent and method of delivery of same |
| US5759192A (en) | 1994-11-28 | 1998-06-02 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for direct laser cutting of metal stents |
| US5759205A (en) | 1994-01-21 | 1998-06-02 | Brown University Research Foundation | Negatively charged polymeric electret implant |
| WO1998023228A1 (en) | 1996-11-25 | 1998-06-04 | Alza Corporation | Directional drug delivery stent |
| US5766710A (en) | 1994-06-27 | 1998-06-16 | Advanced Cardiovascular Systems, Inc. | Biodegradable mesh and film stent |
| US5769883A (en) | 1991-10-04 | 1998-06-23 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
| US5783657A (en) | 1996-10-18 | 1998-07-21 | Union Camp Corporation | Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids |
| WO1998032398A1 (en) | 1997-01-28 | 1998-07-30 | United States Surgical Corporation | Polyesteramide, its preparation and surgical devices fabricated therefrom |
| US5788558A (en) | 1995-11-13 | 1998-08-04 | Localmed, Inc. | Apparatus and method for polishing lumenal prostheses |
| US5788979A (en) | 1994-07-22 | 1998-08-04 | Inflow Dynamics Inc. | Biodegradable coating with inhibitory properties for application to biocompatible materials |
| US5795318A (en) | 1993-04-30 | 1998-08-18 | Scimed Life Systems, Inc. | Method for delivering drugs to a vascular site |
| US5798355A (en) | 1995-06-07 | 1998-08-25 | Gpi Nil Holdings, Inc. | Inhibitors of rotamase enzyme activity |
| WO1998036784A1 (en) | 1997-02-20 | 1998-08-27 | Cook Incorporated | Coated implantable medical device |
| US5800392A (en) | 1995-01-23 | 1998-09-01 | Emed Corporation | Microporous catheter |
| US5800512A (en) | 1996-01-22 | 1998-09-01 | Meadox Medicals, Inc. | PTFE vascular graft |
| WO1998038687A1 (en) | 1997-02-28 | 1998-09-03 | Elf Atochem North America, Inc. | Copolymers of vinylidene fluoride and hexafluoropropylene having reduced extractable content and improved solution clarity |
| US5820917A (en) | 1995-06-07 | 1998-10-13 | Medtronic, Inc. | Blood-contacting medical device and method |
| WO1998044921A1 (en) | 1997-04-04 | 1998-10-15 | Merck & Co., Inc. | Somatostatin agonists |
| WO1998044922A1 (en) | 1997-04-04 | 1998-10-15 | Merck & Co., Inc. | Somatostatin agonists |
| US5824048A (en) | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
| US5824049A (en) | 1995-06-07 | 1998-10-20 | Med Institute, Inc. | Coated implantable medical device |
| US5830178A (en) | 1996-10-11 | 1998-11-03 | Micro Therapeutics, Inc. | Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide |
| US5836965A (en) | 1994-10-19 | 1998-11-17 | Jendersee; Brad | Stent delivery and deployment method |
| JPH10305105A (en) | 1997-04-30 | 1998-11-17 | Schneider Usa Inc | Medicine release coating for medical tool |
| US5843172A (en) | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
| US5846981A (en) | 1993-05-28 | 1998-12-08 | Gpi Nil Holdings Inc. | Inhibitors of rotamase enzyme activity |
| US5849859A (en) | 1992-03-27 | 1998-12-15 | Novartis Ag | Polyesters |
| US5854376A (en) | 1995-03-09 | 1998-12-29 | Sekisui Kaseihin Kogyo Kabushiki Kaisha | Aliphatic ester-amide copolymer resins |
| US5856814A (en) | 1995-08-02 | 1999-01-05 | Canon Kk | Driving method for display apparatus |
| US5858746A (en) | 1992-04-20 | 1999-01-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
| US5869127A (en) | 1995-02-22 | 1999-02-09 | Boston Scientific Corporation | Method of providing a substrate with a bio-active/biocompatible coating |
| US5876433A (en) | 1996-05-29 | 1999-03-02 | Ethicon, Inc. | Stent and method of varying amounts of heparin coated thereon to control treatment |
| US5877224A (en) | 1995-07-28 | 1999-03-02 | Rutgers, The State University Of New Jersey | Polymeric drug formulations |
| US5879398A (en) | 1995-02-14 | 1999-03-09 | Zimmer, Inc. | Acetabular cup |
| US5879713A (en) | 1994-10-12 | 1999-03-09 | Focal, Inc. | Targeted delivery via biodegradable polymers |
| WO1999016386A1 (en) | 1997-09-30 | 1999-04-08 | Scimed Life Systems, Inc. | Stent drug delivery system |
| WO1999019471A1 (en) | 1997-10-16 | 1999-04-22 | Board Of Regents, The University Of Texas System | Models and treatments for cardiac hypertrophy in relation with nf-at3 function |
| US5898029A (en) | 1994-04-12 | 1999-04-27 | The John Hopkins University | Direct influences on nerve growth of agents that interact with immunophilins in combination with neurotrophic factors |
| US5897911A (en) | 1997-08-11 | 1999-04-27 | Advanced Cardiovascular Systems, Inc. | Polymer-coated stent structure |
| US5902875A (en) | 1997-01-28 | 1999-05-11 | United States Surgical Corporation | Polyesteramide, its preparation and surgical devices fabricated therefrom |
| US5905168A (en) | 1992-12-11 | 1999-05-18 | Rhone-Poulenc Chimie | Process for treating a material comprising a polymer by hydrolysis |
| WO1999001118A9 (en) | 1997-07-01 | 1999-05-20 | Atherogenics Inc | Antioxidant enhancement of therapy for hyperproliferative conditions |
| WO1999024036A1 (en) | 1997-11-07 | 1999-05-20 | Aberdeen University | Skin penetration enhancing components |
| US5910564A (en) | 1995-12-07 | 1999-06-08 | Th. Goldschmidt Ag | Polyamino acid ester copolymers |
| US5912253A (en) | 1993-12-17 | 1999-06-15 | Novartis Ag | Rapamycin derivatives |
| US5914387A (en) | 1997-01-28 | 1999-06-22 | United States Surgical Corporation | Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom |
| US5925720A (en) | 1995-04-19 | 1999-07-20 | Kazunori Kataoka | Heterotelechelic block copolymers and process for producing the same |
| US5928279A (en) | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
| US5932299A (en) | 1996-04-23 | 1999-08-03 | Katoot; Mohammad W. | Method for modifying the surface of an object |
| US5932243A (en) | 1993-05-27 | 1999-08-03 | Novartis Ag | Galenical formulations |
| WO1999038546A1 (en) | 1998-01-30 | 1999-08-05 | Advanced Cardiovascular Systems, Inc. | Hydrophilic coating for an intracorporeal medical device |
| WO1999039720A1 (en) | 1998-02-04 | 1999-08-12 | Applied Genetics Incorporated Dermatics | Compositions and methods for modulating cytokine release in response to genotoxic agents |
| WO1999042104A1 (en) | 1998-02-23 | 1999-08-26 | Fujisawa Pharmaceutical Co., Ltd. | Use of macrolide compounds for treating glaucoma |
| US5945029A (en) | 1996-09-03 | 1999-08-31 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Ceramic monofilament or multifilament fiber and processes for their production and use |
| WO1999044584A1 (en) | 1998-03-06 | 1999-09-10 | Novartis Ag | Emulsion preconcentrates containing cyclosporin or a macrolide |
| US5955509A (en) | 1996-05-01 | 1999-09-21 | Board Of Regents, The University Of Texas System | pH dependent polymer micelles |
| US5958385A (en) | 1994-09-28 | 1999-09-28 | Lvmh Recherche | Polymers functionalized with amino acids or amino acid derivatives, method for synthesizing same, and use thereof as surfactants in cosmetic compositions, particularly nail varnishes |
| US5962007A (en) | 1997-12-19 | 1999-10-05 | Indigo Medical, Inc. | Use of a multi-component coil medical construct |
| US5961914A (en) | 1996-05-03 | 1999-10-05 | Milliken & Company | Method of thermoforming polyolefin resin |
| US5968091A (en) * | 1996-03-26 | 1999-10-19 | Corvita Corp. | Stents and stent grafts having enhanced hoop strength and methods of making the same |
| US5971954A (en) | 1990-01-10 | 1999-10-26 | Rochester Medical Corporation | Method of making catheter |
| JPH11299901A (en) | 1998-04-16 | 1999-11-02 | Johnson & Johnson Medical Kk | Stent and method for manufacturing the same |
| US5980564A (en) | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
| US5980972A (en) | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
| US5980928A (en) | 1997-07-29 | 1999-11-09 | Terry; Paul B. | Implant for preventing conjunctivitis in cattle |
| US5985890A (en) | 1995-06-09 | 1999-11-16 | Novartis Ag | Rapamycin derivatives |
| US5994444A (en) | 1997-10-16 | 1999-11-30 | Medtronic, Inc. | Polymeric material that releases nitric oxide |
| WO1999060997A1 (en) | 1998-05-22 | 1999-12-02 | Hewlett Healthcare Limited | Pharmaceutical compositions comprising an amphoteric surfactant an alkoxylated cetyl alcohol and a polar drug |
| US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
| US6001117A (en) | 1998-03-19 | 1999-12-14 | Indigo Medical, Inc. | Bellows medical construct and apparatus and method for using same |
| WO1999044597A3 (en) | 1998-03-06 | 1999-12-29 | Fujisawa Pharmaceutical Co | Use of macrolide compounds for the treatment of ards |
| US6011125A (en) | 1998-09-25 | 2000-01-04 | General Electric Company | Amide modified polyesters |
| US6010530A (en) | 1995-06-07 | 2000-01-04 | Boston Scientific Technology, Inc. | Self-expanding endoluminal prosthesis |
| US6010529A (en) | 1996-12-03 | 2000-01-04 | Atrium Medical Corporation | Expandable shielded vessel support |
| US6013621A (en) | 1997-10-17 | 2000-01-11 | The Rockfeller University | Method of treating psychosis and/or hyperactivity |
| US6015541A (en) | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
| US6015815A (en) | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
| WO2000002599A1 (en) | 1998-07-08 | 2000-01-20 | Advanced Biocompatible Coatings Inc. | Biocompatible metallic stents with hydroxy methacrylate coating |
| US6027779A (en) | 1993-08-18 | 2000-02-22 | W. L. Gore & Associates, Inc. | Thin-wall polytetrafluoroethylene tube |
| JP2000051367A (en) | 1998-06-30 | 2000-02-22 | Ethicon Inc | Stent coating method |
| EP0982041A1 (en) | 1998-08-21 | 2000-03-01 | Medtronic Ave, Inc. | Thromboresistant coating using silanes or siloxanes |
| US6034204A (en) | 1997-08-08 | 2000-03-07 | Basf Aktiengesellschaft | Condensation products of basic amino acids with copolymerizable compounds and a process for their production |
| US6033582A (en) | 1996-01-22 | 2000-03-07 | Etex Corporation | Surface modification of medical implants |
| WO2000012147A1 (en) | 1998-09-02 | 2000-03-09 | Scimed Life Systems, Inc. | Drug delivery device for stent |
| WO2000018446A1 (en) | 1998-09-25 | 2000-04-06 | Cathnet-Science S.A. | Multi-layered sleeve for intravascular expandable device |
| US6051648A (en) | 1995-12-18 | 2000-04-18 | Cohesion Technologies, Inc. | Crosslinked polymer compositions and methods for their use |
| US6051576A (en) | 1994-01-28 | 2000-04-18 | University Of Kentucky Research Foundation | Means to achieve sustained release of synergistic drugs by conjugation |
| WO1999063981A3 (en) | 1998-06-11 | 2000-04-20 | Cerus Corp | Use of alkylating compounds for inhibiting proliferation of arterial smooth muscle cells |
| US6054553A (en) | 1996-01-29 | 2000-04-25 | Bayer Ag | Process for the preparation of polymers having recurring agents |
| US6056906A (en) | 1996-09-25 | 2000-05-02 | Medtronic, Inc. | Method of making an intervascular catheter system for implanting a radially expandable stent within a body vessel |
| US6056993A (en) | 1997-05-30 | 2000-05-02 | Schneider (Usa) Inc. | Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel |
| US6060518A (en) | 1996-08-16 | 2000-05-09 | Supratek Pharma Inc. | Polymer compositions for chemotherapy and methods of treatment using the same |
| US6060451A (en) | 1990-06-15 | 2000-05-09 | The National Research Council Of Canada | Thrombin inhibitors based on the amino acid sequence of hirudin |
| US6066156A (en) | 1999-03-11 | 2000-05-23 | Advanced Cardiovascular Systems, Inc. | Temperature activated adhesive for releasably attaching stents to balloons |
| WO2000032234A1 (en) | 1998-12-03 | 2000-06-08 | Novartis Ag | Topical compositions comprising ascomycins |
| US6080488A (en) | 1995-02-01 | 2000-06-27 | Schneider (Usa) Inc. | Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices |
| US6083534A (en) | 1995-03-01 | 2000-07-04 | Yeda Research And Development Co. Ltd. | Pharmaceutical compositions for controlled release of soluble receptors |
| WO2000038703A1 (en) | 1998-12-24 | 2000-07-06 | R-Tech Ueno, Ltd. | Agent for treating visual cell function disorder |
| WO2000038590A1 (en) | 1998-12-23 | 2000-07-06 | Stephen George Edward Barker | Endoluminal stent |
| WO2000038754A1 (en) | 1998-12-23 | 2000-07-06 | Atrium Medical Corporation | Self-expanding prosthesis with biocompatible coating |
| WO2000015208A3 (en) | 1998-09-14 | 2000-07-13 | Fujisawa Pharmaceutical Co | New use of immunosupressants for mmp-mediated diseases |
| US6095817A (en) | 1999-02-24 | 2000-08-01 | Sulzer Calcitek Inc. | Dental implant having multiple textured surfaces |
| US6099562A (en) | 1996-06-13 | 2000-08-08 | Schneider (Usa) Inc. | Drug coating with topcoat |
| US6100346A (en) | 1995-03-06 | 2000-08-08 | Ethicon, Inc. | Copolymers of polyoxaamides |
| US6110188A (en) | 1998-03-09 | 2000-08-29 | Corvascular, Inc. | Anastomosis method |
| US6110483A (en) | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
| US6113629A (en) | 1998-05-01 | 2000-09-05 | Micrus Corporation | Hydrogel for the therapeutic treatment of aneurysms |
| US6121027A (en) | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
| US6120788A (en) | 1997-10-16 | 2000-09-19 | Bioamide, Inc. | Bioabsorbable triglycolic acid poly(ester-amide)s |
| US6120847A (en) | 1999-01-08 | 2000-09-19 | Scimed Life Systems, Inc. | Surface treatment method for stent coating |
| US6120491A (en) | 1997-11-07 | 2000-09-19 | The State University Rutgers | Biodegradable, anionic polymers derived from the amino acid L-tyrosine |
| US6120904A (en) | 1995-02-01 | 2000-09-19 | Schneider (Usa) Inc. | Medical device coated with interpenetrating network of hydrogel polymers |
| US6120536A (en) | 1995-04-19 | 2000-09-19 | Schneider (Usa) Inc. | Medical devices with long term non-thrombogenic coatings |
| EP1036562A1 (en) | 1997-12-03 | 2000-09-20 | Fujisawa Pharmaceutical Co., Ltd. | Soft-pellet drug and process for the preparation thereof |
| WO2000056247A1 (en) | 1999-03-19 | 2000-09-28 | Scimed Life Systems, Inc. | Polymer coated stent |
| WO2000009085A3 (en) | 1998-08-14 | 2000-09-28 | West Pharm Serv Drug Res Ltd | Oral formulation containing cyclosporin |
| WO2000057818A1 (en) | 1999-03-29 | 2000-10-05 | Cardio Synopsis Inc. | Stent with an integrated film coating for deployment throughout the body |
| US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
| US6139573A (en) | 1997-03-05 | 2000-10-31 | Scimed Life Systems, Inc. | Conformal laminate stent device |
| WO2000033878A3 (en) | 1998-12-07 | 2000-11-02 | Novartis Ag | Stabilization of macrolides |
| US6143370A (en) | 1997-08-27 | 2000-11-07 | Northeastern University | Process for producing polymer coatings with various porosities and surface areas |
| US6143354A (en) | 1999-02-08 | 2000-11-07 | Medtronic Inc. | One-step method for attachment of biomolecules to substrate surfaces |
| US6143037A (en) | 1996-06-12 | 2000-11-07 | The Regents Of The University Of Michigan | Compositions and methods for coating medical devices |
| WO2000066122A1 (en) | 1999-04-30 | 2000-11-09 | Sucampo Ag | Use of macrolide compounds for the treatment of dry eye |
| WO2000042949A3 (en) | 1999-01-22 | 2000-11-30 | Gore Enterprise Holdings Inc | A biliary stent-graft |
| WO2000071052A1 (en) | 1999-05-19 | 2000-11-30 | Bernd Starck | Highly flexible coating for stents and/or stent grafts and/or vascular stent prostheses |
| WO2000032238A9 (en) | 1998-12-03 | 2000-12-07 | Scimed Life Systems Inc | Stent having drug crystals thereon |
| WO2000024390A9 (en) | 1998-10-23 | 2000-12-07 | Univ British Columbia | Method and composition for modulating amyloidosis |
| US6159978A (en) | 1997-05-28 | 2000-12-12 | Aventis Pharmaceuticals Product, Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| US6165212A (en) | 1993-10-21 | 2000-12-26 | Corvita Corporation | Expandable supportive endoluminal grafts |
| US6165210A (en) | 1994-04-01 | 2000-12-26 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
| US6172167B1 (en) | 1996-06-28 | 2001-01-09 | Universiteit Twente | Copoly(ester-amides) and copoly(ester-urethanes) |
| WO2001001890A1 (en) | 1999-07-02 | 2001-01-11 | Boston Scientific Limited | Stent coating |
| US6177523B1 (en) | 1999-07-14 | 2001-01-23 | Cardiotech International, Inc. | Functionalized polyurethanes |
| US6180632B1 (en) | 1997-05-28 | 2001-01-30 | Aventis Pharmaceuticals Products Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| WO1999061040A9 (en) | 1998-05-22 | 2001-02-01 | Boys Town Nat Res Hospital | USE OF α1β1 INTEGRIN RECEPTOR INHIBITORS AND TGF-β1 INHIBITORS IN THE TREATMENT OF KIDNEY DISEASE |
| WO2001014387A1 (en) | 1999-08-24 | 2001-03-01 | Ariad Gene Therapeutics, Inc. | 28-epirapalogs |
| WO2001015751A1 (en) | 1999-09-01 | 2001-03-08 | Bioxid Oy | Novel multilayered material bearing a biologically active agent and the preparation thereof |
| WO2001017577A1 (en) | 1999-09-03 | 2001-03-15 | Advanced Cardiovascular Systems, Inc. | A porous prosthesis and a method of depositing substances into the pores |
| US6203551B1 (en) | 1999-10-04 | 2001-03-20 | Advanced Cardiovascular Systems, Inc. | Chamber for applying therapeutic substances to an implant device |
| US6206915B1 (en) | 1998-09-29 | 2001-03-27 | Medtronic Ave, Inc. | Drug storing and metering stent |
| US6211249B1 (en) | 1997-07-11 | 2001-04-03 | Life Medical Sciences, Inc. | Polyester polyether block copolymers |
| US6214901B1 (en) | 1998-04-27 | 2001-04-10 | Surmodics, Inc. | Bioactive agent release coating |
| US6221102B1 (en) * | 1983-12-09 | 2001-04-24 | Endovascular Technologies, Inc. | Intraluminal grafting system |
| US6228934B1 (en) | 1998-06-09 | 2001-05-08 | Metabolix, Inc. | Methods and apparatus for the production of amorphous polymer suspensions |
| US6231600B1 (en) | 1995-02-22 | 2001-05-15 | Scimed Life Systems, Inc. | Stents with hybrid coating for medical devices |
