New! View global litigation for patent families

USRE42594E1 - Tissue cooling rod for laser surgery - Google Patents

Tissue cooling rod for laser surgery Download PDF

Info

Publication number
USRE42594E1
USRE42594E1 US11250139 US25013905A USRE42594E US RE42594 E1 USRE42594 E1 US RE42594E1 US 11250139 US11250139 US 11250139 US 25013905 A US25013905 A US 25013905A US RE42594 E USRE42594 E US RE42594E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
cooling
laser
skin
tissue
surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US11250139
Inventor
Nikolai Tankovich
Eugene Baranov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reliant Tech Inc
Original Assignee
Reliant Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B18/0218Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques with open-end cryogenic probe, e.g. for spraying fluid directly on tissue or via a tissue-contacting porous tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • A61B2017/00092Temperature using thermocouples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/00458Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • A61B2018/0047Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure

Abstract

A laser treatment device and process with controlled cooling. The device contains a cooling element with high heat conduction properties, which is transparent to the laser beam. A surface of the cooling element is held in contact with the tissue being treated while at least one other surface of the cooling element is cooled by the evaporation of a cryogenic fluid. The cooling is coordinated with the application of the laser beam so as to control the temperatures of all affected layers of tissues. In a preferred embodiment useful for removal of wrinkles and spider veins, the cooling element is a sapphire plate. A cryogenic spray cools the top surface of the plate and the bottom surface of the plate is in contact with the skin. In preferred embodiments the wavelength of the laser beam is chosen so that absorption in targeted tissue is low enough so that substantial absorption occurs throughout the targeted tissue. In a preferred embodiment for treating large spider veins with diameters in the range of 1.5 mm, Applicants use an Er:Glass laser with a wavelength of 1.54 microns.

Description

This application is a continuation-in-part application of U.S. Ser. No. 09/174,065 filed Oct. 16, 1998 U.S. Pat. No. 6,059,820. This invention relates to devices and methods for laser treatment and in particular to laser treatment with surface cooling.

BACKGROUND OF THE INVENTION

1. Prior Art Skin Cooling

The principal methods presently used for skin cooling before or during the laser treatment involve the use of a cold contacting window or cryogenic spray device. Cryogenic spray directly to the skin may reduce a skin temperature below 0 C 0° C. but can freeze the skin and cause significant damage to it. Typical cold contacting windows of the prior art utilize ice water at 0 C 0° C. can cool the surface of the skin to as low as about 4 C 4° C. But prior art ice water cooled cold contact window devices are inadequate to remove enough heat to prevent unwanted surface tissue damage in many applications.

Three prior art techniques are described in the following United States patents: C. Chess, Apparatus for treating cutaneous vascular lesions, U.S. Pat. No. 5,486,172; Anderson et al., U.S. Pat. No. 5,595,568; and C. Chess, Method for treating cutaneous vascular lesions, U.S. Pat. No. 5,282,797. All of these devices and methods provide for the cooling of the skin down to temperatures of about 4 C 4° C. but not below it.

A different technique is described by J. S. Nelson et al., in the article “Dynamic Epidermal Cooling in Conjunction With Laser-Induced Photothermolysis of Port Wine Stain Blood Vessels, Lasers in Surgery and Medicine 1996;19:224-229. In this technique the direct cryogenic spray to the skin surface is used before the laser pulse delivery. This method is normally not satisfactory. The surface gets too cold and the subsurface layers are not sufficiently cooled so that unwanted damage occurs at the surface because the tissue gets too cold from the cryogen and/or unwanted damage occurs in the immediate subsurface layers because the tissue gets too hot from the laser beam.

2. Selective Photothermolysis

Dr. Leon Goldman and Dr. Rex Anderson developed the technique known as selective photothermolysis. This technique involves the use of a laser beam having absorption in targeted tissue much higher than in other tissue. Blood has very high absorption of laser radiation at about 530 nm and 575-590 nm. These frequencies are available from the double frequency Nd-YAG laser producing 532 nm light and by an argon laser producing 530 nm. Dye lasers at 577, 585 and 587 are also used in techniques that target blood vessels. These techniques have proven very successful in treating conditions known as port wine stains when the blood vessels are small and near the skin surface. The techniques do not work well for deeper, larger blood vessels.

What is needed is a better laser surgery cooling method to better control tissue temperature during laser treatments.

SUMMARY OF THE INVENTION

The present invention provides a laser treatment device and process with controlled cooling. The device contains a cooling element with high heat conduction properties, which is transparent to the laser beam. A surface of the cooling element is held in contact with the tissue being treated while at least one other surface of the cooling element is cooled by the evaporation of a cryogenic fluid. The cooling is coordinated with the application of the laser beam so as to control the temperatures of all affected layers of tissues. In a preferred embodiment useful for removal of wrinkles and spider veins, the cooling element is a sapphire plate. A cryogenic spray cools the top surface of the plate and the bottom surface of the plate is in contact with the skin. In preferred embodiments the wavelength of the laser beam is chosen so that absorption in targeted tissue is low enough so that substantial absorption occurs throughout the targeted tissue. In a preferred embodiment for treating large spider veins with diameters in the range of 1.5 mm, Applicants use an Er:Glass laser with a wavelength of 1.54 microns. In another embodiment a cooling rod is used. A first surface is in contact with the skin surface being treated and an opposite surface is contained in an anticondensation oil chamber that is optically connected to a laser beam delivering fiber optic cable. In this preferred embodiment the temperature of the rod is monitored with a thermocouple which provides a feedback signal to a processor which controls the cooling and the laser power to provide proper regulation of temperatures at all affected tissue layers. Preferred embodiments the device may be used for treating port wine stains especially those stains involving relatively deep larger blood vessels which as indicated in the Background section are not well treated with photothermalyses techniques using highly preferentially absorbed wavelengths of about 530 nm and 575 to 590 nm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a drawing of the cooling rod hand piece for the subsurface light energy delivery with circumferential cooling of the cooling rod.

FIG. 1A shows the device being used to coagulate a large blood vessel.

FIGS. 2 is a time graph showing temperature changes below the skin surface.

FIGS. 3A and 3B show a partially masked cooling rod.

FIG. 4 shows a rod with the lens-type tip surface.

FIGS. 5A and 5B is a second preferred embodiment.

FIG. 6A and 6B show a drawing of the horizontally positioned cooling rod.

FIGS. 7A1-7 7A1-A7 and 7B1-7 7B1-B7 are temperature profile charts.

FIGS. 8A and 8B show the effect of two different wavelength beams on a blood vessel.

FIG. 8C shows blood vessel coagulation.

FIG. 9 is a drawing of a preferred embodiment using a plate-type cooling element with non-circumferential cooling of the cooling element.

FIGS. 10A and 10B show a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Preferred embodiments of the present invention can be described by reference to the figures.

COOLING AND SUBSURFACE LIGHT DELIVERY METHOD Skin Surface Cooling

A section of human skin with a cooling cryogenic rod device 1 in accordance with the present invention is shown in FIG. 1. FIG. 1 shows a cryogenic container 11 that also serves as a handle for the device. A nozzle 19 with a valve 12 and a valve-opening actuator 5 provides for a cryogenic spray onto the portion of sapphire rod 16 within cryogenic cooling chamber 17. In this embodiment the cryogen is Tetrafluoethan. The cryogenic mist exhausts through port 18. An anti condensation oil chamber 15 contains collimating lens 9, a fiber holder 14 optically connecting delivery fiber optic cable 13 and a transparent optical oil, which in this embodiment is microscopic immersion oil. In this embodiment the laser beam is provided by an Er:Glass pulse laser producing 25 Joule 2 ms pulses at a wavelength of 1.54 microns and at pulse rates of 1 Hz or 0.5 Hz. The spot size is about 7 mm2 7 mm2. The laser output is adjusted to provide energy fluence on the skin surface of about 25J/cm2 25J/cm2 per pulse. With a spot size of 7 mm2 7 mm2, the energy per pulse is about 1.7J. A thermocouple 8 is insulated from rod 16 and senses the temperature of the skin surface and provides a feedback signal to processor 30 which controls delivery of the cryogen spray via actuator 5 and the laser pulses through the laser controls (not shown). Also shown on FIG. 1 is “ready” light 7 and battery 6 which powers the light and the thermocouple. FIG. 1 also shows a section of human skin including epidermis E, dermis D and a subcutaneous fat SCF.

The section of skin is first cleaned with alcohol to remove moisture to prevent a condensation on the contacting surface of the rod and in order to dehydrate the skin surface to reduce the epidermal damage from the light interaction with water. When the valve of the nozzle is opened the cryogen coolant is sprayed micro drops into the cooling chamber. The cryogenic mist flows around the sapphire. The micro drops contact the rod and vaporize from the surface of the rod by the rod heat reducing the rod temperature dramatically fast. The whole rod becomes cold almost instantly because of the high thermoconductivity of sapphire. The sapphire rod cools the surface of the skin by heat exchange.

Treatment for Spider Veins with Er:Glass Laser and Surface Cooling

A preferred application of the device shown in FIG. 1 is for spider vein removal. The operator presses the tip of the device against the skin as shown in FIG. 1 and presses the on button. The processor opens valve 12 permitting cryogen flow. The processor 30 monitors the skin temperature via thermocouple 8 and assures that the skin temperature is not below 0 C 0° C. for more than 1 second. When processor 30 determines that the temperature of the surface has dropped to a desired low temperature at a desired rate, such as −15 C −15° C. in a time period of 0.30 to 0.40 seconds, the “lasing” light indicator is switched-on and the processor will direct the laser to fire a pulse. The energy of the 1.7J pulse is dissipated in a distance of about 1.0 mm. With the spot size of about 7 mm2 7 mm2 means that the energy is absorbed in about 0.007 gram of tissue. Since the specific heat of tissue is roughly 4J/gmC, each pulse will heat the skin by an average of about 50 C 50° C. But since the energy absorption by blood is about twice that of skin tissue in general, blood temperature is preferably increased about twice as much as the surrounding tissue. Thus, tissue cooled to −15 C −15° C. will after the laser pulse be at a temperature of about 35 C 35° C. which is close to normal skin temperature. As shown is FIG. 1A blood in spider vein 30 31 just below the epidermis which prior to the laser pulse is at a temperature of about 25 C 25° C. will be heated to slightly over 70 C 70° C. to destroy the vein tissue. FIG. 2 shows graphs of the temperature of the skin at points 100 microns below the skin surface (near the bottom boundary of the epidermis) and 400 microns below the surface of the skin (at the center of a 200 micron diameter spider vein) during the above described process. The reader should note that the tissue at a depth of 100 microns is below 0 C 0° C. for about 100 milliseconds and that the tissue at 400 microns is above 70 C 70° C. for about 100 milliseconds. It is well known that tissue is not adversely affected by subfreezing temperatures in this range until the time periods are more than about 500 ms. On the other hand, however temperatures in excess of 70 degrees for about 10 ms will coagulate the tissue.

The processor will stop the lasing if thermocouple 8 indicates an excessive temperature which in this procedure would be about 60 C 60° C. The thermocouple 8 is preferably calibrated to the temperature of the skin located in one millimeter from the rod edge. The difference between the temperature of the skin under the rod and in 1 mm from the rod edge is varied from 10 C 10° C. to 20 C 20° C. and depending upon the rod design. Applicant has performed computer simulations to determine temperature profiles in the case of laser treatments, at wavelengths of 585 nm, 632 nm, 1064 nm, 1340 nm, and 1540 nm, with and without surface cooling. FIGS. 7A1-7 show the effects of a 20J/cm2, 0.54 mm diameter blood vessel, and 0.5 mm below the skin surface, with no surface cooling. FIGS. 7B1-7 represent similar conditions with surface cooling with a −15° C. sapphire glass rod for 0.5 sec. These simulations show the advantages of the Nd:YAG at 1064 nm, the Nd:YAP at 1340 nm and the Er:Glass at 1540 nm as compared to the shorter wavelength lasers that are more highly absorptive in blood. This effect is seen clearly by comparing FIG. 8A to FIG. 8B. As shown in FIG. 8A the 585 nm pulse coagulates blood at the top of the vessel but does not penetrate sufficiently to coagulate blood deeper in the vessel. On the other hand the 1540 nm pulse provides substantially uniform heating and coagulation of the vessel. FIG. 8C shows zones of cooling and coagulation in skin tissue.

