SU905228A1 - Method for preparing thiourea - Google Patents

Method for preparing thiourea

Info

Publication number
SU905228A1
SU905228A1 SU802892710A SU2892710A SU905228A1 SU 905228 A1 SU905228 A1 SU 905228A1 SU 802892710 A SU802892710 A SU 802892710A SU 2892710 A SU2892710 A SU 2892710A SU 905228 A1 SU905228 A1 SU 905228A1
Authority
SU
USSR - Soviet Union
Prior art keywords
bis
carbonate
derivatives
dl
synthesis
Prior art date
Application number
SU802892710A
Other languages
Russian (ru)
Inventor
Малхаз Михайлович Заалишвили
Рамаз Давидович Кацарава
Тамара Михайловна Картвелишвили
Original Assignee
Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср filed Critical Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср
Priority to SU802892710A priority Critical patent/SU905228A1/en
Application granted granted Critical
Publication of SU905228A1 publication Critical patent/SU905228A1/en

Links

Images

Description

(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИМОЧЕВИНЫ (54) Process for the preparation of polyurea

I I

Изобретение относитс к синтезу высокомолекул рных соединений, а именно к синтезу полимочевины на основе природных диаминокарбоновых кислот, которые могут быть использованы в различных област х медицины в качестве биосовместимых полимеров . The invention relates to the synthesis of high molecular weight compounds, namely to the synthesis of polyureas based on natural diaminocarboxylic acids which can be used in various fields of medicine as biocompatible polymers.

Известен способ получени полимочевины путем взаимодействи диизоцианата с. Known is a method for preparing a polyurea by reacting with diisocyanate. диаминами в среде диметилформамида t diamines in dimethylformamide medium t

Однако неплавкость и значительна гидрофильность этих продуктов не позвол ет примен ть получаемые полимочевины дл производства пластических масс и волокон. However, substantial infusibility and hydrophilicity these products allows the use of polyurea obtained for the production of plastics and fibers.

Наиболее близкий к предлагаемому по технической сущности вл етс способ получени полимочевин путем взаимодействи N,N -бистриметилсилильных производных ткиров природных диаминокарбоновых кислот с карбонильными производными орранических соединений в среде апротонного растворител 2. The closest to the proposed technical essence is a method for the preparation of polyureas by reacting N, N -bistrimetilsililnyh derivatives tkirov natural diaminocarboxylic acids with carbonyl derivatives orranicheskih compounds in an aprotic solvent 2.