| WO2000074665A3 (en) | 1999-06-04 | 2001-05-17 | Fujisawa Pharmaceutical Co | New use of macrolide compounds for inducing chondrogenic differentiation |
| US6240616B1 (en) | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
| US6245753B1 (en) | 1998-05-28 | 2001-06-12 | Mediplex Corporation, Korea | Amphiphilic polysaccharide derivatives |
| US6245760B1 (en) | 1997-05-28 | 2001-06-12 | Aventis Pharmaceuticals Products, Inc | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| US6248129B1 (en) | 1990-09-14 | 2001-06-19 | Quanam Medical Corporation | Expandable polymeric stent with memory and delivery apparatus and method |
| US6251136B1 (en) | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
| WO2001045763A1 (en) | 1999-12-23 | 2001-06-28 | Advanced Cardiovascular Systems, Inc. | Biocomptabible coating |
| US6254632B1 (en) | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
| US20010007083A1 (en) | 1999-12-29 | 2001-07-05 | Roorda Wouter E. | Device and active component for inhibiting formation of thrombus-inflammatory cell matrix |
| US6258371B1 (en) | 1998-04-03 | 2001-07-10 | Medtronic Inc | Method for making biocompatible medical article |
| WO2001049338A1 (en) | 1999-12-30 | 2001-07-12 | Li Wei Pin | Controlled delivery of therapeutic agents by insertable medical devices |
| JP2001190687A (en) | 2000-01-07 | 2001-07-17 | Kawasumi Lab Inc | Stents and stent grafts |
| US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
| US20010014717A1 (en) | 1999-12-23 | 2001-08-16 | Hossainy Syed F.A. | Coating for implantable devices and a method of forming the same |
| US20010018469A1 (en) | 1999-09-03 | 2001-08-30 | Yung-Ming Chen | Ethylene vinyl alcohol composition and coating |
| US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
| US6283949B1 (en) | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
| US6284788B1 (en) | 1997-02-21 | 2001-09-04 | Bayer Aktiengesellschaft | Use of known agonists of the central cannabinoid receptor CB1 |
| EP0953320A3 (en) | 1998-04-30 | 2001-09-05 | Medtronic, Inc. | Medical device |
| US6287628B1 (en) | 1999-09-03 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
| US6287337B1 (en) | 1996-12-03 | 2001-09-11 | Atrium Medical Corporation | Multi-stage prosthesis |
| US6293959B1 (en) | 1998-11-16 | 2001-09-25 | Cordis Corporation | Balloon catheter and stent delivery system having enhanced stent retention and method |
| US6299604B1 (en) | 1998-08-20 | 2001-10-09 | Cook Incorporated | Coated implantable medical device |
| WO2001074414A1 (en) | 2000-03-31 | 2001-10-11 | Advanced Cardiovascular Systems, Inc. | A biocompatible carrier containing actinomycin d and a method of forming the same |
| US20010029351A1 (en) | 1998-04-16 | 2001-10-11 | Robert Falotico | Drug combinations and delivery devices for the prevention and treatment of vascular disease |
| WO2001023395A3 (en) | 1999-09-29 | 2001-10-25 | American Home Prod | Regioselective synthesis of rapamycin derivatives |
| WO2001087372A1 (en) | 2000-05-12 | 2001-11-22 | Cordis Corporation | Drug combinations useful for prevention of restenosis |
| WO2001087373A1 (en) | 2000-05-12 | 2001-11-22 | Cordis Corporation | Delivery devices for treatment of vascular disease |
| US20010046518A1 (en) | 1998-08-14 | 2001-11-29 | Amarpreet S. Sawhney | Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels |
| US6331313B1 (en) | 1999-10-22 | 2001-12-18 | Oculex Pharmaceticals, Inc. | Controlled-release biocompatible ocular drug delivery implant devices and methods |
| US6335029B1 (en) | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
| WO2001051027A3 (en) | 2000-01-11 | 2002-01-10 | Intralytix Inc | Polymer blends as biodegradable matrices for preparing biocomposites |
| WO2002003890A1 (en) | 2000-07-06 | 2002-01-17 | Biosurface Engineering Technologies, Inc. | Drug diffusion coatings, applications and methods |
| US20020007215A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
| US20020005206A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Antiproliferative drug and delivery device |
| US20020007213A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
| US20020007214A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
| US20020009604A1 (en) | 1999-12-22 | 2002-01-24 | Zamora Paul O. | Plasma-deposited coatings, devices and methods |
| US20020035774A1 (en) | 1999-09-22 | 2002-03-28 | Scimed Life Systems, Inc. | A Method and Apparatus for Contracting, Loading or Crimping Self-Expanding and Balloon Expandable Stent Devices |
| US20020038145A1 (en) | 2000-06-05 | 2002-03-28 | Jang G. David | Intravascular stent with increasing coating retaining capacity |
| WO2002026139A1 (en) | 2000-09-29 | 2002-04-04 | Cordis Corporation | Coated medical devices |
| US6368658B1 (en) | 1999-04-19 | 2002-04-09 | Scimed Life Systems, Inc. | Coating medical devices using air suspension |
| US6368346B1 (en) * | 1999-06-03 | 2002-04-09 | American Medical Systems, Inc. | Bioresorbable stent |
| US6379381B1 (en) | 1999-09-03 | 2002-04-30 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
| US6379379B1 (en) | 1998-05-05 | 2002-04-30 | Scimed Life Systems, Inc. | Stent with smooth ends |
| US20020051730A1 (en) | 2000-09-29 | 2002-05-02 | Stanko Bodnar | Coated medical devices and sterilization thereof |
| US6384046B1 (en) | 1996-03-27 | 2002-05-07 | Novartis Ag | Use of 40-O-(2-hydroxy)ethylrapamycin for treatment of restenosis and other disorders |
| US6387379B1 (en) | 1987-04-10 | 2002-05-14 | University Of Florida | Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like |
| US6395326B1 (en) | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
| WO2000064506A9 (en) | 1999-04-23 | 2002-06-06 | Agion Technologies L L C | Stent having antimicrobial agent |
| US20020071822A1 (en) | 2000-07-27 | 2002-06-13 | Uhrich Kathryn E. | Therapeutic polyesters and polyamides |
| US6406739B1 (en) | 2000-01-12 | 2002-06-18 | Alcon Universal Ltd. | Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses |
| US20020077693A1 (en) | 2000-12-19 | 2002-06-20 | Barclay Bruce J. | Covered, coiled drug delivery stent and method |
| US20020082685A1 (en) | 2000-12-22 | 2002-06-27 | Motasim Sirhan | Apparatus and methods for controlled substance delivery from implanted prostheses |
| US20020082679A1 (en) | 2000-12-22 | 2002-06-27 | Avantec Vascular Corporation | Delivery or therapeutic capable agents |
| US20020087123A1 (en) | 2001-01-02 | 2002-07-04 | Hossainy Syed F.A. | Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices |
| US20020091433A1 (en) | 1995-04-19 | 2002-07-11 | Ni Ding | Drug release coated stent |
| US6419692B1 (en) | 1999-02-03 | 2002-07-16 | Scimed Life Systems, Inc. | Surface protection method for stents and balloon catheters for drug delivery |
| US20020094440A1 (en) | 2000-09-29 | 2002-07-18 | Llanos Gerard H. | Coatings for medical devices |
| US20020100998A1 (en) | 1997-12-24 | 2002-08-01 | Hock Mark R. | Plastic closure with compression molded barrier liner |
| US20020111590A1 (en) | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
| US20020120326A1 (en) | 2000-12-22 | 2002-08-29 | Gene Michal | Ethylene-carboxyl copolymers as drug delivery matrices |
| US20020123801A1 (en) | 2000-12-28 | 2002-09-05 | Pacetti Stephen D. | Diffusion barrier layer for implantable devices |
| US20020127263A1 (en) | 2001-02-27 | 2002-09-12 | Wenda Carlyle | Peroxisome proliferator-acitvated receptor gamma ligand eluting medical device |
| US6451373B1 (en) | 2000-08-04 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Method of forming a therapeutic coating onto a surface of an implantable prosthesis |
| US20020143382A1 (en) | 2001-03-29 | 2002-10-03 | Luuk Hijlkema | Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece |
| US20020142039A1 (en) | 2001-03-30 | 2002-10-03 | Advanced Cardiovascular Systems, Inc. | Controlled morphologies in polymer drug for release of drugs from polymer films |
| US20020155212A1 (en) | 2001-04-24 | 2002-10-24 | Hossainy Syed Faiyaz Ahmed | Coating for a stent and a method of forming the same |
| US6475235B1 (en) | 1999-11-16 | 2002-11-05 | Iowa-India Investments Company, Limited | Encapsulated stent preform |
| US20020165608A1 (en) | 2001-05-07 | 2002-11-07 | Llanos Gerard H. | Local drug delivery devices and methods for maintaining the drug coatings thereon |
| US20020176849A1 (en) | 2001-02-09 | 2002-11-28 | Endoluminal Therapeutics, Inc. | Endomural therapy |
| FR2785812B1 (en) | 1998-11-16 | 2002-11-29 | Commissariat Energie Atomique | BIOACTIVE PROSTHESES, IN PARTICULAR WITH IMMUNOSUPPRESSIVE PROPERTIES, ANTISTENOSIS AND ANTITHROMBOSIS, AND THEIR MANUFACTURE |
| US20020183581A1 (en) | 2001-05-31 | 2002-12-05 | Yoe Brandon James | Radiation or drug delivery source with activity gradient to minimize edge effects |
| US20020188277A1 (en) | 2001-05-18 | 2002-12-12 | Roorda Wouter E. | Medicated stents for the treatment of vascular disease |
| US20020188037A1 (en) | 1999-04-15 | 2002-12-12 | Chudzik Stephen J. | Method and system for providing bioactive agent release coating |
| US6494862B1 (en) | 1999-07-13 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway |
| WO2002102283A1 (en) | 2001-06-19 | 2002-12-27 | Advanced Cardiovascular Systems, Inc. | Method and system for securing a coated stent to a balloon catheter |
| US20030004141A1 (en) | 2001-03-08 | 2003-01-02 | Brown David L. | Medical devices, compositions and methods for treating vulnerable plaque |
| US6503538B1 (en) | 2000-08-30 | 2003-01-07 | Cornell Research Foundation, Inc. | Elastomeric functional biodegradable copolyester amides and copolyester urethanes |
| US6503556B2 (en) | 2000-12-28 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Methods of forming a coating for a prosthesis |
| EP1273314A1 (en) | 2001-07-06 | 2003-01-08 | Terumo Kabushiki Kaisha | Stent |
| US6506437B1 (en) | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
| WO2002026162A3 (en) | 2000-09-26 | 2003-01-16 | Advanced Cardiovascular System | A method of loading a substance onto an implantable device |
| WO2002056790A3 (en) | 2000-12-22 | 2003-01-23 | Avantec Vascular Corp | Delivery of therapeutic capable agents |
| WO2002034311A3 (en) | 2000-10-26 | 2003-01-30 | Advanced Cardiovascular System | Selective coating of medical devices |
| US20030028244A1 (en) | 1995-06-07 | 2003-02-06 | Cook Incorporated | Coated implantable medical device |
| US20030028243A1 (en) | 1995-06-07 | 2003-02-06 | Cook Incorporated | Coated implantable medical device |
| US20030032767A1 (en) | 2001-02-05 | 2003-02-13 | Yasuhiro Tada | High-strength polyester-amide fiber and process for producing the same |
| US20030036794A1 (en) | 1995-06-07 | 2003-02-20 | Cook Incorporated | Coated implantable medical device |
| US20030039689A1 (en) | 2001-04-26 | 2003-02-27 | Jianbing Chen | Polymer-based, sustained release drug delivery system |
| US20030040790A1 (en) | 1998-04-15 | 2003-02-27 | Furst Joseph G. | Stent coating |
| US6527863B1 (en) | 2001-06-29 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Support device for a stent and a method of using the same to coat a stent |
| US6527801B1 (en) | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
| US6530950B1 (en) | 1999-01-12 | 2003-03-11 | Quanam Medical Corporation | Intraluminal stent having coaxial polymer member |
| US6530951B1 (en) | 1996-10-24 | 2003-03-11 | Cook Incorporated | Silver implantable medical device |
| WO2003022323A1 (en) | 2001-09-07 | 2003-03-20 | Advanced Cardiovascular Systems, Inc. | Coating for reducing the rate of release of drugs from stents |
| US20030060877A1 (en) | 2001-09-25 | 2003-03-27 | Robert Falotico | Coated medical devices for the treatment of vascular disease |
| US20030059520A1 (en) | 2001-09-27 | 2003-03-27 | Yung-Ming Chen | Apparatus for regulating temperature of a composition and a method of coating implantable devices |
| US6540776B2 (en) | 2000-12-28 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Sheath for a prosthesis and methods of forming the same |
| US20030065377A1 (en) | 2001-09-28 | 2003-04-03 | Davila Luis A. | Coated medical devices |
| US6544223B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter for delivering therapeutic agents |
| US6544582B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for coating an implantable device |
| US6544543B1 (en) | 2000-12-27 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Periodic constriction of vessels to treat ischemic tissue |
| US6547819B2 (en) | 1994-07-09 | 2003-04-15 | Ernst Peter Strecker | Endoprosthesis percutaneously implantable in the body of a patient |
| US20030073961A1 (en) | 2001-09-28 | 2003-04-17 | Happ Dorrie M. | Medical device containing light-protected therapeutic agent and a method for fabricating thereof |
| US6555157B1 (en) | 2000-07-25 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Method for coating an implantable device and system for performing the method |
| WO2003035131A1 (en) | 2001-09-27 | 2003-05-01 | Advanced Cardiovascular Systems, Inc. | A rate-reducing membrane for release of an agent |
| US20030083739A1 (en) | 2001-09-24 | 2003-05-01 | Robert Cafferata | Rational drug therapy device and methods |
| US20030083646A1 (en) | 2000-12-22 | 2003-05-01 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
| US6558733B1 (en) | 2000-10-26 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Method for etching a micropatterned microdepot prosthesis |
| US6565659B1 (en) | 2001-06-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Stent mounting assembly and a method of using the same to coat a stent |
| US20030097088A1 (en) | 2001-11-12 | 2003-05-22 | Pacetti Stephen Dirk | Coatings for drug delivery devices |
| US20030099712A1 (en) | 2001-11-26 | 2003-05-29 | Swaminathan Jayaraman | Therapeutic coating for an intravascular implant |
| US6572644B1 (en) | 2001-06-27 | 2003-06-03 | Advanced Cardiovascular Systems, Inc. | Stent mounting device and a method of using the same to coat a stent |
| US6574497B1 (en) | 2000-12-22 | 2003-06-03 | Advanced Cardiovascular Systems, Inc. | MRI medical device markers utilizing fluorine-19 |
| US6585755B2 (en) | 2001-06-29 | 2003-07-01 | Advanced Cardiovascular | Polymeric stent suitable for imaging by MRI and fluoroscopy |
| US6585926B1 (en) | 2000-08-31 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a porous balloon |
| US6585765B1 (en) | 2000-06-29 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Implantable device having substances impregnated therein and a method of impregnating the same |
| JP2003210570A (en) | 2002-01-18 | 2003-07-29 | Olympus Optical Co Ltd | Implant material having living body active layer and method for covering living body active layer on implant basic material |
| US20030144727A1 (en) | 2002-01-31 | 2003-07-31 | Rosenthal Arthur L. | Medical device for delivering biologically active material |
| US6605154B1 (en) | 2001-05-31 | 2003-08-12 | Advanced Cardiovascular Systems, Inc. | Stent mounting device |
| US6610087B1 (en) | 1999-11-16 | 2003-08-26 | Scimed Life Systems, Inc. | Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance |
| US6623448B2 (en) | 2001-03-30 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Steerable drug delivery device |
| US6625486B2 (en) | 2001-04-11 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for intracellular delivery of an agent |
| US6623764B1 (en) | 1996-12-20 | 2003-09-23 | Aventis Pasteur Limited | Biodegradable targetable microparticle delivery system |
| WO2003080147A1 (en) | 2002-03-20 | 2003-10-02 | Advanced Cardiovascular Systems, Inc. | Biodegradable hydrophobic polymer for stents |
| US6629350B2 (en) | 2000-06-08 | 2003-10-07 | Tom Motsenbocker | Stent crimping apparatus and method |
| WO2003082368A1 (en) | 2002-03-27 | 2003-10-09 | Advanced Cardiovascular Systems, Inc. | 40-o-(2-hydroxy)ethyl-rapamycin coated stent |
| US20030208254A1 (en) | 2002-05-03 | 2003-11-06 | James Shortt | Method and apparatus for mounting a stent onto a stent delivery system |
| US6645135B1 (en) | 2001-03-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance |
| US6645195B1 (en) | 2001-01-05 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Intraventricularly guided agent delivery system and method of use |
| US6652581B1 (en) | 1998-07-07 | 2003-11-25 | Boston Scientific Scimed, Inc. | Medical device with porous surface for controlled drug release and method of making the same |
| WO2003097015A1 (en) | 2002-05-15 | 2003-11-27 | Brown University Research Foundation | Short chain polymer for enhancing the bioadhesiveness of polymers on mucosal membrane |
| US6656506B1 (en) | 2001-05-09 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Microparticle coated medical device |
| US6656216B1 (en) | 2001-06-29 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Composite stent with regioselective material |
| WO2003090818A3 (en) | 2002-04-24 | 2003-12-04 | Sun Biomedical Ltd | Drug-delivery endovascular stent and method for treating restenosis |
| US6660034B1 (en) | 2001-04-30 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Stent for increasing blood flow to ischemic tissues and a method of using the same |
| US6663880B1 (en) | 2001-11-30 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Permeabilizing reagents to increase drug delivery and a method of local delivery |
| US6673385B1 (en) | 2000-05-31 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Methods for polymeric coatings stents |
| US6673154B1 (en) | 2001-06-28 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Stent mounting device to coat a stent |
| WO2002074194A3 (en) | 2001-03-16 | 2004-01-08 | Sts Biopolymers Inc | Stent with medicated multi-layer hydrid polymer coating |
| WO2004009145A1 (en) | 2002-07-19 | 2004-01-29 | Advanced Cardiovascular Systems, Inc. | Purified polymers for coatings of implantable medical devices |
