USRE41235E1 - Phase locked loop circuit - Google Patents

Phase locked loop circuit Download PDF

Info

Publication number
USRE41235E1
USRE41235E1 US11/653,419 US65341907A USRE41235E US RE41235 E1 USRE41235 E1 US RE41235E1 US 65341907 A US65341907 A US 65341907A US RE41235 E USRE41235 E US RE41235E
Authority
US
United States
Prior art keywords
frequency
output
phase
data pulse
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US11/653,419
Inventor
Yoshinori Miyada
Seiji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvoton Technology Corp Japan
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to US11/653,419 priority Critical patent/USRE41235E1/en
Application granted granted Critical
Publication of USRE41235E1 publication Critical patent/USRE41235E1/en
Assigned to PANASONIC SEMICONDUCTOR SOLUTIONS CO., LTD. reassignment PANASONIC SEMICONDUCTOR SOLUTIONS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PANASONIC CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/113Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using frequency discriminator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump

Definitions

  • the present invention relates to a phase locked loop circuit (hereinafter referred to as “PLL-circuit”) for generating an output signal having no lags in frequency and phase from those of an input signal, which is used in a magnetic disk unit such as an optic disk unit.
  • PLL-circuit phase locked loop circuit
  • a recent CD (Compact Disk) player is capable of normal-speed playback when reading audio data from a CD, and 32X-speed playback when reading computer data from a CD.
  • a CD player capable of playing both of a CD containing audio data and a CD containing computer data
  • the maximum frequency of the reproduced data pulse read from the disk of the reproduced data pulse read from the disk becomes 32 times as high as that at the normal-speed playback and, therefore, the frequency of a clock generated in phase-synchronization with the reproduced data also becomes 32 times as high as that at the normal-speed playback. That is, the frequency bands of clocks handled by one CD player extend widely.
  • VCO Voltage Controlled Oscillator
  • FIG. 3 shows a PLL circuit provided with a frequency comparator (hereinafter referred to as “PLL circuit X”).
  • the conventional PLL circuit X comprises a frequency comparator 1 , a phase comparator 2 , a first charge pump 4 , and second charge pump 5 , a loop filter 6 and a VCO 7 .
  • the frequency comparator 1 included in the conventional PLL circuit X brings a clock generated by the VCO 7 up to a range where the phase comparator 2 can synchronize the phase of the reproduced data pulse and the phase of the clock generated by the VCO 7 , i.e., a range where the phase comparator 2 can lock the phases. Once the phases are locked, the clock generated by the VCO 7 is prevented from being adversely affected by the output of the frequency comparator, using a signal to the half the operation of the frequency comparator 1 .
  • the frequency of the clock generated by the VCO 7 changes in proportion with the output voltage of the loop filter 6 . So, in order to bring the clock generated by the VCO 7 into phase-synchronization with the reproduced data pulse quickly, the frequency of the clock generated by the VCO 7 must be increased or decreased quickly in a stroke.
  • the frequency comparator 1 when the reproduced data pulse has a large amount of jitter, the frequency comparator 1 generates jitters in the clock generated by the VCO 7 in response to the clock jitters of the reproduced data pulse. As the result, the phase comparator 2 cannot lock the phases.
  • the present invention is made to solve the above-described problems and has for its object to provide a PLL circuit which can limit the operation of a frequency comparator with its output when a difference in phases between reproduced data pulse and VCO clock is in the pull-in range of the phase comparator, and lock the phases even when the reproduced data pulse has a large amount of jitter, thereby performing stable data reading.
  • a PLL circuit used in a magnetic disk unit, which generates a clock in phase-synchronization with a reproduced data pulse read from the magnetic disk.
  • the phase locked loop circuit comprises a frequency comparator for detecting a phase difference based on a difference in frequencies between the reproduced data pulse and the clock, and outputting a frequency error level which is the result of detection, as a frequency comparison error signal; a phase comparator for detecting a difference in phases between the reproduced data pulse and the clock; a selector for outputting the frequency comparison error signal as it is when the frequency error level is relatively large, and thinning the frequency comparison error signal to be output when the frequency error level is relatively small; a first charge pump for increasing/decreasing the output voltage on the basis of the output from the selector; a second charge pump for increasing/decreasing the output voltage on the basis of the output from the phase comparator; a loop filter for eliminating unnecessary components included in a signal obtained by adding the output from the first charge
  • the frequency comparator detects phase sections of the clock corresponding to a leading edge and a trailing edge of the reproduction data pulse to perform frequency comparison, and outputs the result of comparison as a frequency comparison error signal; and the selector thins the frequency comparison error signal to be output when there is a change between specific phase sections of the clock, which correspond to the leading edge and trailing edge of the reproduced data pulse, respectively, and are detected by the frequency comparator.
  • the edge of the reproduced data pulse is regarded as being fluctuated by signal jitter.
  • the output from the frequency comparator is controlled so as not to fluctuate the frequency of the VCO, whereby unnecessary frequency fluctuation does not occur in the output of the VCO, resulting in stable data reproduction.
  • FIG. 1 is a block diagram illustrating a PLL circuit according to an embodiment of the invention.
  • FIG. 2 is a timing chart for explaining the operation of a frequency comparator according to the embodiment of the invention.
  • FIG. 3 is a block diagram illustrating a PLL circuit according to the prior art.