Недостатками известного способа синтеза полимочевины вл ютс ; Disadvantages of the known method of synthesis are polyureas; необходимость применени дл их синтеза диизоцианатов на основе эфиров диаминокарбоновых кислот, которые получают в результате трудоемкого и нетехнологического процесса синтеза, заключающегос в применении абсолютных, легковоспламен ю1Е1Ихс растворителей (например серного эфира), охла дени реакционной среды при фосгенировании N,N -бистриметилснлильных производных зфиров ot-диаминокарбоновых кислот , необходимость многократной высоковакуумной перегонки диизоцианатов с целью доведени их до необходимой кондиции; need for the use of their synthesis based on diisocyanates diaminocarboxylic acid esters, which are obtained as a result of time-consuming and non-process synthesis process, in applying zaklyuchayuschegos absolute yu1E1Ihs inflammable solvents (e.g. diethyl ether), Okhla spinning phosgenation reaction medium with N, N -bistrimetilsnlilnyh derivatives ot zfirov -diaminokarbonovyh acids need for multiple high-vacuum distillation of diisocyanates to bring them to the required condition; применение абсолютного спирта (метилового или этилового ) дл деблокировани силилированных аминогрупп; application of absolute alcohol (methyl or ethyl) to deprotection of silylated amino groups; необходимость синтеза большого числа диизоцианатоБ ДЛЯ получени полиночевин различной структурьц например, дл синтеза полимочевин на основе И.ЛИ ДЬ изомеров природной диамино«арбоновой кислоты, необходим синтез ка вдого диизоцианата в отдельности . the need to synthesize large numbers diizotsianatoB for preparing various polinochevin strukturts example, for the synthesis of polyureas based I.LI strand diamino isomers natural "arbonovoy acid synthesis requires ka vdogo diisocyanate separately. Цель изобретени - получение по лимочевинь с широким диапазоном свойств при одновременном упрощеНИИ спс:-соба, Указанна цель достигаетс т; The purpose of the invention - preparation of limochevin with a wide range of properties while simplifying ATP: -soba, Said object is achieved t; . . |лто при получении полимочевины ну тем взаимодействи N,N-бистриметшг силильных производных эфиров природных диаминокарбоновых кислот с карбонильными производными органиче ких соединений в среде апротонного ;-:г. | LTO in the preparation of the polyurea well reacting N, N-silyl derivatives bistrimetshg natural diaminocarboxylic acid esters with carbonyl derivatives of organic compounds FIR in an aprotic; -: g. ../БОрител в качестве карбонильных производных органических соединений используют бис-(п-нитрофенил )карбонат или бис-(254-динитpoфeнил .)кapбoнaт и реакцию провод т при 20--25С ч и при 80-JOO C . ../BOritel as organic derivatives of carbonyl compounds using bis (p-nitrophenyl) carbonate or bis (254-dinitpofenil.) Kapbonat and the reaction was carried out at 20--25S hours and at 80-JOO C. -3 ч ., последующим выделением поли мера-. -3 h., Followed by isolation of poly mera-. Иод термином активированный ка |бонат подразумеваетс карбонат стро ОуН-(о) (j-2. 4o))-NO2 - blOi NOi Лслученные таким образом полимоченины имеют Ц 0,3-0,9 дл/г, а по остальным параметрам (ИК-спектрЫ растворимость, температура плавлени идентичны полимерам5 полученным по известному способу из соо.тветствующих диизодианатов, Пример I. В трехгорлой кол бе снабженной мешалкой, вводом и выводом дл аргона, 3,28 г (0,01 мо этилового эфира N,N-бис-триметилсш1Ил- (1)-TMCL-лизина раствор ют в 0 мл M,N диметилацетамида (ДМАА) при добавл ют 3,94 г (0,01 мол бис 254-динитрофенилкарбоната (Д Iodine term activated ka | Bonate meant carbonate tup OuN- (o) (. J-2 4o)) - NO2 - blOi NOi Lsluchennye thus have polimocheniny C 0.3-0.9 dl / g, and the other parameters (IC spectra solubility, melting point identical polimeram5 obtained by a known method of soo.tvetstvuyuschih diizodianatov, Example I. In a three-necked flask fitted with stirrer baa count, input and output for argon, 3.28 g (0.01 mo of ethyl N, N-bis -trimetilssh1Il- (1) -TMCL-lysine is dissolved in 0 ml of M, N dimethylacetamide (DMAC) at was added 3.94 g (0.01 mole bis-254 dinitrofenilkarbonata (d НФК наблюдаетс сильный экзотермический эффект) и включают мешалку. Через ЗГ - 40 мин раствор быстро загустеваiг и образуетс студнеобразна масс лл обеспечени гомогенного течени реакции смесь нагревают до 90 с и пйремешивают 3 ч, все врем продува ; опг.v аргоном. Образуетс в зкий раствору который в гор чем виде вь ливают в воду. Выпавший в виде порошка полимер отфильтровывают. тщатапьно промывают водой; сушат ii экстрагируют в аппарате Сокслепа ацетоне;-), Вы-ход 96% Ifip 0,95 дл/г в диметилсу ьфоксиде , г/дл -fc 25с. . NFC strong exotherm was observed) and the stirrer MH After - 40 minutes, the solution quickly formed and zagustevaig gelatinous mass flow pp provide a homogeneous reaction mixture was heated to 90 and pyremeshivayut 3 hours, purge all times; opg.v argon formed a viscous solution. which in the form of hot water BL Lebanon precipitated polymer powder was filtered off washed with water tschatapno;.. ii dried extracted in acetone apparatus Sokslepa ;-), you-stroke 96% Ifip 0,95 dl / g dimetilsu fokside g / for -fc 25c. Пример 2.В трехгорлой колDEj снабженной мешалкой, вводом и вывoдo s дл аргона, 3, 18 г (0,0 моль) этилового эфира N,N -бис-триметштсшшл-L-лизина раствор ют в Ю мл диметиладетамида, при 25°С добавл ют 3„04 г (OjO мо.