| US20040029952A1 (en) | 1999-09-03 | 2004-02-12 | Yung-Ming Chen | Ethylene vinyl alcohol composition and coating |
| US6695920B1 (en) | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
| US6706013B1 (en) | 2001-06-29 | 2004-03-16 | Advanced Cardiovascular Systems, Inc. | Variable length drug delivery catheter |
| US20040054104A1 (en) | 2002-09-05 | 2004-03-18 | Pacetti Stephen D. | Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol) |
| US6709514B1 (en) | 2001-12-28 | 2004-03-23 | Advanced Cardiovascular Systems, Inc. | Rotary coating apparatus for coating implantable medical devices |
| US20040063805A1 (en) | 2002-09-19 | 2004-04-01 | Pacetti Stephen D. | Coatings for implantable medical devices and methods for fabrication thereof |
| US6716444B1 (en) | 2000-09-28 | 2004-04-06 | Advanced Cardiovascular Systems, Inc. | Barriers for polymer-coated implantable medical devices and methods for making the same |
| US20040072922A1 (en) | 2002-10-09 | 2004-04-15 | Hossainy Syed F.A. | Rate limiting barriers for implantable medical devices |
| EP0665023B1 (en) | 1993-07-21 | 2004-04-21 | Otsuka Pharmaceutical Factory, Inc. | Medical material and process for producing the same |
| WO2004032987A1 (en) | 2002-10-11 | 2004-04-22 | Cartificial A/S | Medical device comprising a bio-compatible polymeric product with a layered structure |
| US20040086542A1 (en) | 1999-12-23 | 2004-05-06 | Hossainy Syed F.A. | Coating for implantable devices and a method of forming the same |
| US6740040B1 (en) | 2001-01-30 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Ultrasound energy driven intraventricular catheter to treat ischemia |
| WO2004000383A3 (en) | 2002-06-21 | 2004-05-27 | Advanced Cardiovascular System | Polyacrylates coatings for implantable medical devices |
| US6743462B1 (en) | 2001-05-31 | 2004-06-01 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for coating implantable devices |
| US6749626B1 (en) | 2000-03-31 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Actinomycin D for the treatment of vascular disease |
| EP1064942B1 (en) | 1998-03-26 | 2004-06-16 | Fujisawa Pharmaceutical Co., Ltd. | Sustained release preparation of a macrolide |
| US6758859B1 (en) | 2000-10-30 | 2004-07-06 | Kenny L. Dang | Increased drug-loading and reduced stress drug delivery device |
| US6764505B1 (en) | 2001-04-12 | 2004-07-20 | Advanced Cardiovascular Systems, Inc. | Variable surface area stent |
| EP1440699A1 (en) | 2003-01-24 | 2004-07-28 | Medtronic Vascular, Inc. | Stent with epoxy primer coating |
| EP1470830A1 (en) | 2003-04-25 | 2004-10-27 | Medtronic Vascular, Inc. | Drug-polymer coated stent with polysulfone and styrenic block copolymer |
| US20040220665A1 (en) | 1999-09-03 | 2004-11-04 | Hossainy Syed F.A. | Thermal treatment of a drug eluting implantable medical device |
| US20050037052A1 (en) | 2003-08-13 | 2005-02-17 | Medtronic Vascular, Inc. | Stent coating with gradient porosity |
| US20050038134A1 (en) | 1997-08-18 | 2005-02-17 | Scimed Life Systems, Inc. | Bioresorbable hydrogel compositions for implantable prostheses |
| US20050038497A1 (en) | 2003-08-11 | 2005-02-17 | Scimed Life Systems, Inc. | Deformation medical device without material deformation |
| US20050043786A1 (en) | 2003-08-18 | 2005-02-24 | Medtronic Ave, Inc. | Methods and apparatus for treatment of aneurysmal tissue |
| US6861088B2 (en) | 2002-03-28 | 2005-03-01 | Boston Scientific Scimed, Inc. | Method for spray-coating a medical device having a tubular wall such as a stent |
| US20050049693A1 (en) | 2003-08-25 | 2005-03-03 | Medtronic Vascular Inc. | Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease |
| US20050049694A1 (en) | 2003-08-07 | 2005-03-03 | Medtronic Ave. | Extrusion process for coating stents |
| US20050055078A1 (en) | 2003-09-04 | 2005-03-10 | Medtronic Vascular, Inc. | Stent with outer slough coating |
| US20050054774A1 (en) | 2003-09-09 | 2005-03-10 | Scimed Life Systems, Inc. | Lubricious coating |
| US20050055044A1 (en) | 2003-09-09 | 2005-03-10 | Scimed Life Systems, Inc. | Lubricious coatings for medical device |
| US6865810B2 (en) | 2002-06-27 | 2005-03-15 | Scimed Life Systems, Inc. | Methods of making medical devices |
| US20050060020A1 (en) | 2003-09-17 | 2005-03-17 | Scimed Life Systems, Inc. | Covered stent with biologically active material |
| US20050065501A1 (en) | 2003-09-23 | 2005-03-24 | Scimed Life Systems, Inc. | Energy activated vaso-occlusive devices |
| US20050065593A1 (en) | 2003-09-19 | 2005-03-24 | Medtronic Vascular, Inc. | Delivery of therapeutics to treat aneurysms |
| US20050065545A1 (en) | 2003-09-23 | 2005-03-24 | Scimed Life Systems, Inc. | External activation of vaso-occlusive implants |
| US20050064088A1 (en) | 2003-09-24 | 2005-03-24 | Scimed Life Systems, Inc | Ultrasonic nozzle for coating a medical appliance and method for using an ultrasonic nozzle to coat a medical appliance |
| EP1023879B1 (en) | 1999-01-29 | 2005-04-06 | Medtronic, Inc. | Implantable medical device with enhanced biocompatibility and biostability |
| US20050074545A1 (en) | 2003-09-29 | 2005-04-07 | Medtronic Vascular, Inc. | Stent with improved drug loading capacity |
| US20050074406A1 (en) | 2003-10-03 | 2005-04-07 | Scimed Life Systems, Inc. | Ultrasound coating for enhancing visualization of medical device in ultrasound images |
| US20050075714A1 (en) | 2003-09-24 | 2005-04-07 | Medtronic Vascular, Inc. | Gradient coated stent and method of fabrication |
| US6878160B2 (en) | 2001-03-27 | 2005-04-12 | Scimed Life Systems, Inc. | Stent with controlled expansion |
| US20050079274A1 (en) | 2003-10-14 | 2005-04-14 | Maria Palasis | Method for coating multiple stents |
| US20050084515A1 (en) | 2003-03-20 | 2005-04-21 | Medtronic Vascular, Inc. | Biocompatible controlled release coatings for medical devices and related methods |
| US6887485B2 (en) | 2000-05-10 | 2005-05-03 | Medtronic Vascular, Inc. | Nitric oxide-releasing metallic medical devices |
| US6887270B2 (en) | 2002-02-08 | 2005-05-03 | Boston Scientific Scimed, Inc. | Implantable or insertable medical device resistant to microbial growth and biofilm formation |
| US6890546B2 (en) | 1998-09-24 | 2005-05-10 | Abbott Laboratories | Medical devices containing rapamycin analogs |
| JP2004523275A5 (en) | 2001-12-18 | 2005-05-26 | ||
| US20050113903A1 (en) | 2002-01-31 | 2005-05-26 | Scimed Life Systems, Inc. | Medical device for delivering biologically active material |
| US20050118344A1 (en) | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
| US20050143752A1 (en) | 2001-09-19 | 2005-06-30 | Abbott Laboratories Vascular Entities Limited | Cold-molding process for loading a stent onto a stent delivery system |
| US20050233062A1 (en) | 1999-09-03 | 2005-10-20 | Hossainy Syed F | Thermal treatment of an implantable medical device |
| US20050238686A1 (en) | 1999-12-23 | 2005-10-27 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
| EP0978288A4 (en) | 1997-04-11 | 2006-07-12 | Astellas Pharma Inc | Medicinal composition |
| US20070289117A1 (en) | 2006-06-19 | 2007-12-20 | Bin Huang | Methods for improving stent retention on a balloon catheter |
| US7316148B2 (en) | 2005-02-15 | 2008-01-08 | Boston Scientific Scimed, Inc. | Protective sheet loader |
| US7591844B2 (en) | 2000-09-29 | 2009-09-22 | Cordis Corporation | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
| US8123793B2 (en) | 2008-09-10 | 2012-02-28 | Boston Scientific Scimed, Inc. | Pre-crimp balloon inflation |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US208254A (en) * | 1878-09-24 | Improvement in windmills | ||
| US35774A (en) * | 1862-07-01 | Improvement in windmills | ||
| US143382A (en) * | 1873-09-30 | Improvement in bracelet-fastenings | ||
| US5680840A (en) * | 1996-11-08 | 1997-10-28 | Mandella; Michael J. | Multi-crankshaft variable stroke engine |
| US7519844B2 (en) * | 2005-06-22 | 2009-04-14 | Rambus, Inc. | PVT drift compensation |
| JP4215768B2 (en) | 2005-11-29 | 2009-01-28 | 株式会社日研工作所 | Brake mechanism of rotary table |
-
2003
- 2003-12-01 US US10/725,698 patent/US20050118344A1/en not_active Abandoned
-
2004
- 2004-10-01 US US10/957,022 patent/US8052912B2/en not_active Ceased
- 2004-11-30 DE DE200460030716 patent/DE602004030716D1/en not_active Expired - Lifetime
- 2004-11-30 AT AT04812597T patent/ATE492390T1/en not_active IP Right Cessation
- 2004-11-30 ES ES04812597T patent/ES2356466T3/en not_active Expired - Lifetime
-
2013
- 2013-03-18 US US13/846,859 patent/US20130333193A1/en not_active Abandoned
- 2013-11-07 US US14/074,543 patent/USRE45744E1/en not_active Expired - Fee Related
Patent Citations (634)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2072303A (en) | 1932-10-18 | 1937-03-02 | Chemische Forschungs Gmbh | Artificial threads, bands, tubes, and the like for surgical and other purposes |
| US2386454A (en) | 1940-11-22 | 1945-10-09 | Bell Telephone Labor Inc | High molecular weight linear polyester-amides |
| US3178399A (en) | 1961-08-10 | 1965-04-13 | Minnesota Mining & Mfg | Fluorine-containing polymers and preparation thereof |
| US3849514A (en) | 1967-11-17 | 1974-11-19 | Eastman Kodak Co | Block polyester-polyamide copolymers |
| US3855638A (en) | 1970-06-04 | 1974-12-24 | Ontario Research Foundation | Surgical prosthetic device with porous metal coating |
| US3773737A (en) | 1971-06-09 | 1973-11-20 | Sutures Inc | Hydrolyzable polymers of amino acid and hydroxy acids |
| US3929992A (en) | 1972-09-29 | 1975-12-30 | Ayerst Mckenna & Harrison | Rapamycin and process of preparation |
| US4101984A (en) | 1975-05-09 | 1978-07-25 | Macgregor David C | Cardiovascular prosthetic devices and implants with porous systems |
| US4459252A (en) | 1975-05-09 | 1984-07-10 | Macgregor David C | Method of forming a small bore flexible vascular graft involving eluting solvent-elutable particles from a polymeric tubular article |
| US4374669A (en) | 1975-05-09 | 1983-02-22 | Mac Gregor David C | Cardiovascular prosthetic devices and implants with porous systems |
| US4355426A (en) | 1975-05-09 | 1982-10-26 | Macgregor David C | Porous flexible vascular graft |
| US4151413A (en) | 1977-06-29 | 1979-04-24 | Texaco Inc. | Method of measuring horizontal fluid flow behind casing in subsurface formations with sequential logging for interfering isotope compensation and increased measurement accuracy |
| US4321711A (en) | 1978-10-18 | 1982-03-30 | Sumitomo Electric Industries, Ltd. | Vascular prosthesis |
| US4329383A (en) | 1979-07-24 | 1982-05-11 | Nippon Zeon Co., Ltd. | Non-thrombogenic material comprising substrate which has been reacted with heparin |
| SU790725A1 (en) | 1979-07-27 | 1983-01-23 | Ордена Ленина Институт Элементоорганических Соединений Ан Ссср | Process for preparing alkylaromatic polyimides |
| US4226243A (en) | 1979-07-27 | 1980-10-07 | Ethicon, Inc. | Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids |
| SU872531A1 (en) | 1979-08-07 | 1981-10-15 | Институт Физиологии Им.И.С.Бериташвили Ан Гсср | Method of producing polyurethans |
| SU811750A1 (en) | 1979-08-07 | 1983-09-23 | Институт Физиологии Им.С.И.Бериташвили | Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same |
| SU876663A1 (en) | 1979-11-11 | 1981-10-30 | Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср | Method of producing polyarylates |
| US4529792A (en) | 1979-12-17 | 1985-07-16 | Minnesota Mining And Manufacturing Company | Process for preparing synthetic absorbable poly(esteramides) |
| SU1016314A1 (en) | 1979-12-17 | 1983-05-07 | Институт Физиологии Им.И.С.Бериташвили | Process for producing polyester urethanes |
| US4343931A (en) | 1979-12-17 | 1982-08-10 | Minnesota Mining And Manufacturing Company | Synthetic absorbable surgical devices of poly(esteramides) |
| SU905228A1 (en) | 1980-03-06 | 1982-02-15 | Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср | Method for preparing thiourea |
| US4325903A (en) | 1980-07-15 | 1982-04-20 | Celanese Corporation | Processing of melt processible liquid crystal polymer by control of thermal history |
| US4316885A (en) | 1980-08-25 | 1982-02-23 | Ayerst, Mckenna And Harrison, Inc. | Acyl derivatives of rapamycin |
| US6221102B1 (en) * | 1983-12-09 | 2001-04-24 | Endovascular Technologies, Inc. | Intraluminal grafting system |
| US4693721A (en) | 1984-10-17 | 1987-09-15 | Paul Ducheyne | Porous flexible metal fiber material for surgical implantation |
| US5522894A (en) | 1984-12-14 | 1996-06-04 | Draenert; Klaus | Bone replacement material made of absorbable beads |
| SU1293518A1 (en) | 1985-04-11 | 1987-02-28 | Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий | Installation for testing specimen of cross-shaped structure |
| US4656242A (en) | 1985-06-07 | 1987-04-07 | Henkel Corporation | Poly(ester-amide) compositions |
| US4729871A (en) | 1985-06-21 | 1988-03-08 | Hiroshi Kawaguchi | Process for preparing porous metal plate |
| JPH0821306B2 (en) | 1985-07-19 | 1996-03-04 | イートン コーポレイション | Circuit breaker |
| US4733665A (en) | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
| US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
| US4733665B1 (en) | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
| US4650803A (en) | 1985-12-06 | 1987-03-17 | University Of Kansas | Prodrugs of rapamycin |
| US4611051A (en) | 1985-12-31 | 1986-09-09 | Union Camp Corporation | Novel poly(ester-amide) hot-melt adhesives |
| US4882168A (en) | 1986-09-05 | 1989-11-21 | American Cyanamid Company | Polyesters containing alkylene oxide blocks as drug delivery systems |
| JPH0314516Y2 (en) | 1986-09-16 | 1991-03-29 | ||
| US4941870A (en) | 1986-11-10 | 1990-07-17 | Ube-Nitto Kasei Co., Ltd. | Method for manufacturing a synthetic vascular prosthesis |
| US5370684A (en) | 1986-12-12 | 1994-12-06 | Sorin Biomedica S.P.A. | Prosthesis of polymeric material coated with biocompatible carbon |
| US5721131A (en) | 1987-03-06 | 1998-02-24 | United States Of America As Represented By The Secretary Of The Navy | Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells |
| US4800882A (en) | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
| JPS63160645U (en) | 1987-04-09 | 1988-10-20 | ||
| US6387379B1 (en) | 1987-04-10 | 2002-05-14 | University Of Florida | Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like |
| US4816339A (en) | 1987-04-28 | 1989-03-28 | Baxter International Inc. | Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation |
| US5059211A (en) | 1987-06-25 | 1991-10-22 | Duke University | Absorbable vascular stent |
| US5527337A (en) | 1987-06-25 | 1996-06-18 | Duke University | Bioabsorbable stent and method of making the same |
| US5306286A (en) | 1987-06-25 | 1994-04-26 | Duke University | Absorbable stent |
| EP0301856B1 (en) | 1987-07-28 | 1995-05-24 | Biomeasure, Inc. | Delivery system |
| US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
| EP0323042A1 (en) | 1987-12-09 | 1989-07-05 | FISONS plc | Process to macrocyclic compounds |
| US5019096A (en) | 1988-02-11 | 1991-05-28 | Trustees Of Columbia University In The City Of New York | Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same |
| US5616338A (en) | 1988-02-11 | 1997-04-01 | Trustees Of Columbia University In The City Of New York | Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same |
| US5165919A (en) | 1988-03-28 | 1992-11-24 | Terumo Kabushiki Kaisha | Medical material containing covalently bound heparin and process for its production |
| US4931287A (en) | 1988-06-14 | 1990-06-05 | University Of Utah | Heterogeneous interpenetrating polymer networks for the controlled release of drugs |
| WO1990001969A1 (en) | 1988-08-24 | 1990-03-08 | Slepian Marvin J | Biodegradable polymeric endoluminal sealing |
| US4977901A (en) | 1988-11-23 | 1990-12-18 | Minnesota Mining And Manufacturing Company | Article having non-crosslinked crystallized polymer coatings |
| US5163958A (en) | 1989-02-02 | 1992-11-17 | Cordis Corporation | Carbon coated tubular endoprosthesis |
| EP0396429B1 (en) | 1989-05-04 | 1996-07-31 | Biomedical Polymers International, Ltd. | Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same |
| US5100992A (en) | 1989-05-04 | 1992-03-31 | Biomedical Polymers International, Ltd. | Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same |
| EP0401747B1 (en) | 1989-06-06 | 1996-03-13 | Roy Calne | Use of rapamycin and derivatives and prodrugs thereof in the manufacture of a medicament for inhibiting transplant rejection in mammals |
| US5272012A (en) | 1989-06-23 | 1993-12-21 | C. R. Bard, Inc. | Medical apparatus having protective, lubricious coating |
| EP0414632B1 (en) | 1989-07-24 | 1996-10-23 | Sandoz Ltd. | Cyclosporin derivatives |
| US5632779A (en) | 1989-07-25 | 1997-05-27 | Smith & Nephew, Inc. | Zirconium oxide and zirconium nitride coated vascular grafts |
| JPH0833718B2 (en) | 1989-12-04 | 1996-03-29 | 三菱電機株式会社 | Television screen display |
| US5971954A (en) | 1990-01-10 | 1999-10-26 | Rochester Medical Corporation | Method of making catheter |
| EP0514406B1 (en) | 1990-01-30 | 1994-03-02 | Akzo Nobel N.V. | Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances |
| JPH04215768A (en) | 1990-02-08 | 1992-08-06 | Pfizer Hospital Prod Group Inc | Expansion type stent |
| US5234456A (en) | 1990-02-08 | 1993-08-10 | Pfizer Hospital Products Group, Inc. | Hydrophilic stent |
| US5328471A (en) | 1990-02-26 | 1994-07-12 | Endoluminal Therapeutics, Inc. | Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens |
| WO1991012846A1 (en) | 1990-02-26 | 1991-09-05 | Slepian Marvin J | Method and apparatus for treatment of tubular organs |
| US5725567A (en) | 1990-02-28 | 1998-03-10 | Medtronic, Inc. | Method of making a intralumenal drug eluting prosthesis |
| US5298260A (en) | 1990-05-01 | 1994-03-29 | Mediventures, Inc. | Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality |
| US5292516A (en) | 1990-05-01 | 1994-03-08 | Mediventures, Inc. | Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers |
| US5300295A (en) | 1990-05-01 | 1994-04-05 | Mediventures, Inc. | Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH |
| US5306501A (en) | 1990-05-01 | 1994-04-26 | Mediventures, Inc. | Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers |
| US5569463A (en) | 1990-05-17 | 1996-10-29 | Harbor Medical Devices, Inc. | Medical device polymer |
| US5447724A (en) | 1990-05-17 | 1995-09-05 | Harbor Medical Devices, Inc. | Medical device polymer |
| US5628730A (en) | 1990-06-15 | 1997-05-13 | Cortrak Medical, Inc. | Phoretic balloon catheter with hydrogel coating |
| US5133742A (en) | 1990-06-15 | 1992-07-28 | Corvita Corporation | Crack-resistant polycarbonate urethane polymer prostheses |
| US6060451A (en) | 1990-06-15 | 2000-05-09 | The National Research Council Of Canada | Thrombin inhibitors based on the amino acid sequence of hirudin |
| US5112457A (en) | 1990-07-23 | 1992-05-12 | Case Western Reserve University | Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants |
| US5455040A (en) | 1990-07-26 | 1995-10-03 | Case Western Reserve University | Anticoagulant plasma polymer-modified substrate |
| EP0475230A1 (en) | 1990-09-11 | 1992-03-18 | Research Corporation Technologies, Inc. | Methods of conjugating actinomycin D |
| US5258020A (en) | 1990-09-14 | 1993-11-02 | Michael Froix | Method of using expandable polymeric stent with memory |
| US6248129B1 (en) | 1990-09-14 | 2001-06-19 | Quanam Medical Corporation | Expandable polymeric stent with memory and delivery apparatus and method |
| US5163952A (en) | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
| US5607467A (en) | 1990-09-14 | 1997-03-04 | Froix; Michael | Expandable polymeric stent with memory and delivery apparatus and method |
| US5462990A (en) | 1990-10-15 | 1995-10-31 | Board Of Regents, The University Of Texas System | Multifunctional organic polymers |
| US5306786A (en) | 1990-12-21 | 1994-04-26 | U C B S.A. | Carboxyl group-terminated polyesteramides |
| US5120842A (en) | 1991-04-01 | 1992-06-09 | American Home Products Corporation | Silyl ethers of rapamycin |
| US5120842B1 (en) | 1991-04-01 | 1993-07-06 | A Failli Amedeo | |
| US5100883A (en) | 1991-04-08 | 1992-03-31 | American Home Products Corporation | Fluorinated esters of rapamycin |
| US5118678A (en) | 1991-04-17 | 1992-06-02 | American Home Products Corporation | Carbamates of rapamycin |
| US5102876A (en) | 1991-05-07 | 1992-04-07 | American Home Products Corporation | Reduction products of rapamycin |
| US5118677A (en) | 1991-05-20 | 1992-06-02 | American Home Products Corporation | Amide esters of rapamycin |
| US5120727A (en) | 1991-05-29 | 1992-06-09 | American Home Products Corporation | Rapamycin dimers |
| US5120725A (en) | 1991-05-29 | 1992-06-09 | American Home Products Corporation | Bicyclic rapamycins |
| US5330768A (en) | 1991-07-05 | 1994-07-19 | Massachusetts Institute Of Technology | Controlled drug delivery using polymer/pluronic blends |
| US5169851A (en) | 1991-08-07 | 1992-12-08 | American Home Products Corporation | Rapamycin analog as immunosuppressants and antifungals |
| US5138051A (en) | 1991-08-07 | 1992-08-11 | American Home Products Corporation | Rapamycin analogs as immunosuppressants and antifungals |
| US5162333A (en) | 1991-09-11 | 1992-11-10 | American Home Products Corporation | Aminodiesters of rapamycin |
| US6387124B1 (en) | 1991-10-04 | 2002-05-14 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
| US6869443B2 (en) | 1991-10-04 | 2005-03-22 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
| US5769883A (en) | 1991-10-04 | 1998-06-23 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
| US5605693A (en) | 1991-10-18 | 1997-02-25 | Seare, Jr.; William J. | Methods of making a porous device |
| US5151413A (en) | 1991-11-06 | 1992-09-29 | American Home Products Corporation | Rapamycin acetals as immunosuppressant and antifungal agents |
| US5516781A (en) | 1992-01-09 | 1996-05-14 | American Home Products Corporation | Method of treating restenosis with rapamycin |
| US5221740A (en) | 1992-01-16 | 1993-06-22 | American Home Products Corporation | Oxepane isomers of rapamycin useful as immunosuppressive agents |
| US5344833A (en) | 1992-01-16 | 1994-09-06 | American Home Products Corporation | Oxepane isomers of rapamycin useful as immunosuppressive agents |
| US5571187A (en) | 1992-02-27 | 1996-11-05 | Zimmer, Inc. | Implant having a metallic porous surface |
| US5433909A (en) | 1992-03-13 | 1995-07-18 | Atrium Medical Corporation | Method of making controlled porosity expanded polytetrafluoroethylene products |
| US5651174A (en) * | 1992-03-19 | 1997-07-29 | Medtronic, Inc. | Intravascular radially expandable stent |
| US5697967A (en) | 1992-03-19 | 1997-12-16 | Medtronic, Inc. | Drug eluting stent |
| US5849859A (en) | 1992-03-27 | 1998-12-15 | Novartis Ag | Polyesters |
| US5480599A (en) | 1992-04-09 | 1996-01-02 | Huels Aktiengesellschaft | Method of manufacturing foam beads |
| US5219980A (en) | 1992-04-16 | 1993-06-15 | Sri International | Polymers biodegradable or bioerodiable into amino acids |
| US5858746A (en) | 1992-04-20 | 1999-01-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
| US5417981A (en) | 1992-04-28 | 1995-05-23 | Terumo Kabushiki Kaisha | Thermoplastic polymer composition and medical devices made of the same |
| US5383928A (en) | 1992-06-10 | 1995-01-24 | Emory University | Stent sheath for local drug delivery |
| DE4224401A1 (en) | 1992-07-21 | 1994-01-27 | Pharmatech Gmbh | New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd. |
| US5437834A (en) | 1992-10-08 | 1995-08-01 | Kyocera Corporation | Porous living body repairing member, and a method of imparting elasticity to it |
| US5492768A (en) | 1992-10-08 | 1996-02-20 | Kyocera Corporation | Porous living body repairing member, and a method of imparting elasticity to it |
| US5665772A (en) | 1992-10-09 | 1997-09-09 | Sandoz Ltd. | O-alkylated rapamycin derivatives and their use, particularly as immunosuppressants |
| WO1994009760A1 (en) | 1992-11-05 | 1994-05-11 | Massachusetts Institute Of Technology | Biodegradable polymers for cell transplantation |
| US5258389A (en) | 1992-11-09 | 1993-11-02 | Merck & Co., Inc. | O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives |
| WO1994013268A1 (en) | 1992-12-04 | 1994-06-23 | Kaplan Aaron V | Method and device for treating and enlarging body lumens |
| US5905168A (en) | 1992-12-11 | 1999-05-18 | Rhone-Poulenc Chimie | Process for treating a material comprising a polymer by hydrolysis |
| EP0604022A1 (en) | 1992-12-22 | 1994-06-29 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method for its manufacture |
| US5419760A (en) | 1993-01-08 | 1995-05-30 | Pdt Systems, Inc. | Medicament dispensing stent for prevention of restenosis of a blood vessel |
| US5630840A (en) | 1993-01-19 | 1997-05-20 | Schneider (Usa) Inc | Clad composite stent |
| US5468253A (en) | 1993-01-21 | 1995-11-21 | Ethicon, Inc. | Elastomeric medical device |
| US5607463A (en) | 1993-03-30 | 1997-03-04 | Medtronic, Inc. | Intravascular medical device |
| US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
| US5837008A (en) | 1993-04-26 | 1998-11-17 | Medtronic, Inc. | Intravascular stent and method |
| US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
| US5679400A (en) | 1993-04-26 | 1997-10-21 | Medtronic, Inc. | Intravascular stent and method |
| EP0623354B1 (en) | 1993-04-26 | 2002-10-02 | Medtronic, Inc. | Intravascular stents |
| US5776184A (en) | 1993-04-26 | 1998-07-07 | Medtronic, Inc. | Intravasoular stent and method |
| US5624411A (en) | 1993-04-26 | 1997-04-29 | Medtronic, Inc. | Intravascular stent and method |
| US5824048A (en) | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
| US5370682A (en) | 1993-04-26 | 1994-12-06 | Meadox Medicals, Inc. | Solid woven tubular prosthesis |
| US5795318A (en) | 1993-04-30 | 1998-08-18 | Scimed Life Systems, Inc. | Method for delivering drugs to a vascular site |
| US5932243A (en) | 1993-05-27 | 1999-08-03 | Novartis Ag | Galenical formulations |
| US5846981A (en) | 1993-05-28 | 1998-12-08 | Gpi Nil Holdings Inc. | Inhibitors of rotamase enzyme activity |
| US5584877A (en) | 1993-06-25 | 1996-12-17 | Sumitomo Electric Industries, Ltd. | Antibacterial vascular prosthesis and surgical suture |
| US5716981A (en) | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
| EP0665023B1 (en) | 1993-07-21 | 2004-04-21 | Otsuka Pharmaceutical Factory, Inc. | Medical material and process for producing the same |
| US5644020A (en) | 1993-08-12 | 1997-07-01 | Bayer Aktiengesellschaft | Thermoplastically processible and biodegradable aliphatic polyesteramides |
| US6027779A (en) | 1993-08-18 | 2000-02-22 | W. L. Gore & Associates, Inc. | Thin-wall polytetrafluoroethylene tube |
| US5380299A (en) | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
| US5735897A (en) | 1993-10-19 | 1998-04-07 | Scimed Life Systems, Inc. | Intravascular stent pump |
| WO1995010989A1 (en) | 1993-10-19 | 1995-04-27 | Scimed Life Systems, Inc. | Intravascular stent pump |
| US6165212A (en) | 1993-10-21 | 2000-12-26 | Corvita Corporation | Expandable supportive endoluminal grafts |
| WO1995011817A1 (en) | 1993-10-27 | 1995-05-04 | Hoffman & Co. Elektrokohle Ges. Mbh | Rubbing contact component and process for connecting an electrical connection lead to a rubbing contact component |
| US5707867A (en) | 1993-10-27 | 1998-01-13 | The Regents Of The University Of California | Antiviral compounds |
| US5583139A (en) | 1993-11-19 | 1996-12-10 | Abbott Laboratories | Marcolide immunomodulators |
| US5527907A (en) | 1993-11-19 | 1996-06-18 | Abbott Laboratories | Macrolide immunomodulators |
| US5672605A (en) | 1993-11-19 | 1997-09-30 | Abbott Laboratories | Macrolide immunomodulators |
| US5912253A (en) | 1993-12-17 | 1999-06-15 | Novartis Ag | Rapamycin derivatives |
| US5759205A (en) | 1994-01-21 | 1998-06-02 | Brown University Research Foundation | Negatively charged polymeric electret implant |
| US6051576A (en) | 1994-01-28 | 2000-04-18 | University Of Kentucky Research Foundation | Means to achieve sustained release of synergistic drugs by conjugation |
| US20010051608A1 (en) | 1994-03-15 | 2001-12-13 | Edith Mathiowitz | Polymeric gene delivery |
| US6262034B1 (en) | 1994-03-15 | 2001-07-17 | Neurotech S.A. | Polymeric gene delivery system |
| WO1995024929A3 (en) | 1994-03-15 | 1995-12-28 | Univ Brown Res Found | Polymeric gene delivery system |
| US20010020011A1 (en) | 1994-03-15 | 2001-09-06 | Edith Mathiowitz | Polymeric gene delivery system |
| US6165210A (en) | 1994-04-01 | 2000-12-26 | Gore Enterprise Holdings, Inc. | Self-expandable helical intravascular stent and stent-graft |
| US5898029A (en) | 1994-04-12 | 1999-04-27 | The John Hopkins University | Direct influences on nerve growth of agents that interact with immunophilins in combination with neurotrophic factors |
| WO1995031104A1 (en) | 1994-05-13 | 1995-11-23 | The General Hospital Corporation | Inhibition of insulin-induced adiposis |
| EP0687008A2 (en) | 1994-06-06 | 1995-12-13 | Motorola, Inc. | Method and apparatus for improving interfacial adhesion between a polymer and a metal |
| US5746998A (en) | 1994-06-24 | 1998-05-05 | The General Hospital Corporation | Targeted co-polymers for radiographic imaging |
| US5766710A (en) | 1994-06-27 | 1998-06-16 | Advanced Cardiovascular Systems, Inc. | Biodegradable mesh and film stent |
| US5670558A (en) | 1994-07-07 | 1997-09-23 | Terumo Kabushiki Kaisha | Medical instruments that exhibit surface lubricity when wetted |
| US6547819B2 (en) | 1994-07-09 | 2003-04-15 | Ernst Peter Strecker | Endoprosthesis percutaneously implantable in the body of a patient |
| US5788979A (en) | 1994-07-22 | 1998-08-04 | Inflow Dynamics Inc. | Biodegradable coating with inhibitory properties for application to biocompatible materials |
| US5516881A (en) | 1994-08-10 | 1996-05-14 | Cornell Research Foundation, Inc. | Aminoxyl-containing radical spin labeling in polymers and copolymers |
| EP0701802B1 (en) | 1994-09-15 | 2002-08-28 | Medtronic, Inc. | Drug eluting stent |
| US5578073A (en) | 1994-09-16 | 1996-11-26 | Ramot Of Tel Aviv University | Thromboresistant surface treatment for biomaterials |
| US5485496A (en) | 1994-09-22 | 1996-01-16 | Cornell Research Foundation, Inc. | Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties |
| US5649977A (en) | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
| US5958385A (en) | 1994-09-28 | 1999-09-28 | Lvmh Recherche | Polymers functionalized with amino acids or amino acid derivatives, method for synthesizing same, and use thereof as surfactants in cosmetic compositions, particularly nail varnishes |
| US5879713A (en) | 1994-10-12 | 1999-03-09 | Focal, Inc. | Targeted delivery via biodegradable polymers |
| US6309402B1 (en) | 1994-10-19 | 2001-10-30 | Medtronic Ave, Inc. | Stent delivery and deployment method |
| US5836965A (en) | 1994-10-19 | 1998-11-17 | Jendersee; Brad | Stent delivery and deployment method |
| WO1996013273A1 (en) | 1994-10-26 | 1996-05-09 | Novartis Ag | Pharmaceutical compositions |
| US5755771A (en) | 1994-11-03 | 1998-05-26 | Divysio Solutions Ulc | Expandable stent and method of delivery of same |
| US5707385A (en) | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
| US5759192A (en) | 1994-11-28 | 1998-06-02 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for direct laser cutting of metal stents |
| US5563145A (en) | 1994-12-07 | 1996-10-08 | American Home Products Corporation | Rapamycin 42-oximes and hydroxylamines |
| US5700286A (en) | 1994-12-13 | 1997-12-23 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
| EP0716836B1 (en) | 1994-12-13 | 2001-07-04 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
| US5800392A (en) | 1995-01-23 | 1998-09-01 | Emed Corporation | Microporous catheter |
| US6120904A (en) | 1995-02-01 | 2000-09-19 | Schneider (Usa) Inc. | Medical device coated with interpenetrating network of hydrogel polymers |
| US6080488A (en) | 1995-02-01 | 2000-06-27 | Schneider (Usa) Inc. | Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices |
| US5575818A (en) | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
| US5879398A (en) | 1995-02-14 | 1999-03-09 | Zimmer, Inc. | Acetabular cup |
| US5702754A (en) | 1995-02-22 | 1997-12-30 | Meadox Medicals, Inc. | Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings |
| US5869127A (en) | 1995-02-22 | 1999-02-09 | Boston Scientific Corporation | Method of providing a substrate with a bio-active/biocompatible coating |
| US6231600B1 (en) | 1995-02-22 | 2001-05-15 | Scimed Life Systems, Inc. | Stents with hybrid coating for medical devices |
| US6083534A (en) | 1995-03-01 | 2000-07-04 | Yeda Research And Development Co. Ltd. | Pharmaceutical compositions for controlled release of soluble receptors |
| US6100346A (en) | 1995-03-06 | 2000-08-08 | Ethicon, Inc. | Copolymers of polyoxaamides |
| US5854376A (en) | 1995-03-09 | 1998-12-29 | Sekisui Kaseihin Kogyo Kabushiki Kaisha | Aliphatic ester-amide copolymer resins |
| WO1996028115A1 (en) | 1995-03-10 | 1996-09-19 | Impra, Inc. | Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery |
| US5605696A (en) | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
| US20050106210A1 (en) | 1995-04-19 | 2005-05-19 | Boston Scientific Scimed, Inc. | Medical device with drug |
| US5837313A (en) | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
| US6120536A (en) | 1995-04-19 | 2000-09-19 | Schneider (Usa) Inc. | Medical devices with long term non-thrombogenic coatings |
| US6358556B1 (en) | 1995-04-19 | 2002-03-19 | Boston Scientific Corporation | Drug release stent coating |
| US5925720A (en) | 1995-04-19 | 1999-07-20 | Kazunori Kataoka | Heterotelechelic block copolymers and process for producing the same |
| US20020091433A1 (en) | 1995-04-19 | 2002-07-11 | Ni Ding | Drug release coated stent |
| US5674242A (en) | 1995-06-06 | 1997-10-07 | Quanam Medical Corporation | Endoprosthetic device with therapeutic compound |
| US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
| WO1996040140A1 (en) | 1995-06-07 | 1996-12-19 | Guilford Pharmaceuticals Inc. | Inhibitors of rotamase enzyme activity |
| US20030028244A1 (en) | 1995-06-07 | 2003-02-06 | Cook Incorporated | Coated implantable medical device |
| US5865814A (en) | 1995-06-07 | 1999-02-02 | Medtronic, Inc. | Blood contacting medical device and method |
| US20030028243A1 (en) | 1995-06-07 | 2003-02-06 | Cook Incorporated | Coated implantable medical device |
| US5873904A (en) | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
| WO1998017331A1 (en) | 1995-06-07 | 1998-04-30 | Cook Incorporated | Silver implantable medical device |
| WO1996040174A1 (en) | 1995-06-07 | 1996-12-19 | The American National Red Cross | Supplemented and unsupplemented tissue sealants, methods of their production and use |
| US5843960A (en) | 1995-06-07 | 1998-12-01 | Gpi Nil Holdings, Inc. | Inhibitors of rotamase enzyme activity |
| US6096070A (en) | 1995-06-07 | 2000-08-01 | Med Institute Inc. | Coated implantable medical device |
| US20030036794A1 (en) | 1995-06-07 | 2003-02-20 | Cook Incorporated | Coated implantable medical device |
| US6010530A (en) | 1995-06-07 | 2000-01-04 | Boston Scientific Technology, Inc. | Self-expanding endoluminal prosthesis |
| US5798355A (en) | 1995-06-07 | 1998-08-25 | Gpi Nil Holdings, Inc. | Inhibitors of rotamase enzyme activity |
| US5820917A (en) | 1995-06-07 | 1998-10-13 | Medtronic, Inc. | Blood-contacting medical device and method |
| US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