Mechanical contact, optical, electrical or other sensor can be used to trigger the time delay circuit after the cold rod touches the skin for the definite time. The time delay is defined by the procedure and by the anatomical structure of the skin and blood vessel.

Treatment for Wrinkles with Er:Glass Laser

It is known that an effective treatment for the removal of wrinkles is to destroy a line of tissue just below the epidermis at the bottom of the wrinkle valley. Scar tissue forms in the place of the destroyed tissue pushing up the bottom of the valley and effectively removing the wrinkle. The problem is how do you destroy the tissue below the epidermis without also destroying the epidermis and thus replacing an ugly wrinkle with an ugly scar. The present invention provides the solution. Using substantially the same procedure as described above, the tissue at the bottom of the wrinkle valley is destroyed without any significant damage to the epidermis. Details and parameters are outlined below.

Er:Glass Laser

The laser device used in this preferred embodiment is a free running mode Er:Glass pulse laser that has the spike in the range of 1.54 microns. Light in this range has minimal scattering losses in the skin tissue and is readily absorbed in the skin fluids. Laser parameters such as pulse width, energy density, repetition rate can be selected to best fit the skin and the treated lesion of the patients. The parameters for two specific examples which have been utilized with good results for wrinkle removal and leg vein treatment are shown in Table 1:

TABLE 1
Parameters Preferred.
Wrinkles Spider Veins
Pulse Width 2 ms 2 ms
Repetition Rate 1 Hz 0.5 Hz
Sapphire Rod Diameter 3 mm 2 mm
Spot Size 7.2 mm2 3.14 mm2
Energy Fluence 25 J/cm2 25 J/cm2

Each point on the skin receives a high energy density illumination for about 2 milliseconds. Some of the light is reflected. Of the light which is not reflected a significant portion of the energy of each pulse penetrates to the depth up to 1-1.5 mm and is absorbed by the skin fluids.

Operating within the parameters specified is important. They have been chosen to preferentially cool the skin surface protecting epidermis and to heat the subepidertnal collagen or blood vessels to the level of irreversible changes in the coagulated skin tissue and blood vessel proteins. It must be chosen so that a large amount of energy is deposited in the skin quickly so that the temperature of the targeted tissue rises rapidly to about or slightly above 70° C. The cooling applied to the surface for about half a second is enough to protect epidermis from the temperature increasing to 70 C 70° C. Thus the above procedure can be used effectively for treatment spider veins.

Nd:YAG Laser

In another embodiment of the present invention the Nd:YAG laser is used. The wavelength of the beam is at 1.06 microns. Light at this wavelength has a very low absorption in skin tissue and in interstitial fluids. Absorption in blood is also low but is about twice that of general skin tissue and interstitial fluids. Therefore, this wavelength is very good for treating telagiactasia with dimensions in the range of 1 mm and greater and large spider veins in the range of 1.5 mm. Table 2 gives some preferred parameters for treating a 1 mm telagiactasia and a 1.5 mm-spjider vein.

TABLE 2
Parameters Preferred.
Telagiactasia 1 mm Spider Veins 1.5 mm
Pulse Width 25 ms 50 ms
Repetition Rate 1 Hz 2 Hz
Sapphire Rod Diameter 3 mm 10 mm
Spot Size 7.2 mm2 78.5 mm2
Energy Fluence 40 J/cm2 60 J/cm2

Long Pulse Nd:YAG for Deep Treatment

A long pulse Nd:YAG with a pulse width of about 100-200ms. Pulses in this range have been utilized with good results for destruction of skin tumor angiogenesis and coagulation of hair follicular blood vessels at depths of up to 5.0 mm. Some preferred parameters are given in Table 3. Preferably, cooling is provided for a period of about 1 to 2 seconds prior to the illumination.

TABLE 3
Parameters Preferred.
Angiogenic Follicular
Plesus 0.8 mm Plexus 1 mm
Pulse Width 100 ms 150 ms
Repetition Rate 1 Hz 1 Hz
Sapphire Rod Diameter 10 mm 12 mm
Spot Size 78.5 mm2 113 mm2
Energy Fluence 120 J/cm2 140 J/cm2

Computer Simulations of Temperature Rise in Human Skin

Estimation of temperature rise in skin can be made by calculating laser light fluence in skin and estimating energy deposition per unit volume of skin. Effect of contact skin surface cooling was accounted based on the solution of heat transfer equations.

In order to choose proper light fluence in skin the following optical properties of tissue have been used:

Scattering Refr.
Absorption coef Asymmetry Index
coef (1/cm) (1/cm) Factor (g) n Thickness
Epidermis 5 300 0.8 1.4 100 micron
Dermis 5 100 0.85 1.4 Semiinfinite
Blood 10 300 0.98 1.4 N/A

At a wavelength of 1.54 micron, absorption in tissues is determined primarily by their water content. Water content of whole blood is more then 90%, whereas in dermis and epidermis it is about twice less. For this reason absorption of IR radiation and temperature rise in blood is about two times higher than in surrounding dermis tissue. Once fluence in the skin is calculated and a depth of absorption is estimated, the temperature rise ΔT due to light absorption can be roughly estimated as follows:
ΔT=Q/mc
where skin density is about 1.15 g/cm3 and specific heat of skin about 3.8J/Cgm.

Effect of skin surface cooling on temperature distribution in skin have been estimated by solving heat transfer equation in semi infinite skin tissue with boundary conditions corresponding to constant −5° C. temperature of the surface (or other constant temperature of the sapphire rod). Temperature distribution in ° C. in skin then can be calculated by formula:
T(z,t)=37*erf(z/2 act),
where erf refers to the Gausian error function, and z is the depth into the tissue, t is time lapse in seconds from the start of the contact skin cooling and α=10−4(cm2/sec) is thermal diffusivity of skin dermis. Skin temperature was found by superposition of laser heating and surface cooling effects.

Various elaborate computer programs are available for more precise estimate of temperature distribution within the skin as a function of time. Applicants have made analysis using a Monte-Carlo computer code specifically modified for skin thermodynamic analysis and some of the results are shown in FIGS. 7A1-7 and 7B1-7 which were discussed above. Cooling experiments have been performed by using different configurations of the cooling element for the different applications. For these applications, one of the alternative embodiments is recommended.

Testing of the Devices

The reader should understand that devices according to the present invention work by destroying living tissue. Hopefully the destroyed tissue is unwanted tissue and is quickly replaced by new tissue produced by the body's natural ability to repair damaged and destroyed skin tissue. Care should be taken to minimize unwanted tissue destruction. Applicants recommend that tests be performed prior to use of the device in the manner disclosed above. A test station could be constructed using a plastic material having thermal properties similar to human skin and equipping it with fast response thermocouples located at various depths and positions below the surface. The thermocouples should be connected to the real time monitors so that the technician and the patient can see the thermal effects produced by the device prior to actual use on the patient.

CRYOGENICALLY COOLED SELF CONTAINED WINDOW

A second embodiment involves the use of a cryogenically cooled diamond cooling element as shown in FIGS. 5A and 5B. The device consists of copper holder 24, which has a cryogenic container 21. Synthetic diamond cooling element 23 is in the shape of a flattened cylinder and contains a circular groove through which cryogenic mist flows. The mist exits at the exit port 26.

The flattened diamond rod is transparent to the laser beam. It is applied to the part of the cleaned skin to be treated. The nozzle valve opens the shutter and the cryogenic spray flows to the chamber around this window. When the window is cold the “ready” light will be switched-on. The energy delivery procedure can be started. This device is good for the large area irradiation such as subsurface tumor interstitial thermotherapy with a high frequency electromagnetic radiation.

PATERNED COOLING ELEMENT FOR MASKING PORTIONS OF TISSUE

A third embodiment for practicing this invention is to use a patterned rod to the surface of the skin in order to have damaged and healthy areas under the skin surface. FIGS. 3A and 3B show rod 31 with the perpendicular grooves 32 filled with copper stripes 33.

A laser light is sent through the cooled rod to the surface of the skin does not penetrate through the copper stripes. But the contacting surface of the rod has an almost uniform temperature distribution. It means that the surface of the skin is cooled uniformly. But under skin damage is not uniform having irradiated and not irradiated healthy spots. The reason to have these healthy untouched spots around the damaged tissue is to use the capacity of healthy spot tissue and cells for the fast immune response and wound healing process.

SELF COLLIMATED COOLING ELEMENT

This embodiment is essentially the same as the first one described above except that the rod tip, which is connected to the fiber optics has concave form for the self-collimating beam properties. FIG. 4 shows a cooling element with the lens-type tip surface. For such an element, it does not require a collimated lens and can be replaced by the transparent disk-type window in the oil chamber.

HORIZONTAL AND ANACHROMATIC COOLING ELEMENT

This embodiment is essentially the same as the first one described above except that the cylindrical element is placed in the cooling chamber horizontally (see FIGS. 6A and 6B). The reader should note that the rod could be of different shapes to provide desired beam profiles on the skin surface or to focus the beam. The focal point (or focal line) could be under the skin to help concentrate the beam energy in target locations.

TISSUE DESTRUCTION WITH FREEZING

The device disclosed herein can be used in reverse. That is, surface tissue destruction can be provided by the very cold surface of the tip of the sapphire rod. Preferably, the skin is pre-warmed with a low energy laser pulse of about one-half the values specified above which should cause no damage but will provide warmth which will minimize tissue destruction caused below the surface. This process is good for freezing of warts and certain types of surface skin cancers.

PRE AND POST COOLING

In an additional embodiment pre and post cooling is provided by transparent circular part 20 as shown in FIG. 9 preferably comprised of sapphire. In this case the exhaust from chamber 17 flows through port 21 onto the surface of the circular sapphire part 20 to cool it. This cool surface which will be at a temperature above 0 C 0° C. prevents the epidermis from being overheated from the hotter lower dermis. This permits the technician to move the laser beam rapidly across the skin surface. The illuminated portion of the skin is both pre-cooled and post-cooled.

PLATE TYPE COOLING ELEMENT

Another preferred embodiment is shown in FIGS. 10A and B. Solenoid valve 50 is controlled by microprocessor 52 to provide a controlled spray from cryogen can 53 on sapphire plate 54 which cools skin surface 565. The temperature of plate 54 is monitored using thermocouple 58. Temperature data is displayed on display 60. The operator has manual control of the spray with switch 62 as desired or the spray can be automatically controlled with processor 52 based on temperature data from thermocouple 58. In a preferred process the operator holds a laser device in one hand and the cooling device in the other. He moves the cooling device in the direction of arrow 64 and the laser beam is directed as shown at 66. As in the paragraph above sapphire plate 54 provides both pre and post cooling as the cooling device is moved along the skin surface. FIG. 10B shows a bottom view of plate 54. In this example the laser beam applicator (not shown specifically) and the cooling device are handled separately, but they could be mounted together as one unit.

OTHER EMBODIMENTS

It is very important for all of these embodiments and in other embodiments that will be apparent to persons skilled in the art that the cooling rod has a very high thermoconductivity coefficient and low absorption of the irradiating light. The substance used for the cryogenic cooling can be chosen based on the particular application. The important thing is to use a proper time of cooling in order to reach a required low temperature of the tissue at the required depth. Persons skilled in the art will recognize that certain material and configuration of the rod, container, coolant and connector will be preferred for different skin type, different lesions and different applications. The reader should note that the preferred embodiment of this invention can be used without this laser to provide cryogenic treatment to surface skin lesions. The same skin cooling can be provided with about 1/10 the cryogen as direct open spray. An important application of the device for cryogenic treatment is to promote lymphatic drainage by cold therapy. Skin rejuvenation begins with flushing of the lymphatic system to remove dead proteins and other debris. Thermal receptors in the lymphatic system are effectively stimulated by the presence of cold applied to the skin surface. Current techniques for lymphatic drainage by cold therapy include spray and ice, both of which are messy and offer poor control of the skin temperature. The device shown in FIGS. 10A and B is useful for lymphatic drainage due to its compact hand held design, disposable canisters and accurate control of the skin temperature.

While the above description contains many specifications, the reader should not construe these as limitations on the scope of the invention, buy merely as exemplifications of preferred embodiments thereof. Those skilled in the art will envision many other possible variations are within its scope. Accordingly the reader is requested to determine the scope of the invention by the appended claims and their legal equivalents, and not by the examples which have been given.

Claims (48)

1. A laser system for tissue treatment, comprising:
A) A hand-held portable battery powered tissue cooling unit comprising:
1) a cooling transmitting element comprised of material transparaent transparent to light at a nominal wavelength and having high thermal conductivity and having a contact surface for contacting a surface of tissue being treated,
2) a cryogenic container mounted within or on said cooling unit,
3) a cryogen contained in said container,
4) a cryogenic cooling chamber for cooling at least one surface of said cooling element, said chamber having an entrance port communicating with said container and an exit port,
5) a battery powered cryogenic control means for permitting a flow of vaporizing cryogen from said container into said chamber to cool said at least one surface in order to remove heat from said tissue surface and to produce desired temperature distribution in target tissue being treated, and
6) a battery mounted on or within said cooling unit for providing power to said control means, and
B) a source of laser light defining a nominal wavelength arranged to transmit said laser light through said cooling transmitting element.
2. A laser system as in claim 1 and further comprising a temperature-monitoring element mounted adjacent to but insulated from said contact surface for monitoring tissue surface temperature.
3. A laser system as in claim 1 and further comprising a temperature-monitoring element configured to monitor temperature of said cooling element.
4. A laser system as in claim 1 and further comprising a processor programmed for controlling said source of laser light and said flow of cryogen.
5. A laser system as in claim 1 wherein said source of laser light is a free running mode Er:Glass pulse laser.
6. A laser system as in claim 1 wherein said source of laser light is a Nd:YAG laser.
7. A laser system as in claim 6 wherein said Nd:YAG laser is arranged to operate at a pulse width of about 50 ms.
8. A laser system as in claim 6 wherein said Nd:YAG laser is arranged to operate at a pulse width of about 100 to 200 ms.
9. A laser system as in claim 1 wherein said cooling transmitting element is sapphire plate and substantially all cooling of said plate is through a single non-circumferential surface.
10. A laser system as in claim 1 wherein said cooling transmitting element is sapphire rod defining a circumferential surface and substantially all cooling is through said circumferential surface.
11. A laser system as in claim 1 wherein said cooling transmitting element is a diamond plate.
12. A laser system as in claim 1 wherein said cooling transmitting element is a diamond rod.
13. A laser system as in claim 1 wherein said cooling transmitting element is a patterned rod.
14. A laser system as in claim 1 wherein said cooling transmitting element has a concave form for self-collimating beam properties.
15. A laser system as in claim 1 wherein said cooling transmitting element is a cylindrical rod mounted horizontally.
16. A process for treating tissue, comprising the steps of:
A) generating from a source a laser light defining a nominal wavelength,
B) transmitting said laser light through a hand-held portable battery operated tissue cooling unit comprising a cooling transmitting element comprised of material transparent to light at said nominal wavelength and having high thermal conductivity and having a contact surface for contacting a surface of tissue being treated,
C) inserting cryogen from a cryogenic container, mounted on or within said cooling unit, into a cryogenic cooling chamber for said cooling element, said chamber having an entrance port communicating with said container and an exit port,
wherein said inserting permits a flow of vaporizing cryogen from said container into said chamber to cool said cooling element in order to remove heat from the tissue surface and to produce desired temperature distribution in target tissue and wherein the battery is mounted on or within the cooling unit.
17. A process as in claim 16, further comprising the additional step of sliding said cooling element across surface of tissue while applying laser radiation through a portion of said cooling transmitting element so as to provide pre, during and post cooling of said tissue.
18. A process as in claim 17, further comprising the step of controlling said source of laser light and said flow of cryogen with a processor programmed with a control algorithm.
19. A process as in claim 17, wherein said method is for the purpose of treating spider veins.
20. A hand-held portable battery powered tissue cooling unit, useful for both cryogenic tissue treatment and for cooling tissue during laser treatment, comprising:
A) a cooling transmitting element comprised of material transparent to light at a nominal wavelength and having high thermal conductivity and having a contact surface for contacting a surface of tissue being treated,
B) a cryogenic container mounted on or within said cooling unit,
C) a cryogen contained in said container,
D) a cryogenic cooling chamber for cooling at least one surface of said cooling element, said chamber having an entrance port communicating with said container and an exit port,
E) a battery powered cryogenic control means for permitting a flow of vaporizing cryogen from said container into said chamber to cool said at least one surface in order to remove heat from said tissue surface and to produce desired temperature distribution in target tissue being treated, and
F) a battery mounted on or within said cooling unit providing power to said control means.
21. A cooling unit as in claim 20 wherein said cooling transmitting element is comprised of sapphire.
22. A cooling unit as in claim 20 wherein said cooling transmitting element is comprised of diamond.
23. A cooling unit as in claim 20 wherein said control means includes a temperature detector.
24. A cooling unit as in claim 23 wherein said temperature detector is a thermocouple.
25. A cooling unit as in claim 24 wherein said cryogenic container is a replaceable container.
26. A cooling unit as in claim 25 wherein said control means comprises a microprocessor for providing a controlled spray from said cryogenic container.
27. A cooling unit as in claim 26 wherein said cooling transmitting element comprises a sapphire plate and wherein said microprocessor is programmed to provide a controlled spray from said cryogen container onto said sapphire plate.
28. A cooling unit as in claim 27 wherein said cryogen is tetrafluoethan tetrafluorethane.
29. A method of treating skin tissue, comprising:
generating laser light at a wavelength that in skin tissue is primarily absorbed by water;
transmitting the laser light through a transparent material contained in a hand-held unit, placing the hand-held unit in contact with skin tissue; and
converting the laser light from a beam to an irradiation pattern such that a portion of the laser light irradiates and damages a first tissue portion, a second portion of the laser light substantially simultaneously irradiates and damages a second tissue portion, and a portion of tissue between the first and second tissue portions is undamaged by the laser light.
30. The method of claim 29 wherein the step of converting the laser light from a beam to an irradiation pattern comprises masking the laser light.
31. The method of claim 29 further comprising cooling the transparent material, and placing the cooled transparent material in contact with the skin tissue during irradiation of the skin tissue by the laser light.
32. The method of claim 29 further comprising cryogenically cooling the transparent material.
33. The method of claim 29 further comprising cooling the transparent material, and placing the cooled transparent material in contact with the skin tissue so as to provide pre-cooling, post-cooling, or both pre-cooling and post-cooling of the skin tissue.
34. The method of claim 29 wherein the transparent material cools the temperature of the skin tissue at a depth of 100 μm beneath the surface and the laser light heats the temperature of the skin tissue at a depth of 400 μm beneath the surface to above 70° C.
35. The method of claim 29 further comprising focusing the laser light beneath the surface of the skin tissue with a focusing element.
36. The method of claim 29 wherein the transparent material focuses the laser light.
37. The method of claim 29 wherein the transparent material is slid across the tissue.
38. The method of claim 29 further comprising measuring the temperature of the skin tissue with a temperature monitoring element.
39. The method of claim 29 further comprising using the laser light to treat wrinkles.
40. The method of claim 29 wherein the laser light is generated with an Er:Glass laser.
41. The method of claim 29 wherein the laser light is generated with a laser lasing at a wavelength of approximately 1.54 μm.
42. The method of claim 29 wherein the laser light is generated with a laser with a wavelength that is absorbed more strongly by blood than by tissue surrounding blood vessels.
43. The method of claim 29 wherein the laser light is generated with a pulse duration of about 50-200 ms.
44. The method of claim 29 wherein the hand-held unit converts the laser light from a beam to a regular irradiation pattern such that irradiation of the skin tissue causes a regular pattern of spots of damaged tissue with undamaged tissue between the spots of damaged tissue.
45. A method of treating wrinkles in skin tissue, comprising:
generating laser light with an Er:Glass laser lasing at a wavelength of approximately 1.54 μm;
transmitting the laser light through a transparent material contained in a hand-held unit;
placing the transparent material in contact with the skin tissue;
converting the laser light from a beam to an irradiation pattern that irradiates substantially simultaneously and damages a pattern of spots of skin tissue, with undamaged tissue between the spots of damaged tissue; and
cooling the transparent material, and placing the cooled transparent material in contact with the skin tissue during irradiation of the skin tissue by the laser light.
46. The method of claim 45 wherein the hand-held unit converts the laser light from a beam to a regular irradiation pattern such that irradiation of the skin tissue causes a regular pattern of spots of damaged tissue with undamaged tissue between the spots of damaged tissue.
47. The method of claim 45 wherein:
the step of generating laser light comprises the Er:Glass laser generating pulses of laser light;
transmitting the laser light through a fiber optic cable to the hand-held unit; and
the hand-held unit converting the laser light from the beam to a regular rectilinear irradiation pattern such that irradiation of the skin tissue causes a regular rectilinear pattern of spots of damaged tissue with undamaged tissue between the spots of damaged tissue.
48. The method of claim 47 further comprising:
the step of generating laser light comprises the Er:Glass laser generating pulses of laser light at a pulse repetition rate of between approximately 0.5-1.0 Hz; and
placing the cooled transparent material in contact with the skin tissue before, during and after irradiation of the skin tissue by the laser light.
US11250139 1998-10-16 2005-10-13 Tissue cooling rod for laser surgery Active USRE42594E1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09174065 US6059820A (en) 1998-10-16 1998-10-16 Tissue cooling rod for laser surgery
US09523225 US6632219B1 (en) 1998-10-16 2000-03-10 Tissue cooling rod for laser surgery
PCT/US2000/006485 WO2001068185A1 (en) 1998-10-16 2000-03-10 Tissue cooling rod for laser surgery
US11250139 USRE42594E1 (en) 1998-10-16 2005-10-13 Tissue cooling rod for laser surgery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11250139 USRE42594E1 (en) 1998-10-16 2005-10-13 Tissue cooling rod for laser surgery
US13165153 USRE43881E1 (en) 1998-10-16 2011-06-21 Tissue cooling rod for laser surgery
US13165181 USRE46208E1 (en) 1998-10-16 2011-06-21 Method for cryogenically treating tissue below the skin surface

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09174065 Continuation-In-Part US6059820A (en) 1998-10-16 1998-10-16 Tissue cooling rod for laser surgery
US09523225 Reissue US6632219B1 (en) 1998-10-16 2000-03-10 Tissue cooling rod for laser surgery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09523225 Continuation US6632219B1 (en) 1998-10-16 2000-03-10 Tissue cooling rod for laser surgery

Publications (1)

Publication Number Publication Date
USRE42594E1 true USRE42594E1 (en) 2011-08-02

Family

ID=39942837

Family Applications (3)

Application Number Title Priority Date Filing Date
US09174065 Active US6059820A (en) 1998-10-16 1998-10-16 Tissue cooling rod for laser surgery
US09523225 Active US6632219B1 (en) 1998-10-16 2000-03-10 Tissue cooling rod for laser surgery
US11250139 Active USRE42594E1 (en) 1998-10-16 2005-10-13 Tissue cooling rod for laser surgery

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09174065 Active US6059820A (en) 1998-10-16 1998-10-16 Tissue cooling rod for laser surgery
US09523225 Active US6632219B1 (en) 1998-10-16 2000-03-10 Tissue cooling rod for laser surgery

Country Status (5)

Country Link
US (3) US6059820A (en)
EP (1) EP1267792B8 (en)
DE (1) DE60042284D1 (en)
ES (1) ES2326256T3 (en)
WO (1) WO2001068185A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070213792A1 (en) * 2002-10-07 2007-09-13 Palomar Medical Technologies, Inc. Treatment Of Tissue Volume With Radiant Energy
USRE43881E1 (en) * 1998-10-16 2012-12-25 Reliant Technologies, Inc. Tissue cooling rod for laser surgery
US20150025444A1 (en) * 2013-07-18 2015-01-22 International Business Machines Corporation Laser-assisted transdermal delivery of nanoparticulates and hydrogels
WO2017189109A1 (en) 2016-04-26 2017-11-02 Candela Corporation Applicator for cooling skin during irradiation

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473251B2 (en) * 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US7135033B2 (en) 2002-05-23 2006-11-14 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
KR100553297B1 (en) * 1997-04-25 2006-02-20 스뜨리케르 프랑스 Two-Part Intersomatic Implant
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
JP4056091B2 (en) * 1997-05-15 2008-03-05 ザ ジェネラル ホスピタル コーポレーション Dermatology treatment method and apparatus
CN1872007A (en) * 2001-05-23 2006-12-06 帕洛玛医疗技术公司 Method for operating photocosmetic device and device for infliction electromagnetic ray to skin
CN102499755B (en) * 2001-05-23 2014-11-12 帕洛玛医疗技术公司 Cooling system for photocosmetic device
EP1066086B1 (en) * 1998-03-27 2013-01-02 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US6514242B1 (en) * 1998-12-03 2003-02-04 David Vasily Method and apparatus for laser removal of hair
US6402739B1 (en) * 1998-12-08 2002-06-11 Y-Beam Technologies, Inc. Energy application with cooling
US7041094B2 (en) * 1999-03-15 2006-05-09 Cutera, Inc. Tissue treatment device and method
US6733492B2 (en) * 1999-05-31 2004-05-11 Nidek Co., Ltd. Laser treatment apparatus
US6451007B1 (en) * 1999-07-29 2002-09-17 Dale E. Koop Thermal quenching of tissue
US6743222B2 (en) 1999-12-10 2004-06-01 Candela Corporation Method of treating disorders associated with sebaceous follicles
US20030036749A1 (en) * 1999-12-10 2003-02-20 Durkin Anthony J. Method of treating disorders associated with sebaceous follicles
EP1251791A1 (en) * 2000-01-25 2002-10-30 Palomar Medical Technologies, Inc. Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
US6669688B2 (en) * 2000-01-25 2003-12-30 The Regents Of The University Of California Method and apparatus for measuring the heat transfer coefficient during cryogen spray cooling of tissue
US6436094B1 (en) * 2000-03-16 2002-08-20 Laserscope, Inc. Electromagnetic and laser treatment and cooling device
US6503268B1 (en) * 2000-04-03 2003-01-07 Ceramoptec Industries, Inc. Therapeutic laser system operating between 1000nm and 1300nm and its use
US6653618B2 (en) 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
ES2167253B2 (en) * 2000-07-13 2003-05-01 Arcusa Villacampa Francisco Ja Protection device for laser skin treatments and pulsed light.
EP1365696A1 (en) * 2000-12-19 2003-12-03 Tecsell Industries S.A. Apparatus for lipolysis for aesthetic treatment
CA2433022C (en) * 2000-12-28 2016-12-06 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic emr treatment of the skin
JP4027049B2 (en) 2001-02-28 2007-12-26 株式会社ニデック Laser treatment apparatus
US6888319B2 (en) * 2001-03-01 2005-05-03 Palomar Medical Technologies, Inc. Flashlamp drive circuit
EP1365699A2 (en) * 2001-03-02 2003-12-03 Palomar Medical Technologies, Inc. Apparatus and method for photocosmetic and photodermatological treatment
US6638272B2 (en) * 2001-06-04 2003-10-28 Cynosure, Inc Cooling delivery guide attachment for a laser scanner apparatus
WO2003003903A3 (en) 2001-07-02 2003-12-11 Palomar Medical Tech Inc Laser device for medical/cosmetic procedures
US7094252B2 (en) * 2001-08-21 2006-08-22 Cooltouch Incorporated Enhanced noninvasive collagen remodeling
US7303578B2 (en) * 2001-11-01 2007-12-04 Photothera, Inc. Device and method for providing phototherapy to the brain
US20060217788A1 (en) * 2004-07-09 2006-09-28 Herron G S Method of using laser induced injury to activate topical prodrugs
US20030216719A1 (en) * 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
US20030109860A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser treatment
US20040082940A1 (en) * 2002-10-22 2004-04-29 Michael Black Dermatological apparatus and method
US20030109787A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser diagnostics
US20040260367A1 (en) * 2001-12-21 2004-12-23 Luis De Taboada Device and method for providing phototherapy to the heart
US7044959B2 (en) * 2002-03-12 2006-05-16 Palomar Medical Technologies, Inc. Method and apparatus for hair growth management
US7056318B2 (en) * 2002-04-12 2006-06-06 Reliant Technologies, Inc. Temperature controlled heating device and method to heat a selected area of a biological body
KR20050026404A (en) 2002-06-19 2005-03-15 팔로마 메디칼 테크놀로지스, 인코포레이티드 Method and apparatus for photothermal treatment of tissue at depth
US7137978B2 (en) * 2002-08-26 2006-11-21 Arbel Medical Ltd Cryosurgical instrument and its accessory system
US20040048842A1 (en) * 2002-09-10 2004-03-11 Mcmillan Kathleen Method of treating skin disorders
WO2004033040A1 (en) * 2002-10-07 2004-04-22 Palomar Medical Technologies, Inc. Apparatus for performing photobiostimulation
US20050177141A1 (en) * 2003-01-27 2005-08-11 Davenport Scott A. System and method for dermatological treatment gas discharge lamp with controllable current density
US20040147985A1 (en) * 2003-01-27 2004-07-29 Altus Medical, Inc. Dermatological treatment flashlamp device and method
DE202004021226U1 (en) 2003-03-27 2007-07-26 The General Hospital Corp., Boston Device for dermatological treatment and fractional resurfacing the skin
EP1613231A4 (en) * 2003-04-01 2010-11-17 B E D Laser Technologies Ltd System, apparatus and method for large area tissue ablation
US20050010271A1 (en) * 2003-07-07 2005-01-13 Merchant Robert F. Method of using radiation to treat cutaneous and sub-cutaneous conditions
JP2007531544A (en) * 2003-07-11 2007-11-08 リライアント・テクノロジーズ・インコーポレイテッドReliant Technologies, Inc. Method and apparatus for fractionation phototherapy of skin
US7282060B2 (en) * 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US7309335B2 (en) * 2003-12-31 2007-12-18 Palomar Medical Technologies, Inc. Dermatological treatment with visualization
US7184184B2 (en) * 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7372606B2 (en) 2003-12-31 2008-05-13 Reliant Technologies, Inc. Optical pattern generator using a single rotating component
US7196831B2 (en) * 2003-12-31 2007-03-27 Reliant Technologies, Inc. Two-dimensional optical scan system using a counter-rotating disk scanner
US7090670B2 (en) * 2003-12-31 2006-08-15 Reliant Technologies, Inc. Multi-spot laser surgical apparatus and method
EP1742588B1 (en) 2004-04-01 2016-10-19 The General Hospital Corporation Apparatus for dermatological treatment and tissue reshaping
US7413572B2 (en) * 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
US7837675B2 (en) * 2004-07-22 2010-11-23 Shaser, Inc. Method and device for skin treatment with replaceable photosensitive window
US20060079947A1 (en) * 2004-09-28 2006-04-13 Tankovich Nikolai I Methods and apparatus for modulation of the immune response using light-based fractional treatment
US20060122584A1 (en) * 2004-10-27 2006-06-08 Bommannan D B Apparatus and method to treat heart disease using lasers to form microchannels
US7780656B2 (en) * 2004-12-10 2010-08-24 Reliant Technologies, Inc. Patterned thermal treatment using patterned cryogen spray and irradiation by light
US8277495B2 (en) 2005-01-13 2012-10-02 Candela Corporation Method and apparatus for treating a diseased nail
US7856985B2 (en) * 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
US8323273B2 (en) * 2005-08-12 2012-12-04 Board Of Regents, The University Of Texas System Systems, devices, and methods for optically clearing tissue
US20080058782A1 (en) * 2006-08-29 2008-03-06 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling density of fractional tissue treatments
JP2009506835A (en) * 2005-08-29 2009-02-19 リライアント・テクノロジーズ・インコーポレイテッドReliant Technologies, Inc. Method and apparatus for monitoring and controlling the thermally-induced tissue treatment
US20070049996A1 (en) * 2005-08-29 2007-03-01 Reliant Technologies, Inc. Monitoring Method and Apparatus for Fractional Photo-Therapy Treatment
CN101309631A (en) 2005-09-15 2008-11-19 帕洛玛医疗技术公司 Skin optical characterization device
WO2007038567A1 (en) 2005-09-28 2007-04-05 Candela Corporation Treating cellulite
US8690863B2 (en) * 2005-10-10 2014-04-08 Reliant Technologies, Llc Laser-induced transepidermal elimination of content by fractional photothermolysis
US7891362B2 (en) 2005-12-23 2011-02-22 Candela Corporation Methods for treating pigmentary and vascular abnormalities in a dermal region
US7575589B2 (en) * 2006-01-30 2009-08-18 Photothera, Inc. Light-emitting device and method for providing phototherapy to the brain
US20070179570A1 (en) * 2006-01-30 2007-08-02 Luis De Taboada Wearable device and method for providing phototherapy to the brain
WO2007095183A3 (en) * 2006-02-13 2008-05-08 Leonard C Debenedictis Laser system for treatment of skin laxity
US8460280B2 (en) * 2006-04-28 2013-06-11 Cutera, Inc. Localized flashlamp skin treatments
US7465312B2 (en) 2006-05-02 2008-12-16 Green Medical, Inc. Systems and methods for treating superficial venous malformations like spider veins
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
WO2008008971A1 (en) * 2006-07-13 2008-01-17 Candela Corporation Compact, handheld device for home-based acne treatment
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
US20080161745A1 (en) * 2006-09-08 2008-07-03 Oliver Stumpp Bleaching of contrast enhancing agent applied to skin for use with a dermatological treatment system
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US20080281389A1 (en) * 2006-10-16 2008-11-13 Primaeva Medical Inc. Methods and devices for treating tissue
US8273080B2 (en) 2006-10-16 2012-09-25 Syneron Medical Ltd. Methods and devices for treating tissue
US8133216B2 (en) 2006-10-16 2012-03-13 Syneron Medical Ltd. Methods and devices for treating tissue
US8007493B2 (en) * 2006-10-16 2011-08-30 Syneron Medical Ltd. Methods and devices for treating tissue
US8142426B2 (en) 2006-10-16 2012-03-27 Syneron Medical Ltd. Methods and devices for treating tissue
US20080154247A1 (en) * 2006-12-20 2008-06-26 Reliant Technologies, Inc. Apparatus and method for hair removal and follicle devitalization
US20080208181A1 (en) * 2007-01-19 2008-08-28 Arbel Medical Ltd. Thermally Insulated Needles For Dermatological Applications
US20080262484A1 (en) * 2007-04-23 2008-10-23 Nlight Photonics Corporation Motion-controlled laser surface treatment apparatus
US20100217254A1 (en) * 2009-02-25 2010-08-26 Primaeva Medical, Inc. Methods for applying energy to tissue using isolated energy sources
US20080312647A1 (en) * 2007-06-15 2008-12-18 Primaeva Medical, Inc. Methods and devices for treating tissue
US20120143178A9 (en) * 2007-06-15 2012-06-07 Primaeva Medical, Inc. Devices and methods for percutaneous energy delivery
US8845630B2 (en) * 2007-06-15 2014-09-30 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
FR2919993B1 (en) * 2007-08-16 2010-05-21 Optical System & Res For Ind & Science Osyris Cooled handpiece for the treatment of the skin by light radiation
JP5474791B2 (en) 2007-08-21 2014-04-16 ゼルティック エステティックス インコーポレイテッド Monitoring the cooling subcutaneous lipid-rich cells, such as cooling of adipose tissue
US8920409B2 (en) * 2007-10-04 2014-12-30 Cutera, Inc. System and method for dermatological lesion treatment using gas discharge lamp with controllable current density
US8366703B2 (en) 2008-04-02 2013-02-05 Cutera, Inc. Fractional scanner for dermatological treatments
EP2303168A1 (en) 2008-04-16 2011-04-06 Arbel Medical Ltd. Cryosurgical instrument with enhanced heat exchange
US8882753B2 (en) * 2008-07-14 2014-11-11 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
WO2010017556A8 (en) * 2008-08-08 2015-01-08 Palomar Medical Technologies, Inc. Method and apparatus for fractional deformation and treatment of cutaneous and subcutaneous tissue
FR2935884A1 (en) * 2008-09-12 2010-03-19 Dermeo Handpiece has optical skin photoprocessing apparatus block
US7848035B2 (en) 2008-09-18 2010-12-07 Photothera, Inc. Single-use lens assembly
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
US7967814B2 (en) 2009-02-05 2011-06-28 Icecure Medical Ltd. Cryoprobe with vibrating mechanism
US8162812B2 (en) 2009-03-12 2012-04-24 Icecure Medical Ltd. Combined cryotherapy and brachytherapy device and method
KR20170084347A (en) 2009-04-30 2017-07-19 젤티크 애스세틱스, 인코포레이티드. Device, system and method of removing heat from subcutaneous lipid-rich cells
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US9314368B2 (en) 2010-01-25 2016-04-19 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
US7967815B1 (en) 2010-03-25 2011-06-28 Icecure Medical Ltd. Cryosurgical instrument with enhanced heat transfer
US7938822B1 (en) 2010-05-12 2011-05-10 Icecure Medical Ltd. Heating and cooling of cryosurgical instrument using a single cryogen
US8080005B1 (en) 2010-06-10 2011-12-20 Icecure Medical Ltd. Closed loop cryosurgical pressure and flow regulated system
US20130035684A1 (en) * 2011-08-04 2013-02-07 Ceramoptec Industries Inc. Laser Treatment of Tissues at Wavelengths above 1330 nm
RU2496442C2 (en) * 2011-12-12 2013-10-27 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Cryonozzle with sapphire cold conductor-irradiator
EP2839552A4 (en) 2012-04-18 2015-12-30 Cynosure Inc Picosecond laser apparatus and methods for treating target tissues with same
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
WO2015117001A1 (en) 2014-01-31 2015-08-06 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue

Citations (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168590A (en)
US3622743A (en) 1969-04-28 1971-11-23 Hrand M Muncheryan Laser eraser and microwelder
US4122853A (en) 1977-03-14 1978-10-31 Spectra-Med Infrared laser photocautery device
US4573465A (en) 1981-11-19 1986-03-04 Nippon Infrared Industries Co., Ltd. Laser irradiation apparatus
US4587396A (en) 1982-12-31 1986-05-06 Laser Industries Ltd. Control apparatus particularly useful for controlling a laser
US4653495A (en) 1984-01-13 1987-03-31 Kabushiki Kaisha Toshiba Laser medical apparatus
US4718416A (en) 1984-01-13 1988-01-12 Kabushiki Kaisha Toshiba Laser treatment apparatus
US4733660A (en) 1984-08-07 1988-03-29 Medical Laser Research And Development Corporation Laser system for providing target specific energy deposition and damage
US4775361A (en) 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
US4930504A (en) 1987-11-13 1990-06-05 Diamantopoulos Costas A Device for biostimulation of tissue and method for treatment of tissue
US4976709A (en) 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US5000752A (en) 1985-12-13 1991-03-19 William J. Hoskin Treatment apparatus and method
US5104392A (en) 1985-03-22 1992-04-14 Massachusetts Institute Of Technology Laser spectro-optic imaging for diagnosis and treatment of diseased tissue
US5106387A (en) 1985-03-22 1992-04-21 Massachusetts Institute Of Technology Method for spectroscopic diagnosis of tissue
US5128509A (en) 1990-09-04 1992-07-07 Reliant Laser Corp. Method and apparatus for transforming and steering laser beams
US5178617A (en) 1991-07-09 1993-01-12 Laserscope System for controlled distribution of laser dosage
US5192278A (en) 1985-03-22 1993-03-09 Massachusetts Institute Of Technology Multi-fiber plug for a laser catheter
US5282797A (en) 1989-05-30 1994-02-01 Cyrus Chess Method for treating cutaneous vascular lesions
US5302259A (en) 1991-04-30 1994-04-12 Reginald Birngruber Method and apparatus for altering the properties in light absorbing material
US5312396A (en) 1990-09-06 1994-05-17 Massachusetts Institute Of Technology Pulsed laser system for the surgical removal of tissue
US5312395A (en) 1990-03-14 1994-05-17 Boston University Method of treating pigmented lesions using pulsed irradiation
US5336217A (en) 1986-04-24 1994-08-09 Institut National De La Sante Et De La Recherche Medicale (Insepm) Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias
US5339347A (en) 1993-04-27 1994-08-16 The United States Of America As Represented By The United States Department Of Energy Method for microbeam radiation therapy
US5344418A (en) 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
US5360447A (en) 1993-02-03 1994-11-01 Coherent, Inc. Laser assisted hair transplant method
US5411502A (en) 1992-01-15 1995-05-02 Laser Industries, Ltd. System for causing ablation of irradiated material of living tissue while not causing damage below a predetermined depth
US5421337A (en) 1989-04-14 1995-06-06 Massachusetts Institute Of Technology Spectral diagnosis of diseased tissue
US5423803A (en) 1991-10-29 1995-06-13 Thermotrex Corporation Skin surface peeling process using laser
US5474549A (en) 1991-07-09 1995-12-12 Laserscope Method and system for scanning a laser beam for controlled distribution of laser dosage
US5486172A (en) 1989-05-30 1996-01-23 Chess; Cyrus Apparatus for treating cutaneous vascular lesions
US5531740A (en) 1994-09-06 1996-07-02 Rapistan Demag Corporation Automatic color-activated scanning treatment of dermatological conditions by laser
US5546214A (en) 1995-09-13 1996-08-13 Reliant Technologies, Inc. Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section
US5558666A (en) 1994-01-14 1996-09-24 Coherent, Inc. Handpiece for producing highly collimated laser beam for dermatological procedures
US5582752A (en) 1993-12-17 1996-12-10 Laser Industries, Ltd. Method and apparatus for applying laser beams to a working surface, particularly for ablating tissue
US5586981A (en) 1994-08-25 1996-12-24 Xin-Hua Hu Treatment of cutaneous vascular and pigmented lesions
US5595568A (en) 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US5611795A (en) 1995-02-03 1997-03-18 Laser Industries, Ltd. Laser facial rejuvenation
US5616140A (en) 1994-03-21 1997-04-01 Prescott; Marvin Method and apparatus for therapeutic laser treatment
US5618284A (en) 1985-09-27 1997-04-08 Sunrise Technologies Collagen treatment apparatus
US5624434A (en) 1995-02-03 1997-04-29 Laser Industries, Ltd. Laser preparation of recipient holes for graft implantation in the treatment of icepick scars
US5624435A (en) 1995-06-05 1997-04-29 Cynosure, Inc. Ultra-long flashlamp-excited pulse dye laser for therapy and method therefor
US5628744A (en) 1993-12-21 1997-05-13 Laserscope Treatment beam handpiece
US5632741A (en) 1995-01-20 1997-05-27 Lucid Technologies, Inc. Epilation system
US5643252A (en) 1992-10-28 1997-07-01 Venisect, Inc. Laser perforator
US5655547A (en) 1996-05-15 1997-08-12 Esc Medical Systems Ltd. Method for laser surgery
US5713364A (en) 1995-08-01 1998-02-03 Medispectra, Inc. Spectral volume microprobe analysis of materials
EP0827716A2 (en) 1996-09-04 1998-03-11 ESC Medical Systems Ltd. Device for cooling skin during laser treatment
US5733278A (en) 1994-11-30 1998-03-31 Laser Industries Limited Method and apparatus for hair transplantation using a scanning continuous-working CO2 laser
US5735844A (en) 1995-02-01 1998-04-07 The General Hospital Corporation Hair removal using optical pulses
US5746735A (en) 1994-10-26 1998-05-05 Cynosure, Inc. Ultra long pulsed dye laser device for treatment of ectatic vessels and method therefor
US5759200A (en) 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis
WO1998024507A2 (en) 1996-12-05 1998-06-11 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
WO1998024502A1 (en) 1996-12-06 1998-06-11 Target Therapeutics, Inc. Reinforced catheter with a formable distal tip
US5810801A (en) 1997-02-05 1998-09-22 Candela Corporation Method and apparatus for treating wrinkles in skin using radiation
US5814040A (en) 1994-04-05 1998-09-29 The Regents Of The University Of California Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery
US5817089A (en) 1991-10-29 1998-10-06 Thermolase Corporation Skin treatment process using laser
US5830208A (en) 1997-01-31 1998-11-03 Laserlite, Llc Peltier cooled apparatus and methods for dermatological treatment
US5843073A (en) 1985-07-31 1998-12-01 Rare Earth Medical, Inc. Infrared laser catheter system
US5860968A (en) 1995-11-03 1999-01-19 Luxar Corporation Laser scanning method and apparatus
US5860967A (en) 1993-07-21 1999-01-19 Lucid, Inc. Dermatological laser treatment system with electronic visualization of the area being treated
US5865754A (en) 1995-08-24 1999-02-02 Purdue Research Foundation Office Of Technology Transfer Fluorescence imaging system and method
US5879326A (en) 1995-05-22 1999-03-09 Godshall; Ned Allen Method and apparatus for disruption of the epidermis
US5879346A (en) * 1995-12-18 1999-03-09 Esc Medical Systems, Ltd. Hair removal by selective photothermolysis with an alexandrite laser
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5897549A (en) 1995-11-29 1999-04-27 Lumedics, Ltd. Transformation of unwanted tissue by deep laser heating of water
US5906609A (en) 1997-02-05 1999-05-25 Sahar Technologies Method for delivering energy within continuous outline
US5908415A (en) 1994-09-09 1999-06-01 Rare Earth Medical, Inc. Phototherapy methods and apparatus
WO1999027997A1 (en) 1997-12-01 1999-06-10 Esc Medical Systems Ltd. Improved depilatory method and device
US5925035A (en) 1991-10-29 1999-07-20 Thermolase Corporation Hair removal method
US5938657A (en) 1997-02-05 1999-08-17 Sahar Technologies, Inc. Apparatus for delivering energy within continuous outline
US5947956A (en) 1997-11-04 1999-09-07 Karell; Manuel Leon Laser apparatus for making holes and etchings
US5957915A (en) 1995-01-23 1999-09-28 Coherent, Inc. Hand-held laser scanner
US5964749A (en) 1995-09-15 1999-10-12 Esc Medical Systems Ltd. Method and apparatus for skin rejuvenation and wrinkle smoothing
US5968033A (en) 1997-11-03 1999-10-19 Fuller Research Corporation Optical delivery system and method for subsurface tissue irradiation
US5970983A (en) 1996-05-15 1999-10-26 Esc Medical Systems Ltd. Method of laser surgery
US5976123A (en) 1996-07-30 1999-11-02 Laser Aesthetics, Inc. Heart stabilization
US5980512A (en) 1998-02-26 1999-11-09 Silberg; Barry Enhanced laser skin treatment mechanism
US5984915A (en) 1997-10-08 1999-11-16 Trimedyne, Inc. Percutaneous laser treatment
US5983900A (en) 1996-08-29 1999-11-16 Clement; Robert Marc Wrinkle removal
US5995866A (en) 1995-03-21 1999-11-30 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
US5995265A (en) 1996-08-12 1999-11-30 Black; Michael Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section
US5997530A (en) 1998-04-13 1999-12-07 The Regents Of The University Of California Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations
US6015404A (en) 1996-12-02 2000-01-18 Palomar Medical Technologies, Inc. Laser dermatology with feedback control
US6022316A (en) 1998-03-06 2000-02-08 Spectrx, Inc. Apparatus and method for electroporation of microporated tissue for enhancing flux rates for monitoring and delivery applications
US6027496A (en) 1997-03-25 2000-02-22 Abbott Laboratories Removal of stratum corneum by means of light
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US6063108A (en) 1997-01-06 2000-05-16 Salansky; Norman Method and apparatus for localized low energy photon therapy (LEPT)
US6074384A (en) 1998-03-06 2000-06-13 Plc Medical Systems, Inc. Endocardial laser revascularization with single laser pulses
US6083217A (en) 1995-11-29 2000-07-04 Lumedics, Ltd. Destruction for unwanted tissue by deep laser heating of water
US6096031A (en) 1995-04-17 2000-08-01 Coherent, Inc. High repetition rate erbium:YAG laser for tissue ablation
US6096029A (en) 1997-02-24 2000-08-01 Laser Skin Toner, Inc. Laser method for subsurface cutaneous treatment
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US6106514A (en) 1996-08-12 2000-08-22 O'donnell, Jr.; Francis E. Laser method for subsurface cutaneous treatment
US6113559A (en) 1997-12-29 2000-09-05 Klopotek; Peter J. Method and apparatus for therapeutic treatment of skin with ultrasound
USRE36872E (en) 1992-01-15 2000-09-12 Laser Industries Ltd. System for causing ablation of irradiated material of living tissue while not causing damage below a predetermined depth
US6149645A (en) 1998-04-03 2000-11-21 Tobinick; Edward L. Apparatus and method employing lasers for removal of hair
US6149644A (en) 1998-02-17 2000-11-21 Altralight, Inc. Method and apparatus for epidermal treatment with computer controlled moving focused infrared light
US6152917A (en) 1991-10-29 2000-11-28 Thermolase Corporation Hair removal device
US6165170A (en) 1998-01-29 2000-12-26 International Business Machines Corporation Laser dermablator and dermablation
US6168590B1 (en) 1997-08-12 2001-01-02 Y-Beam Technologies, Inc. Method for permanent hair removal
US6173202B1 (en) 1998-03-06 2001-01-09 Spectrx, Inc. Method and apparatus for enhancing flux rates of a fluid in a microporated biological tissue
US6171302B1 (en) 1997-03-19 2001-01-09 Gerard Talpalriu Apparatus and method including a handpiece for synchronizing the pulsing of a light source
US6176854B1 (en) 1997-10-08 2001-01-23 Robert Roy Cone Percutaneous laser treatment
US6183773B1 (en) 1999-01-04 2001-02-06 The General Hospital Corporation Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
US6219575B1 (en) 1998-10-23 2001-04-17 Babak Nemati Method and apparatus to enhance optical transparency of biological tissues
US6235015B1 (en) 1997-05-14 2001-05-22 Applied Optronics Corporation Method and apparatus for selective hair depilation using a scanned beam of light at 600 to 1000 nm
US6241753B1 (en) 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US6248103B1 (en) 1994-04-05 2001-06-19 The Regents Of The University Of California Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery using long laser pulses
US6251099B1 (en) 1996-11-27 2001-06-26 The General Hospital Corporation Compound delivery using impulse transients
US6251100B1 (en) 1993-09-24 2001-06-26 Transmedica International, Inc. Laser assisted topical anesthetic permeation
US6264649B1 (en) * 1998-04-09 2001-07-24 Ian Andrew Whitcroft Laser treatment cooling head
US6267771B1 (en) 1991-10-29 2001-07-31 Thermotrex Corporation Hair removal device and method
US6273885B1 (en) 1997-08-16 2001-08-14 Cooltouch Corporation Handheld photoepilation device and method
US6273884B1 (en) 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US6325769B1 (en) 1998-12-29 2001-12-04 Collapeutics, Llc Method and apparatus for therapeutic treatment of skin
US6406474B1 (en) 1999-09-30 2002-06-18 Ceramoptec Ind Inc Device and method for application of radiation
US6413267B1 (en) 1999-08-09 2002-07-02 Theralase, Inc. Therapeutic laser device and method including noninvasive subsurface monitoring and controlling means
US6443978B1 (en) 1998-04-10 2002-09-03 Board Of Trustees Of The University Of Arkansas Photomatrix device
US6445491B2 (en) 1999-01-29 2002-09-03 Irma America, Inc. Method and apparatus for optical sectioning and imaging using time-gated parametric image amplification
US6468229B1 (en) 1998-10-20 2002-10-22 Abbott Laboratories Apparatus and method for the collection of interstitial fluids
US6475138B1 (en) 1995-07-12 2002-11-05 Laser Industries Ltd. Apparatus and method as preparation for performing a myringotomy in a child's ear without the need for anaesthesia
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US6514278B1 (en) 1998-05-28 2003-02-04 Carl Baasel Lasertechnik Gmbh Method and device for the superficial heating of tissue
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6530915B1 (en) 1998-03-06 2003-03-11 Spectrx, Inc. Photothermal structure for biomedical applications, and method therefor
US6537270B1 (en) 1998-08-13 2003-03-25 Asclepion-Meditec Ag Medical hand piece for a laser radiation source
US6572637B1 (en) 1999-03-12 2003-06-03 Ya-Man Ltd. Handbreadth-sized laser beam projecting probe for beauty treatment
US6575963B1 (en) 1997-07-16 2003-06-10 The Lion Eye Institute Of Western Australia Incorporated Laser scanning apparatus and method
US6579283B1 (en) 1998-05-22 2003-06-17 Edward L. Tobinick Apparatus and method employing a single laser for removal of hair, veins and capillaries
US6605080B1 (en) 1998-03-27 2003-08-12 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US6607523B1 (en) 1999-03-19 2003-08-19 Asah Medico A/S Apparatus for tissue treatment
US6680999B1 (en) 1995-08-15 2004-01-20 Mumps Audiofax, Inc. Interactive telephony system
US6685699B1 (en) 1999-06-09 2004-02-03 Spectrx, Inc. Self-removing energy absorbing structure for thermal tissue ablation
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6758845B1 (en) 1999-10-08 2004-07-06 Lumenis Inc. Automatic firing apparatus and methods for laser skin treatment over large areas
US6881212B1 (en) 1999-03-05 2005-04-19 Icn Photonics Limited Skin wrinkle reduction using pulsed light
EP0827219B1 (en) 1996-08-30 2005-08-10 Honda Giken Kogyo Kabushiki Kaisha Composite magnetostrictive material, and process for producing the same
US7204832B2 (en) * 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376376A (en) * 1980-05-12 1983-03-15 Virginia M. Gregory Cryogenic device operable in single or dual phase with a range of nozzle sizes and method of using the same
US5334016A (en) * 1992-06-22 1994-08-02 American Dental Technologies, Inc. Combination air abrasive system and laser system for dental applications
US5820626A (en) * 1996-07-30 1998-10-13 Laser Aesthetics, Inc. Cooling laser handpiece with refillable coolant reservoir
US5902299A (en) * 1997-07-29 1999-05-11 Jayaraman; Swaminathan Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation

Patent Citations (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168590A (en)
US6445491B1 (en)
US6171302B2 (en)
US6173202B2 (en)
US3622743A (en) 1969-04-28 1971-11-23 Hrand M Muncheryan Laser eraser and microwelder
US4122853A (en) 1977-03-14 1978-10-31 Spectra-Med Infrared laser photocautery device
US4573465A (en) 1981-11-19 1986-03-04 Nippon Infrared Industries Co., Ltd. Laser irradiation apparatus
US4587396A (en) 1982-12-31 1986-05-06 Laser Industries Ltd. Control apparatus particularly useful for controlling a laser
US4653495A (en) 1984-01-13 1987-03-31 Kabushiki Kaisha Toshiba Laser medical apparatus
US4718416A (en) 1984-01-13 1988-01-12 Kabushiki Kaisha Toshiba Laser treatment apparatus
US4733660A (en) 1984-08-07 1988-03-29 Medical Laser Research And Development Corporation Laser system for providing target specific energy deposition and damage
US5106387A (en) 1985-03-22 1992-04-21 Massachusetts Institute Of Technology Method for spectroscopic diagnosis of tissue
US5192278A (en) 1985-03-22 1993-03-09 Massachusetts Institute Of Technology Multi-fiber plug for a laser catheter
US5104392A (en) 1985-03-22 1992-04-14 Massachusetts Institute Of Technology Laser spectro-optic imaging for diagnosis and treatment of diseased tissue
US5843073A (en) 1985-07-31 1998-12-01 Rare Earth Medical, Inc. Infrared laser catheter system
US5618284A (en) 1985-09-27 1997-04-08 Sunrise Technologies Collagen treatment apparatus
US5000752A (en) 1985-12-13 1991-03-19 William J. Hoskin Treatment apparatus and method
US4775361A (en) 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
US5336217A (en) 1986-04-24 1994-08-09 Institut National De La Sante Et De La Recherche Medicale (Insepm) Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias
US4930504A (en) 1987-11-13 1990-06-05 Diamantopoulos Costas A Device for biostimulation of tissue and method for treatment of tissue
US4976709A (en) 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US5421337A (en) 1989-04-14 1995-06-06 Massachusetts Institute Of Technology Spectral diagnosis of diseased tissue
US5486172A (en) 1989-05-30 1996-01-23 Chess; Cyrus Apparatus for treating cutaneous vascular lesions
US5282797A (en) 1989-05-30 1994-02-01 Cyrus Chess Method for treating cutaneous vascular lesions
US5312395A (en) 1990-03-14 1994-05-17 Boston University Method of treating pigmented lesions using pulsed irradiation
US5128509A (en) 1990-09-04 1992-07-07 Reliant Laser Corp. Method and apparatus for transforming and steering laser beams
US5312396A (en) 1990-09-06 1994-05-17 Massachusetts Institute Of Technology Pulsed laser system for the surgical removal of tissue
US5302259A (en) 1991-04-30 1994-04-12 Reginald Birngruber Method and apparatus for altering the properties in light absorbing material
US5178617A (en) 1991-07-09 1993-01-12 Laserscope System for controlled distribution of laser dosage
US5474549A (en) 1991-07-09 1995-12-12 Laserscope Method and system for scanning a laser beam for controlled distribution of laser dosage
US5925035A (en) 1991-10-29 1999-07-20 Thermolase Corporation Hair removal method
US6267771B1 (en) 1991-10-29 2001-07-31 Thermotrex Corporation Hair removal device and method
US6036684A (en) 1991-10-29 2000-03-14 Thermolase Corporation Skin treatment process using laser
US6152917A (en) 1991-10-29 2000-11-28 Thermolase Corporation Hair removal device
US5423803A (en) 1991-10-29 1995-06-13 Thermotrex Corporation Skin surface peeling process using laser
US5817089A (en) 1991-10-29 1998-10-06 Thermolase Corporation Skin treatment process using laser
USRE36634E (en) 1991-12-12 2000-03-28 Ghaffari; Shahriar Optical system for treatment of vascular lesions
US5344418A (en) 1991-12-12 1994-09-06 Shahriar Ghaffari Optical system for treatment of vascular lesions
USRE36872E (en) 1992-01-15 2000-09-12 Laser Industries Ltd. System for causing ablation of irradiated material of living tissue while not causing damage below a predetermined depth
US5618285A (en) 1992-01-15 1997-04-08 Laser Industries, Limited System for causing ablation of irradiated material of living tissue while not causing damage below a predetermined depth
US5411502A (en) 1992-01-15 1995-05-02 Laser Industries, Ltd. System for causing ablation of irradiated material of living tissue while not causing damage below a predetermined depth
US5643252A (en) 1992-10-28 1997-07-01 Venisect, Inc. Laser perforator
US5360447A (en) 1993-02-03 1994-11-01 Coherent, Inc. Laser assisted hair transplant method
US5339347A (en) 1993-04-27 1994-08-16 The United States Of America As Represented By The United States Department Of Energy Method for microbeam radiation therapy
US5860967A (en) 1993-07-21 1999-01-19 Lucid, Inc. Dermatological laser treatment system with electronic visualization of the area being treated
US6251100B1 (en) 1993-09-24 2001-06-26 Transmedica International, Inc. Laser assisted topical anesthetic permeation
US6315772B1 (en) 1993-09-24 2001-11-13 Transmedica International, Inc. Laser assisted pharmaceutical delivery and fluid removal
US6142939A (en) 1993-11-15 2000-11-07 Spectrx, Inc. Microporation of human skin for drug delivery and monitoring applications
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5798498A (en) 1993-12-17 1998-08-25 Laser Industries, Ltd. Method and apparatus for applying laser beams to a working surface, particularly for ablating tissue
US5582752A (en) 1993-12-17 1996-12-10 Laser Industries, Ltd. Method and apparatus for applying laser beams to a working surface, particularly for ablating tissue
US5814042A (en) 1993-12-17 1998-09-29 Laser Industries, Ltd. Apparatus for applying laser beam to living tissue to cause uniform ablation of living tissue while not causing thermal damage below a predetermined depth to the surrounding tissue
US5628744A (en) 1993-12-21 1997-05-13 Laserscope Treatment beam handpiece
US5558666A (en) 1994-01-14 1996-09-24 Coherent, Inc. Handpiece for producing highly collimated laser beam for dermatological procedures
US5616140A (en) 1994-03-21 1997-04-01 Prescott; Marvin Method and apparatus for therapeutic laser treatment
US6248103B1 (en) 1994-04-05 2001-06-19 The Regents Of The University Of California Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery using long laser pulses
US5814040A (en) 1994-04-05 1998-09-29 The Regents Of The University Of California Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery
US6171301B1 (en) 1994-04-05 2001-01-09 The Regents Of The University Of California Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery
US5586981A (en) 1994-08-25 1996-12-24 Xin-Hua Hu Treatment of cutaneous vascular and pigmented lesions
US5531740A (en) 1994-09-06 1996-07-02 Rapistan Demag Corporation Automatic color-activated scanning treatment of dermatological conditions by laser
US5908415A (en) 1994-09-09 1999-06-01 Rare Earth Medical, Inc. Phototherapy methods and apparatus
US5746735A (en) 1994-10-26 1998-05-05 Cynosure, Inc. Ultra long pulsed dye laser device for treatment of ectatic vessels and method therefor
US5733278A (en) 1994-11-30 1998-03-31 Laser Industries Limited Method and apparatus for hair transplantation using a scanning continuous-working CO2 laser
US5632741A (en) 1995-01-20 1997-05-27 Lucid Technologies, Inc. Epilation system
US6328733B1 (en) 1995-01-23 2001-12-11 Lumenis Inc. Hand-held laser scanner
US5957915A (en) 1995-01-23 1999-09-28 Coherent, Inc. Hand-held laser scanner
US5735844A (en) 1995-02-01 1998-04-07 The General Hospital Corporation Hair removal using optical pulses
US5595568A (en) 1995-02-01 1997-01-21 The General Hospital Corporation Permanent hair removal using optical pulses
US5624434A (en) 1995-02-03 1997-04-29 Laser Industries, Ltd. Laser preparation of recipient holes for graft implantation in the treatment of icepick scars
US5611795A (en) 1995-02-03 1997-03-18 Laser Industries, Ltd. Laser facial rejuvenation
US5807386A (en) 1995-02-03 1998-09-15 Laser Industries, Ltd. Laser facial rejuvenation
US5995866A (en) 1995-03-21 1999-11-30 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
US6096031A (en) 1995-04-17 2000-08-01 Coherent, Inc. High repetition rate erbium:YAG laser for tissue ablation
US6241753B1 (en) 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US5879326A (en) 1995-05-22 1999-03-09 Godshall; Ned Allen Method and apparatus for disruption of the epidermis
US5624435A (en) 1995-06-05 1997-04-29 Cynosure, Inc. Ultra-long flashlamp-excited pulse dye laser for therapy and method therefor
US6475138B1 (en) 1995-07-12 2002-11-05 Laser Industries Ltd. Apparatus and method as preparation for performing a myringotomy in a child's ear without the need for anaesthesia
US5713364A (en) 1995-08-01 1998-02-03 Medispectra, Inc. Spectral volume microprobe analysis of materials
US6680999B1 (en) 1995-08-15 2004-01-20 Mumps Audiofax, Inc. Interactive telephony system
US5865754A (en) 1995-08-24 1999-02-02 Purdue Research Foundation Office Of Technology Transfer Fluorescence imaging system and method
US5546214A (en) 1995-09-13 1996-08-13 Reliant Technologies, Inc. Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section
US6387089B1 (en) 1995-09-15 2002-05-14 Lumenis Ltd. Method and apparatus for skin rejuvination and wrinkle smoothing
US5964749A (en) 1995-09-15 1999-10-12 Esc Medical Systems Ltd. Method and apparatus for skin rejuvenation and wrinkle smoothing
US5860968A (en) 1995-11-03 1999-01-19 Luxar Corporation Laser scanning method and apparatus
US6083217A (en) 1995-11-29 2000-07-04 Lumedics, Ltd. Destruction for unwanted tissue by deep laser heating of water
US5897549A (en) 1995-11-29 1999-04-27 Lumedics, Ltd. Transformation of unwanted tissue by deep laser heating of water
US5879346A (en) * 1995-12-18 1999-03-09 Esc Medical Systems, Ltd. Hair removal by selective photothermolysis with an alexandrite laser
US5970983A (en) 1996-05-15 1999-10-26 Esc Medical Systems Ltd. Method of laser surgery
US5655547A (en) 1996-05-15 1997-08-12 Esc Medical Systems Ltd. Method for laser surgery
US5976123A (en) 1996-07-30 1999-11-02 Laser Aesthetics, Inc. Heart stabilization
US5995265A (en) 1996-08-12 1999-11-30 Black; Michael Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section
US6197020B1 (en) 1996-08-12 2001-03-06 Sublase, Inc. Laser apparatus for subsurface cutaneous treatment
US6106514A (en) 1996-08-12 2000-08-22 O'donnell, Jr.; Francis E. Laser method for subsurface cutaneous treatment
US6443946B2 (en) 1996-08-29 2002-09-03 Icn Photonics Limited Apparatus for wrinkle removal
US5983900A (en) 1996-08-29 1999-11-16 Clement; Robert Marc Wrinkle removal
EP0827219B1 (en) 1996-08-30 2005-08-10 Honda Giken Kogyo Kabushiki Kaisha Composite magnetostrictive material, and process for producing the same
EP0827716A2 (en) 1996-09-04 1998-03-11 ESC Medical Systems Ltd. Device for cooling skin during laser treatment
US5759200A (en) 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis
US6251099B1 (en) 1996-11-27 2001-06-26 The General Hospital Corporation Compound delivery using impulse transients
US7204832B2 (en) * 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
US6015404A (en) 1996-12-02 2000-01-18 Palomar Medical Technologies, Inc. Laser dermatology with feedback control
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
WO1998024507A2 (en) 1996-12-05 1998-06-11 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
US6050990A (en) * 1996-12-05 2000-04-18 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
US6162211A (en) 1996-12-05 2000-12-19 Thermolase Corporation Skin enhancement using laser light
WO1998024502A1 (en) 1996-12-06 1998-06-11 Target Therapeutics, Inc. Reinforced catheter with a formable distal tip
US6063108A (en) 1997-01-06 2000-05-16 Salansky; Norman Method and apparatus for localized low energy photon therapy (LEPT)
US5830208A (en) 1997-01-31 1998-11-03 Laserlite, Llc Peltier cooled apparatus and methods for dermatological treatment
US6120497A (en) 1997-02-05 2000-09-19 Massachusetts General Hospital Method and apparatus for treating wrinkles in skin using radiation
US5906609A (en) 1997-02-05 1999-05-25 Sahar Technologies Method for delivering energy within continuous outline
US5938657A (en) 1997-02-05 1999-08-17 Sahar Technologies, Inc. Apparatus for delivering energy within continuous outline
US5810801A (en) 1997-02-05 1998-09-22 Candela Corporation Method and apparatus for treating wrinkles in skin using radiation
US6096029A (en) 1997-02-24 2000-08-01 Laser Skin Toner, Inc. Laser method for subsurface cutaneous treatment
US6171302B1 (en) 1997-03-19 2001-01-09 Gerard Talpalriu Apparatus and method including a handpiece for synchronizing the pulsing of a light source
US6245060B1 (en) 1997-03-25 2001-06-12 Abbott Laboratories Removal of stratum corneum by means of light
US6027496A (en) 1997-03-25 2000-02-22 Abbott Laboratories Removal of stratum corneum by means of light
US6235015B1 (en) 1997-05-14 2001-05-22 Applied Optronics Corporation Method and apparatus for selective hair depilation using a scanned beam of light at 600 to 1000 nm
US6273884B1 (en) 1997-05-15 2001-08-14 Palomar Medical Technologies, Inc. Method and apparatus for dermatology treatment
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6575963B1 (en) 1997-07-16 2003-06-10 The Lion Eye Institute Of Western Australia Incorporated Laser scanning apparatus and method
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US6168590B1 (en) 1997-08-12 2001-01-02 Y-Beam Technologies, Inc. Method for permanent hair removal
US6273885B1 (en) 1997-08-16 2001-08-14 Cooltouch Corporation Handheld photoepilation device and method
US6176854B1 (en) 1997-10-08 2001-01-23 Robert Roy Cone Percutaneous laser treatment
US5984915A (en) 1997-10-08 1999-11-16 Trimedyne, Inc. Percutaneous laser treatment
US5968033A (en) 1997-11-03 1999-10-19 Fuller Research Corporation Optical delivery system and method for subsurface tissue irradiation
US5947956A (en) 1997-11-04 1999-09-07 Karell; Manuel Leon Laser apparatus for making holes and etchings
WO1999027997A1 (en) 1997-12-01 1999-06-10 Esc Medical Systems Ltd. Improved depilatory method and device
US6113559A (en) 1997-12-29 2000-09-05 Klopotek; Peter J. Method and apparatus for therapeutic treatment of skin with ultrasound
US6165170A (en) 1998-01-29 2000-12-26 International Business Machines Corporation Laser dermablator and dermablation
US6149644A (en) 1998-02-17 2000-11-21 Altralight, Inc. Method and apparatus for epidermal treatment with computer controlled moving focused infrared light
US5980512A (en) 1998-02-26 1999-11-09 Silberg; Barry Enhanced laser skin treatment mechanism
US6530915B1 (en) 1998-03-06 2003-03-11 Spectrx, Inc. Photothermal structure for biomedical applications, and method therefor
US6022316A (en) 1998-03-06 2000-02-08 Spectrx, Inc. Apparatus and method for electroporation of microporated tissue for enhancing flux rates for monitoring and delivery applications
US6173202B1 (en) 1998-03-06 2001-01-09 Spectrx, Inc. Method and apparatus for enhancing flux rates of a fluid in a microporated biological tissue
US6074384A (en) 1998-03-06 2000-06-13 Plc Medical Systems, Inc. Endocardial laser revascularization with single laser pulses
US6605080B1 (en) 1998-03-27 2003-08-12 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US6149645A (en) 1998-04-03 2000-11-21 Tobinick; Edward L. Apparatus and method employing lasers for removal of hair
US6264649B1 (en) * 1998-04-09 2001-07-24 Ian Andrew Whitcroft Laser treatment cooling head
US6443978B1 (en) 1998-04-10 2002-09-03 Board Of Trustees Of The University Of Arkansas Photomatrix device
US5997530A (en) 1998-04-13 1999-12-07 The Regents Of The University Of California Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations
US6579283B1 (en) 1998-05-22 2003-06-17 Edward L. Tobinick Apparatus and method employing a single laser for removal of hair, veins and capillaries
US6514278B1 (en) 1998-05-28 2003-02-04 Carl Baasel Lasertechnik Gmbh Method and device for the superficial heating of tissue
US6537270B1 (en) 1998-08-13 2003-03-25 Asclepion-Meditec Ag Medical hand piece for a laser radiation source
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US6632219B1 (en) 1998-10-16 2003-10-14 Eugene Baranov Tissue cooling rod for laser surgery
US6468229B1 (en) 1998-10-20 2002-10-22 Abbott Laboratories Apparatus and method for the collection of interstitial fluids
US6219575B1 (en) 1998-10-23 2001-04-17 Babak Nemati Method and apparatus to enhance optical transparency of biological tissues
US6325769B1 (en) 1998-12-29 2001-12-04 Collapeutics, Llc Method and apparatus for therapeutic treatment of skin
US6183773B1 (en) 1999-01-04 2001-02-06 The General Hospital Corporation Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
US6445491B2 (en) 1999-01-29 2002-09-03 Irma America, Inc. Method and apparatus for optical sectioning and imaging using time-gated parametric image amplification
US6881212B1 (en) 1999-03-05 2005-04-19 Icn Photonics Limited Skin wrinkle reduction using pulsed light
US6572637B1 (en) 1999-03-12 2003-06-03 Ya-Man Ltd. Handbreadth-sized laser beam projecting probe for beauty treatment
US6607523B1 (en) 1999-03-19 2003-08-19 Asah Medico A/S Apparatus for tissue treatment
US6685699B1 (en) 1999-06-09 2004-02-03 Spectrx, Inc. Self-removing energy absorbing structure for thermal tissue ablation
US6413267B1 (en) 1999-08-09 2002-07-02 Theralase, Inc. Therapeutic laser device and method including noninvasive subsurface monitoring and controlling means
US6406474B1 (en) 1999-09-30 2002-06-18 Ceramoptec Ind Inc Device and method for application of radiation
US6758845B1 (en) 1999-10-08 2004-07-06 Lumenis Inc. Automatic firing apparatus and methods for laser skin treatment over large areas
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
Anderson, R.R. et al., "Laser-Tissue Interactions," Cosmetic Laser Surgery, 2000, pp. 1-30, Mosby.
Apfelberg, et al., Dot or Pointillistic Method for Improvement in Results of Hypertrophic Scarring in the Argon Laser Treatment of Portwine Hemangiomas, Lasers in Surgery and Medicine, 6:552-558 (1987).
Apfelberg, Intralesional Laser Photocoagulation-Steroids as an Adjunct to Surgery for Massive Hemangiomas and Vascular Malformations, Atherton Plastic Surgery and Laser Center, Atherton, CA, 1995, pp. 144-149.
Apfelberg, Intralesional Laser Photocoagulation—Steroids as an Adjunct to Surgery for Massive Hemangiomas and Vascular Malformations, Atherton Plastic Surgery and Laser Center, Atherton, CA, 1995, pp. 144-149.
European Office Action, European Application No. 00916279.3, Aug. 28, 2006, 4 pages.
European Office Action, European Application No. 00916279.3, Dec. 15, 2006, 4 pages.
European Search Report, European Application No. 00916279.3, May 11, 2005, 2 pages.
Fitzpatrick, R.E. "Laser Hair Transplantation. Tissue Effects of Laser Parameters," Dermatol. Surg., Dec. 1995, pp. 1042-1046, vol. 21, No. 12.
Fujii, et al., Fibre bundle scanner for laser photocoagulation treatment. Optics and Laser Technology, Feb. 1982, pp. 39-41.
Fujii, et al., Multispot laser photocoagulation system using a fiber bundle scanner, Applied Optics, vol. 21, No. 19, Oct. 1982, pp. 3437-3442.
Grevelink, J.M., "Laser Hair Transplantation," Dermatologic Clinics, Jul. 1, 1997, pp. 479-486, vol. 15, Issue 3.
Mckenzie, A.L., "A Three-Zone Model of Tissue Damage by a C02 Laser," Phys. Med. Boil, 1986, pp. 967-983, vol. 31, No. 9.
Nelson, J.S. et al., "Dynamic Epidermal Cooling in Conjunction with Laser-Induced Photothermolysis of Port Wine Stain Blood Vessels," Lasers in Surgery and Medicine, 1996, pp. 224-229, vol. 19.
Partovi, F. et al., "A Model for Thermal Ablation of Biological Tissue Using Laser Radiation," Lasers in Surgery and Medicine, 1987, pp. 141-154, vol. 7.
PCT International Search Report, PCT/US00/06485, Jul. 88, 2000, 1 page.
Rubach, B.W. et al., "Histological and Clinical Evaluation of Facial Resurfacing Using a Carbon Dioxide Laser with the Computer Pattern Generator," Arch. Otolaryngol. Head Neck Surg., Sep. 1997, pp. 929-34, vol. 123, No. 9.
Unger, W.P. "Laser Hair Transplantation III. Computer-Assisted Laser Transplantating," Dermatol. Surg. Dec. 1995, pp. 1047-55, vol. 21, No. 12.
Unger, W.P. et al., "Laser Hair Transplantation," J. Dermatol. Surg. Oncol., Aug. 1994, pp. 515-521, vol. 20, No. 8.
US 6,344,051, 02/2002, Dumoulin-White et al. (withdrawn)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43881E1 (en) * 1998-10-16 2012-12-25 Reliant Technologies, Inc. Tissue cooling rod for laser surgery
US20070213792A1 (en) * 2002-10-07 2007-09-13 Palomar Medical Technologies, Inc. Treatment Of Tissue Volume With Radiant Energy
US20150025444A1 (en) * 2013-07-18 2015-01-22 International Business Machines Corporation Laser-assisted transdermal delivery of nanoparticulates and hydrogels
WO2017189109A1 (en) 2016-04-26 2017-11-02 Candela Corporation Applicator for cooling skin during irradiation

Also Published As

Publication number Publication date Type
US6632219B1 (en) 2003-10-14 grant
US6059820A (en) 2000-05-09 grant
ES2326256T3 (en) 2009-10-06 grant
EP1267792B8 (en) 2009-08-19 grant
EP1267792A4 (en) 2005-06-22 application
EP1267792B1 (en) 2009-05-27 grant
DE60042284D1 (en) 2009-07-09 grant
EP1267792A1 (en) 2003-01-02 application
WO2001068185A1 (en) 2001-09-20 application

Similar Documents

Publication Publication Date Title
Lask et al. Laser‐assisted hair removal by selective photothermolysis preliminary results
Ross et al. Effects of CO2 laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing
Sadick et al. Selective electro‐thermolysis in aesthetic medicine: A review
Fitzpatrick et al. The depth of thermal necrosis using the CO2 laser: a comparison of the superpulsed mode and conventional mode
Ross et al. Why does carbon dioxide resurfacing work?: a review
US5879346A (en) Hair removal by selective photothermolysis with an alexandrite laser
US7762964B2 (en) Method and apparatus for improving safety during exposure to a monochromatic light source
US7217265B2 (en) Treatment of cellulite with mid-infrared radiation
US6387089B1 (en) Method and apparatus for skin rejuvination and wrinkle smoothing
US6997923B2 (en) Method and apparatus for EMR treatment
US4733660A (en) Laser system for providing target specific energy deposition and damage
Geronemus Fractional photothermolysis: current and future applications
Kaufmann et al. Pulsed erbium: YAG laser ablation in cutaneous surgery
US5527350A (en) Pulsed infrared laser treatment of psoriasis
US6529543B1 (en) Apparatus for controlling laser penetration depth
US5632741A (en) Epilation system
US6702808B1 (en) Device and method for treating skin
US20080172047A1 (en) Methods And Devices For Fractional Ablation Of Tissue
Rox Anderson et al. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin
US20070142881A1 (en) Treatment of cellulite and adipose tissue with mid-infrared radiation
US6605080B1 (en) Method and apparatus for the selective targeting of lipid-rich tissues
US6355054B1 (en) Laser system for improved transbarrier therapeutic radiation delivery
US6881212B1 (en) Skin wrinkle reduction using pulsed light
US20070027440A1 (en) Apparatus and method for photocosmetic and photodermatological treatment
US7020528B2 (en) Method for treating acne

Legal Events

Date Code Title Description
AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:RELIANT TECHNOLOGIES, LLC;REEL/FRAME:022824/0847

Effective date: 20090304

CC Certificate of correction
CC Certificate of correction
AS Assignment

Owner name: SILICON VALLEY BANK, CALIFORNIA

Free format text: SECURITY INTEREST - MEZZANINE LOAN;ASSIGNOR:RELIANT TECHNOLOGIES, LLC;REEL/FRAME:030248/0256

Effective date: 20120829

AS Assignment

Owner name: CAPITAL ROYALTY PARTNERS II L.P., TEXAS

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:RELIANT TECHNOLOGIES, LLC;REEL/FRAME:031674/0527

Effective date: 20131114

Owner name: CAPITAL ROYALTY PARTNERS II ? PARALLEL FUND ?A? L.

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:RELIANT TECHNOLOGIES, LLC;REEL/FRAME:031674/0527

Effective date: 20131114

Owner name: PARALLEL INVESTMENT OPPORTUNITIES PARTNERS II L.P.

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:RELIANT TECHNOLOGIES, LLC;REEL/FRAME:031674/0527

Effective date: 20131114

Owner name: CAPITAL ROYALTY PARTNERS II - PARALLEL FUND "A" L.

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:RELIANT TECHNOLOGIES, LLC;REEL/FRAME:031674/0527

Effective date: 20131114

AS Assignment

Owner name: RELIANT TECHNOLOGIES, LLC, CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CAPITAL ROYALTY PARTNERS II L.P.;CAPITAL ROYALTY PARTNERS II - PARALLEL FUND "A" L.P.;PARALLEL INVESTMENT OPPORTUNITIES PARTNERS II L.P.;REEL/FRAME:032126/0708

Effective date: 20140123

AS Assignment

Owner name: RELIANT TECHNOLOGIES, LLC, CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:032125/0810

Effective date: 20140123