чь) бис.: li-нитрофенилкарбоната (наЬлюд&атс экзотер мический эффект) включают мешалку и перемешивают 2 ч,. Example 2.B kolDEj three-necked flask fitted with stirrer, inlet and vyvodo s for argon, 3, 18 g (0.0 mol) of ethyl N, N -bis-trimetshtsshshl-L-lysine was dissolved in D ml dimetiladetamida at 25 ° C was added 3 "04 g (OjO mo.ch) bis .: li-nitrophenyl carbonate (nalyud & amp; ATS ekzoter ical effect) the stirrer and stirred for 2 hours ,. В зкость раствора при комнатной температуре за этот период времени возрастает незначительно , поэтому включают обогрев и реакционную смесь выдерживают при 6 ч, все врем продува колбу аргоном. The viscosity of the solution at room temperature for the period of time increases slightly, and therefore include heating the reaction mixture was kept at 6 hours, all the while purging the flask with argon. Раствор охлаждают до комнатной температуры (образование гелеобразной массы не наблюдалось) и выливают в воду. The solution was cooled to room temperature (formation of a gelatinous mass was observed) and poured into water. Полимер (в комплек се с И-нитрофенолом) выпадает в виде жидкой смолы, котора затвердевае по мере отьывки Ь-нитрофг :ла водой Тщательно промьЕтый поли,,. Polymer (in the complex with I-ce nitrophenol) falls in a liquid resin which solidifies as otyvki L-nitrofg: water thoroughly la promEty poly ,,. . . сушат в вакууме и экстрагируют в аппарате Сокслетта ацетоном Выход полимера 97%, Inp - ДЛ/г в диметилсульфо..е5С 0 „ 5 г/дл, , Пример Зо Синтез полимера осуществл ют в соответствии с методикой , приведенной в примере j с той разницей, что вместо -диметилацетй ,; dried in vacuo and extracted with acetone in the apparatus Soksletta Polymer yield 97%, Inp - DL / g dimetilsulfo..e5S 0 "to 5 g / dl, Zo EXAMPLE Synthesis of polymer carried out according to the procedure described in Example j with the difference that instead -dimetilatsety,; :ипа и:;:пользутот N-MeTmiлирролидон (N-Mn) о Выход полимера 95%, дл/г в диметилсульфоксиде . : Ipa u:;: N-polzutot MeTmilirrolidon (N-Mn) of the polymer yield of 95%, dl / g in dimethylsulfoxide. Пример 4 Синтез полимера осуществл ют в соответствии с мето дикой приведенной в примере 1, с той разницей, что вместо этилового эфира N,К-бис триметилсилил-1-лизина берут этиловый эфир N,N-бис-триметилсилш1-01-лизина (ДЬ) TMCL. EXAMPLE 4 Synthesis of the polymer is carried out in accordance with wild Meto described in Example 1, with the difference that instead of ethyl N, K-bis- trimethylsilyl-1-lysine take ethyl N, N-bis-trimetilsilsh1-01-lysine (dL ) TMCL. Выход полимера 97% ,76 дл/г в диметилсульфоксиде, ,5 г/дл, t -Пример 5, Синтез полимера осу1цествл5пот в соответствии с примером f с том разницей, что вместо этилового эфира N,N -бис-триметкп силил-1-личина используют этиловый эфир N,М-бис-триметш1силил-1-орнит Выходполимера 90% ,)р 0, 32 дл/г в диметилсульфоксиде, ,5 г/дл, С, Пример 6, Синтез полимера осуществл ют в соответствии с мето дикой, приведенной в примере 1 , с той разницей, что вместо этилового эфира N,N -бис-триметилсилил-L-лиз на используют диэтиловый эфир N,N -бис-триметилсилил-L-цистина. Yield 97% polymer, 76 dl / g in dimethylsulfoxide, 5 g / dl, t -Sample 5 Synthesis osu1tsestvl5pot polymer according to Example f with that difference that instead of ethyl N, N -bis-silyl-1- trimetkp mask using ethyl N, N-bis-trimetsh1silil-1-ornithyl Vyhodpolimera 90%), p 0, 32 dl / g in dimethylsulfoxide, 5 g / dl, C, Example 6, polymer synthesis is carried out in accordance with Meto wild described in example 1, with the difference that instead of ethyl N, N -bis-trimethylsilyl-L-lys is used to diethyl ether N, N-bis-trimethylsilyl-L-cystine. Вы- ход полимера 96%, 0,85 дл/г в диметилсульфоксиде, ,5 г/дл, . You are a polymer stroke 96% 0.85 dl / g in dimethylsulfoxide, 5 g / dl. Пример 7.В трехгорлую ко бу снабженную мешалкой, вводом и выводом дл аргона помещают 1,59 г (0,005 моль) этилового эфира N,N-бис-метил-С-лизина раствор ют в 10 мл N,N -диметилацетамида, добав л ют 3,94 г (0,01 моль) бис-2,4-динитрофенилкарбоната , включают мешалку и смесь перемешивают при комнатной температуре 2 ч. К реакционному раствору затем добавл ют 2,20 г (0,005 моль) диэтилового эфи ра N,N -бис-триметилсилил-L-цистин ( соотношение производных двух диаминокарбоновых кислот 1:1)включают обогрев и смесь нагревают до 90 С 3 ч. Реакционный раствор выливают в воду. EXAMPLE 7B necked to buoy equipped with a stirrer, input and output for argon were placed 1.59 g (0.005 mol) of ethyl N, N-bis-methyl-S-lysine were dissolved in 10 ml of N, N -dimethylacetamide, ADD l dissolved 3.94 g (0.01 mol) of bis-2,4-dinitrofenilkarbonata, the stirrer and the mixture was stirred at room temperature for 2 hours. To the reaction solution was then added 2.20 g (0.005 mol) of diethyl efi ra N, N -bis-trimethylsilyl-L-cystine (the ratio of two derivatives diaminocarboxylic acids 1: 1) include heating and the mixture was heated to 90 C for 3 hours The reaction solution was poured into water.. Выпавший полимер отфильтровывают , тщательно промьшают ЕГрдой, сушат и экстрагируют этилаце татом в аппарате Сокслетта. The precipitated polymer is filtered, thoroughly promshayut EGrdoy, dried and extracted in the apparatus etilatse Tat Soksletta. Выход полимера 97%) 0,68 дл/г в диметилсульфоксиде , ,5 г/дл, Пример 8. Синтез полимера осуществл ют в соответствии с методикой , приведенной в примере 7, с той разницей, что вначале вместо этилового эфира N,N -бис-триметилси лил-1-лизина используют диэтиловый эфир N, N -бис-триметилсшпш-Ь-цистина , а затем к регисционному раствору добавл ют этиловый эфир N,N (L) ТМСЛ (О Polymer yield 97%) of 0.68 dl / g in dimethylsulfoxide, 5 g / dl Example 8 Synthesis of a polymer was carried out according to the procedure described in Example 7, except that initially, instead of ethyl N, N - bis-trimethylsilyl lil-1-lysine using diethyl ether N, N-bis trimetilsshpsh-L-cysteine, and then to registsionnomu solution was added ethyl N, N (L) TMSL (O