| US5824049A (en) | 1995-06-07 | 1998-10-20 | Med Institute, Inc. | Coated implantable medical device |
| US5985890A (en) | 1995-06-09 | 1999-11-16 | Novartis Ag | Rapamycin derivatives |
| US6200985B1 (en) | 1995-06-09 | 2001-03-13 | Novartis Ag | Rapamycin derivatives |
| WO1997003654A3 (en) | 1995-07-14 | 1997-03-20 | Sandoz Ltd | Pharmaceutical compositions |
| US5851508A (en) | 1995-07-27 | 1998-12-22 | Microtherapeutics, Inc. | Compositions for use in embolizing blood vessels |
| US5667767A (en) | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
| US5877224A (en) | 1995-07-28 | 1999-03-02 | Rutgers, The State University Of New Jersey | Polymeric drug formulations |
| US5856814A (en) | 1995-08-02 | 1999-01-05 | Canon Kk | Driving method for display apparatus |
| WO1997010011A1 (en) | 1995-09-11 | 1997-03-20 | Schneider (Usa) Inc. | Drug release stent coating process |
| JPH0985028A (en) | 1995-09-25 | 1997-03-31 | Sintokogio Ltd | Filter for treating carbon-based particulates in exhaust gas and carbon-based particulates processing apparatus using the same |
| US6277449B1 (en) | 1995-10-19 | 2001-08-21 | Omprakash S. Kolluri | Method for sequentially depositing a three-dimensional network |
| US5788558A (en) | 1995-11-13 | 1998-08-04 | Localmed, Inc. | Apparatus and method for polishing lumenal prostheses |
| US5658995A (en) | 1995-11-27 | 1997-08-19 | Rutgers, The State University | Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide) |
| US5910564A (en) | 1995-12-07 | 1999-06-08 | Th. Goldschmidt Ag | Polyamino acid ester copolymers |
| US6051648A (en) | 1995-12-18 | 2000-04-18 | Cohesion Technologies, Inc. | Crosslinked polymer compositions and methods for their use |
| US5723219A (en) | 1995-12-19 | 1998-03-03 | Talison Research | Plasma deposited film networks |
| US5962138A (en) | 1995-12-19 | 1999-10-05 | Talison Research, Inc. | Plasma deposited substrate structure |
| US6033582A (en) | 1996-01-22 | 2000-03-07 | Etex Corporation | Surface modification of medical implants |
| US5800512A (en) | 1996-01-22 | 1998-09-01 | Meadox Medicals, Inc. | PTFE vascular graft |
| US6054553A (en) | 1996-01-29 | 2000-04-25 | Bayer Ag | Process for the preparation of polymers having recurring agents |
| WO1997029793A1 (en) | 1996-02-13 | 1997-08-21 | Massachusetts Institute Of Technology | Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices |
| WO1997031020A1 (en) | 1996-02-22 | 1997-08-28 | The General Hospital Corporation | METHODS AND COMPOSITIONS FOR ENHANCING CELLULAR RESPONSE TO TGF-β LIGANDS |
| US5968091A (en) * | 1996-03-26 | 1999-10-19 | Corvita Corp. | Stents and stent grafts having enhanced hoop strength and methods of making the same |
| US6384046B1 (en) | 1996-03-27 | 2002-05-07 | Novartis Ag | Use of 40-O-(2-hydroxy)ethylrapamycin for treatment of restenosis and other disorders |
| US5932299A (en) | 1996-04-23 | 1999-08-03 | Katoot; Mohammad W. | Method for modifying the surface of an object |
| US5955509A (en) | 1996-05-01 | 1999-09-21 | Board Of Regents, The University Of Texas System | pH dependent polymer micelles |
| US5961914A (en) | 1996-05-03 | 1999-10-05 | Milliken & Company | Method of thermoforming polyolefin resin |
| US5610241A (en) | 1996-05-07 | 1997-03-11 | Cornell Research Foundation, Inc. | Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers |
| WO1997045105A1 (en) | 1996-05-24 | 1997-12-04 | Angiotech Pharmaceuticals, Inc. | Compositions and methods for treating or preventing diseases of body passageways |
| US5670161A (en) | 1996-05-28 | 1997-09-23 | Healy; Kevin E. | Biodegradable stent |
| EP0809999A3 (en) | 1996-05-29 | 1999-11-24 | Ethicon, Inc. | Method of varying amounts of heparin coated on a medical device to control treatment thereon |
| US5876433A (en) | 1996-05-29 | 1999-03-02 | Ethicon, Inc. | Stent and method of varying amounts of heparin coated thereon to control treatment |
| WO1997046590A1 (en) | 1996-06-03 | 1997-12-11 | Gore Enterprise Holdings, Inc. | Materials and methods for the immobilization of bioactive species onto polymeric substrates |
| EP0910584B1 (en) | 1996-06-03 | 2001-07-25 | Gore Enterprise Holdings, Inc. | Materials and methods for the immobilization of bioactive species onto polymeric substrates |
| US6143037A (en) | 1996-06-12 | 2000-11-07 | The Regents Of The University Of Michigan | Compositions and methods for coating medical devices |
| EP0832655B1 (en) | 1996-06-13 | 2004-09-01 | Schneider (Usa) Inc. | Drug release stent coating and process |
| US6284305B1 (en) | 1996-06-13 | 2001-09-04 | Schneider (Usa) Inc. | Drug coating with topcoat |
| US6099562A (en) | 1996-06-13 | 2000-08-08 | Schneider (Usa) Inc. | Drug coating with topcoat |
| US6172167B1 (en) | 1996-06-28 | 2001-01-09 | Universiteit Twente | Copoly(ester-amides) and copoly(ester-urethanes) |
| US5928279A (en) | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
| US6136333A (en) | 1996-07-11 | 2000-10-24 | Life Medical Sciences, Inc. | Methods and compositions for reducing or eliminating post-surgical adhesion formation |
| US5711958A (en) | 1996-07-11 | 1998-01-27 | Life Medical Sciences, Inc. | Methods for reducing or eliminating post-surgical adhesion formation |
| WO1998002441A3 (en) | 1996-07-12 | 1998-03-05 | Ariad Pharma Inc | Non immunosuppressive antifungal rapalogs |
| WO1998004256A1 (en) | 1996-07-30 | 1998-02-05 | Novartis Nutrition Ag | Amino acid compositions and use thereof in immunosuppression |
| US5713949A (en) | 1996-08-06 | 1998-02-03 | Jayaraman; Swaminathan | Microporous covered stents and method of coating |
| US6060518A (en) | 1996-08-16 | 2000-05-09 | Supratek Pharma Inc. | Polymer compositions for chemotherapy and methods of treatment using the same |
| WO1998008463A1 (en) | 1996-08-30 | 1998-03-05 | Helix Medical Corporation | Medical devices having microbial resistant material properties |
| US5945029A (en) | 1996-09-03 | 1999-08-31 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Ceramic monofilament or multifilament fiber and processes for their production and use |
| WO1998009523A1 (en) | 1996-09-05 | 1998-03-12 | Massachusetts Institute Of Technology | Compositions and methods for treatment of neurological disorders and neurodegenerative diseases |
| WO1998010747A1 (en) | 1996-09-12 | 1998-03-19 | Galena As | Immunomodulatory formulation |
| US6056906A (en) | 1996-09-25 | 2000-05-02 | Medtronic, Inc. | Method of making an intervascular catheter system for implanting a radially expandable stent within a body vessel |
| US5830178A (en) | 1996-10-11 | 1998-11-03 | Micro Therapeutics, Inc. | Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide |
| US5783657A (en) | 1996-10-18 | 1998-07-21 | Union Camp Corporation | Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids |
| US6530951B1 (en) | 1996-10-24 | 2003-03-11 | Cook Incorporated | Silver implantable medical device |
| WO1998023228A1 (en) | 1996-11-25 | 1998-06-04 | Alza Corporation | Directional drug delivery stent |
| US6287337B1 (en) | 1996-12-03 | 2001-09-11 | Atrium Medical Corporation | Multi-stage prosthesis |
| US6010529A (en) | 1996-12-03 | 2000-01-04 | Atrium Medical Corporation | Expandable shielded vessel support |
| EP0850651B1 (en) | 1996-12-20 | 2004-02-25 | Schneider (Usa) Inc. | Method and Apparatus for applying drug-release coatings |
| US6623764B1 (en) | 1996-12-20 | 2003-09-23 | Aventis Pasteur Limited | Biodegradable targetable microparticle delivery system |
| US5980972A (en) | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
| US6306176B1 (en) | 1997-01-27 | 2001-10-23 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
| US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
| US5902875A (en) | 1997-01-28 | 1999-05-11 | United States Surgical Corporation | Polyesteramide, its preparation and surgical devices fabricated therefrom |
| US5914387A (en) | 1997-01-28 | 1999-06-22 | United States Surgical Corporation | Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom |
| US5919893A (en) | 1997-01-28 | 1999-07-06 | United States Surgical Corporation | Polyesteramide, its preparation and surgical devices fabricated therefrom |
| WO1998032398A1 (en) | 1997-01-28 | 1998-07-30 | United States Surgical Corporation | Polyesteramide, its preparation and surgical devices fabricated therefrom |
| WO1998036784A1 (en) | 1997-02-20 | 1998-08-27 | Cook Incorporated | Coated implantable medical device |
| US6284788B1 (en) | 1997-02-21 | 2001-09-04 | Bayer Aktiengesellschaft | Use of known agonists of the central cannabinoid receptor CB1 |
| WO1998038687A1 (en) | 1997-02-28 | 1998-09-03 | Elf Atochem North America, Inc. | Copolymers of vinylidene fluoride and hexafluoropropylene having reduced extractable content and improved solution clarity |
| US6139573A (en) | 1997-03-05 | 2000-10-31 | Scimed Life Systems, Inc. | Conformal laminate stent device |
| WO1998044921A1 (en) | 1997-04-04 | 1998-10-15 | Merck & Co., Inc. | Somatostatin agonists |
| WO1998044922A1 (en) | 1997-04-04 | 1998-10-15 | Merck & Co., Inc. | Somatostatin agonists |
| EP0978288A4 (en) | 1997-04-11 | 2006-07-12 | Astellas Pharma Inc | Medicinal composition |
| US5843172A (en) | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
| US6240616B1 (en) | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
| EP0875218B1 (en) | 1997-04-15 | 2005-02-16 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
| US6723120B2 (en) | 1997-04-15 | 2004-04-20 | Advanced Cardiovascular Systems, Inc. | Medicated porous metal prosthesis |
| US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
| JPH10305105A (en) | 1997-04-30 | 1998-11-17 | Schneider Usa Inc | Medicine release coating for medical tool |
| EP0879595B1 (en) | 1997-04-30 | 2003-01-29 | Schneider (Usa) Inc., | Drug-releasing coatings for medical devices |
| US6042875A (en) | 1997-04-30 | 2000-03-28 | Schneider (Usa) Inc. | Drug-releasing coatings for medical devices |
| US6482834B2 (en) | 1997-05-28 | 2002-11-19 | Aventis Pharmaceuticals Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| US6180632B1 (en) | 1997-05-28 | 2001-01-30 | Aventis Pharmaceuticals Products Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| US6245760B1 (en) | 1997-05-28 | 2001-06-12 | Aventis Pharmaceuticals Products, Inc | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| US6524347B1 (en) | 1997-05-28 | 2003-02-25 | Avantis Pharmaceuticals Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| US6159978A (en) | 1997-05-28 | 2000-12-12 | Aventis Pharmaceuticals Product, Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| US6528526B1 (en) | 1997-05-28 | 2003-03-04 | Aventis Pharmaceuticals Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
| US6056993A (en) | 1997-05-30 | 2000-05-02 | Schneider (Usa) Inc. | Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel |
| US5746691A (en) | 1997-06-06 | 1998-05-05 | Global Therapeutics, Inc. | Method for polishing surgical stents |
| US6110483A (en) | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
| WO1999001118A9 (en) | 1997-07-01 | 1999-05-20 | Atherogenics Inc | Antioxidant enhancement of therapy for hyperproliferative conditions |
| US6211249B1 (en) | 1997-07-11 | 2001-04-03 | Life Medical Sciences, Inc. | Polyester polyether block copolymers |
| US5980928A (en) | 1997-07-29 | 1999-11-09 | Terry; Paul B. | Implant for preventing conjunctivitis in cattle |
| US5980564A (en) | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
| US6034204A (en) | 1997-08-08 | 2000-03-07 | Basf Aktiengesellschaft | Condensation products of basic amino acids with copolymerizable compounds and a process for their production |
| US5897911A (en) | 1997-08-11 | 1999-04-27 | Advanced Cardiovascular Systems, Inc. | Polymer-coated stent structure |
| US6121027A (en) | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
| US20050038134A1 (en) | 1997-08-18 | 2005-02-17 | Scimed Life Systems, Inc. | Bioresorbable hydrogel compositions for implantable prostheses |
| US6143370A (en) | 1997-08-27 | 2000-11-07 | Northeastern University | Process for producing polymer coatings with various porosities and surface areas |
| US6015815A (en) | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
| US5972027A (en) | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
| WO1999016386A1 (en) | 1997-09-30 | 1999-04-08 | Scimed Life Systems, Inc. | Stent drug delivery system |
| WO1999019471A1 (en) | 1997-10-16 | 1999-04-22 | Board Of Regents, The University Of Texas System | Models and treatments for cardiac hypertrophy in relation with nf-at3 function |
| US5994444A (en) | 1997-10-16 | 1999-11-30 | Medtronic, Inc. | Polymeric material that releases nitric oxide |
| WO1999019473A1 (en) | 1997-10-16 | 1999-04-22 | Board Of Regents, The University Of Texas System | Transgenic animal models for cardiac hypertrophy and uses thereof |
| US6120788A (en) | 1997-10-16 | 2000-09-19 | Bioamide, Inc. | Bioabsorbable triglycolic acid poly(ester-amide)s |
| US6013621A (en) | 1997-10-17 | 2000-01-11 | The Rockfeller University | Method of treating psychosis and/or hyperactivity |
| US6015541A (en) | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
| WO1999024036A1 (en) | 1997-11-07 | 1999-05-20 | Aberdeen University | Skin penetration enhancing components |
| US6120491A (en) | 1997-11-07 | 2000-09-19 | The State University Rutgers | Biodegradable, anionic polymers derived from the amino acid L-tyrosine |
| EP1036562A1 (en) | 1997-12-03 | 2000-09-20 | Fujisawa Pharmaceutical Co., Ltd. | Soft-pellet drug and process for the preparation thereof |
| US5962007A (en) | 1997-12-19 | 1999-10-05 | Indigo Medical, Inc. | Use of a multi-component coil medical construct |
| EP0923953B1 (en) | 1997-12-22 | 2008-08-13 | Boston Scientific Scimed, Inc. | Drug coating with topcoat |
| US20020100998A1 (en) | 1997-12-24 | 2002-08-01 | Hock Mark R. | Plastic closure with compression molded barrier liner |
| WO1999038546A1 (en) | 1998-01-30 | 1999-08-05 | Advanced Cardiovascular Systems, Inc. | Hydrophilic coating for an intracorporeal medical device |
| WO1999039720A1 (en) | 1998-02-04 | 1999-08-12 | Applied Genetics Incorporated Dermatics | Compositions and methods for modulating cytokine release in response to genotoxic agents |
| WO1999042104A1 (en) | 1998-02-23 | 1999-08-26 | Fujisawa Pharmaceutical Co., Ltd. | Use of macrolide compounds for treating glaucoma |
| WO1999044597A3 (en) | 1998-03-06 | 1999-12-29 | Fujisawa Pharmaceutical Co | Use of macrolide compounds for the treatment of ards |
| WO1999044584A1 (en) | 1998-03-06 | 1999-09-10 | Novartis Ag | Emulsion preconcentrates containing cyclosporin or a macrolide |
| US6110188A (en) | 1998-03-09 | 2000-08-29 | Corvascular, Inc. | Anastomosis method |
| US6001117A (en) | 1998-03-19 | 1999-12-14 | Indigo Medical, Inc. | Bellows medical construct and apparatus and method for using same |
| EP1064942B1 (en) | 1998-03-26 | 2004-06-16 | Fujisawa Pharmaceutical Co., Ltd. | Sustained release preparation of a macrolide |
| US6270788B1 (en) | 1998-04-03 | 2001-08-07 | Medtronic Inc | Implantable medical device |
| US6258371B1 (en) | 1998-04-03 | 2001-07-10 | Medtronic Inc | Method for making biocompatible medical article |
| US20030040790A1 (en) | 1998-04-15 | 2003-02-27 | Furst Joseph G. | Stent coating |
| US20010029351A1 (en) | 1998-04-16 | 2001-10-11 | Robert Falotico | Drug combinations and delivery devices for the prevention and treatment of vascular disease |
| JPH11299901A (en) | 1998-04-16 | 1999-11-02 | Johnson & Johnson Medical Kk | Stent and method for manufacturing the same |
| EP0950386B2 (en) | 1998-04-16 | 2011-07-13 | Cordis Corporation | Stent with local rapamycin delivery |
| US6214901B1 (en) | 1998-04-27 | 2001-04-10 | Surmodics, Inc. | Bioactive agent release coating |
| US20030031780A1 (en) | 1998-04-27 | 2003-02-13 | Chudzik Stephen J. | Bioactive agent release coating |
| US20020032434A1 (en) | 1998-04-27 | 2002-03-14 | Chudzik Stephen J. | Bioactive agent release coating |
| US6344035B1 (en) | 1998-04-27 | 2002-02-05 | Surmodics, Inc. | Bioactive agent release coating |
| EP0953320A3 (en) | 1998-04-30 | 2001-09-05 | Medtronic, Inc. | Medical device |
| US6113629A (en) | 1998-05-01 | 2000-09-05 | Micrus Corporation | Hydrogel for the therapeutic treatment of aneurysms |
| US6379379B1 (en) | 1998-05-05 | 2002-04-30 | Scimed Life Systems, Inc. | Stent with smooth ends |
| WO1999060997A1 (en) | 1998-05-22 | 1999-12-02 | Hewlett Healthcare Limited | Pharmaceutical compositions comprising an amphoteric surfactant an alkoxylated cetyl alcohol and a polar drug |
| WO1999061040A9 (en) | 1998-05-22 | 2001-02-01 | Boys Town Nat Res Hospital | USE OF α1β1 INTEGRIN RECEPTOR INHIBITORS AND TGF-β1 INHIBITORS IN THE TREATMENT OF KIDNEY DISEASE |
| US6245753B1 (en) | 1998-05-28 | 2001-06-12 | Mediplex Corporation, Korea | Amphiphilic polysaccharide derivatives |
| US6228934B1 (en) | 1998-06-09 | 2001-05-08 | Metabolix, Inc. | Methods and apparatus for the production of amorphous polymer suspensions |
| US6281225B1 (en) | 1998-06-11 | 2001-08-28 | Cerus Corporation | Inhibiting proliferation of arterial smooth muscle cells |
| WO1999063981A3 (en) | 1998-06-11 | 2000-04-20 | Cerus Corp | Use of alkylating compounds for inhibiting proliferation of arterial smooth muscle cells |
| EP0970711B1 (en) | 1998-06-30 | 2004-10-13 | Ethicon, Inc. | Process for coating stents |
| JP2000051367A (en) | 1998-06-30 | 2000-02-22 | Ethicon Inc | Stent coating method |
| US6153252A (en) | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
| US6652581B1 (en) | 1998-07-07 | 2003-11-25 | Boston Scientific Scimed, Inc. | Medical device with porous surface for controlled drug release and method of making the same |
| WO2000002599A1 (en) | 1998-07-08 | 2000-01-20 | Advanced Biocompatible Coatings Inc. | Biocompatible metallic stents with hydroxy methacrylate coating |