  • FIG. 1 is a block diagram illustrating a PLL circuit A according to an embodiment of the invention.
  • This PLL circuit A comprises a frequency comparator 1 , a phase comparator 2 , a selector 3 , a first charge pump 4 , a second charge pump 5 , a loop filter 6 , and a VCO 7 .
  • the frequency comparator detects a phase difference based on a difference in frequencies between a reproduced data pulse and a clock generated by the VCO 7 (hereinafter referred to as “VCO clock”), and outputs the result as a frequency comparison error signal.
  • the phase comparator 2 detects a difference in phases between the reproduced data pulse and the VCO clock.
  • the selector 3 thins the frequency comparison error signal to be output, on the basis of the frequency error indicated by the frequency comparison error signal outputted from the frequency comparator 1 .
  • the first charge pump 4 increases or decreases the output voltage on the basis of the output from the selector 3 .
  • the second charge pump 5 increases or decreases the output voltage on the basis of the output from the phase comparator 2 .
  • the loop filter 6 eliminates unnecessary components included in a signal obtained by adding the output from the first charge pump 4 and the output from the second charge pump 5 .
  • the VCO 7 generates a clock of a frequency corresponding to the output voltage of the loop filter 6 .
  • the phase comparator 2 is constituted by, for example, EX-OR circuits and RS flip-flop circuits.
  • the frequency comparator 1 compares the frequency of the reproduced data pulse with the frequency of the VCO clock, and outputs an error obtained as the result of the comparison, as a frequency comparison error signal.
  • the frequency comparison error signal outputted from the frequency comparator 1 is input to the selector 3 .
  • the inputted frequency comparison error signal is appropriately selected to be output to the first charge pump 4 , according to the frequency error level of the frequency comparison error signal.
  • the selector 3 outputs the frequency comparison error signals having relatively large error levels as they are to the first charge pump 4 , and thins, i.e., prevents, the frequency comparison error signals having relatively small error levels from being output to the first charge pump.
  • the function of the selector 3 may be included in the frequency comparator 1 .
  • the frequency comparison errors are classified into eight levels, only the error signals of the upper four levels in descending order are output from the frequency comparator 1 . Thereby, the circuit scale of the frequency comparator 1 can be reduced.
  • the frequency comparison error signal selected by the selector 3 is input to the first charge pump 4 .
  • the first charge pump 4 increases or decreases the output voltage according to the inputted error signal, whereby a pulse increasing the frequency (hereinafter referred to as “up pulse”) or a pulse decreasing the frequency (hereinafter referred to as “down pulse”) is generated.
  • phase comparator 2 compares the phase of the reproduced data pulse with the phase of the VCO clock, and a phase difference detected is output as a phase error signal to the second charge pump 5 .
  • the second charge pump 5 increases or decreases the output voltage according to the phase error signal supplied from the phase comparator 2 , thereby generating an up pulse or a down pulse.
  • the up pulse or down pulse outputted from the first charge pump 4 is added to the up pulse or down pulse outputted from the second charge pump 5 , and the sum is input to the loop filter 6 .
  • the loop filter 6 eliminates unnecessary components from the signal obtained by adding the outputs of the first and second charge pumps 4 and 5 .
  • the output from the loop filter 6 is a control voltage for the VCO 7 , and the VCO 7 generates a clock of a frequency corresponding to the output voltage of the loop filter 6 .
  • the frequency comparator 1 performs frequency comparison by detecting phase sections of the VCO clock corresponding to the leading edge and trailing edge of the reproduced data pulse.
  • FIG. 2 shows the reproduced data pulse, the VCO clock, and the phase sections of the VCO clock (“0”, “1”, “2”, and “3” in the figure), and the relationship in phases between the reproduction data pulse and the VCO clock.
  • Table 1 shows the outputs from the frequency comparator 1 and the outputs from the selector 3 , wherein are generated according to the relationship in phases between the reproduced data pulse and the VCO clock.
  • the frequency comparator 1 performs detection of the phase sections of the VCO clock corresponding to the leading edge and trailing edge of the reproduced data pulse.
  • phase at the data edge changes from the phase section “0” to the phase section “1”
  • a signal for decelerating the frequency of the VCO 7 is output from the frequency comparator 1 while a signal for neither accelerating nor decelerating the frequency of the VCO 7 is output from the selector 3 .
  • a signal for accelerating the frequency of the VCO 7 is output from the frequency comparator 1 while a signal for neither accelerating nor decelerating the frequency of the VCO 7 is output from the selector 3 .
  • the phase-relationships with the VCO clock are compared between the adjacent two edges of the reproduced data pulse.
  • the selector 3 functions so that the frequency error signal from the frequency comparator 1 is not input to the charge pump 4 .
  • the frequency comparator 1 detects the phase sections of the clock generated by the VCO 7 corresponding to the leading edge and trailing edge of the reproduced data pulse, and when the detected phase sections change from “1” to “0” or from 37 0” to “1”, the selector 3 thins, i.e., does not output some of the signals supplied from the frequency comparator 1 and outputs the remaining signals, to the VCO 7 . Therefore, when the reproduced data pulse fluctuates due to signal jitter, the output from the frequency comparator 1 does not become a signal which fluctuates the frequency of the VCO 7 , and unnecessary frequency fluctuation does not occur in the output of the VCO 7 . Therefore, even when a signal having a large amount of clock jitter is reproduced, the data reproduction operation is stabilized.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

A PLL circuit comprises a frequency comparator for detecting a phase difference based on a difference in frequencies between a reproduced data pulse and a clock generated by a VCO; a phase comparator for detecting a difference in phases between the reproduced data pulse and the VCO clock; a selector for selectively outputting a signal supplied from the frequency comparator, a first charge pump for increasing/decreasing the output voltage on the basis of the output from the selector; a second charge pump for increasing/decreasing the output voltage on the basis of the output from the phase comparator; a loop filter for eliminating unnecessary components included in a signal obtained by adding the output from the first charge pump and the output from the second charge pump; and a VCO for generating a clock of a frequency corresponding to the output voltage of the loop filter. In this PLL circuit, when the phase difference between the reproduced data pulse and the VCO clock is within the pull-in range of the phase comparator, the operation of the frequency comparator is restricted by the output of the phase comparator. Therefore, the PLL circuit can perform stable data reading even when the reproduced data pulse has a large amount of clock jitter.

Description

This is a reissue application of U.S. Pat. No. 6,489,851, issued Dec. 3, 2002, and a divisional application of U.S. Reissued Pat. No. RE39,807, issued Sep. 4, 2007.
FIELD OF THE INVENTION
The present invention relates to a phase locked loop circuit (hereinafter referred to as “PLL-circuit”) for generating an output signal having no lags in frequency and phase from those of an input signal, which is used in a magnetic disk unit such as an optic disk unit.
BACKGROUND OF THE INVENTION
A recent CD (Compact Disk) player is capable of normal-speed playback when reading audio data from a CD, and 32X-speed playback when reading computer data from a CD. In such a CD player capable of playing both of a CD containing audio data and a CD containing computer data, when playing the disk at 32X speed, the maximum frequency of the reproduced data pulse read from the disk of the reproduced data pulse read from the disk becomes 32 times as high as that at the normal-speed playback and, therefore, the frequency of a clock generated in phase-synchronization with the reproduced data also becomes 32 times as high as that at the normal-speed playback. That is, the frequency bands of clocks handled by one CD player extend widely.
Further, in the CD player capable of the high-speed playback mentioned above, there is a difference in the maximum frequency components of the reproduced data pulses between playback of data recorded on the inner radius of the disk and playback of data recorded on the outer radius of the disk.
For this reason, the range of frequencies oscillated by a VCO (Voltage Controlled Oscillator), which is provided in a PLL circuit for generating a clock to read disk data, is also wide.
Accordingly, a PLL circuit included in the CD player having the above-mentioned high-speed playback function is required to quickly respond to a wide range of frequency bands handled in the CD player, and conventionally, a PLL circuit provided with a frequency comparator is employed to meet this requirement. FIG. 3 shows a PLL circuit provided with a frequency comparator (hereinafter referred to as “PLL circuit X”).
The conventional PLL circuit X comprises a frequency comparator 1, a phase comparator 2, a first charge pump 4, and second charge pump 5, a loop filter 6 and a VCO 7.
The frequency comparator 1 included in the conventional PLL circuit X brings a clock generated by the VCO 7 up to a range where the phase comparator 2 can synchronize the phase of the reproduced data pulse and the phase of the clock generated by the VCO 7, i.e., a range where the phase comparator 2 can lock the phases. Once the phases are locked, the clock generated by the VCO 7 is prevented from being adversely affected by the output of the frequency comparator, using a signal to the half the operation of the frequency comparator 1.
In the aforementioned PLL circuit X, however, since the range of adaptable frequency bands is broad, fluctuations in the output from the first charge pump 4 for controlling the VCO 7 according to the output of the frequency comparator 1 are increased, whereby the range of fluctuations in the output from the loop filter 6 for smoothing the output of the first charge pump 4 becomes wide, resulting in an unstable PLL circuit.
To be specific, the frequency of the clock generated by the VCO 7 changes in proportion with the output voltage of the loop filter 6. So, in order to bring the clock generated by the VCO 7 into phase-synchronization with the reproduced data pulse quickly, the frequency of the clock generated by the VCO 7 must be increased or decreased quickly in a stroke.
Furthermore, when the reproduced data pulse has a large amount of jitter, the frequency comparator 1 generates jitters in the clock generated by the VCO 7 in response to the clock jitters of the reproduced data pulse. As the result, the phase comparator 2 cannot lock the phases.
SUMMARY OF THE INVENTION
The present invention is made to solve the above-described problems and has for its object to provide a PLL circuit which can limit the operation of a frequency comparator with its output when a difference in phases between reproduced data pulse and VCO clock is in the pull-in range of the phase comparator, and lock the phases even when the reproduced data pulse has a large amount of jitter, thereby performing stable data reading.
Other objects and advantages of the invention will be apparent from the detailed description that follows. The detailed description and specific embodiments described are provided only for illustration since various additions and modifications within the scope of the invention will be apparent to those skilled in the art from the detailed description.
According to a first aspect of the present invention, there is provided a PLL circuit used in a magnetic disk unit, which generates a clock in phase-synchronization with a reproduced data pulse read from the magnetic disk. The phase locked loop circuit comprises a frequency comparator for detecting a phase difference based on a difference in frequencies between the reproduced data pulse and the clock, and outputting a frequency error level which is the result of detection, as a frequency comparison error signal; a phase comparator for detecting a difference in phases between the reproduced data pulse and the clock; a selector for outputting the frequency comparison error signal as it is when the frequency error level is relatively large, and thinning the frequency comparison error signal to be output when the frequency error level is relatively small; a first charge pump for increasing/decreasing the output voltage on the basis of the output from the selector; a second charge pump for increasing/decreasing the output voltage on the basis of the output from the phase comparator; a loop filter for eliminating unnecessary components included in a signal obtained by adding the output from the first charge pump and the output from the second charge pump; and a voltage controlled oscillator for generating a clock of a frequency corresponding to the output voltage of the loop filter. Therefore, even when the reproduced data pulse has a large amount of clock jitter, a PLL circuit capable of speedy and stable data reading operation is obtained.
According to a second aspect of the present invention, in the above-described PLL circuit, the frequency comparator detects phase sections of the clock corresponding to a leading edge and a trailing edge of the reproduction data pulse to perform frequency comparison, and outputs the result of comparison as a frequency comparison error signal; and the selector thins the frequency comparison error signal to be output when there is a change between specific phase sections of the clock, which correspond to the leading edge and trailing edge of the reproduced data pulse, respectively, and are detected by the frequency comparator. Therefore, assuming that the phase sections of the clock are “0”, “1”, “2”, and “3”, when the phase section of the clock corresponding to the data edge changes from “1” to “0”, or from “0” to “1”, the edge of the reproduced data pulse is regarded as being fluctuated by signal jitter. In this case, the output from the frequency comparator is controlled so as not to fluctuate the frequency of the VCO, whereby unnecessary frequency fluctuation does not occur in the output of the VCO, resulting in stable data reproduction.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram illustrating a PLL circuit according to an embodiment of the invention.
FIG. 2 is a timing chart for explaining the operation of a frequency comparator according to the embodiment of the invention.
FIG. 3 is a block diagram illustrating a PLL circuit according to the prior art.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Hereinafter, a PLL circuit according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram illustrating a PLL circuit A according to an embodiment of the invention.
This PLL circuit A comprises a frequency comparator 1, a phase comparator 2, a selector 3, a first charge pump 4, a second charge pump 5, a loop filter 6, and a VCO 7. The frequency comparator detects a phase difference based on a difference in frequencies between a reproduced data pulse and a clock generated by the VCO 7 (hereinafter referred to as “VCO clock”), and outputs the result as a frequency comparison error signal. The phase comparator 2 detects a difference in phases between the reproduced data pulse and the VCO clock. The selector 3 thins the frequency comparison error signal to be output, on the basis of the frequency error indicated by the frequency comparison error signal outputted from the frequency comparator 1. The first charge pump 4 increases or decreases the output voltage on the basis of the output from the selector 3. The second charge pump 5 increases or decreases the output voltage on the basis of the output from the phase comparator 2. The loop filter 6 eliminates unnecessary components included in a signal obtained by adding the output from the first charge pump 4 and the output from the second charge pump 5. The VCO 7 generates a clock of a frequency corresponding to the output voltage of the loop filter 6. The phase comparator 2 is constituted by, for example, EX-OR circuits and RS flip-flop circuits.
Next, the operation of the PLL circuit A so constructed will be described.
Initially, the frequency comparator 1 compares the frequency of the reproduced data pulse with the frequency of the VCO clock, and outputs an error obtained as the result of the comparison, as a frequency comparison error signal.
The frequency comparison error signal outputted from the frequency comparator 1 is input to the selector 3. In the selector 3, the inputted frequency comparison error signal is appropriately selected to be output to the first charge pump 4, according to the frequency error level of the frequency comparison error signal. To be specific, among the frequency comparison error signals outputted from the frequency comparator 1, the selector 3 outputs the frequency comparison error signals having relatively large error levels as they are to the first charge pump 4, and thins, i.e., prevents, the frequency comparison error signals having relatively small error levels from being output to the first charge pump.
Although it is not shown in the figure, the function of the selector 3 may be included in the frequency comparator 1. For example, assuming that the frequency comparison errors are classified into eight levels, only the error signals of the upper four levels in descending order are output from the frequency comparator 1. Thereby, the circuit scale of the frequency comparator 1 can be reduced.
Next, the frequency comparison error signal selected by the selector 3 is input to the first charge pump 4. The first charge pump 4 increases or decreases the output voltage according to the inputted error signal, whereby a pulse increasing the frequency (hereinafter referred to as “up pulse”) or a pulse decreasing the frequency (hereinafter referred to as “down pulse”) is generated.
Next, the phase comparator 2 compares the phase of the reproduced data pulse with the phase of the VCO clock, and a phase difference detected is output as a phase error signal to the second charge pump 5.
Then, the second charge pump 5 increases or decreases the output voltage according to the phase error signal supplied from the phase comparator 2, thereby generating an up pulse or a down pulse.
The up pulse or down pulse outputted from the first charge pump 4 is added to the up pulse or down pulse outputted from the second charge pump 5, and the sum is input to the loop filter 6.
The loop filter 6 eliminates unnecessary components from the signal obtained by adding the outputs of the first and second charge pumps 4 and 5.
The output from the loop filter 6 is a control voltage for the VCO 7, and the VCO 7 generates a clock of a frequency corresponding to the output voltage of the loop filter 6.
Hereinafter, the operation of the frequency comparator 1 included in the PLL circuit A will be described with reference to FIG. 2 and table 1. The frequency comparator 1 performs frequency comparison by detecting phase sections of the VCO clock corresponding to the leading edge and trailing edge of the reproduced data pulse.
TABLE 1
output from output signal
frequency signal from VCO frequency
comparator
1 selector 3 change due to
phase acceleration/ acceleration/ output from
change at deceleratin deceleration frequency
data edge signal signal comparator
0 → 0 no signal no signal no change
0 → 1 deceleration no signal no change
0 → 3 acceleration acceleration acceleration
1 → 0 acceleration no signal no change
1 → 1 no signal no signal no change
1 → 2 deceleration deceleration deceleration
2 → 1 acceleration acceleration acceleration
2 → 2 no signal no signal no change
2 → 3 deceleration deceleration deceleration
3 → 0 deceleration deceleration deceleration
3 → 2 acceleration acceleration acceleration
3 → 3 no signal no signal no change
FIG. 2 shows the reproduced data pulse, the VCO clock, and the phase sections of the VCO clock (“0”, “1”, “2”, and “3” in the figure), and the relationship in phases between the reproduction data pulse and the VCO clock. Table 1 shows the outputs from the frequency comparator 1 and the outputs from the selector 3, wherein are generated according to the relationship in phases between the reproduced data pulse and the VCO clock.
In the PLL circuit A shown in FIG. 1, the frequency comparator 1 performs detection of the phase sections of the VCO clock corresponding to the leading edge and trailing edge of the reproduced data pulse.
This detection will be described with reference to FIG. 2. Since the phase of the edge of the reproduced data pulse changes from the section “2” to the phase section “1”, a signal for accelerating the frequency of the VCO 7 is generated in both of the output of the frequency comparator 1 and the output of the selector 3, whereby the frequency of the VCO 7 is accelerated.
Further, when the phase at the data edge changes from the phase section “0” to the phase section “1”, a signal for decelerating the frequency of the VCO 7 is output from the frequency comparator 1 while a signal for neither accelerating nor decelerating the frequency of the VCO 7 is output from the selector 3.
Moreover, when the edge of the reproduced data pulse changes from the phase section “1” to the phase section “0”, a signal for accelerating the frequency of the VCO 7 is output from the frequency comparator 1 while a signal for neither accelerating nor decelerating the frequency of the VCO 7 is output from the selector 3.
Then, the phase-relationships with the VCO clock are compared between the adjacent two edges of the reproduced data pulse. With reference to table 1, when the difference is “0”,or when the phase section changes from “0” to “1”, or when it changes from 37 1” to “0”, the selector 3 functions so that the frequency error signal from the frequency comparator 1 is not input to the charge pump 4.
As described above, according to the present invention, the frequency comparator 1 detects the phase sections of the clock generated by the VCO 7 corresponding to the leading edge and trailing edge of the reproduced data pulse, and when the detected phase sections change from “1” to “0” or from 37 0” to “1”, the selector 3 thins, i.e., does not output some of the signals supplied from the frequency comparator 1 and outputs the remaining signals, to the VCO 7. Therefore, when the reproduced data pulse fluctuates due to signal jitter, the output from the frequency comparator 1 does not become a signal which fluctuates the frequency of the VCO 7, and unnecessary frequency fluctuation does not occur in the output of the VCO 7. Therefore, even when a signal having a large amount of clock jitter is reproduced, the data reproduction operation is stabilized.

Claims (4)

1. A phase locked loop circuit, for use in a magnetic disk unit that generates a clock signal in phase-synchronization with a reproduced data pulse read from a magnetic disk, said phase locked loop circuit comprising:
a frequency comparator operable to detect a difference in frequencies between the reproduced data pulse and the clock signal, and to output a frequency comparison error signal based on the difference, said frequency comparison error signal indicating a frequency error level;
a phase comparator operable to detect a difference in phases between the reproduced data pulse and the clock signal and to produce an output based on the difference;
a selector operable to output said frequency comparison error signal when the frequency error level indicated by said frequency comparison error signal is greater than or equal to a predetermined value and to prevent outputting of said frequency comparison error signal when the frequency error level indicated by said frequency comparison error signal is less than the predetermined value;
a first charge pump operable to output a first voltage, and to increase or decrease the first voltage based on the output of said selector;
a second charge pump operable to output a second voltage, and to increase or decrease the second voltage based on the output of said comparator;
a loop filter operable to eliminate unnecessary components included in a sum of the outputs of said first and second charge pumps and to produce a filtered output voltage; and
a voltage controlled oscillator operable to generate a clock of a frequency corresponding to the filtered output voltage from said loop filter.
2. A phase locked loop circuit according to claim 1 wherein:
the clock signal has phase sections;
said frequency comparator is operable to detect which phase section of the clock signal corresponds to a leading edge of the reproduced data pulse and which phase section corresponds to a trailing edge of the reproduced data pulse, compare the phase section of the clock signal that corresponds to the leading edge of the reproduced data pulse and the phase section of the clock signal that corresponds to the trailing edge of the reproduced data pulse, and to output a result of the comparison as a frequency comparison error signal; and
said selector does not output the frequency comparison error signal when the phase section that corresponds to the leading edge of the reproduced data pulse and the phase section that corresponds to the trailing edge of the reproduced data pulse are detected by said frequency comparator to be specific predetermined values.
3. A phase locked loop circuit for generating a clock signal in phase-synchronization with an input data pulse, said phase locked loop circuit comprising:
a frequency comparator operable to detect a difference in frequencies between the input data pulse and the clock signal, and to output a frequency comparison error signal based on the difference, the frequency comparison error signal indicating a frequency error level; and
an output selectable circuit operable to output the frequency comparison error signal when the frequency error level indicated by the frequency comparison error signal is greater than or equal to a predetermined value and to prevent outputting of the frequency comparison error signal when the frequency error level indicated by the frequency comparison error signal is less than the predetermined value, wherein:
said frequency comparator is operable to detect the difference by checking a phase section of the clock signal at an edge of the input data pulse.
4. A phase locked loop circuit according to claim 3, wherein:
the phase section is detected corresponding to a leading edge and a trailing edge of the input data pulse.
US11/653,419 1999-11-26 2007-01-16 Phase locked loop circuit Expired - Lifetime USRE41235E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/653,419 USRE41235E1 (en) 1999-11-26 2007-01-16 Phase locked loop circuit

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11-335841 1999-11-26
JP33584199A JP3407197B2 (en) 1999-11-26 1999-11-26 PLL (Phase Locked Loop) circuit
US09/721,874 US6489851B1 (en) 1999-11-26 2000-11-27 Phase locked loop circuit
US10/635,534 USRE39807E1 (en) 1999-11-26 2003-08-07 Phase locked loop circuit
US11/653,419 USRE41235E1 (en) 1999-11-26 2007-01-16 Phase locked loop circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/721,874 Reissue US6489851B1 (en) 1999-11-26 2000-11-27 Phase locked loop circuit

Publications (1)

Publication Number Publication Date
USRE41235E1 true USRE41235E1 (en) 2010-04-20

Family

ID=18293006

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/721,874 Ceased US6489851B1 (en) 1999-11-26 2000-11-27 Phase locked loop circuit
US10/635,534 Expired - Lifetime USRE39807E1 (en) 1999-11-26 2003-08-07 Phase locked loop circuit
US11/653,419 Expired - Lifetime USRE41235E1 (en) 1999-11-26 2007-01-16 Phase locked loop circuit

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/721,874 Ceased US6489851B1 (en) 1999-11-26 2000-11-27 Phase locked loop circuit
US10/635,534 Expired - Lifetime USRE39807E1 (en) 1999-11-26 2003-08-07 Phase locked loop circuit

Country Status (2)

Country Link
US (3) US6489851B1 (en)
JP (1) JP3407197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130108001A1 (en) * 2011-10-27 2013-05-02 Himax Technologies Limited Clock and data recovery (cdr) architecture and phase detector thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400043B1 (en) * 2001-06-11 2003-09-29 삼성전자주식회사 Data recovery circuit and method thereof
KR20030002249A (en) * 2001-06-30 2003-01-08 주식회사 하이닉스반도체 Data recovery circuit in high frequency system
JP2003123403A (en) * 2001-10-10 2003-04-25 Matsushita Electric Ind Co Ltd Recording clock generating circuit
US6608511B1 (en) * 2002-07-17 2003-08-19 Via Technologies, Inc. Charge-pump phase-locked loop circuit with charge calibration
JP3863522B2 (en) 2003-12-25 2006-12-27 Necエレクトロニクス株式会社 Digital VCO, VCO circuit, PLL circuit, information recording apparatus, and synchronous clock signal generation method
KR100570632B1 (en) 2004-07-06 2006-04-12 삼성전자주식회사 Circuits and Method for Recovering Channel Clock, and High Speed Data Transceiver Circuits
US7751521B2 (en) 2004-11-16 2010-07-06 Electronics And Telecommunications Research Institute Clock and data recovery apparatus
KR100706605B1 (en) * 2004-11-16 2007-04-12 한국전자통신연구원 Clock and data recovery apparatus
US7764088B2 (en) * 2008-09-24 2010-07-27 Faraday Technology Corp. Frequency detection circuit and detection method for clock data recovery circuit
US8373473B2 (en) * 2010-07-20 2013-02-12 Etron Technology, Inc. Dual-loop phase lock loop
JP6024489B2 (en) * 2013-01-31 2016-11-16 富士通株式会社 Clock recovery circuit and clock data recovery circuit
TWI603175B (en) * 2013-08-14 2017-10-21 群聯電子股份有限公司 Connecting interface unit and memory storage device
WO2016153653A1 (en) 2015-03-23 2016-09-29 Microsemi SoC Corporation Hybrid phase locked loop having wide locking range
JP6582771B2 (en) * 2015-09-09 2019-10-02 富士通株式会社 Signal reproduction circuit, electronic device, and signal reproduction method
JP6724619B2 (en) 2016-07-15 2020-07-15 富士通株式会社 Signal reproducing circuit, electronic device and signal reproducing method
JP6906460B2 (en) * 2018-02-23 2021-07-21 ルネサスエレクトロニクス株式会社 PLL circuit, semiconductor device equipped with it, and control method of PLL circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766397A (en) 1985-02-01 1988-08-23 Advanced Micro Devices, Inc. Phase detector and phase-locked loop apparatus
US5633766A (en) 1989-10-30 1997-05-27 Hitachi, Ltd. Magnetic disk storage apparatus with phase sync circuit having controllable response characteristics
US5686849A (en) 1995-03-14 1997-11-11 Cselt Centro Studi E Laboratori Telecomunicazioni S.P.A. Circuit for clock signal extraction from a high speed data stream
US6088311A (en) 1997-08-28 2000-07-11 Mitsubishi Denki Kabushiki Kaisha Optical disc device
US6147530A (en) 1997-10-15 2000-11-14 Nec Corporation PLL circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766397A (en) 1985-02-01 1988-08-23 Advanced Micro Devices, Inc. Phase detector and phase-locked loop apparatus
US5633766A (en) 1989-10-30 1997-05-27 Hitachi, Ltd. Magnetic disk storage apparatus with phase sync circuit having controllable response characteristics
US5686849A (en) 1995-03-14 1997-11-11 Cselt Centro Studi E Laboratori Telecomunicazioni S.P.A. Circuit for clock signal extraction from a high speed data stream
US6088311A (en) 1997-08-28 2000-07-11 Mitsubishi Denki Kabushiki Kaisha Optical disc device
US6147530A (en) 1997-10-15 2000-11-14 Nec Corporation PLL circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130108001A1 (en) * 2011-10-27 2013-05-02 Himax Technologies Limited Clock and data recovery (cdr) architecture and phase detector thereof
US8457269B2 (en) * 2011-10-27 2013-06-04 Ncku Research And Development Foundation Clock and data recovery (CDR) architecture and phase detector thereof

Also Published As

Publication number Publication date
JP3407197B2 (en) 2003-05-19
USRE39807E1 (en) 2007-09-04
JP2001156631A (en) 2001-06-08
US6489851B1 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
USRE41235E1 (en) Phase locked loop circuit
US7746180B2 (en) Phase-locked loop circuit and data reproduction apparatus
US8258841B2 (en) PLL circuit and optical disc apparatus
US5307028A (en) Phase-and-frequency mode/phase mode detector with the same gain in both modes
KR100190032B1 (en) Method for generating clock for recovering efm data and phase locked loop circuit thereof
JPH1173645A (en) Optical disk device
US6897691B2 (en) Phase locked loop with low steady state phase errors and calibration circuit for the same
US6157218A (en) Phase-frequency detection with no dead zone
US5777967A (en) Optical disk device
JPH02202119A (en) Frequency tracking system
US6778624B2 (en) Digital PLL-based data detector for recorded data reproduction from storage medium
JPH048016A (en) Phase locked loop circuit and recording and reproducing device
JP2000261316A (en) Phase synchronous circuit
JP3126610B2 (en) Control method of counter in clock generation circuit
KR19990029170A (en) Phase-locked loop with independent phase and frequency adjustment
US4351000A (en) Clock generator in PCM signal reproducing apparatus
US5889418A (en) Frequency detector of phase locked loop
JP2000349625A (en) Phase comparator and phase locked loop circuit
KR100493000B1 (en) Phase-locked loop with stabilization function for error components of optical system and its stabilization method
JPH04162263A (en) Information reproducing device
JPH087468A (en) Optical disk reproducing device
JP2795008B2 (en) Input clock cutoff circuit method for phase-locked oscillation circuit
JPH0241026A (en) Pll circuit
JP2581980B2 (en) Digital phase comparator
JPH033166A (en) Phase synchronizing method, phase synchronizing circuit, system for detecting data speed and self-advancing oscillating period control means for phase synchronizing circuit

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: PANASONIC SEMICONDUCTOR SOLUTIONS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:052755/0917

Effective date: 20200521