ДНФК DNFK

(L) ТМСЛ (О (L) TMSL (O

ПНФК PNFK

ДММА 25/0,5 96 0,95 90/3 DMMA 25 / 0.5 96 0.95 90/3

97 0,4 97 0.4

ДМАА- 25/2 100/6 -бис-триметилсш1ил-1-лизина. DMAA- 25/2 100/6 bis-trimetilssh1il-1-lysine. Выход полимера 98%, 0,71 дл/л в диметилсульфоксиде , ,5 г/дл, t 25C. Polymer yield 98% 0.71 dl / l in dimethyl sulfoxide, and 5 g / dl, t 25C. Пример 9. Синтез полимера осуществл ют в соответствии с методикой , приведенной в примере 7, с той разницей, что вместо 0,005 берут 0,002 моль этилового эфира N,N -бис-триметилсилил-1-лизина , а вместо 0,005 моль берут 0,008 моль диэтилового эфира N,N -бис-триметилсилил-1-цистина . Example 9. Synthesis of a polymer was carried out according to the procedure described in Example 7, with the difference that instead of taking 0.005 0.002 mol of ethyl N, N -bis-trimethylsilyl-1-lysine, instead of 0.005 mole 0.008 mole take diethyl ether N, N-bis-trimethylsilyl-1-cystine. Выход полимера 96% ,70 дл/г в диметилсульфоксиде, ,5 г/дл, . Polymer yield: 96%, 70 dl / g in dimethylsulfoxide, 5 g / dl. Пример 10. Синтез полимера осуществл ют в соответствии с методикой, приведенной в примере 7, с той разницей, что берут 0,008 моль этилового эфира N,N -бис-тримет1тсилил-1-лизина и 0,002 моль диэтилового эфира-L-цистина. Example 10. Synthesis of polymer carried out according to the procedure described in Example 7, with the difference that takes 0.008 mol of ethyl N, N -bis-trimet1tsilil-1-lysine and 0.002 mol of diethyl ether-L-cystine. Выход 97%,lfip 0,68 дл/г в диметилсульфоксиде , ,5 г/дл, . Yield 97%, lfip 0,68 dl / g in dimethylsulfoxide, 5 g / dl. Пример П. Синтез полимера осуществл ют в соответствии с методикой, приведенной в примере 7, с той разницей, что вместо этилового эфира N,N -бис-триметилсилил-L-лизина берут этиловый эфир N,N-бис-триметилсилил-Д1-лизина . Example P. polymer synthesis was carried out according to the procedure described in Example 7, with the difference that instead of ethyl N, N -bis-trimethylsilyl-L-lysine ethyl ester taking N, N-bis-trimethylsilyl-D1-lysine . Выход полимера 95%,К)рр 0,52 дл/г в диметилсульфоксиде, ,5 г/дл, . Polymer yield 95%, R) pp 0.52 dl / g in dimethylsulfoxide, 5 g / dl. Пример 12. Синтез полимера осуществл ют в соответствии с методикой , приведенной в примере 7,, с той разницей, что вместо этилового эфира N,N -бис-триметилсилил-L-лизина берут этиловый эфир N,N-биc-тpимeтилcилил-L-opнитинa . EXAMPLE 12 Synthesis of the polymer carried out according to the procedure described in Example 7 ,, with the difference that the N, N-bis-trimethylsilyl-L-lysine ethyl ester take ethyl ester instead of N, N-bis-tpimetilcilil-L- opnitina. Выход полимера 89%, 0,28 дл/г в иметилсульфоксиде, ,5 г/дл, t 25C. Polymer yield 89% 0.28 dl / g in imetilsulfokside, 5 g / dl, t 25C. Основные характеристики полуенных полимеров приведены в табли- е. Main characteristics poluennyh tabli- polymers are reported in e.