| WO2000009085A3 (en) | 1998-08-14 | 2000-09-28 | West Pharm Serv Drug Res Ltd | Oral formulation containing cyclosporin |
| US20010046518A1 (en) | 1998-08-14 | 2001-11-29 | Amarpreet S. Sawhney | Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels |
| US20020032414A1 (en) | 1998-08-20 | 2002-03-14 | Ragheb Anthony O. | Coated implantable medical device |
| US6299604B1 (en) | 1998-08-20 | 2001-10-09 | Cook Incorporated | Coated implantable medical device |
| EP0982041A1 (en) | 1998-08-21 | 2000-03-01 | Medtronic Ave, Inc. | Thromboresistant coating using silanes or siloxanes |
| US6335029B1 (en) | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
| WO2000012147A1 (en) | 1998-09-02 | 2000-03-09 | Scimed Life Systems, Inc. | Drug delivery device for stent |
| WO2000015208A3 (en) | 1998-09-14 | 2000-07-13 | Fujisawa Pharmaceutical Co | New use of immunosupressants for mmp-mediated diseases |
| US6890546B2 (en) | 1998-09-24 | 2005-05-10 | Abbott Laboratories | Medical devices containing rapamycin analogs |
| WO2000018446A1 (en) | 1998-09-25 | 2000-04-06 | Cathnet-Science S.A. | Multi-layered sleeve for intravascular expandable device |
| US6011125A (en) | 1998-09-25 | 2000-01-04 | General Electric Company | Amide modified polyesters |
| US6206915B1 (en) | 1998-09-29 | 2001-03-27 | Medtronic Ave, Inc. | Drug storing and metering stent |
| WO2000024390A9 (en) | 1998-10-23 | 2000-12-07 | Univ British Columbia | Method and composition for modulating amyloidosis |
| US6293959B1 (en) | 1998-11-16 | 2001-09-25 | Cordis Corporation | Balloon catheter and stent delivery system having enhanced stent retention and method |
| FR2785812B1 (en) | 1998-11-16 | 2002-11-29 | Commissariat Energie Atomique | BIOACTIVE PROSTHESES, IN PARTICULAR WITH IMMUNOSUPPRESSIVE PROPERTIES, ANTISTENOSIS AND ANTITHROMBOSIS, AND THEIR MANUFACTURE |
| WO2000032234A1 (en) | 1998-12-03 | 2000-06-08 | Novartis Ag | Topical compositions comprising ascomycins |
| WO2000032238A9 (en) | 1998-12-03 | 2000-12-07 | Scimed Life Systems Inc | Stent having drug crystals thereon |
| WO2000033878A3 (en) | 1998-12-07 | 2000-11-02 | Novartis Ag | Stabilization of macrolides |
| WO2000038590A1 (en) | 1998-12-23 | 2000-07-06 | Stephen George Edward Barker | Endoluminal stent |
| WO2000038754A1 (en) | 1998-12-23 | 2000-07-06 | Atrium Medical Corporation | Self-expanding prosthesis with biocompatible coating |
| WO2000038703A1 (en) | 1998-12-24 | 2000-07-06 | R-Tech Ueno, Ltd. | Agent for treating visual cell function disorder |
| US6120847A (en) | 1999-01-08 | 2000-09-19 | Scimed Life Systems, Inc. | Surface treatment method for stent coating |
| US6530950B1 (en) | 1999-01-12 | 2003-03-11 | Quanam Medical Corporation | Intraluminal stent having coaxial polymer member |
| WO2000042949A3 (en) | 1999-01-22 | 2000-11-30 | Gore Enterprise Holdings Inc | A biliary stent-graft |
| EP1023879B1 (en) | 1999-01-29 | 2005-04-06 | Medtronic, Inc. | Implantable medical device with enhanced biocompatibility and biostability |
| US6419692B1 (en) | 1999-02-03 | 2002-07-16 | Scimed Life Systems, Inc. | Surface protection method for stents and balloon catheters for drug delivery |
| US6143354A (en) | 1999-02-08 | 2000-11-07 | Medtronic Inc. | One-step method for attachment of biomolecules to substrate surfaces |
| US6095817A (en) | 1999-02-24 | 2000-08-01 | Sulzer Calcitek Inc. | Dental implant having multiple textured surfaces |
| US6066156A (en) | 1999-03-11 | 2000-05-23 | Advanced Cardiovascular Systems, Inc. | Temperature activated adhesive for releasably attaching stents to balloons |
| WO2000056247A1 (en) | 1999-03-19 | 2000-09-28 | Scimed Life Systems, Inc. | Polymer coated stent |
| US6364903B2 (en) | 1999-03-19 | 2002-04-02 | Meadox Medicals, Inc. | Polymer coated stent |
| WO2000057818A1 (en) | 1999-03-29 | 2000-10-05 | Cardio Synopsis Inc. | Stent with an integrated film coating for deployment throughout the body |
| US20020188037A1 (en) | 1999-04-15 | 2002-12-12 | Chudzik Stephen J. | Method and system for providing bioactive agent release coating |
| US6368658B1 (en) | 1999-04-19 | 2002-04-09 | Scimed Life Systems, Inc. | Coating medical devices using air suspension |
| WO2000064506A9 (en) | 1999-04-23 | 2002-06-06 | Agion Technologies L L C | Stent having antimicrobial agent |
| WO2000066122A1 (en) | 1999-04-30 | 2000-11-09 | Sucampo Ag | Use of macrolide compounds for the treatment of dry eye |
| WO2000071052A1 (en) | 1999-05-19 | 2000-11-30 | Bernd Starck | Highly flexible coating for stents and/or stent grafts and/or vascular stent prostheses |
| US6368346B1 (en) * | 1999-06-03 | 2002-04-09 | American Medical Systems, Inc. | Bioresorbable stent |
| WO2000074665A3 (en) | 1999-06-04 | 2001-05-17 | Fujisawa Pharmaceutical Co | New use of macrolide compounds for inducing chondrogenic differentiation |
| WO2001001890A1 (en) | 1999-07-02 | 2001-01-11 | Boston Scientific Limited | Stent coating |
| US6258121B1 (en) | 1999-07-02 | 2001-07-10 | Scimed Life Systems, Inc. | Stent coating |
| US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
| US6494862B1 (en) | 1999-07-13 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway |
| US20030040712A1 (en) | 1999-07-13 | 2003-02-27 | Pinaki Ray | Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway |
| US6689099B2 (en) | 1999-07-13 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
| US6177523B1 (en) | 1999-07-14 | 2001-01-23 | Cardiotech International, Inc. | Functionalized polyurethanes |
| WO2001014387A1 (en) | 1999-08-24 | 2001-03-01 | Ariad Gene Therapeutics, Inc. | 28-epirapalogs |
| WO2001015751A1 (en) | 1999-09-01 | 2001-03-08 | Bioxid Oy | Novel multilayered material bearing a biologically active agent and the preparation thereof |
| US6759054B2 (en) | 1999-09-03 | 2004-07-06 | Advanced Cardiovascular Systems, Inc. | Ethylene vinyl alcohol composition and coating |
| US20010018469A1 (en) | 1999-09-03 | 2001-08-30 | Yung-Ming Chen | Ethylene vinyl alcohol composition and coating |
| US20040029952A1 (en) | 1999-09-03 | 2004-02-12 | Yung-Ming Chen | Ethylene vinyl alcohol composition and coating |
| US6713119B2 (en) | 1999-09-03 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Biocompatible coating for a prosthesis and a method of forming the same |
| US6379381B1 (en) | 1999-09-03 | 2002-04-30 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
| US6287628B1 (en) | 1999-09-03 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
| WO2001017577A1 (en) | 1999-09-03 | 2001-03-15 | Advanced Cardiovascular Systems, Inc. | A porous prosthesis and a method of depositing substances into the pores |
| US7682647B2 (en) | 1999-09-03 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of a drug eluting implantable medical device |
| US20040220665A1 (en) | 1999-09-03 | 2004-11-04 | Hossainy Syed F.A. | Thermal treatment of a drug eluting implantable medical device |
| US20050233062A1 (en) | 1999-09-03 | 2005-10-20 | Hossainy Syed F | Thermal treatment of an implantable medical device |
| US20020035774A1 (en) | 1999-09-22 | 2002-03-28 | Scimed Life Systems, Inc. | A Method and Apparatus for Contracting, Loading or Crimping Self-Expanding and Balloon Expandable Stent Devices |
| US6823576B2 (en) | 1999-09-22 | 2004-11-30 | Scimed Life Systems, Inc. | Method and apparatus for contracting, loading or crimping self-expanding and balloon expandable stent devices |
| WO2001023395A3 (en) | 1999-09-29 | 2001-10-25 | American Home Prod | Regioselective synthesis of rapamycin derivatives |
| US6346110B2 (en) | 1999-10-04 | 2002-02-12 | Advanced Cardiovascular Systems, Inc. | Chamber for applying therapeutic substances to an implantable device |
| US6203551B1 (en) | 1999-10-04 | 2001-03-20 | Advanced Cardiovascular Systems, Inc. | Chamber for applying therapeutic substances to an implant device |
| US6331313B1 (en) | 1999-10-22 | 2001-12-18 | Oculex Pharmaceticals, Inc. | Controlled-release biocompatible ocular drug delivery implant devices and methods |
| US6610087B1 (en) | 1999-11-16 | 2003-08-26 | Scimed Life Systems, Inc. | Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance |
| US6475235B1 (en) | 1999-11-16 | 2002-11-05 | Iowa-India Investments Company, Limited | Encapsulated stent preform |
| US20010037145A1 (en) | 1999-12-08 | 2001-11-01 | Guruwaiya Judy A. | Coated stent |
| US6251136B1 (en) | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
| US20020009604A1 (en) | 1999-12-22 | 2002-01-24 | Zamora Paul O. | Plasma-deposited coatings, devices and methods |
| US20050238686A1 (en) | 1999-12-23 | 2005-10-27 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
| US6790228B2 (en) | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
| US20010014717A1 (en) | 1999-12-23 | 2001-08-16 | Hossainy Syed F.A. | Coating for implantable devices and a method of forming the same |
| US20040086542A1 (en) | 1999-12-23 | 2004-05-06 | Hossainy Syed F.A. | Coating for implantable devices and a method of forming the same |
| WO2001045763A1 (en) | 1999-12-23 | 2001-06-28 | Advanced Cardiovascular Systems, Inc. | Biocomptabible coating |
| US6283949B1 (en) | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
| US20010007083A1 (en) | 1999-12-29 | 2001-07-05 | Roorda Wouter E. | Device and active component for inhibiting formation of thrombus-inflammatory cell matrix |
| US6899731B2 (en) | 1999-12-30 | 2005-05-31 | Boston Scientific Scimed, Inc. | Controlled delivery of therapeutic agents by insertable medical devices |
| WO2001049338A1 (en) | 1999-12-30 | 2001-07-12 | Li Wei Pin | Controlled delivery of therapeutic agents by insertable medical devices |
| JP2001190687A (en) | 2000-01-07 | 2001-07-17 | Kawasumi Lab Inc | Stents and stent grafts |
| WO2001051027A3 (en) | 2000-01-11 | 2002-01-10 | Intralytix Inc | Polymer blends as biodegradable matrices for preparing biocomposites |
| US6406739B1 (en) | 2000-01-12 | 2002-06-18 | Alcon Universal Ltd. | Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses |
| US6749626B1 (en) | 2000-03-31 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Actinomycin D for the treatment of vascular disease |
| WO2001074414A1 (en) | 2000-03-31 | 2001-10-11 | Advanced Cardiovascular Systems, Inc. | A biocompatible carrier containing actinomycin d and a method of forming the same |
| US6503954B1 (en) | 2000-03-31 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Biocompatible carrier containing actinomycin D and a method of forming the same |
| US6527801B1 (en) | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
| US20030105518A1 (en) | 2000-04-13 | 2003-06-05 | Debashis Dutta | Biodegradable drug delivery material for stent |
| US20030097173A1 (en) | 2000-04-13 | 2003-05-22 | Debashis Dutta | Biodegradable drug delivery material for stent |
| US6887485B2 (en) | 2000-05-10 | 2005-05-03 | Medtronic Vascular, Inc. | Nitric oxide-releasing metallic medical devices |
| US20020016625A1 (en) | 2000-05-12 | 2002-02-07 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
| WO2001087372A1 (en) | 2000-05-12 | 2001-11-22 | Cordis Corporation | Drug combinations useful for prevention of restenosis |
| WO2001087373A1 (en) | 2000-05-12 | 2001-11-22 | Cordis Corporation | Delivery devices for treatment of vascular disease |
| US20020005206A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Antiproliferative drug and delivery device |
| US20020007213A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
| US20020007214A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
| US20020007215A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
| US6673385B1 (en) | 2000-05-31 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Methods for polymeric coatings stents |
| US20040018296A1 (en) | 2000-05-31 | 2004-01-29 | Daniel Castro | Method for depositing a coating onto a surface of a prosthesis |
| US6395326B1 (en) | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
| US6616765B1 (en) | 2000-05-31 | 2003-09-09 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
| US20020038145A1 (en) | 2000-06-05 | 2002-03-28 | Jang G. David | Intravascular stent with increasing coating retaining capacity |
| US6783543B2 (en) | 2000-06-05 | 2004-08-31 | Scimed Life Systems, Inc. | Intravascular stent with increasing coating retaining capacity |
| US6629350B2 (en) | 2000-06-08 | 2003-10-07 | Tom Motsenbocker | Stent crimping apparatus and method |
| US6585765B1 (en) | 2000-06-29 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Implantable device having substances impregnated therein and a method of impregnating the same |
| US20030190406A1 (en) | 2000-06-29 | 2003-10-09 | Hossainy Syed F. A. | Implantable device having substances impregnated therein and a method of impregnating the same |
| WO2002003890A1 (en) | 2000-07-06 | 2002-01-17 | Biosurface Engineering Technologies, Inc. | Drug diffusion coatings, applications and methods |
| US6555157B1 (en) | 2000-07-25 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Method for coating an implantable device and system for performing the method |
| US20030157241A1 (en) | 2000-07-25 | 2003-08-21 | Hossainy Syed F.A. | Method for coating an implantable device and system for performing the method |
| US20020071822A1 (en) | 2000-07-27 | 2002-06-13 | Uhrich Kathryn E. | Therapeutic polyesters and polyamides |
| US6733768B2 (en) | 2000-08-04 | 2004-05-11 | Advanced Cardiovascular Systems, Inc. | Composition for coating an implantable prosthesis |
| US6451373B1 (en) | 2000-08-04 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Method of forming a therapeutic coating onto a surface of an implantable prosthesis |
| US20040047978A1 (en) | 2000-08-04 | 2004-03-11 | Hossainy Syed F.A. | Composition for coating an implantable prosthesis |
| US6503538B1 (en) | 2000-08-30 | 2003-01-07 | Cornell Research Foundation, Inc. | Elastomeric functional biodegradable copolyester amides and copolyester urethanes |
| US6585926B1 (en) | 2000-08-31 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a porous balloon |
| WO2002026162A3 (en) | 2000-09-26 | 2003-01-16 | Advanced Cardiovascular System | A method of loading a substance onto an implantable device |
| US6716444B1 (en) | 2000-09-28 | 2004-04-06 | Advanced Cardiovascular Systems, Inc. | Barriers for polymer-coated implantable medical devices and methods for making the same |
| US6254632B1 (en) | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
| WO2002026139A1 (en) | 2000-09-29 | 2002-04-04 | Cordis Corporation | Coated medical devices |
| US20020111590A1 (en) | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
| US20020094440A1 (en) | 2000-09-29 | 2002-07-18 | Llanos Gerard H. | Coatings for medical devices |
| US7591844B2 (en) | 2000-09-29 | 2009-09-22 | Cordis Corporation | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
| US6746773B2 (en) | 2000-09-29 | 2004-06-08 | Ethicon, Inc. | Coatings for medical devices |
| US20020051730A1 (en) | 2000-09-29 | 2002-05-02 | Stanko Bodnar | Coated medical devices and sterilization thereof |
| EP1192957B1 (en) | 2000-09-29 | 2007-02-14 | Ethicon, Inc. | Coating for medical devices |
| US6506437B1 (en) | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
| US6558733B1 (en) | 2000-10-26 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Method for etching a micropatterned microdepot prosthesis |
| WO2002034311A3 (en) | 2000-10-26 | 2003-01-30 | Advanced Cardiovascular System | Selective coating of medical devices |
| US6758859B1 (en) | 2000-10-30 | 2004-07-06 | Kenny L. Dang | Increased drug-loading and reduced stress drug delivery device |
| US20020077693A1 (en) | 2000-12-19 | 2002-06-20 | Barclay Bruce J. | Covered, coiled drug delivery stent and method |
| US20030083646A1 (en) | 2000-12-22 | 2003-05-01 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
| US7077859B2 (en) | 2000-12-22 | 2006-07-18 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
| US20020120326A1 (en) | 2000-12-22 | 2002-08-29 | Gene Michal | Ethylene-carboxyl copolymers as drug delivery matrices |
| US6574497B1 (en) | 2000-12-22 | 2003-06-03 | Advanced Cardiovascular Systems, Inc. | MRI medical device markers utilizing fluorine-19 |
| US20040096504A1 (en) | 2000-12-22 | 2004-05-20 | Gene Michal | Ethylene-carboxyl copolymers as drug delivery matrices |
| WO2002056790A3 (en) | 2000-12-22 | 2003-01-23 | Avantec Vascular Corp | Delivery of therapeutic capable agents |
| US20020082685A1 (en) | 2000-12-22 | 2002-06-27 | Motasim Sirhan | Apparatus and methods for controlled substance delivery from implanted prostheses |
| US20020082679A1 (en) | 2000-12-22 | 2002-06-27 | Avantec Vascular Corporation | Delivery or therapeutic capable agents |
| US6544543B1 (en) | 2000-12-27 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Periodic constriction of vessels to treat ischemic tissue |
| US20030072868A1 (en) | 2000-12-28 | 2003-04-17 | Sameer Harish | Methods of forming a coating for a prosthesis |
| US6540776B2 (en) | 2000-12-28 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Sheath for a prosthesis and methods of forming the same |
| US20040047980A1 (en) | 2000-12-28 | 2004-03-11 | Pacetti Stephen D. | Method of forming a diffusion barrier layer for implantable devices |
| US20020123801A1 (en) | 2000-12-28 | 2002-09-05 | Pacetti Stephen D. | Diffusion barrier layer for implantable devices |
| US6663662B2 (en) | 2000-12-28 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Diffusion barrier layer for implantable devices |
| WO2002058753A9 (en) | 2000-12-28 | 2003-08-07 | Advanced Cardiovascular System | Coating for implantable devices and a method of forming the same |
| US6503556B2 (en) | 2000-12-28 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Methods of forming a coating for a prosthesis |
