USRE45171E1 - Base station apparatus and communication method - Google Patents

Base station apparatus and communication method Download PDF

Info

Publication number
USRE45171E1
USRE45171E1 US13/802,109 US200613802109A USRE45171E US RE45171 E1 USRE45171 E1 US RE45171E1 US 200613802109 A US200613802109 A US 200613802109A US RE45171 E USRE45171 E US RE45171E
Authority
US
United States
Prior art keywords
relay
channel quality
regenerative
station apparatus
regenerative relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/802,109
Other languages
English (en)
Inventor
Tomohiro Imai
Ayako Horiuchi
Akihiko Nishio
Kenichi Kuri
Hiroaki Morino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Priority to US13/802,109 priority Critical patent/USRE45171E1/en
Assigned to PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA reassignment PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC CORPORATION
Application granted granted Critical
Publication of USRE45171E1 publication Critical patent/USRE45171E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15557Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Definitions

  • the present invention relates to a wireless communication system.
  • wireless cellular systems typified by cellular telephone systems and the like have diversified their service patterns, and have been demanded to transmit large-capacity data such as static images, moving pictures and the like as well as speech data.
  • large-capacity data such as static images, moving pictures and the like as well as speech data.
  • it has been studied actively to transmit large-capacity data using a high-frequency radio band.
  • This technique is a communication technique where a relay station installed in the base station service area relays and transmits a signal of a mobile station out of the service area to the base station (for example, see Non-Patent Document 1).
  • Multi-hop communication is broadly divided into regenerative relay and non-regenerative relay.
  • regenerative relay a relay station once demodulates and decodes a received signal, encodes and modulates the signal again using a modulation scheme and coding rate (Modulation and Coding Scheme: MCS) in accordance with channel quality, and then transmits the result.
  • MCS Modulation and Coding Scheme
  • non-regenerative relay the relay station amplifies a received signal and transmits the signal without change.
  • regenerative relay provides an advantage of enabling a relay using an adequate MCS in accordance with channel quality, yet also has a disadvantage of increasing the delay due to relay.
  • Non-patent Document 1 Hasegawa et al. “Multi-hop System for Adaptive Modulation using Regenerating Fixed Hop Stations” Technical Report of IEICE, October 2004, A/P 2004-189, RC52004-210, pp. 57-61.
  • the throughput may decrease as the number of mobile stations using a single relay station increases.
  • MS 1 mobile station 1
  • BS base station
  • RS relay station
  • mobile station 2 mobile station 2
  • FIG. 2 since communication occasions of mobile station 1 decrease due to relay processing for mobile station 2 , user throughput of mobile station 1 decreases.
  • system throughput average transmission rate of the entire system is lower than before mobile station 2 joins in.
  • a mobile station and a base station communicate via a relay station, and this wireless communication system adopts a configuration of switching selecting from two relay schemes of non-regenerative relay for amplifying a signal without changing a modulation scheme regenerating the signal with a decoding-reencoding process and performing a relay transmission of the amplified signal, and a regenerative relay for changing a modulation scheme of a signal according to channel quality regenerating a signal with a decoding-reencoding process and performing a relay transmission of the regenerated signal, based on a combination of channel quality in the non-regenerative relay and channel quality in the regenerative relay.
  • FIG. 1 is a schematic diagram of a conventional multi-hop communication system
  • FIG. 2 is another schematic diagram of the conventional multi-hop communication system
  • FIG. 3 is an operation sequence in a multi-hop communication system according to Embodiment 1 of the invention.
  • FIG. 4 is a block diagram illustrating a configuration of a base station according to Embodiment 1 of the invention.
  • FIG. 5 is classification of channel quality according to Embodiment 1 of the invention.
  • FIG. 6 is a reference table according to Embodiment 1 of the invention.
  • FIG. 7 is a table showing relationship between the channel quality and MCS in a regenerative relay according to Embodiment 1 of the invention.
  • FIG. 8 is a table showing relationship between the channel quality and MCS in a non-regenerative relay according to Embodiment 1 of the invention.
  • FIG. 9 is a table obtained by combining the table as shown in FIG. 7 and the table as shown in FIG. 8 ;
  • FIG. 10 is a block diagram illustrating a configuration of a relay station according to Embodiment 1 of the invention.
  • FIG. 11 is a schematic diagram illustrating the multi-hop communication system according to Embodiment 1 of the invention.
  • FIG. 12 is another reference table according to Embodiment 1 of the invention.
  • FIG. 13 is another schematic diagram illustrating the multi-hop communication system according to Embodiment 1 of the invention.
  • FIG. 14 is still another reference table according to Embodiment 1 of the invention.
  • FIG. 15 is an operation sequence in a multi-hop communication system according to Embodiment 2 of the invention.
  • FIG. 16 is a block diagram illustrating a configuration of a base station according to Embodiment 2 of the invention.
  • FIG. 17 is a reference table according to Embodiment 2 of the invention.
  • FIG. 18 is a block diagram illustrating a configuration of a relay station according to Embodiment 2 of the invention.
  • FIG. 19 is another reference table according to Embodiment 2 of the invention.
  • FIG. 20 is still another reference table according to Embodiment 2 of the invention.
  • a base station determines the relay scheme and MCS taking into account both the channel quality of regenerative relay and the channel quality of non-regenerative relay.
  • FIG. 3 shows a case where MS 2 (mobile station 2 ) joins in where MS 1 (mobile station 1 ) is communicating with a BS (base station) via a RS (relay station).
  • MS 2 mobile station 2
  • BS base station
  • RS relay station
  • the MS 2 Upon newly joining in, the MS 2 transmits a pilot signal (non-regenerative relay pilot) for measuring channel quality between the MS 2 and the BS via the RS (MS 2 -RS-BS channel quality) and a pilot signal (regenerative relay pilot 1 ) for measuring channel quality between the MS 2 and the RS (MS 2 -RS channel quality), to the RS.
  • a pilot signal non-regenerative relay pilot
  • regenerative relay pilot 1 for measuring channel quality between the MS 2 and the RS (MS 2 -RS channel quality
  • the MS 2 adds a flag indicative of non-regenerative relay pilot and a flag indicative of regenerative relay pilot 1 to these pilot signals.
  • the transmission order of non-regenerative relay pilot and regenerative relay pilot 1 is not limited.
  • the RS receiving these two kinds of pilot signals performs non-regenerative relay pilot processing on non-regenerative relay pilot to transmit to the BS.
  • the RS maintains the MCS and amplifies the non-regenerative relay pilot and transmits the result to the BS.
  • the RS measures the received quality (MS 2 -RS channel quality) of regenerative relay pilot 1 , and transmits channel quality information to the BS.
  • the RS transmits a new pilot signal (regenerative relay pilot 2 ) for measurement of channel quality of a channel between the RS and the BS (RS-BS channel quality) to the BS.
  • the RS adds a flag indicative of regenerative relay pilot 2 to regenerative relay pilot 2 .
  • the BS measures the received quality (MS 2 -RS-BS channel quality) of the non-regenerative relay pilot. Further, the BS measures the received quality (RS-BS channel quality) of regenerative relay pilot 2 .
  • the BS obtains the MS 2 -RS-BS channel quality as the channel quality of non-regenerative relay, and obtains the RS-BS channel quality as the channel quality of regenerative relay. Furthermore, the BS obtains the MS 2 -RS channel quality as the channel quality of regenerative relay from the received channel quality information.
  • the BS determines the relay scheme of the RS (whether the RS performs regenerative relay or non-regenerative relay) and MCS in multi-hop communication. The determination results are transmitted to the RS as relay information. Further, this relay information is also transmitted to the MS 2 via the RS.
  • the MS 2 encodes and modulates uplink data with the MCS based on the relay information and transmits the result to the RS.
  • the RS switches between non-regenerative relay and regenerative relay based on the relay information and relays uplink data.
  • the RS maintains the MCS, and amplifies uplink data and transmits the result to the BS.
  • the RS once demodulates and decodes uplink data, and encodes and modulates the uplink data again with the MCS based on the relay information and transmits the result to the BS.
  • FIG. 4 illustrates the configuration of the BS.
  • non-regenerative relay pilot, regenerative relay pilot 2 , channel quality information and uplink data, received via antenna 101 are subjected to radio processing such as down-conversion in RF receiving section 102 .
  • radio processing such as down-conversion in RF receiving section 102 .
  • non-regenerative relay pilot and regenerative relay pilot 2 are inputted to received quality measuring section 103
  • the channel quality information and uplink data are inputted to demodulation section 105 .
  • the channel quality information and the uplink data are demodulated in demodulation section 105 and decoded in decoding section 106 according to the MCS determined in determining section 104 .
  • the received data is thereby obtained.
  • the decoded channel quality information (MS 2 -RS channel quality) is inputted to determining section 104 .
  • received quality measuring section 103 measures the received quality of non-regenerative relay pilot and regenerative relay pilot 2 , and obtains the MS 2 -RS-BS channel quality and RS-BS channel quality. These kinds of channel quality are inputted to determining section 104 . In addition, received quality measuring section 103 is able to distinguish between the non-regenerative relay pilot and regenerative relay pilot 2 by the flags added to the pilot signals.
  • Determining section 104 determines the relay scheme of the RS and MCS in multi-hop communication from the MS 2 -RS-BS channel quality, MS 2 -RS channel quality and RS-BS channel quality. The determination method will be described later.
  • the determination results (the relay scheme and MCS) are inputted to coding section 107 as relay information.
  • the relay information and the transmission data are encoded in coding section 107 and modulated in modulation section 108 according to the MCS determined in determining section 104 .
  • the modulated relay information and the downlink data are subjected to radio processing such as up-conversion in RF transmitting section 109 and then transmitted via antenna 101 .
  • the received SNR is used as channel quality in the following descriptions.
  • determining section 104 classifies channel quality into three stages of “good”, “normal”, and “poor,” as shown in FIG. 5 .
  • 16QAM is “good”
  • QPSK is “normal”
  • BPSK is “poor”.
  • determining section 104 refers to a table as shown in FIG. 6 , and determines the relay scheme and MCS according to the combination of the MS 2 -RS channel quality, RS-BS channel quality and MS 2 -RS-BS channel quality. Determination results are given as relay information of one of “0” to “5” (information of three bits between “000” and “101”).
  • the table of FIG. 6 shows modulation schemes alone as MCS, without spreading factors, for ease of explanation.
  • MS 2 -RS channel quality is “normal”
  • RS-BS channel quality is “good”
  • MS 2 -RS-BS channel quality is “poor”
  • the relay scheme is regenerative relay, and that the modulation scheme is QPSK between the MS 2 and RS (MS 2 -RS), while being 16QAM between the R 2 and BS (RS-BS), and the relay information “3” corresponding to this determination result is transmitted.
  • the transmission rate “bit/T” indicates the number of bits that can be transmitted per unit time T.
  • the transmission rate is assumed to be 1 bit/T in the case that QPSK is used both in MS 2 -RS and RS-BS. Since the number of bits that can be transmitted per symbol in 16QAM is twice that in QPSK, the transmission rate is 2 bits/T when in both MS 2 -RS and RS-BS 16QAM is used. Furthermore, since the number of bits that can be transmitted per symbol in BPSK is half that in QPSK, the transmission rate is 0.5 bits/T when in both MS 2 -RS and RS-BS BPSK is used.
  • regenerative relay has defects that the relay processing needs much time and that the delay by the relay is large as compared with non-regenerative relay.
  • regenerative relay requires the processing time twice that of non-regenerative relay.
  • the transmission rate is 2 bits/T, and is twice the bit rate in the case of QPSK both in MS 2 -RS and RS-BS in regenerative relay.
  • the number of bits that can be transmitted per unit time in regenerative relay is half that in non-regenerative relay.
  • FIG. 7 it is understood that it is possible to secure the transmission rate at or greater than optimal transmission rates (2 bits/T) of regenerative relay when the channel quality of non-regenerative relay is “normal” or more, and it is possible to combine the table of FIG. 7 and the table of FIG. 8 into a table as shown in FIG. 9 .
  • the table of FIG. 9 is prepared on the premise that poorer channel quality in regenerative relay is not poorer than channel quality in non-regenerative relay because, in non-regenerative relay, noise is also amplified, while, in regenerative relay, recoding and remodulation are performed in accordance with channel quality.
  • the MS 2 -RS channel quality is “good” and the RS-BS channel quality is “poor” in regenerative relay
  • the MS 2 -RS-BS channel quality is unlikely to be “normal” or better in non-regenerative relay. Therefore, when the MS-RS channel quality is “good” and the RS-BS channel is “poor” in non-regenerative relay, the table of FIG. 9 omits “good” and “normal” for the MS 2 -RS-BS channel quality in non-regenerative relay.
  • the table of FIG. 6 collectively shows selected combinations of relay schemes and MCS that obtain better transmission rates among the same combinations of three kinds of channel quality.
  • the transmission rate is the same in the same combinations of channel quality (for example, in the table of FIG. 9 , in the case where the MS 2 -RS channel quality is “good”, the RS-BS channel quality is “good”, the MS 2 -RS-BS channel quality is “normal” and the transmission rate is 2 bits/T in regenerative relay and in non-regenerative relay)
  • non-regenerative relay is selected taking into account the fact that the processing load of the relay station is less in non-regenerative relay than in regenerative relay.
  • FIG. 10 illustrates the configuration of the RS.
  • the relay information (information indicative of the combination of the relay scheme and MCS), pilot signals (regenerative relay pilot 1 and non-regenerative relay pilot) and uplink data received in antenna 201 are subjected to radio processing such as down-conversion and the like in RF receiving section 202 .
  • the relay information is received from the BS, and the pilot signals and uplink data are received from the MS 2 .
  • the pilot signals are inputted to pilot decision section 203 , and the relay information and uplink data are inputted to switching section 205 .
  • decision section 203 determines whether the pilot is regenerative relay pilot 1 or non-regenerative pilot, and inputs regenerative relay pilot 1 to received quality measuring section 204 , while inputting non-regenerative relay pilot to amplifying section 206 .
  • Received quality measuring section 204 measures the received quality of regenerative relay pilot 1 , and obtains the MS 2 -RS channel quality. Then, the channel quality information indicating the obtained channel quality is inputted to coding section 209 .
  • Switching section 205 has a table (part of the table of FIG. 6 ) indicative of the relationships between relay information and relay schemes/MCS, and, according to input relay information, selects a combination of the relay scheme and MCS and switches regenerative relay and non-regenerative relay. For example, referring to the table of FIG. 6 , when relay information is “1”, the RS relays data by non-regenerative relay, and QPSK is used both in MS 2 -RS and RS-BS. Accordingly, when relay information is “1”, since the RS relays data by non-regenerative relay, uplink data is inputted to amplifying section 206 .
  • uplink data is inputted to demodulation section 207 .
  • switching section 205 inputs information about the selected MCS to demodulation section 207 , decoding section 208 , coding section 209 and modulation section 210 .
  • Amplifying section 206 amplifies the uplink data and non-regenerative relay pilot to inputted to RF transmitting section 211 .
  • the uplink data inputted to demodulation section 207 is demodulated in demodulation section 207 and decoded in decoding 208 according to the MCS of MS 2 -RS designated by switching section 205 .
  • the result is encoded again in coding section 209 and modulated again in modulation section 210 according to the MCS of RS-BS designated by switching section 205 .
  • the modulated uplink data is inputted to RF transmitting section 211 .
  • channel quality information and regenerative relay pilot 2 are encoded in coding section 209 , modulated in modulation section 210 , and then inputted to RF transmitting section 211 .
  • the uplink data (to be relayed in regenerative relay) inputted from modulation section 210 and the uplink data (to be relayed in non-regenerative relay) inputted from amplifying section 206 are subjected to radio processing such as up-conversion in RF transmitting section 211 and then transmitted to the BS via antenna 201 . Further, channel quality information, regenerative relay pilot 2 and non-regenerative relay pilot are also subjected to radio processing such as up-conversion in RF transmitting section 211 , and then transmitted to the BS via antenna 201 . In addition, the relay information is transmitted to the MS 2 in the relay scheme for the downlink data switched in the same way as uplink data.
  • non-regenerative relay is adopted only when the RS-BS channel quality in regenerative relay is the same as the MS-RS-BS channel quality in non-regenerative relay.
  • the RS-BS channel quality is better than the MS-RS channel quality when regenerative relay is employed, it is possible to make the transmission rate between the RS and BS better than the transmission rate between the MS and the RS.
  • FIG. 13 it is possible to multiplex the data of MS 1 -RS and the data of MS 2 -RS and transmit, and, as a result, it is possible to reduce the resources used between the RS and the BS. Further, by reducing the resources used between the RS and the BS, resources that can be used by another MS (MS 3 ) connecting with the BS increase, and it is thus possible to further improve system throughput.
  • channel quality (MS 2 -RS channel quality and RS-BS channel quality) in regenerative relay and the channel quality (MS-RS-BS channel quality) in non-regenerative relay channel quality (MS 2 -BS channel quality) in the case of direct connection between the MS 2 and the BS without using the RS is also notified to the BS, and, from these kinds of channel quality, the BS determines one of direct connection, regenerative relay and non-regenerative relay to perform between the MS 2 and B 2 and MCS.
  • relay information is set for “0” irrespective of the MCS.
  • the RS determines MCS between the MS and the RS.
  • FIG. 15 shows a case where the MS 2 newly joins in while communication is in progress between the MS 1 and the BS via the RS.
  • the following descriptions will be limited to uplink data multi-hop communication, but downlink data multi-hop communication is performed in the same manner as with uplink data.
  • the MS 2 Upon newly joining in, the MS 2 transmits a pilot signal to measure both the MS 2 -RS channel quality and MS 2 -RS-BS channel quality to the RS.
  • This pilot signal is a pilot shared between regenerative relay and non-regenerative relay, and so the flag for distinguishing between the regenerative relay pilot and the non-regenerative relay pilot is not added.
  • the RS receiving this pilot signal performs non-regenerative relay processing on the pilot to transmit to the BS as a non-regenerative relay pilot.
  • the RS maintains the MCS and amplifies the pilot and transmits the result to the BS.
  • the RS adds a flag indicative of non-regenerative relay pilot to non-regenerative relay pilot.
  • the RS measures the received quality (MS 2 -RS channel quality) of the received pilot, and, according to the channel quality, selects the MCS for between the MS 2 and the RS in regenerative relay.
  • the RS selects 16QAM when the channel quality is “good”, QPSK when the channel quality is “normal”, or BPSK when the channel quality is “poor”.
  • the selection result is transmitted to the MS 2 as MCS information. Further, the RS transmits a new pilot signal (regenerative relay pilot) to measure the RS-BS channel quality to the BS. At this point, the RS adds a flag indicative of regenerative relay pilot to regenerative relay pilot.
  • regenerative relay pilot a new pilot signal
  • the BS measures the received quality (MS 2 -RS-BS channel quality) of non-regenerative relay pilot. Further, the BS measures the received quality (RS-BS channel quality) of regenerative relay pilot.
  • the BS obtains the MS 2 -RS-BS channel quality as the channel quality of non-regenerative relay, and further obtains the RS-BS channel quality as the channel quality of regenerative relay.
  • the BS determines the relay scheme for the RS (whether the RS performs regenerative relay or non-regenerative relay), and further determines the MCS for between the RS and the BS in regenerative relay or determines the MCS for between the MS 2 and the BS via the RS in non-regenerative relay.
  • the determination result is transmitted to the RS as relay information. Further, this relay information is also transmitted to the MS 2 via the RS.
  • the MS 2 performs coding and modulation on the uplink data with the MCS based on the MCS information transmitted from the RS to transmit to the RS. Meanwhile, in the case of non-regenerative relay, the MS 2 performs coding and modulation on the uplink data with the MCS based on the relay information transmitted from the BS to transmit to the RS.
  • the RS switches non-regenerative relay and regenerative relay based on the relay information to relay the uplink data.
  • the RS maintains the MCS and amplifies the uplink data and transmits the result to the BS.
  • the RS once demodulates and decodes the uplink data with the MCS determined by the RS, and performs coding and modulation again on the uplink data with the MCS based on the relay information to transmit to the BS.
  • the RS once demodulates and decodes the downlink data from the BS, and performs coding and modulation again on the downlink data with the MCS determined by the RS to transmit to the MS 2 .
  • FIG. 16 illustrates the configuration of the BS.
  • non-regenerative relay pilot, regenerative relay pilot and uplink data received via antenna 301 are subjected to radio processing such as down-conversion in RF receiving section 302 .
  • radio processing such as down-conversion in RF receiving section 302 .
  • non-regenerative relay pilot and regenerative relay pilot are inputted to received quality measuring section 303
  • the uplink data is inputted to demodulation section 305 .
  • the uplink data is demodulated in demodulation section 305 and decoded in decoding section 306 according to MCS determined in determining section 304 .
  • the received data is thereby obtained.
  • received quality measuring section 303 measures the received quality of non-regenerative relay pilot and regenerative relay pilot, and obtains the MS 2 -RS-BS channel quality and RS-BS channel quality. These kinds of channel quality are inputted to determining section 304 .
  • received quality measuring section 303 is capable of distinguishing between the non-regenerative relay pilot and the regenerative relay pilot by the flag added to each pilot.
  • Determining section 304 determines the relay scheme of the RS and MCS from the MS 2 -RS-BS channel quality and RS-BS channel quality. The determination method will be described later.
  • the determination results are inputted to coding section 307 as relay information.
  • the relay information and transmission data are encoded in coding section 307 and modulated in modulation section 308 according to the MCS determined in determining section 304 .
  • the modulated relay information and downlink data are subjected to radio processing such as up-conversion in RF transmitting section 309 , and transmitted via antenna 301 .
  • the received SNR is used as channel quality in the following descriptions.
  • determining section 304 classifies channel quality into three stages, “good”, “normal”, and “poor,” as shown in FIG. 5 .
  • 16QAM is “good”
  • QPSK is “normal”
  • BPSK is “poor”.
  • determining section 304 refers to the table shown in FIG. 17 , and determines the relay scheme and MCS corresponding according to the combination of the RS-BS channel quality and MS 2 -RS-BS channel quality. Determination results are given as relay information of one of “0” to “4” (information of three bits between “000” and “100”).
  • the table of FIG. 17 shows modulation schemes alone as MCS, without spreading factors, for ease of explanation.
  • the table of FIG. 17 collectively shows selected combinations of the relay scheme and MCS that obtain optimal transmission rates for combinations of the RS-BS channel quality and the MS 2 -RS-BS channel quality.
  • a plurality of optimal transmission rates exist for the same combination of channel quality for example, in the table of FIG. 9 , in the case where the RS-BS channel quality is “good”, the MS 2 -RS-BS channel quality is “normal”, and the optimal transmission rate is 2 bits/T in both regenerative relay and non-regenerative relay
  • non-regenerative relay is selected taking into account the fact that the processing load of the relay station is less in non-regenerative relay than in regenerative relay.
  • the RS determines the MCS for between the MS 2 and the RS according to the MS 2 -RS channel quality. For example, when the RS-BS channel quality is “good” or “normal”, and the MS 2 -RS-BS channel quality is “poor”, the optimal transmission rate is obtained in regenerative relay.
  • the MCS for between the MS 2 and the RS is determined by the RS according to the MS 2 -RS channel quality.
  • FIG. 18 illustrates the configuration of the RS.
  • the relay information, pilot signal and uplink data received in antenna 401 are subjected to radio processing such as down-conversion in RF receiving section 402 .
  • the pilot signal is inputted to received quality measuring section 403 and amplifying section 406 , and the relay information and uplink data are inputted to switching section 405 .
  • the relay information is received from the BS, and the pilot and uplink data are received from the MS 2 .
  • Received quality measuring section 403 measures the received quality of the pilot, and obtains the MS 2 -RS channel quality.
  • MCS determining section 404 determines the MCS for between the MS 2 and the RS, and inputs MCS information to demodulation section 407 and decoding section 408 . Further, the MCS information for between the MS 2 and the RS is inputted to coding section 409 to be notified to the MS 2 .
  • Switching section 405 has a table (part of the table of FIG. 17 ) indicative of the relationships between relay information and relay schemes/MCS, and, according to input relay information, selects a combination of a relay scheme and MCS to switch regenerative relay and non-regenerative relay.
  • a table part of the table of FIG. 17
  • uplink data is inputted to amplifying section 406 .
  • uplink data is inputted to demodulation section 407 .
  • Amplifying section 406 amplifies uplink data and pilot to input to RF transmitting section 411 .
  • the uplink data inputted to demodulation section 407 is demodulated in demodulation section 407 and decoded in decoding 408 according to the MCS of MS 2 -RS designated by MCS determining section 404 .
  • the result is encoded again in coding section 409 and modulated again in modulation section 410 according to the MCS of RS-BS designated by switching section 405 .
  • the modulated uplink data is inputted to RF transmitting section 411 .
  • regenerative relay pilot and the MCS information of MS 2 -RS are encoded in coding section 409 , modulated in modulation section 410 , and inputted to RF transmitting section 411 .
  • the uplink data (to be relayed in regenerative relay) inputted from modulation section 410 and the uplink data (to be relayed in non-regenerative relay) inputted from amplifying section 406 are subjected to radio processing such as up-conversion in RF transmitting section 411 , and transmitted to the BS via antenna 401 . Further, regenerative relay pilot, and the pilot (non-regenerative relay pilot) amplified in amplifying section 406 are also subjected to the radio processing such as up-conversion in RF transmitting section 411 , and transmitted to the BS via antenna 401 .
  • the MCS information of MS 2 -RS is subjected to the radio processing such as up-conversion in RF transmitting section 411 , and transmitted to the MS 2 via antenna 401 .
  • the relay information is transmitted to the MS 2 in the relay scheme of the downlink data switched in the same way as in the uplink data.
  • Embodiment 1 when multiplexing schemes such as CDM and SDM are used in communications between the MS and the RS, it is also possible to use the table shown in FIG. 19 instead of the table in FIG. 17 .
  • the table shown in FIG. 19 as in Embodiment 1, non-regenerative relay is adopted only when the RS-BS channel quality in regenerative relay is the same as the MS-RS-BS channel quality in non-regenerative relay.
  • the MS 2 is present in the service area of the BS, as in Embodiment 1, it is also possible to use a table as shown in FIG. 20 , instead of the table of FIG. 17 .
  • Embodiment 1 it is possible to improve system throughput, while preventing the user throughput from decreasing. Further, in this Embodiment, the RS determines the MCS for between the MS and the RS in regenerative relay. Therefore, as compared with Embodiment 1, it is possible to decrease the number of pilots that the MS transmits, while the need is eliminated of the RS transmitting the BS-RS channel quality to the BS, and the system throughput can thus be further increased.
  • the relay station or mobile station may hold the reference table to determine the relay scheme and MCS.
  • Each function block employed in the description of each of the aforementioned embodiments may typically be implemented as an LSI constituted by an integrated circuit. These may be individual chips or partially or totally contained on a single chip.
  • LSI is adopted here but this may also be referred to as “IC”, “system LSI”, “super LSI”, or “ultra LSI” depending on differing extents of integration.
  • circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • FPGA Field Programmable Gate Array
  • reconfigurable processor where connections and settings of circuit cells within an LSI can be reconfigured is also possible.
  • the present invention is suitable for use in a mobile communication system using a high-frequency radio band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
US13/802,109 2005-03-14 2006-03-13 Base station apparatus and communication method Active 2028-01-22 USRE45171E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/802,109 USRE45171E1 (en) 2005-03-14 2006-03-13 Base station apparatus and communication method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005071775 2005-03-14
JP2005071775 2005-03-14
US13/802,109 USRE45171E1 (en) 2005-03-14 2006-03-13 Base station apparatus and communication method
PCT/JP2006/304901 WO2006098273A1 (fr) 2005-03-14 2006-03-13 Systeme de communication sans fil
US11/908,486 US7912423B2 (en) 2005-03-14 2006-03-13 Wireless communication system

Publications (1)

Publication Number Publication Date
USRE45171E1 true USRE45171E1 (en) 2014-09-30

Family

ID=36991615

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/802,120 Active 2028-01-22 USRE45125E1 (en) 2005-03-14 2006-03-13 Integrated circuit
US13/802,109 Active 2028-01-22 USRE45171E1 (en) 2005-03-14 2006-03-13 Base station apparatus and communication method
US13/444,664 Active 2028-01-22 USRE44200E1 (en) 2005-03-14 2006-03-13 Wireless communication system
US11/908,486 Ceased US7912423B2 (en) 2005-03-14 2006-03-13 Wireless communication system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/802,120 Active 2028-01-22 USRE45125E1 (en) 2005-03-14 2006-03-13 Integrated circuit

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/444,664 Active 2028-01-22 USRE44200E1 (en) 2005-03-14 2006-03-13 Wireless communication system
US11/908,486 Ceased US7912423B2 (en) 2005-03-14 2006-03-13 Wireless communication system

Country Status (6)

Country Link
US (4) USRE45125E1 (fr)
EP (2) EP2541803B1 (fr)
JP (1) JP4657290B2 (fr)
CN (1) CN101142768B (fr)
BR (1) BRPI0608435A2 (fr)
WO (1) WO2006098273A1 (fr)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1860796A4 (fr) * 2005-03-30 2012-01-25 Panasonic Corp Appareil de communication sans fil et procede de communication sans fil
JP4952135B2 (ja) * 2006-08-17 2012-06-13 富士通株式会社 無線端末、中継局、無線基地局及び通信方法
US8725066B2 (en) * 2006-08-23 2014-05-13 Samsung Electronics Co., Ltd. Apparatus and method for allocating resource to mobile station connected to relay station in broadband wireless communication system
US20080049678A1 (en) * 2006-08-24 2008-02-28 Siemens Corporate Research, Inc. Relay-Assisted Channel Condition Measurements For Connection Setup and Maintenance
KR101210332B1 (ko) * 2006-09-27 2012-12-10 삼성전자주식회사 증폭-순방향 릴레이 시스템의 릴레이 전력 제어 장치 및 그방법
JP4899110B2 (ja) * 2006-10-18 2012-03-21 富士通株式会社 無線基地局、中継局、無線中継システム、及び無線中継方法
WO2008108700A2 (fr) * 2007-03-06 2008-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Procédé et dispositif pour des transmissions de données améliorées
US8670704B2 (en) * 2007-03-16 2014-03-11 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
US8417255B2 (en) * 2007-03-16 2013-04-09 Qualcomm Incorporated Data transmission and power control in a multihop relay communication system
JP4898911B2 (ja) * 2007-05-11 2012-03-21 パナソニック株式会社 無線通信方法、無線通信装置、無線通信システム、および中継方法
JP4865655B2 (ja) * 2007-08-22 2012-02-01 日本電信電話株式会社 無線通信方法
KR100943175B1 (ko) * 2007-11-30 2010-02-19 한국전자통신연구원 동적 기반의 메시지 전달 방법을 이용한 무선 센서네트워크 및 그 제어방법
JP5067427B2 (ja) * 2007-12-05 2012-11-07 富士通株式会社 パラメータ収集方法、無線基地局、及び、中継局
KR101406321B1 (ko) 2007-12-17 2014-06-12 한국전자통신연구원 신호 전송 방법 및 중계국
US8462743B2 (en) 2008-01-25 2013-06-11 Nokia Siemens Networks Oy Method, apparatus and computer program for signaling channel quality information in a network that employs relay nodes
JP5038924B2 (ja) * 2008-01-25 2012-10-03 株式会社エヌ・ティ・ティ・ドコモ リレー伝送システム、基地局、中継局及び方法
WO2009118780A1 (fr) * 2008-03-26 2009-10-01 富士通株式会社 Procédé de relayage sans fil, dispositif de station de base, et dispositif de station relais
WO2009125948A2 (fr) * 2008-04-06 2009-10-15 엘지전자 주식회사 Procédé de support de communications d’urgence
US8743769B2 (en) 2008-05-21 2014-06-03 Panasonic Corporation Radio communication device and radio communication system
JP5091778B2 (ja) 2008-06-19 2012-12-05 シャープ株式会社 基地局装置、中継局装置および通信システム
US20110092154A1 (en) * 2008-06-19 2011-04-21 Panasonic Corporation Radio communication device
WO2009154279A1 (fr) * 2008-06-20 2009-12-23 三菱電機株式会社 Dispositif de communication et système de communication sans fil
JPWO2010029828A1 (ja) * 2008-09-11 2012-02-02 日本電気株式会社 中継局装置、マルチホップシステム、および中継方法
US8279794B2 (en) * 2008-09-24 2012-10-02 Qualcomm Incorporated Opportunistic data forwarding and dynamic reconfiguration in wireless local area networks
WO2010036809A2 (fr) * 2008-09-25 2010-04-01 Alcatel-Lucent Usa Inc. Procédé et appareil adaptés pour relayer des informations
CN101729121A (zh) * 2008-10-23 2010-06-09 中兴通讯股份有限公司 一种混合中继方法及其中继站
JP5230360B2 (ja) * 2008-10-31 2013-07-10 三菱電機株式会社 無線通信システムおよび無線通信装置
CN101389140B (zh) * 2008-10-31 2012-05-09 中兴通讯股份有限公司 一种半双工和组播协同中继模式的切换方法及相应的基站
JP5477298B2 (ja) * 2008-12-11 2014-04-23 日本電気株式会社 無線中継システム、中継装置、及びデータ中継方法
WO2010134188A1 (fr) * 2009-05-21 2010-11-25 富士通株式会社 Procédé de commande de modulation adaptative, système de communication et dispositif de relais
EP2437411A4 (fr) * 2009-05-25 2015-12-02 Fujitsu Ltd Dispositif de relais, dispositif d'émission, système de communication, dispositif de réception et procédé de communication
CN101959205B (zh) * 2009-07-14 2015-04-01 中兴通讯股份有限公司 一种中继网络中的上行测量方法及系统
US20110170474A1 (en) * 2009-07-15 2011-07-14 Ji Tingfang Method and apparatus for transparent relay hybrid automatic repeat request (harq)
KR101335876B1 (ko) 2009-07-15 2013-12-02 후지쯔 가부시끼가이샤 무선 통신 시스템, 기지국 장치, 단말 장치, 중계국 장치, 및 무선 통신 시스템에서의 무선 통신 방법
JP5408254B2 (ja) * 2009-07-16 2014-02-05 富士通株式会社 無線通信システム、基地局、中継局および無線通信方法
US8774253B2 (en) * 2009-07-28 2014-07-08 Panasonic Corporation Wireless relay device and wireless relay method
JP5387680B2 (ja) * 2009-09-16 2014-01-15 富士通株式会社 中継局、通信システム及び通信方法
EP2472936A4 (fr) * 2009-09-18 2015-11-11 Sony Corp Station relais, procédé de relais et dispositif de communication sans fil
JP5482068B2 (ja) 2009-10-01 2014-04-23 ソニー株式会社 中継局、中継方法、無線通信システム及び無線通信装置
JP5249423B2 (ja) 2009-10-07 2013-07-31 富士通株式会社 基地局、中継局、及び方法
JP5446857B2 (ja) * 2009-12-28 2014-03-19 富士通株式会社 中継装置、無線中継方法
US8416731B2 (en) 2010-04-27 2013-04-09 Research In Motion Limited Transmission in a relay node-based wireless communication system
JP5441172B2 (ja) 2010-05-19 2014-03-12 日本電気株式会社 無線ネットワーク中継装置及び無線ネットワーク中継装置の変調方法並びにコンピュータプログラム
JP5672779B2 (ja) * 2010-06-08 2015-02-18 ソニー株式会社 送信制御装置、および送信制御方法
CN102377470B (zh) * 2010-08-13 2015-08-12 中兴通讯股份有限公司 可重配置无线节点及与宏小区无线接入点协同工作的方法
CA2827569A1 (fr) 2011-02-17 2012-08-23 Blackberry Limited Optimisation de retard de paquet dans la liaison montante d'un reseau sans fil a relais cooperatif active, a plusieurs bonds
US9184827B2 (en) 2011-03-04 2015-11-10 Mitsubishi Electric Corporation Relay device and auxiliary relay device
CN103493414B (zh) * 2011-04-19 2016-08-31 松下电器(美国)知识产权公司 信号生成方法及信号生成装置
US8873950B2 (en) * 2011-10-04 2014-10-28 Fujitsu Limited Method and system of automatic regeneration of optical signals
CN102724154B (zh) * 2011-12-31 2017-04-05 慕福奇 一种多跳无线通信系统自适应中继传输方法
US10506450B2 (en) * 2012-01-16 2019-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for relaying
JP5387711B2 (ja) * 2012-03-21 2014-01-15 富士通株式会社 無線通信システム
US9537637B2 (en) * 2012-07-15 2017-01-03 Lg Electronics Inc. Method for transmitting downlink signal at a relay node in a wireless communication system and apparatus therefor
US9288719B2 (en) * 2012-09-28 2016-03-15 Optis Cellular Technology, Llc Link adaptation for a multi-hop route in a wireless mesh network
US9686165B2 (en) * 2013-04-25 2017-06-20 Control4 Corporation Systems and methods for indicating link quality
EP2835927B1 (fr) 2013-08-07 2016-11-30 Samsung Electronics Co., Ltd Procédé et appareil pour programmer des ressources au niveau d'une station relais (RS) dans un réseau de communication mobile
KR102095493B1 (ko) * 2014-01-16 2020-04-16 삼성전자주식회사 무선 멀티홉 통신을 위한 신호 전달 방법 및 장치
US9544116B2 (en) 2014-02-14 2017-01-10 Qualcomm Incorporated Pilot transmission by relay stations in a multihop relay communication system
WO2016206709A1 (fr) 2015-06-22 2016-12-29 Telefonaktiebolaget Lm Ericsson (Publ) Sélection de chemin dans des réseaux maillés sans fil
US9973257B1 (en) * 2015-08-19 2018-05-15 Sprint Spectrum L.P. RF slave repeater management
US10116377B2 (en) * 2016-01-06 2018-10-30 Google Llc Dynamic forward error correction bypass in a digital communications system
JP6618448B2 (ja) * 2016-09-30 2019-12-11 Kddi株式会社 通信制御装置、通信システムおよび通信方法
US10827043B2 (en) * 2018-04-04 2020-11-03 Hall Labs Llc Normalization of communication between devices
WO2019203964A1 (fr) * 2018-04-17 2019-10-24 Kyocera Corporation Informations de relais robustes transmises à un dispositif de départ
WO2023055413A1 (fr) * 2021-09-29 2023-04-06 Nokia Technologies Oy Accès et raccordement intégrés intelligents prenant en charge un mode répéteur
JP2024049186A (ja) * 2022-09-28 2024-04-09 トヨタ自動車株式会社 通信システム、制御装置及び、通信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295234A (ja) 1989-05-09 1990-12-06 Nec Corp 無線中継器の伝送方式
JPH04196626A (ja) 1990-11-26 1992-07-16 Nippon Telegr & Teleph Corp <Ntt> 移動通信方式
JP2003018059A (ja) 2001-06-29 2003-01-17 Communication Research Laboratory 再生中継機器における入力レベル測定方法及び装置
US20040198467A1 (en) * 2003-01-21 2004-10-07 Philip Orlik System and method for reducing power consumption in a wireless communications network
WO2004107693A1 (fr) 2003-05-28 2004-12-09 Telefonaktiebolaget Lm Ericsson (Publ) Procede et systeme destines a des reseaux de communication sans fil utilisant des relais
US20070160014A1 (en) * 2003-12-30 2007-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for wireless communication networks using cooperative relaying

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228103A1 (de) 2002-06-24 2004-01-15 Bayer Cropscience Ag Fungizide Wirkstoffkombinationen
JP4196626B2 (ja) 2002-09-25 2008-12-17 セイコーエプソン株式会社 カッティング装置およびこれを備えたテープ処理装置
JP2004208242A (ja) * 2002-12-26 2004-07-22 Yokogawa Electric Corp 再生中継型中継装置とそれを用いた通信システム
CN1219410C (zh) * 2003-05-07 2005-09-14 深圳市一通金泰科技股份有限公司 智能基站信号中继放大转发装置及方法
JP4443167B2 (ja) 2003-08-25 2010-03-31 株式会社日立製作所 走査型電子顕微鏡

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02295234A (ja) 1989-05-09 1990-12-06 Nec Corp 無線中継器の伝送方式
JPH04196626A (ja) 1990-11-26 1992-07-16 Nippon Telegr & Teleph Corp <Ntt> 移動通信方式
JP2003018059A (ja) 2001-06-29 2003-01-17 Communication Research Laboratory 再生中継機器における入力レベル測定方法及び装置
US20040198467A1 (en) * 2003-01-21 2004-10-07 Philip Orlik System and method for reducing power consumption in a wireless communications network
WO2004107693A1 (fr) 2003-05-28 2004-12-09 Telefonaktiebolaget Lm Ericsson (Publ) Procede et systeme destines a des reseaux de communication sans fil utilisant des relais
US20050014464A1 (en) * 2003-05-28 2005-01-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for wireless communication networks using relaying
US20070160014A1 (en) * 2003-12-30 2007-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for wireless communication networks using cooperative relaying

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Hasegawa et al., "Multi-hop System for Adaptive Modulation using Regenerating Fixed Hop Stations," Technical Report of IEICE, A-P2004-189, RCS2004-210, Oct. 2004, pp. 57-61.
International Search Report dated May 16, 2006.
International Search Report for corresponding International Patent Application No. PCT/JP2006/304901 dated May 16, 2006, 3 pages.
PCT International Search Report dated May 16, 2006.
R. Hasegawa, et al.; "Multi-hop System for Adaptive Modulation using Regenerating Fixed Hop Stations," Technical Report of IEICE, A-P2004-189, RCS2004-210, Oct. 2004, pp. 57-61.
Supplementary European Search Report dated Apr. 27, 2008.
Supplementary Search Report for corresponding EP Patent Application No. 06728966.0 dated Apr. 27, 2010, 3 pages.

Also Published As

Publication number Publication date
BRPI0608435A2 (pt) 2009-12-29
EP2541803B1 (fr) 2015-01-21
WO2006098273A9 (fr) 2007-10-25
EP1852986A1 (fr) 2007-11-07
USRE44200E1 (en) 2013-05-07
CN101142768A (zh) 2008-03-12
JPWO2006098273A1 (ja) 2008-08-21
EP1852986B1 (fr) 2013-01-16
JP4657290B2 (ja) 2011-03-23
US20090227201A1 (en) 2009-09-10
CN101142768B (zh) 2014-07-30
EP1852986A4 (fr) 2010-05-26
USRE45125E1 (en) 2014-09-09
US7912423B2 (en) 2011-03-22
EP2541803A1 (fr) 2013-01-02
WO2006098273A1 (fr) 2006-09-21

Similar Documents

Publication Publication Date Title
USRE45171E1 (en) Base station apparatus and communication method
JP4800378B2 (ja) 無線通信装置および中継送信方法
JP4772038B2 (ja) 無線通信装置および無線通信方法
US7881741B2 (en) Mobile station apparatus and wireless communication method
US7912116B2 (en) Apparatus and method for transmitting data using relay station in a broadband wireless communication system
US8000651B2 (en) Wireless transmission apparatus and wireless transmission method
US7940728B2 (en) Wireless communication apparatus and wireless communication method
JPWO2005083907A1 (ja) 移動局装置および移動局装置における送信アンテナ選択方法
JP4757908B2 (ja) 無線通信装置および中継送信方法
JP2007221357A (ja) 無線中継装置、無線中継方法
JP2008193240A (ja) 無線通信装置および無線通信方法
JP2009081513A (ja) 無線通信装置および無線通信方法
RU2553282C2 (ru) Способы радиосвязи (варианты), ретранслятор и мобильная станция (варианты)
KR101004000B1 (ko) 디코딩 후 전달 릴레이 시스템에서 처리율 향상 방법
CN101156331A (zh) 无线通信装置以及无线通信方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AMERICA, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:033033/0163

Effective date: 20140527

Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF AME

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:033033/0163

Effective date: 20140527

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1555); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12