(L) -шел (1) (L) -shel (1)

ДНФК DNFK

(Д1) шел (1) (D1) was (1)

ДНФК DNFK

(L) тасо (1) (L) TASO (1)

ДИФК Difco

(L) ТМСЦ (1) (L) TMSCN (1)

ДНФК DNFK

{L) ТМСЛ (0,5) {L) TMSL (0.5)

( L) ТМСЦ (0,5) (L) TMSCN (0.5)

ДНФК(L) ТМСЦ (0,5) DNFK (L) TMSCN (0.5)

+ +

(L) ТМСЛ (0,5) (L) TMSL (0.5)

Примечание: ТМСО - этиловый эфир N,N -бис-триметилсилил-орнитина; Note: TMSO - ethyl N, N -bis-trimethylsilyl-ornithine; ТМСЛ - этиловый эфир N,N-биc-тpимeтилcилиллизинa; TMSL - ethyl N, N-bis-tpimetilcilillizina; ТМСЦ - диэтиловый эфир N,N -бис-триметилсилилцистина; TMSCN - diethyl ester N, N-bis trimetilsililtsistina; ДНФК-бис-2,4-динитрофенилкар6онат, ПНФК-бис п-нитрофенилкарбонат; DNFK-bis-2,4-dinitrofenilkar6onat, PNFK bis-p-nitrophenyl carbonate; ДМАА - N,N -диметилацетамид; DMAC - N, N -dimethylacetamide; N-MII-N-метилпирролидон. N-MII-N-methylpyrrolidone. В зкость определена в диметилсульфоксиде при , ,5 г/дл. The viscosity determined in dimethylsulfoxide at, 5 g / dl.

Применение предлагаемого способа получени полимочевины на основе природных днаминокарбоновых кислот обеспечивает по сравнению с известными способами, следующие преимущества: легкость получени нысокомолекул рных гголимочевин на основе при905228 Application of the process for preparing polyurea-based natural provides dnaminokarbonovyh acids as compared to known methods, the following advantages: ease of preparation nysokomolekul molecular ggolimochevin based pri905228

8 Продолжение таблицы 8 Continuation of the table

N-МП 25/0,5 95 0,95 90/3 N-MP 25 / 0.5 95 0.95 90/3

ДМАА 25/0,5 97 0,76 90/3 DMAC 25 / 0.5 97 0.76 90/3

ДМАА25/0,5 900,32 DMAA25 / 0.5 900.32

90/3 90/3

ДМАА 25/0,5 96 0,85 90/3 DMAC 25 / 0.5 96 0.85 90/3

Д11АА 25/2 D11AA 25/2

970,68 90/3 970.68 90/3

25/2 25/2

98 98

0,71 0.71

ДМАА DMAA

Claims (2)

  1. родных диаминокарбоновых кислот с использованием только их триметилсилильных производных и одного активированного карбоната, например бис-2,4-динитрофенилкарбоната, не прибега к труднодоступным диизоци анатам отсутствие необходимости сн 9 тн трнметилсилилышх защитных груТТ пировок с аминогрупп,- широкие возмо ности синтеза сополимочевин различного состава на основе двух или более диаминокарбоновых кислот (в том числе или DL), использу дл этой цели лишь N,N-бис-триметилсилильны производные их эфиров и один активировашсый карбонат, наприм native diaminocarboxylic acids using only their trimethylsilyl derivatives and one activated carbonate such as bis-2,4-dinitrofenilkarbonata, without resorting to hardly diizotsi Anat no need for removal of protective 9 tons trnmetilsililyshh Grutti pirovok with amino groups, - wide poss NOSTA sopolimochevin synthesis of various compositions on based on two or more diaminocarboxylic acids (including or DL), using for this purpose only N, N-bis-trimethylsilyl derivatives of esters and one carbonate aktivirovashsy eg р бис-2 ,4-динитрофенилкарбонат; p bis-2, 4-dinitrofenilkarbonat; простота в обращении и легкость очистки активированных карбонатов, вл кидихс кристаллическими соединени ми . ease of handling and ease of purification of the activated carbonates is kidihs crystalline compounds. Формула изобретени Способ получени полимочевины путем взаимодействи N,N-биc-тpимeтилсилильных производных эфиров природных диаминокарбоновых кислот с карбонильными производными органических соединений в среде апротон28 ного растворител , отличающийс тем, что, с целью получени полимочевины с широким диапазоном свойств при одновременном упрощении способа, в качестве карбонильных производных органических соединений используют бис-(п-нитрофенип )карбонат или бис-(2,4-динитрофенил )карбонат и реакцию провод т при 20-25С 0,5-2 ч и при 80-100°С с послед CLAIMS A method for the preparation of polyureas by reacting N, N-bis-tpimetilsililnyh ester derivatives of natural diaminocarboxylic acids with carbonyl derivatives of organic compounds in the medium aproton28 Nogo solvent, characterized in that, to produce polyureas with a wide range of properties while simplifying the method as a carbonyl derivatives of organic compounds using bis (p-nitrofenip) carbonate or bis (2,4-dinitrophenyl) carbonate and the reaction is carried out at 20-25S 0.5-2 hours and at 80-100 ° C followed by ующим выделением поли Источники информации, прин тые во внимание при экспертизе 1.Саундерс Дж.Х., Фриш К.К. uyuschim release poly Sources of information received note in the examination 1.Saunders JH Frisch K.K. Хими полиуретанов. The chemistry of polyurethanes. М., Хими , 1968, с. M., Chemistry, 1968, p. 13-14. 13-14.
  2. 2.Сенцова Т.И., Бутаева В.И„ Давидович Ю.А., Рогожин С.В., Коршак В.В. 2.Sentsova TI Butaev VI "Davidovich YA, Rogozhin, SV, VV Korshak Синтез синтетических активных полимочевин на основе природных диаминокарбоновых кислот. Synthesis of synthetic active polyureas based on natural diaminocarboxylic acids. Доклад АН СССР 232, 225, 1977 (прототип ) . Doklady Akademii Nauk SSSR 232, 225, 1977 (prototype).
SU802892710A 1980-03-06 1980-03-06 Method for preparing thiourea SU905228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU802892710A SU905228A1 (en) 1980-03-06 1980-03-06 Method for preparing thiourea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU802892710A SU905228A1 (en) 1980-03-06 1980-03-06 Method for preparing thiourea

Publications (1)

Publication Number Publication Date
SU905228A1 true SU905228A1 (en) 1982-02-15

Family

ID=20882107

Family Applications (1)

Application Number Title Priority Date Filing Date
SU802892710A SU905228A1 (en) 1980-03-06 1980-03-06 Method for preparing thiourea

Country Status (1)

Country Link
SU (1) SU905228A1 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503538B1 (en) 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US7304122B2 (en) 2001-08-30 2007-12-04 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7648725B2 (en) 2002-12-12 2010-01-19 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7691401B2 (en) 2000-09-28 2010-04-06 Advanced Cardiovascular Systems, Inc. Poly(butylmethacrylate) and rapamycin coated stent
US7699889B2 (en) 2004-12-27 2010-04-20 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7749263B2 (en) 2004-10-29 2010-07-06 Abbott Cardiovascular Systems Inc. Poly(ester amide) filler blends for modulation of coating properties
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7766884B2 (en) 2004-08-31 2010-08-03 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US7772359B2 (en) 2003-12-19 2010-08-10 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US7803394B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
US7803406B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7985440B2 (en) 2001-06-27 2011-07-26 Advanced Cardiovascular Systems, Inc. Method of using a mandrel to coat a stent
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US8017140B2 (en) 2004-06-29 2011-09-13 Advanced Cardiovascular System, Inc. Drug-delivery stent formulations for restenosis and vulnerable plaque
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US8029816B2 (en) 2006-06-09 2011-10-04 Abbott Cardiovascular Systems Inc. Medical device coated with a coating containing elastin pentapeptide VGVPG
US8052912B2 (en) 2003-12-01 2011-11-08 Advanced Cardiovascular Systems, Inc. Temperature controlled crimping
US8062350B2 (en) 2006-06-14 2011-11-22 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8067023B2 (en) 2002-06-21 2011-11-29 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US8067025B2 (en) 2006-02-17 2011-11-29 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US8173199B2 (en) 2002-03-27 2012-05-08 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8586069B2 (en) 2002-12-16 2013-11-19 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US8647655B2 (en) 2002-12-11 2014-02-11 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8652504B2 (en) 2005-09-22 2014-02-18 Medivas, Llc Solid polymer delivery compositions and methods for use thereof
US8673334B2 (en) 2003-05-08 2014-03-18 Abbott Cardiovascular Systems Inc. Stent coatings comprising hydrophilic additives
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US9102830B2 (en) 2005-09-22 2015-08-11 Medivas, Llc Bis-(α-amino)-diol-diester-containing poly (ester amide) and poly (ester urethane) compositions and methods of use
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
USRE45744E1 (en) 2003-12-01 2015-10-13 Abbott Cardiovascular Systems Inc. Temperature controlled crimping
US9339592B2 (en) 2004-12-22 2016-05-17 Abbott Cardiovascular Systems Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US9364498B2 (en) 2004-06-18 2016-06-14 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US9517203B2 (en) 2000-08-30 2016-12-13 Mediv As, Llc Polymer particle delivery compositions and methods of use
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US9580558B2 (en) 2004-07-30 2017-02-28 Abbott Cardiovascular Systems Inc. Polymers containing siloxane monomers
US10076591B2 (en) 2010-03-31 2018-09-18 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US7408018B2 (en) 2000-08-30 2008-08-05 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6503538B1 (en) 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US9517203B2 (en) 2000-08-30 2016-12-13 Mediv As, Llc Polymer particle delivery compositions and methods of use
US7691401B2 (en) 2000-09-28 2010-04-06 Advanced Cardiovascular Systems, Inc. Poly(butylmethacrylate) and rapamycin coated stent
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US10064982B2 (en) 2001-06-27 2018-09-04 Abbott Cardiovascular Systems Inc. PDLLA stent coating
US7985440B2 (en) 2001-06-27 2011-07-26 Advanced Cardiovascular Systems, Inc. Method of using a mandrel to coat a stent
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US7304122B2 (en) 2001-08-30 2007-12-04 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US8173199B2 (en) 2002-03-27 2012-05-08 Advanced Cardiovascular Systems, Inc. 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US8961588B2 (en) 2002-03-27 2015-02-24 Advanced Cardiovascular Systems, Inc. Method of coating a stent with a release polymer for 40-O-(2-hydroxy)ethyl-rapamycin
US7803394B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide hydrogel coatings for cardiovascular therapy
US7875286B2 (en) 2002-06-21 2011-01-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7901703B2 (en) 2002-06-21 2011-03-08 Advanced Cardiovascular Systems, Inc. Polycationic peptides for cardiovascular therapy
US9084671B2 (en) 2002-06-21 2015-07-21 Advanced Cardiovascular Systems, Inc. Methods of forming a micronized peptide coated stent
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7803406B2 (en) 2002-06-21 2010-09-28 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US8067023B2 (en) 2002-06-21 2011-11-29 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US8871883B2 (en) 2002-12-11 2014-10-28 Abbott Cardiovascular Systems Inc. Biocompatible coating for implantable medical devices
US8647655B2 (en) 2002-12-11 2014-02-11 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8986726B2 (en) 2002-12-11 2015-03-24 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US8871236B2 (en) 2002-12-11 2014-10-28 Abbott Cardiovascular Systems Inc. Biocompatible polyacrylate compositions for medical applications
US7648725B2 (en) 2002-12-12 2010-01-19 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8586069B2 (en) 2002-12-16 2013-11-19 Abbott Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US9175162B2 (en) 2003-05-08 2015-11-03 Advanced Cardiovascular Systems, Inc. Methods for forming stent coatings comprising hydrophilic additives
US8673334B2 (en) 2003-05-08 2014-03-18 Abbott Cardiovascular Systems Inc. Stent coatings comprising hydrophilic additives
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
USRE45744E1 (en) 2003-12-01 2015-10-13 Abbott Cardiovascular Systems Inc. Temperature controlled crimping
US8052912B2 (en) 2003-12-01 2011-11-08 Advanced Cardiovascular Systems, Inc. Temperature controlled crimping
US7786249B2 (en) 2003-12-19 2010-08-31 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US7772359B2 (en) 2003-12-19 2010-08-10 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US9101697B2 (en) 2004-04-30 2015-08-11 Abbott Cardiovascular Systems Inc. Hyaluronic acid based copolymers
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US9364498B2 (en) 2004-06-18 2016-06-14 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US9375445B2 (en) 2004-06-18 2016-06-28 Abbott Cardiovascular Systems Inc. Heparin prodrugs and drug delivery stents formed therefrom
US8017140B2 (en) 2004-06-29 2011-09-13 Advanced Cardiovascular System, Inc. Drug-delivery stent formulations for restenosis and vulnerable plaque
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8758801B2 (en) 2004-07-30 2014-06-24 Abbott Cardiocascular Systems Inc. Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US9580558B2 (en) 2004-07-30 2017-02-28 Abbott Cardiovascular Systems Inc. Polymers containing siloxane monomers
US8586075B2 (en) 2004-07-30 2013-11-19 Abbott Cardiovascular Systems Inc. Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7766884B2 (en) 2004-08-31 2010-08-03 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US9067000B2 (en) 2004-10-27 2015-06-30 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US7749263B2 (en) 2004-10-29 2010-07-06 Abbott Cardiovascular Systems Inc. Poly(ester amide) filler blends for modulation of coating properties
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US9339592B2 (en) 2004-12-22 2016-05-17 Abbott Cardiovascular Systems Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7699889B2 (en) 2004-12-27 2010-04-20 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US8652504B2 (en) 2005-09-22 2014-02-18 Medivas, Llc Solid polymer delivery compositions and methods for use thereof
US9102830B2 (en) 2005-09-22 2015-08-11 Medivas, Llc Bis-(α-amino)-diol-diester-containing poly (ester amide) and poly (ester urethane) compositions and methods of use
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US8067025B2 (en) 2006-02-17 2011-11-29 Advanced Cardiovascular Systems, Inc. Nitric oxide generating medical devices
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8029816B2 (en) 2006-06-09 2011-10-04 Abbott Cardiovascular Systems Inc. Medical device coated with a coating containing elastin pentapeptide VGVPG
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8118863B2 (en) 2006-06-14 2012-02-21 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US8062350B2 (en) 2006-06-14 2011-11-22 Abbott Cardiovascular Systems Inc. RGD peptide attached to bioabsorbable stents
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US10076591B2 (en) 2010-03-31 2018-09-18 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device

Similar Documents

Publication Publication Date Title
Shashoua et al. Interfacial polycondensation. V. Polyterephthalamides from short‐chain aliphatic, primary, and secondary diamines
DE2627045C2 (en)
Preston et al. New high temperature aromatic polyamides
EP0961941B1 (en) Ophthalmic mouldings
US7067606B2 (en) Nonionic telechelic polymers incorporating polyhedral oligosilsesquioxane (POSS) and uses thereof
EP0201778B1 (en) (meth)-acrylic-acid esters and their use
DE3600015C2 (en)
US7838621B2 (en) Preparation of supramolecular polymer containing quadruple hydrogen bonding units in the polymer backbone
KR101128675B1 (en) Process for making DAPBI-containing aramid crumbs
SU1016314A1 (en) Process for producing polyester urethanes
US2901466A (en) Linear polyesters and polyester-amides from 1,4-cyclohexanedimethanol
US5654381A (en) Functionalized polyester graft copolymers
EP0696605B1 (en) Biocompatible block copolymer
US3049518A (en) Polyamides from n, n'-bis (3-aminophenyl)-isophthalamide
Xu et al. Synthesis and characterization of hyperbranched polyurethane acrylates used as UV curable oligomers for coatings
DE69838731T2 (en) Polyanhydrides degradation products used with therapeutically
US4485227A (en) Biocompatible poly-(ether-urethane-urea) and process for its preparation
RU2052469C1 (en) Fusible polyimides as binders for composition material
DE69631431T2 (en) Polycarbonates on the basis of tyrosine and polyalkyleneoxide
CN1134502C (en) Imterpenetrating polymer networks for contact lens production
EP0900817B1 (en) Process for the preparation of a functional group-containing polyarylene sulfide resin
Feigenbaum et al. Novel polyamides from macrocyclic ethers
RU2263686C2 (en) Optical homopolymers or copolymers or ophthalmic lens, methods for their preparing
EP1017734B1 (en) Crosslinkable polyurea polymers
JP3190373B2 (en) Amorphous copolyamide, preparation of the preparation and the molding member