| US20020087123A1 (en) | 2001-01-02 | 2002-07-04 | Hossainy Syed F.A. | Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices |
| US6544223B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter for delivering therapeutic agents |
| US20030158517A1 (en) | 2001-01-05 | 2003-08-21 | Lyudmila Kokish | Balloon catheter for delivering therapeutic agents |
| US20030150380A1 (en) | 2001-01-05 | 2003-08-14 | Yoe Brandon J. | Method and apparatus for coating an implant device |
| US6645195B1 (en) | 2001-01-05 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Intraventricularly guided agent delivery system and method of use |
| US6544582B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for coating an implantable device |
| US6740040B1 (en) | 2001-01-30 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Ultrasound energy driven intraventricular catheter to treat ischemia |
| US20030032767A1 (en) | 2001-02-05 | 2003-02-13 | Yasuhiro Tada | High-strength polyester-amide fiber and process for producing the same |
| US20020176849A1 (en) | 2001-02-09 | 2002-11-28 | Endoluminal Therapeutics, Inc. | Endomural therapy |
| US20020127263A1 (en) | 2001-02-27 | 2002-09-12 | Wenda Carlyle | Peroxisome proliferator-acitvated receptor gamma ligand eluting medical device |
| US20030004141A1 (en) | 2001-03-08 | 2003-01-02 | Brown David L. | Medical devices, compositions and methods for treating vulnerable plaque |
| WO2002074194A3 (en) | 2001-03-16 | 2004-01-08 | Sts Biopolymers Inc | Stent with medicated multi-layer hydrid polymer coating |
| US6878160B2 (en) | 2001-03-27 | 2005-04-12 | Scimed Life Systems, Inc. | Stent with controlled expansion |
| US20020143382A1 (en) | 2001-03-29 | 2002-10-03 | Luuk Hijlkema | Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece |
| US6739033B2 (en) | 2001-03-29 | 2004-05-25 | Scimed Life Systems, Inc. | Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece |
| US7010850B2 (en) | 2001-03-29 | 2006-03-14 | Boston Scientific Scimed, Inc. | Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece |
| US20020142039A1 (en) | 2001-03-30 | 2002-10-03 | Advanced Cardiovascular Systems, Inc. | Controlled morphologies in polymer drug for release of drugs from polymer films |
| US6645135B1 (en) | 2001-03-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance |
| US6623448B2 (en) | 2001-03-30 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Steerable drug delivery device |
| US6625486B2 (en) | 2001-04-11 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for intracellular delivery of an agent |
| US6764505B1 (en) | 2001-04-12 | 2004-07-20 | Advanced Cardiovascular Systems, Inc. | Variable surface area stent |
| US20020155212A1 (en) | 2001-04-24 | 2002-10-24 | Hossainy Syed Faiyaz Ahmed | Coating for a stent and a method of forming the same |
| US20040073298A1 (en) | 2001-04-24 | 2004-04-15 | Hossainy Syed Faiyaz Ahmed | Coating for a stent and a method of forming the same |
| US6712845B2 (en) | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
| US20030039689A1 (en) | 2001-04-26 | 2003-02-27 | Jianbing Chen | Polymer-based, sustained release drug delivery system |
| US6660034B1 (en) | 2001-04-30 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Stent for increasing blood flow to ischemic tissues and a method of using the same |
| US20040071861A1 (en) | 2001-04-30 | 2004-04-15 | Evgenia Mandrusov | Method of manufacturing a stent coating and a method of using the stent |
| US20020165608A1 (en) | 2001-05-07 | 2002-11-07 | Llanos Gerard H. | Local drug delivery devices and methods for maintaining the drug coatings thereon |
| US6656506B1 (en) | 2001-05-09 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Microparticle coated medical device |
| US20040052859A1 (en) | 2001-05-09 | 2004-03-18 | Wu Steven Z. | Microparticle coated medical device |
| US20040052858A1 (en) | 2001-05-09 | 2004-03-18 | Wu Steven Z. | Microparticle coated medical device |
| US20020188277A1 (en) | 2001-05-18 | 2002-12-12 | Roorda Wouter E. | Medicated stents for the treatment of vascular disease |
| US6605154B1 (en) | 2001-05-31 | 2003-08-12 | Advanced Cardiovascular Systems, Inc. | Stent mounting device |
| US20020183581A1 (en) | 2001-05-31 | 2002-12-05 | Yoe Brandon James | Radiation or drug delivery source with activity gradient to minimize edge effects |
| US20030207020A1 (en) | 2001-05-31 | 2003-11-06 | Villareal Plaridel K. | Stent mounting device and a method of using the same to coat a stent |
| US6743462B1 (en) | 2001-05-31 | 2004-06-01 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for coating implantable devices |
| US6666880B1 (en) | 2001-06-19 | 2003-12-23 | Advised Cardiovascular Systems, Inc. | Method and system for securing a coated stent to a balloon catheter |
| WO2002102283A1 (en) | 2001-06-19 | 2002-12-27 | Advanced Cardiovascular Systems, Inc. | Method and system for securing a coated stent to a balloon catheter |
| WO2003000308A1 (en) | 2001-06-22 | 2003-01-03 | Cordis Corporation | Drug delivery devices |
| US6572644B1 (en) | 2001-06-27 | 2003-06-03 | Advanced Cardiovascular Systems, Inc. | Stent mounting device and a method of using the same to coat a stent |
| US20040062853A1 (en) | 2001-06-27 | 2004-04-01 | Pacetti Stephen D. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
| US6695920B1 (en) | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
| US20040060508A1 (en) | 2001-06-28 | 2004-04-01 | Pacetti Stephen D. | Stent mounting device |
| US6565659B1 (en) | 2001-06-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Stent mounting assembly and a method of using the same to coat a stent |
| US6673154B1 (en) | 2001-06-28 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Stent mounting device to coat a stent |
| US20030211230A1 (en) | 2001-06-28 | 2003-11-13 | Pacetti Stephen D. | Stent mounting assembly and a method of using the same to coat a stent |
| US6706013B1 (en) | 2001-06-29 | 2004-03-16 | Advanced Cardiovascular Systems, Inc. | Variable length drug delivery catheter |
| US20030113439A1 (en) | 2001-06-29 | 2003-06-19 | Pacetti Stephen D. | Support device for a stent and a method of using the same to coat a stent |
| US6585755B2 (en) | 2001-06-29 | 2003-07-01 | Advanced Cardiovascular | Polymeric stent suitable for imaging by MRI and fluoroscopy |
| US20040098117A1 (en) | 2001-06-29 | 2004-05-20 | Hossainy Syed F.A. | Composite stent with regioselective material and a method of forming the same |
| US6527863B1 (en) | 2001-06-29 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Support device for a stent and a method of using the same to coat a stent |
| US6656216B1 (en) | 2001-06-29 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Composite stent with regioselective material |
| EP1273314A1 (en) | 2001-07-06 | 2003-01-08 | Terumo Kabushiki Kaisha | Stent |
| WO2003022323A1 (en) | 2001-09-07 | 2003-03-20 | Advanced Cardiovascular Systems, Inc. | Coating for reducing the rate of release of drugs from stents |
| JP2005512959A (en) | 2001-09-10 | 2005-05-12 | アボット・ラボラトリーズ | Medical devices containing rapamycin analogs |
| US20050143752A1 (en) | 2001-09-19 | 2005-06-30 | Abbott Laboratories Vascular Entities Limited | Cold-molding process for loading a stent onto a stent delivery system |
| US20030083739A1 (en) | 2001-09-24 | 2003-05-01 | Robert Cafferata | Rational drug therapy device and methods |
| US20030060877A1 (en) | 2001-09-25 | 2003-03-27 | Robert Falotico | Coated medical devices for the treatment of vascular disease |
| US6753071B1 (en) | 2001-09-27 | 2004-06-22 | Advanced Cardiovascular Systems, Inc. | Rate-reducing membrane for release of an agent |
| US20030059520A1 (en) | 2001-09-27 | 2003-03-27 | Yung-Ming Chen | Apparatus for regulating temperature of a composition and a method of coating implantable devices |
| WO2003035131A1 (en) | 2001-09-27 | 2003-05-01 | Advanced Cardiovascular Systems, Inc. | A rate-reducing membrane for release of an agent |
| US20030065377A1 (en) | 2001-09-28 | 2003-04-03 | Davila Luis A. | Coated medical devices |
| US20030073961A1 (en) | 2001-09-28 | 2003-04-17 | Happ Dorrie M. | Medical device containing light-protected therapeutic agent and a method for fabricating thereof |
| WO2003028780A3 (en) | 2001-09-28 | 2004-03-11 | Advanced Cardiovascular System | Medical device containing light-protected therapeutic agent |
| WO2003037223A1 (en) | 2001-11-01 | 2003-05-08 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
| US20030097088A1 (en) | 2001-11-12 | 2003-05-22 | Pacetti Stephen Dirk | Coatings for drug delivery devices |
| US20030099712A1 (en) | 2001-11-26 | 2003-05-29 | Swaminathan Jayaraman | Therapeutic coating for an intravascular implant |
| US20040086550A1 (en) | 2001-11-30 | 2004-05-06 | Roorda Wouter E. | Permeabilizing reagents to increase drug delivery and a method of local delivery |
| US6663880B1 (en) | 2001-11-30 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Permeabilizing reagents to increase drug delivery and a method of local delivery |
| JP2004523275A5 (en) | 2001-12-18 | 2005-05-26 | ||
| US6709514B1 (en) | 2001-12-28 | 2004-03-23 | Advanced Cardiovascular Systems, Inc. | Rotary coating apparatus for coating implantable medical devices |
| JP2003210570A (en) | 2002-01-18 | 2003-07-29 | Olympus Optical Co Ltd | Implant material having living body active layer and method for covering living body active layer on implant basic material |
| US20050113903A1 (en) | 2002-01-31 | 2005-05-26 | Scimed Life Systems, Inc. | Medical device for delivering biologically active material |
| US20030144727A1 (en) | 2002-01-31 | 2003-07-31 | Rosenthal Arthur L. | Medical device for delivering biologically active material |
| US7291165B2 (en) | 2002-01-31 | 2007-11-06 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
| US6887270B2 (en) | 2002-02-08 | 2005-05-03 | Boston Scientific Scimed, Inc. | Implantable or insertable medical device resistant to microbial growth and biofilm formation |
| WO2003080147A1 (en) | 2002-03-20 | 2003-10-02 | Advanced Cardiovascular Systems, Inc. | Biodegradable hydrophobic polymer for stents |
| WO2003082368A1 (en) | 2002-03-27 | 2003-10-09 | Advanced Cardiovascular Systems, Inc. | 40-o-(2-hydroxy)ethyl-rapamycin coated stent |
| US6861088B2 (en) | 2002-03-28 | 2005-03-01 | Boston Scientific Scimed, Inc. | Method for spray-coating a medical device having a tubular wall such as a stent |
| WO2003090818A3 (en) | 2002-04-24 | 2003-12-04 | Sun Biomedical Ltd | Drug-delivery endovascular stent and method for treating restenosis |
| US20030208254A1 (en) | 2002-05-03 | 2003-11-06 | James Shortt | Method and apparatus for mounting a stent onto a stent delivery system |
| US6948223B2 (en) | 2002-05-03 | 2005-09-27 | Medtronic Vascular, Inc. | Apparatus for mounting a stent onto a stent delivery system |
| WO2003097015A1 (en) | 2002-05-15 | 2003-11-27 | Brown University Research Foundation | Short chain polymer for enhancing the bioadhesiveness of polymers on mucosal membrane |
| WO2004000383A3 (en) | 2002-06-21 | 2004-05-27 | Advanced Cardiovascular System | Polyacrylates coatings for implantable medical devices |
| US6865810B2 (en) | 2002-06-27 | 2005-03-15 | Scimed Life Systems, Inc. | Methods of making medical devices |
| WO2004009145A1 (en) | 2002-07-19 | 2004-01-29 | Advanced Cardiovascular Systems, Inc. | Purified polymers for coatings of implantable medical devices |
| US20040054104A1 (en) | 2002-09-05 | 2004-03-18 | Pacetti Stephen D. | Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol) |
| US20040063805A1 (en) | 2002-09-19 | 2004-04-01 | Pacetti Stephen D. | Coatings for implantable medical devices and methods for fabrication thereof |
| US20040072922A1 (en) | 2002-10-09 | 2004-04-15 | Hossainy Syed F.A. | Rate limiting barriers for implantable medical devices |
| WO2004032987A1 (en) | 2002-10-11 | 2004-04-22 | Cartificial A/S | Medical device comprising a bio-compatible polymeric product with a layered structure |
| WO2004060428A1 (en) | 2002-12-16 | 2004-07-22 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
| EP1440699A1 (en) | 2003-01-24 | 2004-07-28 | Medtronic Vascular, Inc. | Stent with epoxy primer coating |
| US20050084515A1 (en) | 2003-03-20 | 2005-04-21 | Medtronic Vascular, Inc. | Biocompatible controlled release coatings for medical devices and related methods |
| EP1470830A1 (en) | 2003-04-25 | 2004-10-27 | Medtronic Vascular, Inc. | Drug-polymer coated stent with polysulfone and styrenic block copolymer |
| WO2005004945A3 (en) | 2003-06-25 | 2005-03-24 | Advanced Cardiovascular System | Thermal treatment of a drug eluting implantable medical device |
| US20050049694A1 (en) | 2003-08-07 | 2005-03-03 | Medtronic Ave. | Extrusion process for coating stents |
| US20050038497A1 (en) | 2003-08-11 | 2005-02-17 | Scimed Life Systems, Inc. | Deformation medical device without material deformation |
| US20050037052A1 (en) | 2003-08-13 | 2005-02-17 | Medtronic Vascular, Inc. | Stent coating with gradient porosity |
| US20050043786A1 (en) | 2003-08-18 | 2005-02-24 | Medtronic Ave, Inc. | Methods and apparatus for treatment of aneurysmal tissue |
| US20050049693A1 (en) | 2003-08-25 | 2005-03-03 | Medtronic Vascular Inc. | Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease |
| US20050055078A1 (en) | 2003-09-04 | 2005-03-10 | Medtronic Vascular, Inc. | Stent with outer slough coating |
| US20050054774A1 (en) | 2003-09-09 | 2005-03-10 | Scimed Life Systems, Inc. | Lubricious coating |
| US20050055044A1 (en) | 2003-09-09 | 2005-03-10 | Scimed Life Systems, Inc. | Lubricious coatings for medical device |
| US20050060020A1 (en) | 2003-09-17 | 2005-03-17 | Scimed Life Systems, Inc. | Covered stent with biologically active material |
| US20050065593A1 (en) | 2003-09-19 | 2005-03-24 | Medtronic Vascular, Inc. | Delivery of therapeutics to treat aneurysms |
| US20050065501A1 (en) | 2003-09-23 | 2005-03-24 | Scimed Life Systems, Inc. | Energy activated vaso-occlusive devices |
| US20050065545A1 (en) | 2003-09-23 | 2005-03-24 | Scimed Life Systems, Inc. | External activation of vaso-occlusive implants |
| US20050064088A1 (en) | 2003-09-24 | 2005-03-24 | Scimed Life Systems, Inc | Ultrasonic nozzle for coating a medical appliance and method for using an ultrasonic nozzle to coat a medical appliance |
| US20050075714A1 (en) | 2003-09-24 | 2005-04-07 | Medtronic Vascular, Inc. | Gradient coated stent and method of fabrication |
| US20050074545A1 (en) | 2003-09-29 | 2005-04-07 | Medtronic Vascular, Inc. | Stent with improved drug loading capacity |
| US20050074406A1 (en) | 2003-10-03 | 2005-04-07 | Scimed Life Systems, Inc. | Ultrasound coating for enhancing visualization of medical device in ultrasound images |
| US20050079274A1 (en) | 2003-10-14 | 2005-04-14 | Maria Palasis | Method for coating multiple stents |
| US20050118344A1 (en) | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
| US20050119720A1 (en) | 2003-12-01 | 2005-06-02 | Advanced Cardiovascular Systems, Inc. State Of Incorporation: California | Temperature controlled crimping |
| US7316148B2 (en) | 2005-02-15 | 2008-01-08 | Boston Scientific Scimed, Inc. | Protective sheet loader |
| US20070289117A1 (en) | 2006-06-19 | 2007-12-20 | Bin Huang | Methods for improving stent retention on a balloon catheter |
| US8123793B2 (en) | 2008-09-10 | 2012-02-28 | Boston Scientific Scimed, Inc. | Pre-crimp balloon inflation |
Non-Patent Citations (126)
| Title |
|---|
| "Copolymer", Definition and More from the Free Miriam-Webster Dictionary, http://www.merriam-webster.com/dictionary/copolymer, printed, Oct. 29, 2012, 1 pg. |
| "Copolymer", Definition of Copolymer by the Free Online Dictionary, Thesaurus and Encyclopedia, http://www.thefreedictionary.com/copolymer, printed Oct. 29, 2012, 1 pg. |
| "Copolymer," Wikipedia: The Free Encyclopedia, http://en.wikipedia.org/wiki/Copolymer, printed Oct. 29, 2012, 5 pgs. |
| "Copolymer/Define Copolymer at Dictionary.com," and "Copolymer," Encyclopedia Britannica Online, http://dictionary.reference.com/browse/copolymer, printed Oct. 30, 2012, 2 pgs. |
| "Poly(vinylidene fluoride-co-hexafluoropropylene)", SIGMA-ALDRICH catalog, product detail, downloaded from:www.sigmaaldrich.com/catalog?ProductDetail.do?, Jul. 3, 2010, 2 pgs. |
| Angioplasty Summit Abstracts/Oral, The Am. J. of Cardiology, Apr. 23-26, 2013, p. 23B. |
| Anonymous "A Simple Approach for Glass Transition Temperature Prediction", http://www.geocities.com/ResearchTriangle/Thinktank/4146/6400glass-temperature.html, printed May 5, 2005 (2 pages). |
| Anonymous "Amorphous Polymers and the Glass Transition Temperature", http://www.irc.leeds.ac.uk/iaps/mod1/node6 html printed Mar. 21, 2003 (3 pages). |
| Anonymous, "Cardiologists Draw-Up The Dream Stent", Clinica 710:15 (Jun. 17, 1996), http://www.dialogweb.com/cgi/document?req=1061848202959, printed Aug. 25, 2003 (2 pages). |
| Anonymous, "Differential Scanning Calorimetry", http://www.pslc.ws/macrog/dsc.htm, printed Sep. 29, 2003 (8 pages). |
| Anonymous, "Glass Transition Temperature", http://islnotes.cps.msu.edu/trp/back/mol glas.html, printed May 5, 2005 (1 page). |
| Anonymous, "Glass transition temperature", http://palimpsest.stanford.edu/don/dt/dt1549.html, printed Mar. 21, 2003 (1 page). |
| Anonymous, "How Big are Polymers?", www.chemeng.ucla.edu/che112/Notes, printed May 9, 2005 (13 pages). |
| Anonymous, "Measuring and Understanding Tg (Glass Transition Temperature)," Arlon, Application Notes (4 pages). |
| Anonymous, "The Glass Transition", http://www.pslc.ws/macrog/tg.htm, printed Mar. 21, 2003 (11 pages). |
| Anonymous, "Thermal Properties-Crystallization" (16 pages). |
| Anonymous, "Thermoplastics-An Introduction", http://www.azom.com/details.asp?ArticleID+83&head=Thermoplastics%2B-%2BAn%2BIntroduction, printed May 18, 2005 (5 pages). |
| Anonymous, Appendix I-Glass Transition Temperature (T9) www.Dymax.com/pdf/SPIE-Paper-Apendix.pdf, printed May 9, 2005 (2 pages). |
| Anonymous, Heparin-coated stents cut complications by 30%, Clinica 732:17 (Nov. 18, 1996), http://www.dialogweb.com/cgi/document?req=1061847871753, printed Aug. 25, 2003 (2 pages). |
| Anonymous, Rolling Therapeutic Agent Loading Device for Therapeutic Agent Delivery or Coated Stent (Abstract 434009), Res. Disclos. pp. 974-975 (Jun. 2000). |
| Anonymous, Stenting continues to dominate cardiology, Clinica 720:22 (Sep. 2, 1996), http://www.dialogweb.com/cgi/document?reg=1061848017752, printed Aug. 25, 2003 (2 pages). |
| Aoyagi et al., Preparation of cross-linked aliphatic polyester and application to thermo-responsive material, Journal of Controlled Release 32:87-96 (1994). |
| Arvanitoyannis et al., "Novel star-shaped polylactide with glycerol using stannous octoate or tetraphenyl tin as catalyst: 1 Synthesis, characterization and study of their biodegradability", Polymer vol. 36, No. 15, pp. 2947-2956 (1995). |
| Baird et al, "Dielectric behaviour and morphology of polyvinylidene fluoride", Journal of Material Science 10:1248-1251 (1975). |
| Barath et al., Low Dose of Antitumor Agents Prevents Smooth Muscle Cell Proliferation After Endothelial Injury, JACC 13(2): 252A (Abstract) (Feb. 1989). |
| Barbucci et al., Coating of commercially available materials with a new heparinizable material, J. Biomed. Mater. Res. 25:1259-1274 (Oct. 1991). |
| Birmingham Polymers, Inc., Biodegradation Information, www.absorbables.com (2 pages). |
| Birmingham Polymers, Inc., Chemical & Physical Properties of Selected Polymers, www.absorbables.com printed Apr. 2, 2015 (2 pages). |
| Birmingham Polymers, Inc., Inherent Viscosity, www.absorbables.com. |
| Black et al., "Glass Transitions of Some Block Copolymers", Journal of Applied Polymer Science 18:2307-2310 (1974). |
| Bliznyuk et al., "Surface Glass Transition Temperature of Amorphous Polystyrene Measured By SFM", pp. 1-5. |
| Bloembergen et al., "Studies of Composition and Crystallinity of Bacterial Poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate)", Macromolecules 19, pp. 2865-2871 (1986). |
| Bloembergen et al., "Studies of Composition and Crystallinity of Bacterial Poly(β-hydroxybutyrate-co-β-hydroxyvalerate)", Macromolecules 19, pp. 2865-2871 (1986). |
| Bosiers et al., "Coronary and endovascular applications of the Absorb(TM) bioresorbable vascular scaffold", Interv. Cardiol. 4(6), pp. 621-631 (2012). |
| Bosiers et al., "Coronary and endovascular applications of the Absorb™ bioresorbable vascular scaffold", Interv. Cardiol. 4(6), pp. 621-631 (2012). |
| Buchholz et al., "Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study", Journal of Chemical Physics 117(15):7364-7372 (Oct. 15, 2002). |
| Chung et al., Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, Journal of Controlled Release 65:93-103 (2000). |
| Claude Tournut Chapter 31, "Thermoplastic Copolymers of Vinylidene Fluoride," John Scheirs, ed. Modern Fluoropolymers, pp. 577-596 (1997), Chichester, England, John Wiley & Sons Ltd. |
| De Scheerder et al., Biocompatibility of Polymer-Coated Oversized Metallic Stents Implanted in Normal Porcine Coronary Arteries, Atherosclerosis 114:105-114 (1995). |
| Degertekin et al., "Persistent Inhibition of Neointimal Hyperplasia After Sirolimus-Eluting Stent Implantation: Long-Term Clinical, Angiographic, and Intravascular Ultrasound Follow-Up", Circulation 106, pp. 1610-1613 (2002). |
| Dev et al., Kinetics of Drug Delivery to the Arterial Wall Via Polyurethane-Coated Removable Nitinol Stent: Comparative Study of Two Drugs, Catheterization and Cardiovascular Diagnosis 34:272-278 (1995). |
| Dichek et al., Seeding of Intravascular Stents with Genetically Engineered Endothelial Cells, Circ. 80(5):1347-1353 (Nov. 1989). |
| Ding et al., "Novel Synthesis of Poly(p-phenylene sulfide) from Cyclic Disulfide Oligomers", Macromolecules 29:4811-4812 (1996). |
| Eigler et al., Local Arterial Wall Drug Delivery from a Polymer Coated Removable Metallic Stent: Kinetics, Distribution, and Bioactivity of Forskolin, JACC, 4A (701-1), Abstract (Feb. 1994). |
| Eling et al., "Biodegradable materials of poly(L-lactic acid): 1. melt-spun and solution-spun fibres", Polymer, vol. 23, pp. 1587-1593 (1982). |
| Encyclopedia of Polymer Science and Technology Suppl., 2 Ed. Bikales, 9 title pages (1977). |
| EPO Examination Report for application 04 812 597.5-2307, mailed Feb. 26, 2007, 2 pgs. |
| EPO Examination Report for application 04 812 597.5-2307, mailed Jul. 4, 2008, 3 pgs. |
| EPO Examination Report for application 04 812 597.5-2307, mailed Sep. 6, 2007, 3 pgs. |
| Fernandez-Martin et al., "Glass Transition Temperature and Heat Capacity of Heterotacticlike PMMA", Journal of Polymer Science: Polymer Physics Edition 19:1353-1363 (1981). |
| Forrest et al., "Brillouin Light Scattering Determination of the Glass Transition in Thin, Freely-Standing Poly (styrene) Films", Met. Res. Soc. Symp. Proc. vol. 407, pp. 131-136 (1996). |
| Forrest et al., "Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films", Physical Review Letters 77(10):2002-2005 (Sep. 2, 1996). |
| Fried, Polymer Science and Technology, Prentice Hall, Englewood Cliffs, New Jersey, 1995, p. 10. |
| Fryer et al., "Dependence of the Glass Transition Temperature of Polymer Films on Interfacial Energy and Thickness", Macromolecules 34(16):5627-5634 (2001). |
| Fujii et al., "Investigation of the Stereoregularity of Poly(vinyl Alcohol)", Journal of Polymer Science: Part A 2:2327-2347 (1964). |
| Gee et al., "The effect of ionizing radiation on the thermal properties of linear high polymers": Part 2. Nylon-6, pp. 192-197 (1970). |
| Grohens et al., "Tacticity and surface chemistry effects on the glass transition temperature of thin supported PMMA films", Mat. Res. Soc. Symp. 629:FF1.7.1-FF1.7.7 (2000). |
| Helmenstine, Anne Marie, "Copolymer-Definition of Copolymer," About.com Guide, http://chemistry.about.com/od/chemsitryglossary/g/Copolymer-Definition.htm, printed Oct. 29, 2012, 1 page. |
| Helmus, Overview of Biomedical Materials, MRS Bulletin, pp. 33-38 (Sep. 1991). |
| Herdeg et al., Antiproliferative Stent Coatings: Taxol and Related Compounds, Semin. Intervent. Cardiol. 3:197-199 (1998). |
| Huang et al.,Biodegradable Polymers Derived from Aminoacids, Macromol. Symp. 144, 7-32 (1999). |
| Inoue et al., "An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs", Journal of Controlled Release 51:221-229 (1998). |
| Inoue et al., An AB block copolymer of oligo(methyl methacrylate) and poly(acrylic acid) for micellar delivery of hydrophobic drugs, Journal of Controlled Release 51:221-229 (1998). |
| International Search Report and Written Opinion for PCT/US2004/017060, mailed Dec. 30, 2004, 10 pgs. |
| International Search Report and Written Opinion for PCT/US2004/040121, filed Nov. 30, 2004, mailed Apr. 12, 2005, 12 pgs. |
| International Search Report for 05780079.9-2107, mailed Jan. 17, 2008, 6 pages. |
| International Search Report for PCT/US2005/018579 filed May 26, 2006, mailed May 24, 2006, 6 pages. |
| Jacobsen et al.,"Filling of Poly(Lactic Acid) With Native Starch", Polymer Engineering and Science, vol. 36, No. 22, pp. 2799-2804 (1996). |
| Jaeger et al., "Two-Year Angiographic and Intravascular Ultrasound Follow-Up After Implantation of Sirolimus-Eluting Stents in Human Coronary Arteries", Circulation 107, pp. 381-383 (2003). |
| Kataoka et al., Block copolymer micelles as vehicles for drug delivery, Journal of Controlled Release 24:119-132 (1993). |
| Katsarava et al., Amino Acid-Based Bioanalogous Polymers. Synthesis and Study of Regular Poly(ester amide)s Based on Bis(alpha-amino acid)alpha, omega-Alkylene Diesters, and Aliphatic Dicarbolic Acids, Journal of Polymer Science, Part A: Polymer Chemistry, 37(4), 391-407 (1999). |
| Katsarava et al., Amino Acid-Based Bioanalogous Polymers. Synthesis and Study of Regular Poly(ester amide)s Based on Bis(α-amino acid)α, ω-Alkylene Diesters, and Aliphatic Dicarbolic Acids, Journal of Polymer Science, Part A: Polymer Chemistry, 37(4), 391-407 (1999). |
| Kumar et al., "Biodegradable block copolymers", Advance Drug Delivery Rev. vol. 53, pp. 23-44 (2001). |
| KYNAR® and KYNAR®FLEX PVDF, The Base Resins for Demanding Industrial Applications, http.//www.products.arkemagroup.com/print.cfm, printed May 18, 2005 (3 pages). |
| Lam et al., "Biodegradation of porous versus non-porous poly(L-lactic acid) films", J. of Materials Science: Materials Medicine 5, pp. 181-189 (1994). |
| Lambert et al., Localized Arterial Wall Drug Delivery From a Polymer-Coated Removable Metallic Stent, Circulation 90(2):1003-1011 (Aug. 1994). |
| Levy et al., Strategies for Treating Arterial Restenosis Using Polymeric Controlled Release Implants, Biotechnol. Bioact. Polym. [Proc. Am. Chem. Soc. Symp.], pp. 259-268 (1994). |
| Liu et al., Drug release characteristics of unimolecular polymeric micelles, Journal of Controlled Release 68:167-174 (2000). |
| Löfgren et al., "Synthesis and Characterization of Biodegradable Homopolymers and Block Copolymers Based on 1,5-Dioxepan-2-one", Macromolecules 27:5556-5562 (1994). |
| Lotz, Phase Transitions and Structure of Crystalline Polymers, pp. 1-27. |
| Marconi et al., Covalent bonding of heparin to a vinyl copolymer for biomedical applications, Biomaterials 18(12):885-890 (1997). |
| Matsumaru et al., Embolic Materials for Endovascular Treatment of Cerebral Lesions, J. Biomater. Sci. Polymer Edn 8(7):555-569 (1997). |
| Micoulaut et al., "Glass Transition temperature variation, cross-linking and structure in network glasses: A stochastic approach", Europhysics Letters 47(5):568-574 (1999). |
| Migliaresi et al., "Dynamic Mechanical and Calorimetric Analysis of Compression-Molded PLLA of Different Molecular Weights: Effect of Thermal Treatments", J. of Applied Polymer Science, vol. 43, pp. 83-95 (1991). |
| Miller "Abbott's Bioresorbable Stent Shows Durable Results in ABSORB Trial", The Gray Sheet, pp. 17-18, Mar. 2003. |
| Miyazaki et al., Antitumor Effect of Implanted Ethylene-Vinyl Alcohol Copolymer Matrices Containing Anticancer Agents on Ehrlich Ascites Carcinoma and P388 Leukemia in Mice, Chem. Pharm. Bull. 33(6) 2490-2498 (1985). |
| Miyazawa et al., Effects of Pemirolast and Tranilast on Intimal Thickening After Arterial Injury in the Rat, J. Cardiovasc. Pharmacol., pp. 157-162 (1997). |
| Neuhaus et al., "mTOR Inhibitors: An Overview", Liver Transpl. vol. 7. No. 6, pp. 473-484. |
| Nijenhuis et al., "Highly crystalline as-polymerized poly(L-Iactide)", Polymer bulletin 26, pp. 71-77 (1991). |
| Nordrehaug et al.,A novel biocompatible coating applied to coronary stents, EPO Heart Journal 14, p. 321 (P1694), Abstr. Suppl. (1993). |
| Ohsawa et al., Preventive Effects of an Antiallergic Drug, Pemirolast Potassium, on Restenosis After Percutaneous Transluminal Coronary Angioplasty, American Heart Journal 136(6):1081-1087 (Dec. 1998). |
| Ozaki et al., New Stent Technologies, Progress in Cardiovascular Diseases, vol. XXXIX(2):129-140 (Sep./Oct. 1996). |
| Parravicini et al., "Crystallization of Poly(Ethylene Terephthalate) (PET) from the Oriented Mesomorphic Form", pp. 875-885 (1994). |
| Peng et al., Role of polymers in improving the results of stenting in coronary arteries, Biomaterials 17:685-694 (1996). |
| Perchar et al., Poly(ethylene glycol) Multiblock Copolymer as a Carrier of Anti-Cancer Drug Doxorubicin, Bioconjucate Chemistry 11(2):131-139 (Mar./Apr. 2000). |
| Perego et al., "Copolymers of L and D, L Lactide with 6-caprolactone:synthesis and characterization", Macromol. Chem. 194, pp. 2463-2469 (1993). |
| Polymer Data Handbook, Oxford Univ. Press. pp. 114-117 (1999). |
| Property data in Registry on STN 9011-17-0, 6 pgs. |
| Reeve et al., "Polylactide Stereochemistry:Effect on Enzymatic Degradability", Macromolecules 27, pp. 825-831 (1994). |
| Rodriguez, Ferdinand, Principles of Polymer Systems, Fourth Edition, Taylor & Francis, Washingon, D.C., 1996, p. 129. |
| Rogers et al., "Glass Formation in Polymers. I. The Glass Transitions of the Poly-(n-Alkyl Methacrylates)", 61:985-990 (Jul. 1957). |
| Saotome, et al., Novel Enzymatically Degradable Polymers Comprising α-Amino Acid, 1,2-Ethanediol, and Adipic Acid, Chemistry Letters, pp. 21-24, (1991). |
| Sarasua et al., "Crystallization and Melting Behavior of Polylactides", Macromolecules 31, pp. 3895-3905 (1998). |
| Schwartz et al., "Restenosis After Ballon Angioplasty", Circulation vol. 82, No. 6, pp. 2190-2200 (1990). |
| Schwartz et al., "Restenosis and the Proportional Neointimal Response to Coronary Artery Injury: Results in a Porcine Model", JACC vol. 19, No. 2, pp. 267-74 (1992). |
| Scott et al., "Ehtylene-Vinyl Acetate Semi-Batch Emulsion Copolymerization: Use of Factorial Experiments for Process Optimization", pp. 539-555 (1993). |
| Shigeno, Prevention of Cerebrovascular Spasm By Bosentan, Novel Endothelin Receptor, Chemical Abstract 125:212307 (1996). |
| Sichina, "Characterization of Polymers by TMA", Perkin Elmer Polymers technical note (9 pages). |
| Sousa et al., "Lack of Neointimal Proliferation After Implantation of Sirolimus-Coated Stents in Human Coronary Arteries: A Quantitative Coronary Angiography and Three-Dimensional Intravascular Ultrasound Study", Circulation 103, pp. 192-195 (2001). |
| Sousa et al., "Two-Year Angiographic and Intravascular Ultrasound Follow-Up After Implantation of Sirolimus-Eluting Stents in Human Coronary Arteries", Circulation 107, pp. 381-383 (2003). |
| Sperling, Introduction to Physical Polymer Science, 3rd Ed. 21 title pages (2001). |
| Sun et al., "Novel Copolyesters Containing Naphthalene Structure. I. From Bis(hydroxyalkyl)naphthalate and Bis[4-(2-hydroxyethoxy)aryl] Compounds", Journal of Polymer Science: Part A: Polymer Chemistry 34:1783-1792 (1996). |
| Taylor et al., "An Applied Approach to Film Formation; The glass transition temperature evolution of plasticized latex films", downloaded May 5, 2005 (13 pages). |
| Techspray Product Information, HFE Flux Remover, http://www.techsoray.com/1686info.htm, printed May 9, 2005 (2 pages). |
| Tokoh et al., "Glass Transition Temperature of Ethylene-Vinyl Alcohol Copolymers", Chemistry Express vol. 2, No. 9, pp. 575-578 (1987). |
| Translation of a Notification of Reasons for Refusal issued by JPO on Nov. 17, 2009, in connection with Appl. No. 2003-579899, 3 pgs. |
| Translation of a Notification of Reasons for Refusal issued by JPO on Nov. 17, 2009, in connection with Appl. No. 2003-579899, 8 pgs. |
| Translation of a Notification of Refusal issued by JPO on Oct. 4, 2011, in connection with Appl. No. 2006-517163, 7 pgs. |
| Translation of Notification of Refusal received from JPO for Appl. No. 2007-515347, mailed Jul. 10, 2012, 8 pgs. |
| Transplant 2001: Certican (Everolimus) Effective in Preventing Acute Rejection in Renal Transplantation, http://www.docouide.com/do.nsf/PrintPrint/A9A24F321A71712485256A4E00689824, printed May 9, 2005 (2 pages). |
| Tsige et al., "Simulation study of the glass transition temperature in poly(methyl methacrylate)", Physical Review E vol. 65: (2002) (8 pages). |
| van Beusekom et al., "Coronary stent coatings", Coronary Artery Disease 5(7): 590-596 (Jul. 1994). |
| van Beusekom et al., Coronary stent coatings, Coronary Artery Disease 5(7):590-596 (Jul. 1994). |
| Van de Velde et al., "Biopolymers: overview of several properties and consequences on their applications", Polymer Testing vol. 21, pp. 433-442 (2002). |
| Wilensky et al., Methods and Devices for Local Drug Delivery in Coronary and Peripheral Arteries, Trends Cardiovasc. Med. 3(5):163-170 (1993). |
| Yokoyama et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor, Journal of Controlled Release 50:79-92 (1998). |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10232147B2 (en) | 2011-05-27 | 2019-03-19 | Abbott Cardiovascular Systems Inc. | Method for assembling a scaffold-balloon catheter |
| US10010653B2 (en) * | 2016-02-05 | 2018-07-03 | Abbott Cardiovascular Systems Inc. | Methods for increasing coating strength to improve scaffold crimping yield |
| US10660773B2 (en) | 2017-02-14 | 2020-05-26 | Abbott Cardiovascular Systems Inc. | Crimping methods for thin-walled scaffolds |
| US10967556B2 (en) | 2018-06-11 | 2021-04-06 | Abbott Cardiovascular Systems Inc. | Uniform expansion of thin-walled scaffolds |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130333193A1 (en) | 2013-12-19 |
| US20050118344A1 (en) | 2005-06-02 |
| US20050119720A1 (en) | 2005-06-02 |
| ES2356466T3 (en) | 2011-04-08 |
| ATE492390T1 (en) | 2011-01-15 |
| US8052912B2 (en) | 2011-11-08 |
| DE602004030716D1 (en) | 2011-02-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE45744E1 (en) | Temperature controlled crimping | |
| EP1706254B1 (en) | Temperature controlled crimping | |
| US9949854B2 (en) | Crimping method | |
| US7247364B2 (en) | Coating for implantable medical devices | |
| US9283099B2 (en) | Stent-catheter assembly with a releasable connection for stent retention | |
| US7063884B2 (en) | Stent coating | |
| EP1684821B1 (en) | Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same | |
| US8689729B2 (en) | Apparatus for coating stents | |
| US8366762B2 (en) | Method of making a medical device with regioselective structure-property distribution | |
| US7563483B2 (en) | Methods for fabricating a coating for implantable medical devices | |
| EP1959877A1 (en) | Adhesion polymers to improve stent retention |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ABBOTT CARDIOVASCULAR SYSTEMS INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CARDIOVASCULAR SYSTEMS, INC.;REEL/FRAME:032308/0399 Effective date: 20070209 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |