USRE41065E1 - Alkynl and azido-substituted 4-anilinoquinazolines - Google Patents
Alkynl and azido-substituted 4-anilinoquinazolines Download PDFInfo
- Publication number
- USRE41065E1 USRE41065E1 US12/038,530 US3853008A USRE41065E US RE41065 E1 USRE41065 E1 US RE41065E1 US 3853008 A US3853008 A US 3853008A US RE41065 E USRE41065 E US RE41065E
- Authority
- US
- United States
- Prior art keywords
- amine
- quinazolin
- ethynylphenyl
- ethynyl
- phenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- -1 azido-substituted 4-anilinoquinazolines Chemical class 0.000 title claims description 82
- 150000001875 compounds Chemical class 0.000 claims abstract description 121
- 238000000034 method Methods 0.000 claims abstract description 54
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 35
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 32
- 230000003463 hyperproliferative effect Effects 0.000 claims abstract description 30
- 150000003839 salts Chemical class 0.000 claims abstract description 22
- 201000011510 cancer Diseases 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 10
- 201000010099 disease Diseases 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 53
- 125000005843 halogen group Chemical group 0.000 claims description 46
- 239000001257 hydrogen Substances 0.000 claims description 30
- 229910052739 hydrogen Inorganic materials 0.000 claims description 30
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 29
- 208000035475 disorder Diseases 0.000 claims description 28
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 28
- 125000001424 substituent group Chemical group 0.000 claims description 24
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 20
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 16
- 241000124008 Mammalia Species 0.000 claims description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- 125000004546 quinazolin-4-yl group Chemical group N1=CN=C(C2=CC=CC=C12)* 0.000 claims description 15
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 14
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 14
- 125000002947 alkylene group Chemical group 0.000 claims description 12
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 11
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 125000005842 heteroatom Chemical group 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 210000000481 breast Anatomy 0.000 claims description 7
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 claims description 7
- 125000005951 trifluoromethanesulfonyloxy group Chemical group 0.000 claims description 7
- 125000004423 acyloxy group Chemical group 0.000 claims description 6
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 230000002496 gastric effect Effects 0.000 claims description 6
- 206010020718 hyperplasia Diseases 0.000 claims description 6
- 210000004072 lung Anatomy 0.000 claims description 6
- 210000002307 prostate Anatomy 0.000 claims description 6
- XSMVZQAPXNUGBP-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-7-(2-methoxyethoxy)quinazolin-6-yl]oxyethyl acetate Chemical compound C=12C=C(OCCOC(C)=O)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 XSMVZQAPXNUGBP-UHFFFAOYSA-N 0.000 claims description 5
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical group N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 claims description 5
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 5
- 150000001540 azides Chemical class 0.000 claims description 5
- 210000004556 brain Anatomy 0.000 claims description 5
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 claims description 5
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 claims description 4
- MTLKTHNRZJKPRP-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-6-(2-methoxyethoxy)quinazolin-7-yl]oxyethanol Chemical compound N1=CN=C2C=C(OCCO)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 MTLKTHNRZJKPRP-UHFFFAOYSA-N 0.000 claims description 4
- YWSAEKIQJPQSDJ-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-7-(2-hydroxyethoxy)quinazolin-6-yl]oxyethanol Chemical compound C=12C=C(OCCO)C(OCCO)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 YWSAEKIQJPQSDJ-UHFFFAOYSA-N 0.000 claims description 4
- DUGLQQONGNNEMW-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-7-methoxyquinazolin-6-yl]acetamide Chemical compound C=12C=C(CC(N)=O)C(OC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 DUGLQQONGNNEMW-UHFFFAOYSA-N 0.000 claims description 4
- UBUGNWMTGOQPCM-UHFFFAOYSA-N 2-[7-(2-acetyloxyethoxy)-4-(3-ethynylanilino)quinazolin-6-yl]oxyethyl acetate Chemical compound C=12C=C(OCCOC(C)=O)C(OCCOC(=O)C)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 UBUGNWMTGOQPCM-UHFFFAOYSA-N 0.000 claims description 4
- BLEIGNISAJGLGG-UHFFFAOYSA-N 2-[[1-(3-ethynylanilino)-7-(2-hydroxyethoxy)-2h-quinazolin-6-yl]oxy]ethanol Chemical compound C1=2C=C(OCCO)C(OCCO)=CC=2C=NCN1NC1=CC=CC(C#C)=C1 BLEIGNISAJGLGG-UHFFFAOYSA-N 0.000 claims description 4
- JLSORGGMGRVXKF-UHFFFAOYSA-N 2-[[1-(3-ethynylanilino)-7-(2-methoxyethoxy)-2h-quinazolin-6-yl]oxy]ethanol Chemical compound C1N=CC=2C=C(OCCO)C(OCCOC)=CC=2N1NC1=CC=CC(C#C)=C1 JLSORGGMGRVXKF-UHFFFAOYSA-N 0.000 claims description 4
- NRKMCAKKJSZIRN-UHFFFAOYSA-N 4-n-(3-ethynylphenyl)quinazoline-4,6-diamine Chemical compound C12=CC(N)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 NRKMCAKKJSZIRN-UHFFFAOYSA-N 0.000 claims description 4
- AZMJCKIZWVLDEH-UHFFFAOYSA-N 6,7-diethoxy-n-(3-ethynylphenyl)-2h-quinazolin-1-amine Chemical compound C1=2C=C(OCC)C(OCC)=CC=2C=NCN1NC1=CC=CC(C#C)=C1 AZMJCKIZWVLDEH-UHFFFAOYSA-N 0.000 claims description 4
- VAGMISGAVFFXMY-UHFFFAOYSA-N 6-(aminomethyl)-n-(3-ethynylphenyl)-7-methoxyquinazolin-4-amine Chemical compound C=12C=C(CN)C(OC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 VAGMISGAVFFXMY-UHFFFAOYSA-N 0.000 claims description 4
- 201000004681 Psoriasis Diseases 0.000 claims description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 125000002962 imidazol-1-yl group Chemical group [*]N1C([H])=NC([H])=C1[H] 0.000 claims description 4
- NPWROGXMBGWEJT-UHFFFAOYSA-N n-[4-(3-ethynylanilino)quinazolin-6-yl]methanesulfonamide Chemical compound C12=CC(NS(=O)(=O)C)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 NPWROGXMBGWEJT-UHFFFAOYSA-N 0.000 claims description 4
- 239000000651 prodrug Substances 0.000 claims description 4
- 229940002612 prodrug Drugs 0.000 claims description 4
- 201000002510 thyroid cancer Diseases 0.000 claims description 4
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 4
- TZHTWWZUWBDHPB-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-6-(2-methoxyethoxy)quinazolin-7-yl]oxyethyl acetate Chemical compound N1=CN=C2C=C(OCCOC(C)=O)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 TZHTWWZUWBDHPB-UHFFFAOYSA-N 0.000 claims description 3
- MLFVZJQGCZIVJI-UHFFFAOYSA-N 4-n-(3-ethynylphenyl)quinazoline-4,7-diamine Chemical compound N=1C=NC2=CC(N)=CC=C2C=1NC1=CC=CC(C#C)=C1 MLFVZJQGCZIVJI-UHFFFAOYSA-N 0.000 claims description 3
- 150000001345 alkine derivatives Chemical class 0.000 claims description 3
- 210000003734 kidney Anatomy 0.000 claims description 3
- 210000004185 liver Anatomy 0.000 claims description 3
- KWTKAHJFBOHEHR-UHFFFAOYSA-N n-(3-azido-5-chlorophenyl)-6,7-dimethoxyquinazolin-4-amine Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC(Cl)=CC(N=[N+]=[N-])=C1 KWTKAHJFBOHEHR-UHFFFAOYSA-N 0.000 claims description 3
- PPLYDLMRYZIHOR-UHFFFAOYSA-N n-(3-ethynyl-2-methylphenyl)-6,7-dimethoxyquinazolin-4-amine Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1C PPLYDLMRYZIHOR-UHFFFAOYSA-N 0.000 claims description 3
- OVBFNQKSLJYVCB-UHFFFAOYSA-N n-(4-ethynylphenyl)-6,7-dimethoxyquinazolin-4-amine Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=C(C#C)C=C1 OVBFNQKSLJYVCB-UHFFFAOYSA-N 0.000 claims description 3
- 210000003932 urinary bladder Anatomy 0.000 claims description 3
- BDGHRVPXZUKXIP-UHFFFAOYSA-N 1-n-(3-ethynylphenyl)-2h-quinazoline-1,6-diamine Chemical compound C1N=CC2=CC(N)=CC=C2N1NC1=CC=CC(C#C)=C1 BDGHRVPXZUKXIP-UHFFFAOYSA-N 0.000 claims description 2
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 claims description 2
- KOQIAZNBAWFSQM-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-7-(2-methoxyethoxy)quinazolin-6-yl]oxyethanol Chemical compound C=12C=C(OCCO)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 KOQIAZNBAWFSQM-UHFFFAOYSA-N 0.000 claims description 2
- COYVNRXIBHVWOA-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-7-propan-2-yloxyquinazolin-6-yl]acetamide Chemical compound C=12C=C(CC(N)=O)C(OC(C)C)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 COYVNRXIBHVWOA-UHFFFAOYSA-N 0.000 claims description 2
- TYRDQXAAPHCGHJ-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-7-propoxyquinazolin-6-yl]acetamide Chemical compound C=12C=C(CC(N)=O)C(OCCC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 TYRDQXAAPHCGHJ-UHFFFAOYSA-N 0.000 claims description 2
- RPBDPTCBOMUIEM-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)quinazolin-6-yl]guanidine Chemical compound C12=CC(NC(=N)N)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 RPBDPTCBOMUIEM-UHFFFAOYSA-N 0.000 claims description 2
- OLQYOMSHERWQMA-UHFFFAOYSA-N 2-[7-ethoxy-4-(3-ethynylanilino)quinazolin-6-yl]acetamide Chemical compound C=12C=C(CC(N)=O)C(OCC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 OLQYOMSHERWQMA-UHFFFAOYSA-N 0.000 claims description 2
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 claims description 2
- XCMVOGXJGDEPQM-UHFFFAOYSA-N 3-[4-(3-ethynylanilino)-7-methoxyquinazolin-6-yl]propanamide Chemical compound C=12C=C(CCC(N)=O)C(OC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 XCMVOGXJGDEPQM-UHFFFAOYSA-N 0.000 claims description 2
- HZDFRVLTROVMEI-UHFFFAOYSA-N 3-[4-(3-ethynylanilino)-7-propan-2-yloxyquinazolin-6-yl]propanamide Chemical compound C=12C=C(CCC(N)=O)C(OC(C)C)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 HZDFRVLTROVMEI-UHFFFAOYSA-N 0.000 claims description 2
- OIESHIYYNQZRCL-UHFFFAOYSA-N 3-[4-(3-ethynylanilino)-7-propoxyquinazolin-6-yl]propanamide Chemical compound C=12C=C(CCC(N)=O)C(OCCC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 OIESHIYYNQZRCL-UHFFFAOYSA-N 0.000 claims description 2
- JIKUZGKMYUACPU-UHFFFAOYSA-N 3-[7-ethoxy-4-(3-ethynylanilino)quinazolin-6-yl]propanamide Chemical compound C=12C=C(CCC(N)=O)C(OCC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 JIKUZGKMYUACPU-UHFFFAOYSA-N 0.000 claims description 2
- OPZQXOBOVGSGMM-UHFFFAOYSA-N 6,7-bis(2-chloroethoxy)-n-(3-ethynylphenyl)quinazolin-4-amine Chemical compound C=12C=C(OCCCl)C(OCCCl)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 OPZQXOBOVGSGMM-UHFFFAOYSA-N 0.000 claims description 2
- KNIMCHSAQRHRKH-UHFFFAOYSA-N 6,7-dibutoxy-n-(3-ethynylphenyl)-2h-quinazolin-1-amine Chemical compound C1=2C=C(OCCCC)C(OCCCC)=CC=2C=NCN1NC1=CC=CC(C#C)=C1 KNIMCHSAQRHRKH-UHFFFAOYSA-N 0.000 claims description 2
- FIXQTOIVGLSWPU-UHFFFAOYSA-N 6,7-diethoxy-n-(3-ethynyl-2-methylphenyl)-2h-quinazolin-1-amine Chemical compound C1=2C=C(OCC)C(OCC)=CC=2C=NCN1NC1=CC=CC(C#C)=C1C FIXQTOIVGLSWPU-UHFFFAOYSA-N 0.000 claims description 2
- PWAOXBSJGPYUQY-UHFFFAOYSA-N 6,7-diethoxy-n-(3-ethynyl-4-fluorophenyl)quinazolin-4-amine Chemical compound C=12C=C(OCC)C(OCC)=CC2=NC=NC=1NC1=CC=C(F)C(C#C)=C1 PWAOXBSJGPYUQY-UHFFFAOYSA-N 0.000 claims description 2
- MJHMAEWXIGNEKY-UHFFFAOYSA-N 6,7-diethoxy-n-(3-ethynyl-4-methylphenyl)quinazolin-4-amine Chemical compound C=12C=C(OCC)C(OCC)=CC2=NC=NC=1NC1=CC=C(C)C(C#C)=C1 MJHMAEWXIGNEKY-UHFFFAOYSA-N 0.000 claims description 2
- UTMDNDGLZDMVOG-UHFFFAOYSA-N 6,7-diethoxy-n-(3-ethynyl-5-fluorophenyl)quinazolin-4-amine Chemical compound C=12C=C(OCC)C(OCC)=CC2=NC=NC=1NC1=CC(F)=CC(C#C)=C1 UTMDNDGLZDMVOG-UHFFFAOYSA-N 0.000 claims description 2
- QVFOKWRFZKDYLX-UHFFFAOYSA-N 6,7-diethoxy-n-(5-ethynyl-2-methylphenyl)quinazolin-4-amine Chemical compound C=12C=C(OCC)C(OCC)=CC2=NC=NC=1NC1=CC(C#C)=CC=C1C QVFOKWRFZKDYLX-UHFFFAOYSA-N 0.000 claims description 2
- DBLVDARHJKFUSK-UHFFFAOYSA-N 6-(2-chloroethoxy)-n-(3-ethynylphenyl)-7-(2-methoxyethoxy)quinazolin-4-amine Chemical compound C=12C=C(OCCCl)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 DBLVDARHJKFUSK-UHFFFAOYSA-N 0.000 claims description 2
- BIHHIONDWPZXJC-UHFFFAOYSA-N 7-(2-chloroethoxy)-n-(3-ethynylphenyl)-6-(2-methoxyethoxy)quinazolin-4-amine Chemical compound N1=CN=C2C=C(OCCCl)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 BIHHIONDWPZXJC-UHFFFAOYSA-N 0.000 claims description 2
- XOTGKYTUNDYTBS-UHFFFAOYSA-N N-(3-ethynylphenyl)-6,7-dimethoxy-4-quinazolinamine Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 XOTGKYTUNDYTBS-UHFFFAOYSA-N 0.000 claims description 2
- 229920006037 cross link polymer Polymers 0.000 claims description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 2
- MJGHBVDYEIMCDA-UHFFFAOYSA-N methyl 4-(3-ethynylanilino)quinazoline-6-carboxylate Chemical compound C12=CC(C(=O)OC)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 MJGHBVDYEIMCDA-UHFFFAOYSA-N 0.000 claims description 2
- SRGSZEVWWPMFLC-UHFFFAOYSA-N methyl 4-(3-ethynylanilino)quinazoline-7-carboxylate Chemical compound N=1C=NC2=CC(C(=O)OC)=CC=C2C=1NC1=CC=CC(C#C)=C1 SRGSZEVWWPMFLC-UHFFFAOYSA-N 0.000 claims description 2
- VVCIISBATPBTBZ-UHFFFAOYSA-N n-(3-azidophenyl)-6,7-dimethoxyquinazolin-4-amine Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=CC(N=[N+]=[N-])=C1 VVCIISBATPBTBZ-UHFFFAOYSA-N 0.000 claims description 2
- YVEQUSIQTPNUHB-UHFFFAOYSA-N n-(3-ethynyl-2-methylphenyl)-6,7-bis(2-methoxyethoxy)-2h-quinazolin-1-amine Chemical compound C1=2C=C(OCCOC)C(OCCOC)=CC=2C=NCN1NC1=CC=CC(C#C)=C1C YVEQUSIQTPNUHB-UHFFFAOYSA-N 0.000 claims description 2
- FFNSJZNWHNDAKT-UHFFFAOYSA-N n-(3-ethynyl-4-fluorophenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=C(F)C(C#C)=C1 FFNSJZNWHNDAKT-UHFFFAOYSA-N 0.000 claims description 2
- UEKLAZGZLXRYAO-UHFFFAOYSA-N n-(3-ethynyl-4-fluorophenyl)-6,7-dimethoxyquinazolin-4-amine Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(C#C)=C1 UEKLAZGZLXRYAO-UHFFFAOYSA-N 0.000 claims description 2
- RMTOBWAVMBQAOO-UHFFFAOYSA-N n-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-2h-quinazolin-1-amine Chemical compound C1=2C=C(OCCOC)C(OCCOC)=CC=2C=NCN1NC1=CC=CC(C#C)=C1 RMTOBWAVMBQAOO-UHFFFAOYSA-N 0.000 claims description 2
- FKTOOVAYMNBBOM-UHFFFAOYSA-N n-(3-ethynylphenyl)-6,7-di(propan-2-yloxy)-2h-quinazolin-1-amine Chemical compound C1=2C=C(OC(C)C)C(OC(C)C)=CC=2C=NCN1NC1=CC=CC(C#C)=C1 FKTOOVAYMNBBOM-UHFFFAOYSA-N 0.000 claims description 2
- YHGQPRLZLURJKG-UHFFFAOYSA-N n-(3-ethynylphenyl)-6,7-dimethoxy-2h-quinazolin-1-amine Chemical compound C1=2C=C(OC)C(OC)=CC=2C=NCN1NC1=CC=CC(C#C)=C1 YHGQPRLZLURJKG-UHFFFAOYSA-N 0.000 claims description 2
- NOVVLAOVTILDRY-UHFFFAOYSA-N n-(3-ethynylphenyl)-6,7-dipropoxyquinazolin-4-amine Chemical compound C=12C=C(OCCC)C(OCCC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 NOVVLAOVTILDRY-UHFFFAOYSA-N 0.000 claims description 2
- OHTXAZFSJVRZLD-UHFFFAOYSA-N n-(3-ethynylphenyl)-6-(2-methoxyethoxy)-7-[2-(4-methylpiperazin-1-yl)ethoxy]quinazolin-4-amine Chemical compound N1=CN=C2C=C(OCCN3CCN(C)CC3)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 OHTXAZFSJVRZLD-UHFFFAOYSA-N 0.000 claims description 2
- XNMSCKOLUZHGET-UHFFFAOYSA-N n-(3-ethynylphenyl)-6-methylsulfonylquinazolin-4-amine Chemical compound C12=CC(S(=O)(=O)C)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 XNMSCKOLUZHGET-UHFFFAOYSA-N 0.000 claims description 2
- DOAMPDMHUHJVAU-UHFFFAOYSA-N n-(3-ethynylphenyl)-6-nitroquinazolin-4-amine Chemical compound C12=CC([N+](=O)[O-])=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 DOAMPDMHUHJVAU-UHFFFAOYSA-N 0.000 claims description 2
- AWQMPORAKHHXOC-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-methoxyquinazolin-4-amine Chemical compound N=1C=NC2=CC(OC)=CC=C2C=1NC1=CC=CC(C#C)=C1 AWQMPORAKHHXOC-UHFFFAOYSA-N 0.000 claims description 2
- PXVOMAUMUFQFKF-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-nitroquinazolin-4-amine Chemical compound N=1C=NC2=CC([N+](=O)[O-])=CC=C2C=1NC1=CC=CC(C#C)=C1 PXVOMAUMUFQFKF-UHFFFAOYSA-N 0.000 claims description 2
- LBAXXGJEHLZEQP-UHFFFAOYSA-N n-(3-ethynylphenyl)-[1,3]dioxolo[4,5-g]quinazolin-8-amine Chemical compound C#CC1=CC=CC(NC=2C3=CC=4OCOC=4C=C3N=CN=2)=C1 LBAXXGJEHLZEQP-UHFFFAOYSA-N 0.000 claims description 2
- OKTDEGSPQWQEEO-UHFFFAOYSA-N n-(4-azidophenyl)-6,7-dimethoxyquinazolin-4-amine Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=C(N=[N+]=[N-])C=C1 OKTDEGSPQWQEEO-UHFFFAOYSA-N 0.000 claims description 2
- MZSAGCRPYHVVDD-UHFFFAOYSA-N n-(5-ethynyl-2-methylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC(C#C)=CC=C1C MZSAGCRPYHVVDD-UHFFFAOYSA-N 0.000 claims description 2
- XWLHBTJRHHRNQM-UHFFFAOYSA-N n-(5-ethynyl-2-methylphenyl)-6,7-dimethoxyquinazolin-4-amine Chemical compound C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC(C#C)=CC=C1C XWLHBTJRHHRNQM-UHFFFAOYSA-N 0.000 claims description 2
- UWWQPGAHDVXTLK-UHFFFAOYSA-N n-[1-(3-ethynylanilino)-2h-quinazolin-6-yl]methanesulfonamide Chemical compound C1N=CC2=CC(NS(=O)(=O)C)=CC=C2N1NC1=CC=CC(C#C)=C1 UWWQPGAHDVXTLK-UHFFFAOYSA-N 0.000 claims description 2
- 210000003491 skin Anatomy 0.000 claims 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 144
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 122
- 239000000047 product Substances 0.000 description 122
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 86
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 78
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 72
- 239000007787 solid Substances 0.000 description 60
- 239000011541 reaction mixture Substances 0.000 description 49
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 48
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 46
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 34
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 32
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 29
- 239000012267 brine Substances 0.000 description 28
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 28
- 239000002904 solvent Substances 0.000 description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 25
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 24
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 24
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 24
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 24
- NNKQLUVBPJEUOR-UHFFFAOYSA-N 3-ethynylaniline Chemical compound NC1=CC=CC(C#C)=C1 NNKQLUVBPJEUOR-UHFFFAOYSA-N 0.000 description 22
- 150000001412 amines Chemical class 0.000 description 22
- 238000004128 high performance liquid chromatography Methods 0.000 description 22
- 238000010992 reflux Methods 0.000 description 21
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 239000007832 Na2SO4 Substances 0.000 description 19
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 19
- 229910052938 sodium sulfate Inorganic materials 0.000 description 19
- 239000002585 base Substances 0.000 description 18
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 18
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 15
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 239000012458 free base Substances 0.000 description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 14
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 14
- 239000012298 atmosphere Substances 0.000 description 13
- 229940093499 ethyl acetate Drugs 0.000 description 13
- 235000019439 ethyl acetate Nutrition 0.000 description 13
- 239000000284 extract Substances 0.000 description 13
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 12
- 235000019341 magnesium sulphate Nutrition 0.000 description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 12
- 229920006395 saturated elastomer Polymers 0.000 description 12
- 108060006698 EGF receptor Proteins 0.000 description 11
- 102000001301 EGF receptor Human genes 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000000741 silica gel Substances 0.000 description 11
- 229910002027 silica gel Inorganic materials 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 238000003818 flash chromatography Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000012044 organic layer Substances 0.000 description 10
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 10
- 238000004007 reversed phase HPLC Methods 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 9
- LLLHRNQLGUOJHP-UHFFFAOYSA-N 4-chloro-6,7-dimethoxyquinazoline Chemical compound C1=NC(Cl)=C2C=C(OC)C(OC)=CC2=N1 LLLHRNQLGUOJHP-UHFFFAOYSA-N 0.000 description 9
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 9
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 239000012043 crude product Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 229910000027 potassium carbonate Inorganic materials 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- ZPJLDMNVDPGZIU-UHFFFAOYSA-N 4-chloro-6,7-bis(2-methoxyethoxy)quinazoline Chemical compound C1=NC(Cl)=C2C=C(OCCOC)C(OCCOC)=CC2=N1 ZPJLDMNVDPGZIU-UHFFFAOYSA-N 0.000 description 8
- 0 CC.CC.[2*]N(C1=CC=CC=C1)C1=NC=NC2=C1C=CC=C2.[4*]C Chemical compound CC.CC.[2*]N(C1=CC=CC=C1)C1=NC=NC2=C1C=CC=C2.[4*]C 0.000 description 8
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 8
- 239000012442 inert solvent Substances 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 8
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 7
- 150000003840 hydrochlorides Chemical class 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 150000003246 quinazolines Chemical class 0.000 description 6
- 235000017557 sodium bicarbonate Nutrition 0.000 description 6
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 6
- CWMFRHBXRUITQE-UHFFFAOYSA-N trimethylsilylacetylene Chemical group C[Si](C)(C)C#C CWMFRHBXRUITQE-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 230000010933 acylation Effects 0.000 description 5
- 238000005917 acylation reaction Methods 0.000 description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 4
- 230000001093 anti-cancer Effects 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 239000003701 inert diluent Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 4
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 3
- MPOYBFYHRQBZPM-UHFFFAOYSA-N 3h-pyridin-4-one Chemical compound O=C1CC=NC=C1 MPOYBFYHRQBZPM-UHFFFAOYSA-N 0.000 description 3
- WXAZLCUYDRYLFC-UHFFFAOYSA-N 4-chloro-6,7-bis(2-chloroethoxy)quinazoline Chemical compound C1=NC(Cl)=C2C=C(OCCCl)C(OCCCl)=CC2=N1 WXAZLCUYDRYLFC-UHFFFAOYSA-N 0.000 description 3
- RORJMEOQKVOQBC-UHFFFAOYSA-N 4-chloro-6-(2-chloroethoxy)-7-(2-methoxyethoxy)quinazoline Chemical compound C1=NC(Cl)=C2C=C(OCCCl)C(OCCOC)=CC2=N1 RORJMEOQKVOQBC-UHFFFAOYSA-N 0.000 description 3
- HFGVHQGBDDTDIJ-UHFFFAOYSA-N 4-chloro-7-(2-chloroethoxy)-6-(2-methoxyethoxy)quinazoline Chemical compound N1=CN=C2C=C(OCCCl)C(OCCOC)=CC2=C1Cl HFGVHQGBDDTDIJ-UHFFFAOYSA-N 0.000 description 3
- UACQHSQWXWUFLT-UHFFFAOYSA-N 4-fluoro-3-(2-trimethylsilylethynyl)aniline Chemical compound C[Si](C)(C)C#CC1=CC(N)=CC=C1F UACQHSQWXWUFLT-UHFFFAOYSA-N 0.000 description 3
- XSLSFNALFKUARJ-UHFFFAOYSA-N 6,7-bis(2-methoxyethoxy)-1h-quinazolin-2-one Chemical compound C1=NC(=O)NC2=C1C=C(OCCOC)C(OCCOC)=C2 XSLSFNALFKUARJ-UHFFFAOYSA-N 0.000 description 3
- ZZHNBKOVSVWDIM-UHFFFAOYSA-N 7-chloro-n-(3-ethynylphenyl)-6-nitroquinazolin-4-amine;hydrochloride Chemical compound Cl.N1=CN=C2C=C(Cl)C([N+](=O)[O-])=CC2=C1NC1=CC=CC(C#C)=C1 ZZHNBKOVSVWDIM-UHFFFAOYSA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 3
- 239000005695 Ammonium acetate Substances 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- 101710098940 Pro-epidermal growth factor Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000001594 aberrant effect Effects 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 3
- 229940043376 ammonium acetate Drugs 0.000 description 3
- 235000019257 ammonium acetate Nutrition 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 3
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 3
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 3
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000005694 sulfonylation reaction Methods 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- FWIROFMBWVMWLB-UHFFFAOYSA-N 1-bromo-3-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC(Br)=C1 FWIROFMBWVMWLB-UHFFFAOYSA-N 0.000 description 2
- RXCAVRWLJXOQFR-UHFFFAOYSA-N 1-nitro-3-prop-1-ynylbenzene Chemical compound CC#CC1=CC=CC([N+]([O-])=O)=C1 RXCAVRWLJXOQFR-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- PMNLUUOXGOOLSP-UHFFFAOYSA-N 2-mercaptopropanoic acid Chemical compound CC(S)C(O)=O PMNLUUOXGOOLSP-UHFFFAOYSA-N 0.000 description 2
- KTUVWWBARHAYLK-UHFFFAOYSA-N 3-prop-1-ynylaniline Chemical compound CC#CC1=CC=CC(N)=C1 KTUVWWBARHAYLK-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 2
- HAWMAPSKEIQTAR-UHFFFAOYSA-N 6,7-dibutoxy-n-(3-ethynylphenyl)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OCCCC)C(OCCCC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 HAWMAPSKEIQTAR-UHFFFAOYSA-N 0.000 description 2
- LZAXDHPYDAHQEY-UHFFFAOYSA-N 6-ethenoxy-n-(3-ethynylphenyl)-7-(2-methoxyethoxy)quinazolin-4-amine Chemical compound C=12C=C(OC=C)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 LZAXDHPYDAHQEY-UHFFFAOYSA-N 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- IJHYQAANMKQYQX-UHFFFAOYSA-N C.CC.CC.O=C1=NC=Nc2ccccc21.OC1=NC=Nc2ccccc21 Chemical compound C.CC.CC.O=C1=NC=Nc2ccccc21.OC1=NC=Nc2ccccc21 IJHYQAANMKQYQX-UHFFFAOYSA-N 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 101000610640 Homo sapiens U4/U6 small nuclear ribonucleoprotein Prp3 Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N Lactic Acid Natural products CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 101001110823 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-A Proteins 0.000 description 2
- 101000712176 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-B Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 102100040374 U4/U6 small nuclear ribonucleoprotein Prp3 Human genes 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000005236 alkanoylamino group Chemical group 0.000 description 2
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- ZOAIGCHJWKDIPJ-UHFFFAOYSA-M caesium acetate Chemical compound [Cs+].CC([O-])=O ZOAIGCHJWKDIPJ-UHFFFAOYSA-M 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- KBPUBCVJHFXPOC-UHFFFAOYSA-N ethyl 3,4-dihydroxybenzoate Chemical compound CCOC(=O)C1=CC=C(O)C(O)=C1 KBPUBCVJHFXPOC-UHFFFAOYSA-N 0.000 description 2
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- WLPMLPRHPSNTHR-UHFFFAOYSA-N n-(3-ethynylphenyl)-6,7-dimethoxyquinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 WLPMLPRHPSNTHR-UHFFFAOYSA-N 0.000 description 2
- YCKNNOOOLDLHGY-UHFFFAOYSA-N n-(3-ethynylphenyl)-6-nitroquinazolin-4-amine;hydrochloride Chemical compound Cl.C12=CC([N+](=O)[O-])=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 YCKNNOOOLDLHGY-UHFFFAOYSA-N 0.000 description 2
- UHQRPOAMRZXPAS-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-(2-methoxyethylsulfanyl)quinazolin-4-amine;hydrochloride Chemical compound Cl.N=1C=NC2=CC(SCCOC)=CC=C2C=1NC1=CC=CC(C#C)=C1 UHQRPOAMRZXPAS-UHFFFAOYSA-N 0.000 description 2
- CTZUJXMPVGLREJ-UHFFFAOYSA-N n-(4-iodophenyl)-6,7-dimethoxyquinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=C(I)C=C1 CTZUJXMPVGLREJ-UHFFFAOYSA-N 0.000 description 2
- 150000002828 nitro derivatives Chemical class 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- AOJFQRQNPXYVLM-UHFFFAOYSA-N pyridin-1-ium;chloride Chemical compound [Cl-].C1=CC=[NH+]C=C1 AOJFQRQNPXYVLM-UHFFFAOYSA-N 0.000 description 2
- XAIQADWTFHMCOS-UHFFFAOYSA-N quinazoline-6-carbonitrile Chemical compound N1=CN=CC2=CC(C#N)=CC=C21 XAIQADWTFHMCOS-UHFFFAOYSA-N 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000006103 sulfonylation Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 150000003573 thiols Chemical group 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- XRKUMSQNWPGUTF-UHFFFAOYSA-N trimethyl-[2-(3-nitrophenyl)ethynyl]silane Chemical compound C[Si](C)(C)C#CC1=CC=CC([N+]([O-])=O)=C1 XRKUMSQNWPGUTF-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 2
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- 125000004760 (C1-C4) alkylsulfonylamino group Chemical group 0.000 description 1
- 125000004454 (C1-C6) alkoxycarbonyl group Chemical group 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- AFQFCFYQEIWLKJ-UHFFFAOYSA-N 1-[2-[4-(3-ethynylanilino)-6-(2-methoxyethoxy)quinazolin-7-yl]oxyethyl]pyridin-4-one;hydrochloride Chemical compound Cl.N1=CN=C2C=C(OCCN3C=CC(=O)C=C3)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 AFQFCFYQEIWLKJ-UHFFFAOYSA-N 0.000 description 1
- KYJWZIMGVWQUID-UHFFFAOYSA-N 1-[2-[4-(3-ethynylanilino)-7-(2-methoxyethoxy)quinazolin-6-yl]oxyethyl]pyridin-4-one;hydrochloride Chemical compound Cl.C=12C=C(OCCN3C=CC(=O)C=C3)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 KYJWZIMGVWQUID-UHFFFAOYSA-N 0.000 description 1
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 1
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- QMNUDYFKZYBWQX-UHFFFAOYSA-N 1H-quinazolin-4-one Chemical class C1=CC=C2C(=O)N=CNC2=C1 QMNUDYFKZYBWQX-UHFFFAOYSA-N 0.000 description 1
- HCPVYBCAYPMANM-UHFFFAOYSA-N 2-(1,3-dioxoisoindol-2-yl)ethanesulfonyl chloride Chemical compound C1=CC=C2C(=O)N(CCS(=O)(=O)Cl)C(=O)C2=C1 HCPVYBCAYPMANM-UHFFFAOYSA-N 0.000 description 1
- LZZLMZTVTUJGEC-UHFFFAOYSA-N 2-[(7-chloro-4-oxo-1h-quinazolin-6-yl)sulfanyl]acetamide Chemical compound N1=CNC(=O)C2=C1C=C(Cl)C(SCC(=O)N)=C2 LZZLMZTVTUJGEC-UHFFFAOYSA-N 0.000 description 1
- DIPPSATVOCYFSS-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-6-(2-methoxyethoxy)quinazolin-7-yl]oxyethanol;hydrochloride Chemical compound Cl.N1=CN=C2C=C(OCCO)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 DIPPSATVOCYFSS-UHFFFAOYSA-N 0.000 description 1
- CUXTVYBENQCZOP-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-7-(2-hydroxyethoxy)quinazolin-6-yl]oxyethanol;hydrochloride Chemical compound Cl.C=12C=C(OCCO)C(OCCO)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 CUXTVYBENQCZOP-UHFFFAOYSA-N 0.000 description 1
- BUOXOWNQZVIETJ-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)-7-(2-methoxyethoxy)quinazolin-6-yl]oxyethanol;hydrochloride Chemical compound Cl.C=12C=C(OCCO)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 BUOXOWNQZVIETJ-UHFFFAOYSA-N 0.000 description 1
- OPFZHICTNRDQQU-UHFFFAOYSA-N 2-[4-(3-ethynylanilino)quinazolin-6-yl]guanidine;hydrochloride Chemical compound Cl.C12=CC(NC(=N)N)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 OPFZHICTNRDQQU-UHFFFAOYSA-N 0.000 description 1
- KPRPFTOLWQQUAV-OCVAFRRMSA-N 2-amino-N-(4-hydroxy-1-bicyclo[2.2.2]octanyl)-5-[4-[(1R,5S)-3-(oxan-4-yl)-3-azabicyclo[3.1.0]hexan-1-yl]phenyl]pyridine-3-carboxamide Chemical compound NC1=C(C(=O)NC23CCC(CC2)(CC3)O)C=C(C=N1)C1=CC=C(C=C1)[C@@]12CN(C[C@H]2C1)C1CCOCC1 KPRPFTOLWQQUAV-OCVAFRRMSA-N 0.000 description 1
- UDSSKXAFALXYCP-UHFFFAOYSA-N 2-methyl-3-(2-trimethylsilylethynyl)aniline Chemical compound CC1=C(N)C=CC=C1C#C[Si](C)(C)C UDSSKXAFALXYCP-UHFFFAOYSA-N 0.000 description 1
- XWKFPIODWVPXLX-UHFFFAOYSA-N 2-methyl-5-methylpyridine Natural products CC1=CC=C(C)N=C1 XWKFPIODWVPXLX-UHFFFAOYSA-N 0.000 description 1
- YRLORWPBJZEGBX-UHFFFAOYSA-N 3,4-dihydro-2h-1,4-benzoxazine Chemical class C1=CC=C2NCCOC2=C1 YRLORWPBJZEGBX-UHFFFAOYSA-N 0.000 description 1
- GAZRNXIMWKZADY-UHFFFAOYSA-N 3,5-dimethylpyrazole-1-carboximidamide Chemical compound CC=1C=C(C)N(C(N)=N)N=1 GAZRNXIMWKZADY-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- IILVSKMKMOJHMA-UHFFFAOYSA-N 3-bromo-2-methylaniline Chemical compound CC1=C(N)C=CC=C1Br IILVSKMKMOJHMA-UHFFFAOYSA-N 0.000 description 1
- KOWPUNQBGWIERF-UHFFFAOYSA-N 3-bromo-4-fluoroaniline Chemical compound NC1=CC=C(F)C(Br)=C1 KOWPUNQBGWIERF-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- HWMVCSBQJWRQNF-UHFFFAOYSA-N 3-ethynyl-4-fluoroaniline Chemical compound NC1=CC=C(F)C(C#C)=C1 HWMVCSBQJWRQNF-UHFFFAOYSA-N 0.000 description 1
- CUNYDQJCQAWKLK-UHFFFAOYSA-N 3-ethynylaniline;hydrochloride Chemical compound Cl.NC1=CC=CC(C#C)=C1 CUNYDQJCQAWKLK-UHFFFAOYSA-N 0.000 description 1
- MJLHSJRIMKQIFP-UHFFFAOYSA-N 3-n-(6,7-dimethoxyquinazolin-4-yl)benzene-1,3-diamine;hydrochloride Chemical compound Cl.C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=CC(N)=C1 MJLHSJRIMKQIFP-UHFFFAOYSA-N 0.000 description 1
- VHFFODQAQLNACY-UHFFFAOYSA-N 4,7-dichloro-6-nitroquinazoline Chemical compound N1=CN=C2C=C(Cl)C([N+](=O)[O-])=CC2=C1Cl VHFFODQAQLNACY-UHFFFAOYSA-N 0.000 description 1
- QRZXFNFMRVWNDG-UHFFFAOYSA-N 4-(3-ethynylanilino)-6-(2-methoxyethoxy)quinazolin-7-ol Chemical compound N1=CN=C2C=C(O)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 QRZXFNFMRVWNDG-UHFFFAOYSA-N 0.000 description 1
- OBDMTFNWJCAFFV-UHFFFAOYSA-N 4-(3-ethynylanilino)-7-(2-methoxyethoxy)quinazolin-6-ol;hydrochloride Chemical compound Cl.C=12C=C(O)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 OBDMTFNWJCAFFV-UHFFFAOYSA-N 0.000 description 1
- SDYAJRBHPPWHSF-UHFFFAOYSA-N 4-azidoaniline;hydrochloride Chemical compound Cl.NC1=CC=C(N=[N+]=[N-])C=C1 SDYAJRBHPPWHSF-UHFFFAOYSA-N 0.000 description 1
- KZNXALJXBRSMFL-UHFFFAOYSA-N 4-bromo-1-methyl-2-nitrobenzene Chemical compound CC1=CC=C(Br)C=C1[N+]([O-])=O KZNXALJXBRSMFL-UHFFFAOYSA-N 0.000 description 1
- HGMQPDNSSYTATF-UHFFFAOYSA-N 4-chloro-6,7-diethoxyquinazoline Chemical compound C1=NC(Cl)=C2C=C(OCC)C(OCC)=CC2=N1 HGMQPDNSSYTATF-UHFFFAOYSA-N 0.000 description 1
- LZOSFEDULGODDH-UHFFFAOYSA-N 4-chloro-6-nitroquinazoline Chemical compound N1=CN=C(Cl)C2=CC([N+](=O)[O-])=CC=C21 LZOSFEDULGODDH-UHFFFAOYSA-N 0.000 description 1
- GUQZHZBMDPEBQG-UHFFFAOYSA-N 4-chloro-7-methoxyquinazoline Chemical compound ClC1=NC=NC2=CC(OC)=CC=C21 GUQZHZBMDPEBQG-UHFFFAOYSA-N 0.000 description 1
- CCCGYXZEVXWXAU-UHFFFAOYSA-N 4-chloro-7-nitroquinazoline Chemical compound ClC1=NC=NC2=CC([N+](=O)[O-])=CC=C21 CCCGYXZEVXWXAU-UHFFFAOYSA-N 0.000 description 1
- GVRRXASZZAKBMN-UHFFFAOYSA-N 4-chloroquinazoline Chemical compound C1=CC=C2C(Cl)=NC=NC2=C1 GVRRXASZZAKBMN-UHFFFAOYSA-N 0.000 description 1
- VLVCDUSVTXIWGW-UHFFFAOYSA-N 4-iodoaniline Chemical compound NC1=CC=C(I)C=C1 VLVCDUSVTXIWGW-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- JOWOVQOMOOEGES-UHFFFAOYSA-N 5-chloro-3-n-(6,7-dimethoxyquinazolin-4-yl)benzene-1,3-diamine;hydrochloride Chemical compound Cl.C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC(N)=CC(Cl)=C1 JOWOVQOMOOEGES-UHFFFAOYSA-N 0.000 description 1
- VZNUCJOYPXKLTA-UHFFFAOYSA-N 5-chlorobenzene-1,3-diamine Chemical compound NC1=CC(N)=CC(Cl)=C1 VZNUCJOYPXKLTA-UHFFFAOYSA-N 0.000 description 1
- UASVPQOWYLTXIE-UHFFFAOYSA-N 5-ethynyl-2-methylaniline Chemical compound CC1=CC=C(C#C)C=C1N UASVPQOWYLTXIE-UHFFFAOYSA-N 0.000 description 1
- MCJCPYXGLTWKGT-UHFFFAOYSA-N 6,7-bis(2-chloroethoxy)-n-(3-ethynylphenyl)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OCCCl)C(OCCCl)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 MCJCPYXGLTWKGT-UHFFFAOYSA-N 0.000 description 1
- BDBRXILWISDQCT-UHFFFAOYSA-N 6,7-di(propan-2-yloxy)-1h-quinazolin-4-one Chemical compound N1=CNC(=O)C2=C1C=C(OC(C)C)C(OC(C)C)=C2 BDBRXILWISDQCT-UHFFFAOYSA-N 0.000 description 1
- YUQAWTZXQLPKQJ-UHFFFAOYSA-N 6,7-dibutoxy-1h-quinazolin-4-one Chemical compound N1=CNC(=O)C2=C1C=C(OCCCC)C(OCCCC)=C2 YUQAWTZXQLPKQJ-UHFFFAOYSA-N 0.000 description 1
- CAKNVIMJJNHQLR-UHFFFAOYSA-N 6,7-diethoxy-1h-quinazolin-4-one Chemical compound N1=CNC(=O)C2=C1C=C(OCC)C(OCC)=C2 CAKNVIMJJNHQLR-UHFFFAOYSA-N 0.000 description 1
- ZQYYBJFCLFLXBU-UHFFFAOYSA-N 6,7-diethoxy-n-(3-ethynyl-2-methylphenyl)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OCC)C(OCC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1C ZQYYBJFCLFLXBU-UHFFFAOYSA-N 0.000 description 1
- YVTPAGRDUZRXKY-UHFFFAOYSA-N 6,7-diethoxy-n-(3-ethynylphenyl)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OCC)C(OCC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 YVTPAGRDUZRXKY-UHFFFAOYSA-N 0.000 description 1
- NQFZBXSVTMDWFQ-UHFFFAOYSA-N 6-(2-chloroethoxy)-n-(3-ethynylphenyl)-7-(2-methoxyethoxy)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OCCCl)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 NQFZBXSVTMDWFQ-UHFFFAOYSA-N 0.000 description 1
- BACJUPWRBIZKTC-UHFFFAOYSA-N 6-chloro-7-(2-methoxyethylsulfanyl)-1h-quinazolin-4-one Chemical compound N1=CNC(=O)C2=C1C=C(SCCOC)C(Cl)=C2 BACJUPWRBIZKTC-UHFFFAOYSA-N 0.000 description 1
- MQLZCTYIBFOKNM-UHFFFAOYSA-N 6-chloro-n-(3-ethynylphenyl)-7-(2-methoxyethylsulfanyl)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(Cl)C(SCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 MQLZCTYIBFOKNM-UHFFFAOYSA-N 0.000 description 1
- NOFVNLZQAOGUIT-UHFFFAOYSA-N 6-methoxy-1h-quinazolin-4-one Chemical compound N1=CNC(=O)C2=CC(OC)=CC=C21 NOFVNLZQAOGUIT-UHFFFAOYSA-N 0.000 description 1
- JUCDXPIFJIVICL-UHFFFAOYSA-N 6-methyl-1h-quinazolin-4-one Chemical compound N1C=NC(=O)C2=CC(C)=CC=C21 JUCDXPIFJIVICL-UHFFFAOYSA-N 0.000 description 1
- NMNMIARUPWAQPX-UHFFFAOYSA-N 6-methylsulfonyl-1h-quinazolin-4-one Chemical compound N1=CNC(=O)C2=CC(S(=O)(=O)C)=CC=C21 NMNMIARUPWAQPX-UHFFFAOYSA-N 0.000 description 1
- GBQJODHTQRFZEL-UHFFFAOYSA-N 7-(2-chloroethoxy)-n-(3-ethynylphenyl)-6-(2-methoxyethoxy)quinazolin-4-amine;hydrochloride Chemical compound Cl.N1=CN=C2C=C(OCCCl)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 GBQJODHTQRFZEL-UHFFFAOYSA-N 0.000 description 1
- QXPBGYZMMFTYMI-UHFFFAOYSA-N 7-(2-methoxyethylsulfanyl)-1h-quinazolin-4-one Chemical compound N1=CNC(=O)C=2C1=CC(SCCOC)=CC=2 QXPBGYZMMFTYMI-UHFFFAOYSA-N 0.000 description 1
- WSABBMONCWGLTJ-UHFFFAOYSA-N 7-chloro-4-n-(3-ethynylphenyl)quinazoline-4,6-diamine;hydrochloride Chemical compound Cl.N1=CN=C2C=C(Cl)C(N)=CC2=C1NC1=CC=CC(C#C)=C1 WSABBMONCWGLTJ-UHFFFAOYSA-N 0.000 description 1
- URDYTQYZXZKBQT-UHFFFAOYSA-N 7-chloro-6-nitro-1h-quinazolin-4-one Chemical compound N1C=NC(=O)C2=C1C=C(Cl)C([N+](=O)[O-])=C2 URDYTQYZXZKBQT-UHFFFAOYSA-N 0.000 description 1
- QVSGVNAEZGBBSW-UHFFFAOYSA-N 7-propylsulfanyl-1h-quinazolin-4-one Chemical compound N1=CNC(=O)C=2C1=CC(SCCC)=CC=2 QVSGVNAEZGBBSW-UHFFFAOYSA-N 0.000 description 1
- RZCJSVRGPHXBSM-UHFFFAOYSA-N 8-chloro-[1,3]dioxolo[4,5-g]quinazoline Chemical compound C1=C2C(Cl)=NC=NC2=CC2=C1OCO2 RZCJSVRGPHXBSM-UHFFFAOYSA-N 0.000 description 1
- 241000220479 Acacia Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 208000009849 Female Genital Neoplasms Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000851176 Homo sapiens Pro-epidermal growth factor Proteins 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 229910021205 NaH2PO2 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- GZEFZZOQDLHKLX-UHFFFAOYSA-N OC1=NC=NC2C=CC=CC12 Chemical compound OC1=NC=NC2C=CC=CC12 GZEFZZOQDLHKLX-UHFFFAOYSA-N 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- ZJOKWAWPAPMNIM-UHFFFAOYSA-N PD-153035 hydrochloride Chemical compound Cl.C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=CC(Br)=C1 ZJOKWAWPAPMNIM-UHFFFAOYSA-N 0.000 description 1
- 229910019213 POCl3 Inorganic materials 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920002065 Pluronic® P 105 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 1
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 238000003436 Schotten-Baumann reaction Methods 0.000 description 1
- 229940124639 Selective inhibitor Drugs 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000006242 amine protecting group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000007098 aminolysis reaction Methods 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- HOPRXXXSABQWAV-UHFFFAOYSA-N anhydrous collidine Natural products CC1=CC=NC(C)=C1C HOPRXXXSABQWAV-UHFFFAOYSA-N 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000005135 aryl sulfinyl group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 238000011717 athymic nude mouse Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WNAHYKISKIRRSY-UHFFFAOYSA-N azane;2-[2-[4-(3-ethynylanilino)-6-(2-methoxyethoxy)quinazolin-7-yl]oxyethylsulfanyl]acetic acid Chemical compound N.N1=CN=C2C=C(OCCSCC(O)=O)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 WNAHYKISKIRRSY-UHFFFAOYSA-N 0.000 description 1
- PKNDVMFXUUWOFB-UHFFFAOYSA-N azane;2-[2-[4-(3-ethynylanilino)-6-(2-methoxyethoxy)quinazolin-7-yl]oxyethylsulfanyl]propanoic acid Chemical compound N.N1=CN=C2C=C(OCCSC(C)C(O)=O)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 PKNDVMFXUUWOFB-UHFFFAOYSA-N 0.000 description 1
- KZHQEVQJKVQCIE-UHFFFAOYSA-N azane;2-[2-[4-(3-ethynylanilino)-7-(2-methoxyethoxy)quinazolin-6-yl]oxyethylsulfanyl]acetic acid Chemical compound N.C=12C=C(OCCSCC(O)=O)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 KZHQEVQJKVQCIE-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Substances N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000002252 carbamoylating effect Effects 0.000 description 1
- 230000021235 carbamoylation Effects 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical class ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 1
- 229940117975 chromium trioxide Drugs 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 1
- UTBIMNXEDGNJFE-UHFFFAOYSA-N collidine Natural products CC1=CC=C(C)C(C)=N1 UTBIMNXEDGNJFE-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 210000000448 cultured tumor cell Anatomy 0.000 description 1
- 229940045803 cuprous chloride Drugs 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 238000006900 dealkylation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- YNHIGQDRGKUECZ-UHFFFAOYSA-N dichloropalladium;triphenylphosphanium Chemical compound Cl[Pd]Cl.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-N 0.000 description 1
- FAMRKDQNMBBFBR-BQYQJAHWSA-N diethyl azodicarboxylate Substances CCOC(=O)\N=N\C(=O)OCC FAMRKDQNMBBFBR-BQYQJAHWSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- SPGAMGILENUIOF-UHFFFAOYSA-N dioxoplatinum;hydrate Chemical compound O.O=[Pt]=O SPGAMGILENUIOF-UHFFFAOYSA-N 0.000 description 1
- JZBWUTVDIDNCMW-UHFFFAOYSA-L dipotassium;oxido sulfate Chemical compound [K+].[K+].[O-]OS([O-])(=O)=O JZBWUTVDIDNCMW-UHFFFAOYSA-L 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- SIHZWGODIRRSRA-ONEGZZNKSA-N erbstatin Chemical compound OC1=CC=C(O)C(\C=C\NC=O)=C1 SIHZWGODIRRSRA-ONEGZZNKSA-N 0.000 description 1
- GTTBEUCJPZQMDZ-UHFFFAOYSA-N erlotinib hydrochloride Chemical compound [H+].[Cl-].C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 GTTBEUCJPZQMDZ-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- YZOWMIHUDJVXBH-UHFFFAOYSA-N ethyl 2-amino-4,5-bis(2-methoxyethoxy)benzoate Chemical compound CCOC(=O)C1=CC(OCCOC)=C(OCCOC)C=C1N YZOWMIHUDJVXBH-UHFFFAOYSA-N 0.000 description 1
- VGFZRAVMWXHEJB-UHFFFAOYSA-N ethyl 3,4-bis(2-methoxyethoxy)benzoate Chemical compound CCOC(=O)C1=CC=C(OCCOC)C(OCCOC)=C1 VGFZRAVMWXHEJB-UHFFFAOYSA-N 0.000 description 1
- VOHOFZNVWZWVMA-UHFFFAOYSA-N ethyl 4,5-bis(2-methoxyethoxy)-2-nitrobenzoate Chemical compound CCOC(=O)C1=CC(OCCOC)=C(OCCOC)C=C1[N+]([O-])=O VOHOFZNVWZWVMA-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- FAMRKDQNMBBFBR-UHFFFAOYSA-N ethyl n-ethoxycarbonyliminocarbamate Chemical compound CCOC(=O)N=NC(=O)OCC FAMRKDQNMBBFBR-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 201000003911 head and neck carcinoma Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002349 hydroxyamino group Chemical group [H]ON([H])[*] 0.000 description 1
- 125000005027 hydroxyaryl group Chemical group 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- IDHHMNQZABWRON-UHFFFAOYSA-N methyl 4-(3-ethynylanilino)quinazoline-6-carboxylate;hydrochloride Chemical compound Cl.C12=CC(C(=O)OC)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 IDHHMNQZABWRON-UHFFFAOYSA-N 0.000 description 1
- NTNPIJPZPRBNDW-UHFFFAOYSA-N methyl 4-(3-ethynylanilino)quinazoline-7-carboxylate;hydrochloride Chemical compound Cl.N=1C=NC2=CC(C(=O)OC)=CC=C2C=1NC1=CC=CC(C#C)=C1 NTNPIJPZPRBNDW-UHFFFAOYSA-N 0.000 description 1
- ZFTPRYBXJRWOHZ-UHFFFAOYSA-N methyl 4-chloroquinazoline-6-carboxylate Chemical compound N1=CN=C(Cl)C2=CC(C(=O)OC)=CC=C21 ZFTPRYBXJRWOHZ-UHFFFAOYSA-N 0.000 description 1
- BYHDRGRVVXBJIP-UHFFFAOYSA-N methyl 4-chloroquinazoline-7-carboxylate Chemical compound ClC1=NC=NC2=CC(C(=O)OC)=CC=C21 BYHDRGRVVXBJIP-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- ILBIXZPOMJFOJP-UHFFFAOYSA-N n,n-dimethylprop-2-yn-1-amine Chemical compound CN(C)CC#C ILBIXZPOMJFOJP-UHFFFAOYSA-N 0.000 description 1
- YBJOSAHERRCCJW-UHFFFAOYSA-N n-(3-ethynyl-2-methylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1C YBJOSAHERRCCJW-UHFFFAOYSA-N 0.000 description 1
- YHBVAFFTMUOBGK-UHFFFAOYSA-N n-(3-ethynyl-4-fluorophenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=C(F)C(C#C)=C1 YHBVAFFTMUOBGK-UHFFFAOYSA-N 0.000 description 1
- VBRYJPYSILOESF-UHFFFAOYSA-N n-(3-ethynyl-4-fluorophenyl)-6,7-dimethoxyquinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(C#C)=C1 VBRYJPYSILOESF-UHFFFAOYSA-N 0.000 description 1
- DEPCDHDAWBLYFX-UHFFFAOYSA-N n-(3-ethynyl-5-fluorophenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC(F)=CC(C#C)=C1 DEPCDHDAWBLYFX-UHFFFAOYSA-N 0.000 description 1
- QHLZFEIRZFUFLS-UHFFFAOYSA-N n-(3-ethynylphenyl)-6,7-di(propan-2-yloxy)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OC(C)C)C(OC(C)C)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 QHLZFEIRZFUFLS-UHFFFAOYSA-N 0.000 description 1
- BLHGKLOYJPGTTE-UHFFFAOYSA-N n-(3-ethynylphenyl)-6-(2-imidazol-1-ylethoxy)-7-(2-methoxyethoxy)quinazolin-4-amine;dihydrochloride Chemical compound Cl.Cl.C=12C=C(OCCN3C=NC=C3)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 BLHGKLOYJPGTTE-UHFFFAOYSA-N 0.000 description 1
- OELFXXDKHDALKF-UHFFFAOYSA-N n-(3-ethynylphenyl)-6-(2-methoxyethoxy)-7-[2-(4-methylpiperazin-1-yl)ethoxy]quinazolin-4-amine;dihydrochloride Chemical compound Cl.Cl.N1=CN=C2C=C(OCCN3CCN(C)CC3)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 OELFXXDKHDALKF-UHFFFAOYSA-N 0.000 description 1
- HMKJWRGRNHPARW-UHFFFAOYSA-N n-(3-ethynylphenyl)-6-methoxyquinazolin-4-amine;hydrochloride Chemical compound Cl.C12=CC(OC)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 HMKJWRGRNHPARW-UHFFFAOYSA-N 0.000 description 1
- PLILRSOXLSXQQW-UHFFFAOYSA-N n-(3-ethynylphenyl)-6-methylquinazolin-4-amine;hydrochloride Chemical compound Cl.C12=CC(C)=CC=C2N=CN=C1NC1=CC=CC(C#C)=C1 PLILRSOXLSXQQW-UHFFFAOYSA-N 0.000 description 1
- FXNPOBUEIRDARI-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-(2-imidazol-1-ylethoxy)-6-(2-methoxyethoxy)quinazolin-4-amine;dihydrochloride Chemical compound Cl.Cl.N1=CN=C2C=C(OCCN3C=NC=C3)C(OCCOC)=CC2=C1NC1=CC=CC(C#C)=C1 FXNPOBUEIRDARI-UHFFFAOYSA-N 0.000 description 1
- SVAZHTKUOLJSQL-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-(2-methoxyethoxy)-6-(2-morpholin-4-ylethoxy)quinazolin-4-amine;dihydrochloride Chemical compound Cl.Cl.C=12C=C(OCCN3CCOCC3)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 SVAZHTKUOLJSQL-UHFFFAOYSA-N 0.000 description 1
- DFMCIAKKWVZERJ-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-methoxy-6-nitroquinazolin-4-amine Chemical compound C=12C=C([N+]([O-])=O)C(OC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 DFMCIAKKWVZERJ-UHFFFAOYSA-N 0.000 description 1
- VITDPUGQQDQGEF-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-methoxyquinazolin-4-amine;hydrochloride Chemical compound Cl.N=1C=NC2=CC(OC)=CC=C2C=1NC1=CC=CC(C#C)=C1 VITDPUGQQDQGEF-UHFFFAOYSA-N 0.000 description 1
- QNXPBWBRUTVOIE-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-nitroquinazolin-4-amine;hydrochloride Chemical compound Cl.N=1C=NC2=CC([N+](=O)[O-])=CC=C2C=1NC1=CC=CC(C#C)=C1 QNXPBWBRUTVOIE-UHFFFAOYSA-N 0.000 description 1
- MANKXCCTWMBZAA-UHFFFAOYSA-N n-(3-ethynylphenyl)-7-propylsulfanylquinazolin-4-amine;hydrochloride Chemical compound Cl.N=1C=NC2=CC(SCCC)=CC=C2C=1NC1=CC=CC(C#C)=C1 MANKXCCTWMBZAA-UHFFFAOYSA-N 0.000 description 1
- WMJUQSKPKWEBOC-UHFFFAOYSA-N n-(3-ethynylphenyl)-[1,3]dioxolo[4,5-g]quinazolin-8-amine;hydrochloride Chemical compound Cl.C#CC1=CC=CC(NC=2C3=CC=4OCOC=4C=C3N=CN=2)=C1 WMJUQSKPKWEBOC-UHFFFAOYSA-N 0.000 description 1
- RSGPYKWXSSTIGC-UHFFFAOYSA-N n-(4-azidophenyl)-6,7-dimethoxyquinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OC)C(OC)=CC2=NC=NC=1NC1=CC=C(N=[N+]=[N-])C=C1 RSGPYKWXSSTIGC-UHFFFAOYSA-N 0.000 description 1
- VIKZXHATNZVSPZ-UHFFFAOYSA-N n-(5-ethynyl-2-methylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine;hydrochloride Chemical compound Cl.C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC(C#C)=CC=C1C VIKZXHATNZVSPZ-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- GVUGOAYIVIDWIO-UFWWTJHBSA-N nepidermin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CS)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CS)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C(C)C)C(C)C)C1=CC=C(O)C=C1 GVUGOAYIVIDWIO-UFWWTJHBSA-N 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000003880 polar aprotic solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- FJVZDOGVDJCCCR-UHFFFAOYSA-M potassium periodate Chemical compound [K+].[O-]I(=O)(=O)=O FJVZDOGVDJCCCR-UHFFFAOYSA-M 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- OEBIHOVSAMBXIB-SJKOYZFVSA-N selitrectinib Chemical compound C[C@@H]1CCC2=NC=C(F)C=C2[C@H]2CCCN2C2=NC3=C(C=NN3C=C2)C(=O)N1 OEBIHOVSAMBXIB-SJKOYZFVSA-N 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 125000004469 siloxy group Chemical group [SiH3]O* 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- ZVCDLGYNFYZZOK-UHFFFAOYSA-M sodium cyanate Chemical compound [Na]OC#N ZVCDLGYNFYZZOK-UHFFFAOYSA-M 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- KIMPPGSMONZDMN-UHFFFAOYSA-N sodium;dihydrogen phosphite Chemical compound [Na+].OP(O)[O-] KIMPPGSMONZDMN-UHFFFAOYSA-N 0.000 description 1
- QJDUDPQVDAASMV-UHFFFAOYSA-M sodium;ethanethiolate Chemical compound [Na+].CC[S-] QJDUDPQVDAASMV-UHFFFAOYSA-M 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000012258 stirred mixture Substances 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 150000003461 sulfonyl halides Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- GFYHSKONPJXCDE-UHFFFAOYSA-N sym-collidine Natural products CC1=CN=C(C)C(C)=C1 GFYHSKONPJXCDE-UHFFFAOYSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 208000013076 thyroid tumor Diseases 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 150000004917 tyrosine kinase inhibitor derivatives Chemical class 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/12—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/70—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
- C07D239/72—Quinazolines; Hydrogenated quinazolines
- C07D239/86—Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
- C07D239/94—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
Definitions
- This invention relates to 4-(substituted phenylamino) quinazoline derivatives which are useful in the treatment of hyperproliferative diseases, such as cancers, in mammals.
- a cell may become cancerous by virtue of the transformation of a portion of its DNA into an oncogene (i.e. a gene which, on activation, leads to the formation of malignant tumor cells).
- oncogenes encode proteins which are aberrant tyrosine kinases capable of causing cell transformation.
- the overexpression of a normal proto-oncogenic tyrosine kinase may also result in proliferative disorders, sometimes resulting in a malignant phenotype.
- Receptor tyrosine kinases are large enzymes which span the cell membrane and possess an extracellular binding domain for growth factors such as epidermal growth factor, a transmembrane domain, and an intracellular portion which functions as a kinase to phosphorylate specific tyrosine residues in proteins and hence to influence cell proliferation. It is known that such kinases are frequently aberrantly expressed in common human cancers such as breast cancer, gastrointestinal cancer such as colon, rectal or stomach cancer, leukemia, and ovarian, bronchial or pancreatic cancer.
- epidermal growth factor receptor which possesses tyrosine kinase activity is mutated and/or overexpressed in many human cancers such as brain, lung, squamous cell, bladder, gastric, breast, head and neck, oesophageal, gynecological and thyroid tumors.
- inhibitors of receptor tyrosine kinases are useful as a selective inhibitors of the growth of mammalian cancer cells.
- erbstatin a tyrosine kinase inhibitor selectively attenuates the growth in athymic nude mice of a transplanted human mammary carcinoma which expresses epidermal growth factor receptor tyrosine kinase (EGFR) but is without effect on the growth of another carcinoma which does not express the EGF receptor.
- EGFR epidermal growth factor receptor tyrosine kinase
- This invention relates to compounds of the formula and to pharmaceutically acceptable salts and prodrugs thereof, wherein:
- Preferred compounds of formula I include those wherein R 2 is hydrogen and R 4 is -(ethynyl)-R 11 .
- R 1 is independently selected from hydrogen, hydroxy, hydroxyamino, nitro, carbamoyl, ureido, R 5 optionally substituted with halo, —OR 6 , carboxy, or —C(O)NH 2 ; —OR 5 optionally substituted with halo, —OR 6 , —OC(O)R 6 , —NR 6 R 6 , or A; —NR 6 R 6 , —C(O)NR 6 R 6 , —SR 5 , phenyl-(C 2 -C 4 )-alkoxy wherein said phenyl moiety is optionally substituted with 1 or 2 substituents independently selected from halo, R 5 or —OR 5 .
- the invention further relates to a pharmaceutical composition for the treatment of a hyperproliferative disorder in a mammal which comprises a therapeutically-effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier.
- the invention further relates to a method of treating a hyperproliferative disorder in a mammal which comprises administering to said mammal a therapeutically-effective amount of the compound of claim 1 .
- the method of treating hyperproliferative disorders includes those wherein said hyperproliferative disorder is cancer.
- the method of treating hyperproliferative disorders includes those wherein said hyperproliferative disorder is said cancer is brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, oesophageal, gynecological or thyroid cancer.
- the method of treating hyperproliferative disorders includes those wherein said hyperproliferative disorder is noncancerous.
- the method of treating hyperproliferative disorders includes those wherein said hyperproliferative disorder is a benign hyperplasia of the skin or prostate.
- the invention further relates to a process for preparing a compound of the formula or a pharmaceutically acceptable salt or prodrug thereof, wherein:
- Preferred processes for preparing the compound of formula I include those wherein each aryl group is selected from phenyl, naphth-1-yl and naphth-2-yl.
- halo as used herein, unless otherwise indicated, means chloro, bromo, iodo, or fluoro.
- alkyl as used herein, unless otherwise indicated, means straight chained, cyclic or branched, saturated or unsaturated hydrocarbon moiety with the proviso that said alkyl must comprise three or more carbon atoms if it is branched or cyclic.
- reaction-inert solvent refers to a solvent which does not interact with starting materials, reagents, intermediates or products in a manner which adversely affects the yield of the desired product.
- the Formula I compounds, pharmaceutically acceptable salts and prodrugs thereof may be prepared by any process known to be applicable to the preparation of chemically-related compounds.
- the active compounds may be made from the appropriately substituted quinazoline using the appropriately substituted amine.
- the reaction may be effected in the presence of a base, preferably an alkali or alkaline earth metal carbonate or hydroxide or a tertiary amine base, such as pyridine, 2,6-lutidine, collidine, N-methyl-morpholine, triethylamine, 4-dimethylamino-pyridine or N,N-dimethylaniline.
- bases are hereinafter refered to as suitable bases.
- the reaction mixture is maintained at a temperature from about ambient to about the reflux temperature of the solvent, preferably from about 35° C. to about reflux, until substantially no remaining 4-haloquinazoline can be detected, typically about 2 to about 24 hours.
- the reaction is performed under an inert atmosphere such as dry nitrogen.
- the reactants are combined stoichiometrically.
- an amine base is used for those compounds where a salt (typically the HCl salt) of an amine 4 or 5 is used, it is preferable to use excess amine base, generally an extra equivalent of amine base. (Alternatively, if an amine base is not used an excess of the amine 4 or 5 may be used).
- a sterically hindered amine 4 such as a 2-alkyl-3-ethynylaniline
- very reactive 4-haloquinazoline it is preferable to use t-butyl alcohol or a polar aprotic solvent such as DMF or N-methylpyrrolidin-2-one as the solvent.
- a 4-substituted quinazoline 2 wherein X is hydroxyl or oxo (and the 2-nitrogen is hydrogenated) is reacted with carbon tetrachloride and an optionally substituted triarylphosphine which is optionally supported on an inert polymer (e.g. triphenylphosphine, polymer supported, Aldrich Cat. No.
- 36,645-5 which is a 2% divinylbenzene cross-linked polystyrene containing 3 mmol phosphorous per gram resin) in a solvent such as carbon tetrachloride, chloroform, dichloroethane, tetrahydrofuran, acetonitrile or other aprotic solvent or mixtures thereof.
- a solvent such as carbon tetrachloride, chloroform, dichloroethane, tetrahydrofuran, acetonitrile or other aprotic solvent or mixtures thereof.
- the reaction mixture is maintained at a temperature from about ambient to reflux, preferably from about 35° C. to reflux, for 2 to 24 hours.
- This mixture is reacted with the appropriate amine or amine hydrochloride 4 or 5 either directly or after removal of solvent, for example by vacuum evaporation, and addition of a suitable alternative solvent such as a (C 1 -C 6 ) alcohol, DMF, N-methylpyrrolidin-2-one, pyridine or 1-4 dioxane.
- a suitable alternative solvent such as a (C 1 -C 6 ) alcohol, DMF, N-methylpyrrolidin-2-one, pyridine or 1-4 dioxane.
- the reaction mixture is maintained at a temperature from about ambient to the reflux temperature of the solvent preferably from about 35° C. to about reflux, until substantially complete formation of product is acheived, typically from about 2 to about 24 hours.
- the reaction is performed under an inert atmosphere such as dry nitrogen.
- Compound 3 is converted to compounds of formula 1 wherein R 4 is R 11 ethynyl, and R 11 is as defined above, by reaction with a suitable palladium reagent such as tetrakis (triphenylphosphine)palladium or bis(triphenylphosphine) palladium dichloride in the presence of a suitable Lewis acid such as cuprous chloride and a suitable alkyne such as trimethylsilylacetylene, propargyl alcohol or 3-(N,N-dimethylamino)-propyne in a solvent such as diethylamine or triethylamine.
- a suitable palladium reagent such as tetrakis (triphenylphosphine)palladium or bis(triphenylphosphine) palladium dichloride in the presence of a suitable Lewis acid such as cuprous chloride and a suitable alkyne such as trimethylsilylacetylene, propargyl alcohol or 3-(N
- Compounds 3, wherein Y is NH 2 may be converted to compounds 1 wherein R 4 is azide by treatment of compound 3 with a diazotizing agent, such as an acid and a nitrite (e.g., acetic acid and NaNO 2 ) followed by treatment of the resulting product with an azide, such as NaN 3 .
- a diazotizing agent such as an acid and a nitrite (e.g., acetic acid and NaNO 2 ) followed by treatment of the resulting product with an azide, such as NaN 3 .
- the reduction may conveniently be carried out by any of the many procedures known for such transformations.
- the reduction may be carried out, for example, by hydrogenation of the nitro compound in a reaction-inert solvent in the presence of a suitable metal catalyst such as palladium, platinum or nickel.
- a further suitable reducing agent is, for example, an activated metal such as activated iron (produced by washing iron powder with a dilute solution of an acid such as hydrochloric acid).
- the reduction may be carried out by heating a mixture of the nitro compound and the activated metal with concentrated hydrochloric acid in a solvent such as a mixture of water and an alcohol, for example, methanol or ethanol, to a temperature in the range, for example, 50° to 150° C., conveniently at or near 70° C.
- alkali metal dithionites such as sodium dithionite
- alkali metal dithionites such as sodium dithionite
- nitrogen protecting groups can be used.
- groups include (C 1 -C 6 )alkoxycarbonyl, optionally substituted benzyloxycarbonyl, aryloxycarbonyl, trityl, vinyloxycarbonyl, O-nitrophenylsulfonyl, diphenylphosphinyl, p-toluenesulfonyl, and benzyl.
- the addition of the nitrogen protecting group may be carried out in a chlorinated hydrocarbon solvent such as methylene chloride or 1,2-dichloroethane, or an ethereal solvent such as glyme, diglyme or THF, in the presence or absence of a tertiary amine base such as triethylamine, diisopropylethylamine or pyridine, preferably triethylamine, at a temperature from about 0° C. to about 50° C., preferably about ambient temperature.
- the protecting groups are . conveniently attached using Schotten-Baumann conditions.
- the protecting group may be removed by deprotecting methods known to those skilled in the art such as treatment with trifluoroacetic acid in methylene chloride for the tert-butoxycarbonyl protected products.
- the cleavage reaction may conveniently be carried out by any of the many procedures known for such a transformation.
- Treatment of the protected formula I derivative with molten pyridine hydrochloride (20-30 eq.) at 150° to 175° C. may be employed for O-dealkylations.
- the cleavage reaction may be carried out, for example, by treatment of the protected quinazoline derivative with an alkali metal (C 1 -C 4 )alkylsulphide, such as sodium ethanethiolate or by treatment with an alkali metal diarylphosphide such as lithium diphenylphosphide.
- the cleavage reaction may also, conveniently, be carried out by treatment of the protected quinazoline derivative with a boron or aluminum trihalide such as boron tribromide. Such reactions are preferably carried out in the presence of a reaction-inert solvent at a suitable temperature.
- Suitable oxidizing agents are known in the art for the oxidation of sulfanyl to sulphinyl and/or sulphonyl, e.g., hydrogen peroxide, a peracid (such as 3-chloroperoxybenzoic or peroxyacetic acid), an alkali metal peroxysulphate (such as potassium peroxymonosulphate), chromium trioxide or gaseous oxygen in the presence of platinum.
- the oxidation is generally carried out under as mild conditions as possible using the stoichiometric amount of oxidizing agent in order to reduce the risk of over oxidation and damage to other functional groups.
- the reaction is carried out in a suitable solvent such as methylene chloride, chloroform, acetone, tetrahydrofuran or tert-butyl methyl ether and at a temperature from about ⁇ 25° to 50° C., preferably at or near ambient temperature, i.e., in the range of 15° to 35° C.
- a milder oxidizing agents should be used such as sodium or potassium metaperiodate, conveniently in a polar solvent such as acetic acid or ethanol.
- the compounds of formula I containing a (C 1 -C 4 )alkylsulphonyl group may be obtained by oxidation of the corresponding (C 1 -C 4 )alkylsulphinyl compound as well as of the corresponding (C 1 C 4 )alkylsulfanyl compound.
- Suitable acylating agents are any agents known in the art for the acylation of amino to acylamino, for example, acyl halides, e.g., a (C 2 -C 4 )alkanoyl chloride or bromide or a benzoyl chloride or bromide, alkanoic acid anhydrides or mixed anhydrides (e.g., acetic anhydride or the mixed anhydride formed by the reaction of an alkanoic acid and a (C 1 -C 4 )alkoxycarbonyl halide, for example (C 1 -C 4 ) alkoxycarbonyl chloride, in the presence of a suitable base.
- acyl halides e.g., a (C 2 -C 4 )alkanoyl chloride or bromide or a benzoyl chloride or bromide
- alkanoic acid anhydrides or mixed anhydrides e.g., acetic anhydride or the mixed anhydr
- a suitable acylating agent is, for example, a cyanate, e.g., an alkali metal cyanate such as sodium cyanate, or an isocyanate such as phenyl isocyanate.
- N-sulfonylations may be carried out with suitable sulfonyl halides or sulfonylanhydrides in the presence of a tertiary amine base.
- the acylation or sulfonylation is carried out in a reaction-inert solvent and at a temperature in the range of about ⁇ 30° to 120° C., conveniently at or near ambient temperature.
- R 1 is (C 1 -C 4 )alkoxy or substituted (C 1 -C 4 )alkoxy or R 1 is (C 1 -C 4 )alkylamino or substituted mono-N- or di-N,N-(C 1 -C 4 )alkylamino, are prepared by the alkylation, preferably in the presence of a suitable base, of a corresponding compound wherein R 1 is hydroxy or amino, respectively.
- Suitable alkylating agents include alkyl or substituted alkyl halides, for example, an optionally substituted (C 1 -C 4 )alkyl chloride, bromide or iodide, in the presence of a suitable base in a reaction-inert solvent and at a temperature in the range of about 10° to 140° C., conveniently at or near ambient temperature.
- alkyl or substituted alkyl halides for example, an optionally substituted (C 1 -C 4 )alkyl chloride, bromide or iodide
- R 1 is a carboxy substituent or a substituent which includes a carboxy group
- R 1 is a (C 1 -C 4 )alkoxycarbonyl substituent or a substituent which includes a (C 1 -C 4 )alkoxycarbonyl group.
- the hydrolysis may conveniently be performed, for example, under basic conditions, e.g., in the presence of alkali metal hydroxide as illustrated in the accompanying Examples.
- Suitable acylating agents known in the art for acylation of hydroxyaryl moieties to alkanoyloxyaryl groups include, for example, (C 2 -C 4 )alkanoyl halides, (C 2 -C 4 )alkanoyl anhydrides and mixed anhydrides as described above, and suitable substituted derivatives thereof may be employed, typically in the presence of a suitable base.
- (C 2 -C 4 )alkanoic acids or suitably substituted derivatives thereof may be coupled with a Formula I compound wherein R 1 is hydroxy with the aid of a condensing agent such as a carbodiimide.
- suitable carbamoylating agents are, for example, cyanates or alkyl or arylisocyanates, typically in the presence of a suitable base.
- suitable intermediates such as the chloroformate or carbonylimidazolyl derivative of a compound of Formula I in which R 1 is hydroxy may be generated, for example, by treatment of said derivative with phosgene (or a phosgene equivalent) or carbonyidiimidazole. The resulting intermediate may then be reacted with an appropriate amine or substituted amine to produce the desired carbamoyl derivatives.
- the activation and coupling of formula I compounds wherein R 1 is carboxy may be performed by a variety of methods known to those skilled in the art. Suitable methods include activation of the carboxyl as an acid halide, azide, symmetric or mixed anhydride, or active ester of appropriate reactivity for coupling with the desired amine. Examples of such types of intermediates and their production and use in couplings with amines may be found extensively in the literature; for example M. Bodansky and A. Bodansky, “The Practice of Peptide Synthesis”, Springer,-Verlag, New York, 1984. The resulting formula I compounds may be isolated and purified by standard methods, such as solvent removal and recrystallization or chromatography.
- Certain Formula I quinazolines can exist in solvated, as well as unsolvated forms, such as the hydrated forms. It is to be understood that the invention encompasses all such solvated, as well as unsolvated forms, which possess activity against hyperproliferative diseases.
- a suitable pharmaceutically-acceptable salt of a compound of formula I is, for example, an acid-addition salt of a corresponding compound which is sufficiently basic, e.g., an acid-addition salt with, for example, an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric, phosphoric, methanesulfonic, benzenesulfonic, trifluoroacetic, citric, lactic or maleic acid.
- an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric, phosphoric, methanesulfonic, benzenesulfonic, trifluoroacetic, citric, lactic or maleic acid.
- a suitable pharmaceutically-acceptable base-addition salt of a compound of formula I which is acidic is an alkali metal salt, for example, a lithium, sodium or potassium salt; an alkaline earth metal salt, for example, a calcium or magnesium salt; an ammonium salt; or a salt with an organic base which affords a physiologically-acceptable cation for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine. All such salts are within the scope of this invention and they can be prepared by conventional methods.
- they can be prepared simply by contacting the acidic and basic entities, usually in a stoichiometric ratio, in either an aqueous, non-aqueous or partially aqueous medium, as appropriate.
- the salts are recovered by filtration; by precipitation with a non-solvent, preferably an etheral or hydrocarbon solvent, followed by filtration and by evaporation of a solvent, or, in the case of aqueous solutions, by lyophilization.
- Some of the compounds of Formula I have asymmetric carbon atoms.
- Such diasteromeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods known per se., for example, by chromatography and/or fractional crystallization.
- Enantiomers can be separated by converting the enantiomeric mixtures into a diastereomric mixture by reaction with an appropriate optically active compound (e.g., alcohol), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. All such isomers, including diastereomers mixtures and pure enantiomers are considered as part of the invention.
- the active compounds of this invention are potent inhibitors of the erbB family of oncogenic and protooncogenic protein tyrosine kinases such as epidermal growth factor receptor (EGFR), erbB2, HER3, or HER4 and thus are all adapted to therapeutic use as antiproliferative agents (e.g., anticancer) in mammals, particularly humans.
- EGFR epidermal growth factor receptor
- erbB2 HER3, or HER4
- antiproliferative agents e.g., anticancer
- the compounds of this invention are therapeutants or prophylactics for the treatment of a variety of human tumors (renal, liver, kidney, bladder, breast, gastric, ovarian, colorectal, prostate, pancreatic, lung, vulval, thyroid, hepatic carcinomas, sarcomas, glioblastomas, various head and neck tumors), and other hyperplastic conditions such as benign hyperplasia of the skin (e.g., psoriasis) or prostate (e.g., BPH). It is, in addition, expected that a quinazoline of the present invention may possess activity against a range of leukemias and lymphoid malignancies.
- the active compounds may also be expected to be useful in the treatment of additional disorders in which aberrant expression ligand/receptor interactions, activation or signalling events related to various protein tyrosine kinases, whose activity is inhibited by the agents of Formula I, are involved.
- Such disorders may include those of neuronal, glial, astrocytal, hypothalamic, and other glandular, macrophagal, epithelial, stromal, and blastocoelic nature in which aberrant function, expression, activation or signalling of the erbB tyrosine kinases may be involved.
- compounds of Formula I may have therapeutic utility in inflammatory, angiogenic and immunologic disorders involving both identified and as yet unidentified tyrosine kinases which are inhibited by compounds of Formula I.
- the in vitro activity of the active compounds in inhibiting the receptor tyrosine kinase may be determined by the procedure detailed below.
- Activity of the active compunds, in vitro can be determined by the amount of inhibition of the phosphorylation of an exogenous substrate (e.g., Lys 3 -Gastrin or polyGluTyr (4:1) random copolymer (I. Posner et. al., J. Biol. Chem. 267 (29), 20638-47 (1992)) on tyrosine by epidermal growth factor receptor kinase by a test compound relative to a control.
- an exogenous substrate e.g., Lys 3 -Gastrin or polyGluTyr (4:1) random copolymer (I. Posner et. al., J. Biol. Chem. 267 (29), 20638-47 (1992)
- Affinity purified, soluble human EGF receptor (96 ng) is obtained according to the procedure in G. N. Gill, W.
- the phosphorylation reaction is initiated by addition of 20 ⁇ l 33 P-ATP/substrate mix (120 ⁇ M Lys 3 -Gastrin (sequence in single letter code for amino acids, KKKGPWLEEEEEAYGWLDF), 50 mM Hepes pH 7.4, 40 ⁇ M ATP, 2 ⁇ Ci ⁇ -[ 33 P]-ATP) to the EGFr/EGF mix and incubated for 20 minutes at room temperature.
- the reaction is stopped by addition of 10 ⁇ l stop solution (0.5M EDTA, pH 8; 2mM ATP) and 6 ⁇ l 2N HCl.
- the tubes are centrifuged at 14,000 RPM, 4° C., for 10 minutes.
- Such assays allow the determination of an approximate IC 50 value for the in vitro inhibition of EGFR kinase activity.
- IC 50 0.0001 ⁇ 30 ⁇ M.
- Activity of the active compounds, in vivo can be determined by the amount of inhibition of tumor growth by a test compound relative to a control.
- the tumor growth inhibitory effects of various compounds are measured according to the methods of Corbett T. H., et al. “Tumor Induction Relationships in Development of Transplantable Cancers of the Colon in Mice for Chemotherapy Assays, with a Note on Carcinogen Structure”, Cancer Res., 35, 2434-2439 (1975) and Corbett, T. H., et al., “A Mouse Colon-tumor Model for Experimental Therapy”, Cancer Chemother. Rep. (Part 2)”, 5, 169-186 (1975), with slight modifications. Tumors are induced in the left flank by s.c.
- test animals injection of 1 ⁇ 10 6 log phase cultured tumor cells (human MDA-MB-468 breast or human HN5 head and neck carcinoma cells) suspended in 0.10 ml RPMI 1640.
- active compound formulated by dissolution in DMSO typically at a concentration of 50 to 100 mg/mL followed by 1:9 dilution into saline or, alternatively, 1:9 dilution into 0.1% Pluronic® P105 in 0.9% saline
- ip intraperitoneal
- oral po
- the flank site of tumor implantation provides reproducible dose/response effects for a variety of chemotherapeutic agents, and the method of measurement (tumor diameter) is a reliable method for assessing tumor growth rates.
- Administration of the active compounds can be effected by any method which enables delivery of the compounds to the site of action (e.g., cancer cells). These methods include oral routes, intraduodenal routes, parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion), topical administration, etc.
- the amount of active compound administered will, of course, be dependent on the subject being treated, on the severity of the affliction, on the manner of administration and on the judgement of the prescribing physician.
- an effective dosage is in the range of approximately 0.001-100 mg/kg, preferably 1 to 35 mg/kg in single or divided doses. For an average 70 kg human, this would amount to 0.05 to 7 g/day, preferably 0.2 to 2.5 g/day.
- the composition may, for example, be in a form suitable for oral administration as a tablet, capsule, pill, powder, sustained release formulations, solution, suspension, for parenteral injection as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository.
- the pharmaceutical composition may be in unit dosage forms suitable for single administration of precise dosages.
- the pharmaceutical composition will include a conventional pharmaceutical carrier or excipient and a compound according to the invention as an active ingredient. In addition, it may include other medicinal or pharmaceutical agents, carriers, adjuvants, etc.
- compositions according to the invention may contain 0.1%-95% of the compound, preferably 1%-70%.
- the composition or formulation to be administered will contain a quantity of active compound in an amount effective to alleviate or reduce the signs in the subject being treated, i.e., hyperproliferative diseases, over the course of the treatment.
- Exemplary parenteral administration forms include solutions or suspensions of active compounds in sterile aqueous solutions, for example aqueous propylene glycol or dextrose solutions. Such dosage forms can be suitably buffered, if desired.
- Suitable pharmaceutical carriers include inert diluents or fillers, water and various organic solvents.
- the pharmaceutical compositions may, if desired, contain additional ingredients such as flavorings, binders, excipients and the like.
- excipients such as citric acid
- disintegrants such as starch, alginic acid and certain complex silicates
- binding agents such as sucrose, gelatin and acacia.
- lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often useful for tableting purposes.
- Solid compositions of a similar type may also be employed in soft and hard filled gelatin capsules.
- Preferred materials include lactose or milk sugar and high molecular weight polyethylene glycols.
- the active compound therein may be combined with various sweetening or flavoring agents, coloring matters or dyes and, if desired, emulsifying agents or suspending agents, together with diluents such as water, ethanol, propylene glycol, glycerin, or combinations thereof.
- hyperproliferative disease treatment described above may be applied as a sole therapy or may involve, in addition to the active compound, one or more other antitumor substances. Such conjoint treatment may be achieved by way of the simultaneous, sequential, cyclic or separate dosing of the individual components of the treatment.
- High pressure liquid chromatography used in the following examples and preparations was effected according to the following method unless modified in specific examples.
- Perkin-Elmer Pecosphere® 3 ⁇ 3C cartridge column (3mm ⁇ 3cm, C18; available from Perkin Elmer Corp., Norwalk, Conn. 06859) with a Brownlee (trademark) RP-8Newguard precolumn (7 micron, 3.2 mm ⁇ 15 mm, available from Applied Biosystems Inc. San Jose, Calif. 95134) which was previously equilibrated in pH 4.50, 200 mM ammonium acetate buffer.
- Example 3 The title product of Example 3 (50 mg, 0.149 mmol), triphenylphosphine (60 mg, 0.225 mmol)), phthalimide (165 mg, 1.12 mmol) and diethyl azodicarboxylate (36 ⁇ L, 0.228 mmol) were stirred at room temperature in 3 mL of dry tetrahydrofuran for 16 hours.
- reaction mixture was concentrated to a solid and flash chromatographed on silica gel eluted with 15% acetone:methylene chloride to afford pure solid [3-(2′- ⁇ phthalimidomethyl ⁇ -ethynyl)phenyl]-(6,7-dimethoxyquinazoline-4-yl)amine which was converted to its hydrochloride salt by addition of 1 mL of anhydrous 1M HCl in methanol followed by 3 mL of isopropyl alcohol. The salt was collected by filtration, dried and used immediately in the next step; 15 mg. This 15 mg, 0.0323 mmol was treated with 0.5 ml of hydrazine hydrate and 1 mL of methanol for 0.5 hours.
- reaction mixture was evaporated, in vacuo, and the product isolated by flash chromatography eluted with 10% methanol in methylene chloride. Pure title product was isolated after conversion to its hydrochloride salt with 1 mL of 1M HCl in methanol, precipitation with isopropyl alcohol and diethyl ether and drying, in vacuo,; 5.6 mg (47%) mp 275° C. dec.
- the title product was prepared in the following three step sequence with out purification of the intermediates.
- a mixture consisting of 3-bromo-2-methylaniline (1.00 g, 5.37 mmol), tetrakis(triphenylphosphine)palladium (200 mg), trimethylsilylacetylene (1.053 g, 10.75 mmol), 10 mL of dry, nitrogen purged diethylamine and cuprous iodide 910 mg) was refluxed for 16 hours, cooled and concentrated, in vacuo, to afford a residue which was partitioned between chloroform and 1N HCL.
- Example 8 The title product of Example 8 (100 mg, 0.384 mmol), pyridine (140 ⁇ L, 1.68 mmol) and methanesulfonyl chloride (99 ⁇ L, 1.26 mmol) were refluxed in 10 mL of 1,2-dichloroethane for 7 hours. The reaction mixture was cooled and evaporated in a vacuo to a residue which was triturated in 10 mL of 1N HCl, filtered and dried in vacuo to yield (3-ethynylphenyl)-(6-methanesulfonylaminoquinazoline-4-yl)amine; 102 mg (78%) mp 248° C. dec.
- the title product was prepared in the following three step sequence without purification of the intermediates.
- a mixture consisting of 4-bromo-2-nitrotoluene (1.50 g, 6.94 mmol) tetrakis(triphenylphosphine)palladium (750 mg), trimethylsilylacetylene (3.00 mL, 21.21 mmol) and cuprous iodide (20 mg) in 20 mL of nitrogen purged, dry diethylamine was refluxed for 2 hours, cooled and concentrated, in vacuo, to afford a residue which was partitioned between 100 mL of ethyl acetate and 100 mL of 1N HCl.
- 6-Methanesulfonyl-quinazolin-4-one 200 mg, 0.89 mmol
- triphenyl phosphine 566 mg, 2.15 mmol
- carbon tetrachloride 815 ⁇ L, 8.92 mmol
- the solvent was vacuum evaporated to afford a residue. This was dissolved in 5 mL of isopropyl alcohol and 3-ethynylaniline (156 mg, 1.33 mmol) and heated at reflux for 16 hours.
- the cooled reaction mixture was filtered, washed with a minimum of cold isopropyl alcohol and dried in vacuo at 70° C. for 16 hours to afford pure title product; 63 mg (20%) mp 281°-282° C.
- 6-Ethanesulfanyl-quinazolin-4-one (100 mg, 0.48 mmol), triphenyl phosphine (305 mg, 1.16 mmol) and 3 mL of carbon tetrachloride were refluxed for 16 hours.
- the solvent was vacuum evaporated to afford a residue. This was dissolved in 5 mL of isopropyl alcohol and 3-ethynylaniline (68 mg, 0.58 mmol) and heated at reflux for 1 hour.
- the cooled reaction mixture was filtered, washed with a minimum of cold isopropyl alcohol and dried in vacuo at 70° C. for 16 hours to afford pure title product; 70 mg (42%) mp 239°-40° C.
- 3-(2′-Trimethylsilyl-ethynyl)-4-fluoroaniline was prepared from 3-bromo-4-fluoroaniline (7.0 gm, 36.8 mmol) tetrakis(triphenylphosphine)palladium (1.4 gm), trimethylsilyl-acetylene (7.2 gm, 74 mmol) and cuprous iodide (40 mg) in 140 mL of nitrogen purged dry diethylamine at reflux for 16 hours. The cooled reaction mixture was filtered through Celite and the Celite washed with ether.
- 3-(Propyn-1-yl)aniline was prepared from 3-bromo-nitrobenzene in four steps.
- 3-Bromo-nitrobenzene 5.0 gm, 24.7 mmol
- tetrakis(triphenylphosphine)palladium 1.0 gm
- trimethylsilyl-acetylene 3.6 gm, 37 mmol
- cuprous iodide 20 mg
- the cooled reaction mixture was vacuum evaporated, diluted with 50 mL of methylene chloride and 50 mL of 1N hydrochloric acid and filtered.
- the title product was prepared from 4-chloro-6-(2-chloro-ethoxy)-7-(2-methoxyethoxy)-quinazoline (399 mg, 1.26 mmol) and 3-ethynyl-aniline (147 mg, 1.26 mmol) as described for Example 29. (515 mg; 94%; M.P. 215°-225° C. (dec); LC-MS: 398 (MH + ); anal. RP18-HPLC RT: 4.85 min.).
- Example 29 The title product of Example 29 (200 mg, 0.456 mmol) was treated with cesuim acetate (1.75 g, 9.12 mmol) in DMF (3 mL) at 120° C. under an atmosphere of N 2 for 16 hours. The reaction mixture was partitioned between brine and CHCl 3 , and the organic extract was washed with brine, dried over Na 2 SO 4 , filtered and concentrated in vacuo to afford an oil (277 mg) which was recrystallized from CH 2 Cl 2 /hexane. (184 mg; 90%; M.P. 137°-138° C.; LC-MS: 450 (MH + ); anal. RP18-HPLC RT: 4.64 min.).
- Example 30 The title product of Example 30 (160 mg, 0.368 mmol); was treated with cesium acetate (707 mg, 3.68 mmol) in DMF (3 mL) at 120° C. under an atmosphere of N 2 for 16 hours. The reaction mixture was partitioned between brine and CHCl 3 , and the organic extract was washed with brine, dried over Na 2 SO 4 , filtered and concentrated in vacuo to afford a residue (285 mg) which was recrystallized from ethylacetate/hexane. (134 mg; M.P. 84°-87° C.; LC-MS: 422 (MH + ); anal. RP18-HPLC RT: 4.38 min.).
- This product was prepared from 4-chloro-7-(2-chloro-ethoxy)-6-(2-methoxy-ethoxy)-quinazoline (600 mg, 1.89 mmol) and 3-ethynyl-aniline (147 mg, 1.26 mmol) as described for Example 29. (737 mg; 90%; M.P. 225°-235° C. (dec); LC-MS: 398 (MH + ); anal. RP18-HPLC RT: 4.89 min.).
- Example 34 The title product of Example 34 (160 mg, 0.368 mmol); was treated with cesium acetate (707 mg, 3.68 mmol) in DMF (3 mL) at 120° C. under an atmosphere of N 2 for 16 hours. The reaction mixture was partitioned between brine and CHCl 3 , and the organic extract was washed with brine, dried over Na 2 SO 4 , filtered and concentrated in vacuo to afford a residue (288 mg) which was recrystallized from ethyl acetate/hexanes. (134 mg; M.P.134°-135° C.; LC-MS: 422 (MH + ); anal. RP18-HPLC RT: 4.43 min.).
- Example 35 The title product of Example 35 (149 mg, 0.354 mmol) in methanol (3 mL) was treated with 5M aqueous KOH (0.25 mL). The mixture was stirred at 20° C. for 30 minutes before removing the solvent in vacuo. The solid residue was washed with water to remove salts, and dried azeotropically by dissolution two times in acetonitrile and concentration in vacuo to afford 100 mg of title product as its free base. This material was converted to its HCl salt according to the method used in Example 28 (87 mg; 59%; M.P. 230°-235° C. (dec); LC-MS: 380 (MH + ); anal. RP18-HPLC RT: 3.42 min.).
- Example 34 The title product of Example 34 (110 mg, 0.253 mmol) in DMF (2 mL) was treated with N-methyl-piperazine (281 ⁇ L, 2.53 mmol) at 110° C. for 16 hours. The reaction mixture was partitioned between CHCl 3 and saturated aqueous NaHCO 3 . The organic extracts were washed with brine, dried over Na 2 SO 4 , filtered and concentrated in vacuo. The crude product was chromatographed on silica using 15% methanol/CH 2 Cl 2 to provide 56 mg of pure product as its free base.
- Example 34 The title product from Example 34 (110 mg, 0.253 mmol) in DMF (2 mL) was treated with imidazole (172 mg, 2.53 mmol) at 110° C. for 48 hours. The reaction mixture was partitioned between CHCl 3 and saturated aqueous NaHCO 3 . The organic extracts were washed with brine, dried over Na 2 SO 4 , filtered and concentrated in vacuo. The crude product (119 mg) was chromatographed on silica using 10% methanol/CH 2 Cl 2 to provide 85 mg of pure title product as its free base.
- Example 30 The title product of Example 30 (110 mg, 0.253 mmol) in DMF (2 mL) was treated with imidazole (172 mg, 2.53 mmol) at 110° C. for 48 hours. The reaction mixture was partitioned between CHCl 3 and saturated aqueous NaHCO 3 . The organic extracts were washed with brine, dried over Na 2 SO 4 , filtered and concentrated in vacuo. The crude product (125 mg) was chromatographed on silica using 10% methanol/CH 2 Cl 2 to provide 86 mg of pure title product as its free base.
- Example 33 The title product from Example 33 (149 mg, 0.354 mmol) in methanol (3 mL) was treated with 5M aqueous KOH (0.25 mL). The mixture was stirred at 20° C. for 30 minutes before removing the solvent in vacuo. The solid residue was washed with water to remove salts, and dried azeotropically by dissolution two times in acetonitrile and concentration in vacuo to afford 95 mg of title product as its free base. This material was converted to its HCl salt according to the method used in Example 28 (89 mg; 61%; M.P. 190°-215° C. (dec); LC-MS: 380 (MH + ); anal. RP18-HPLC RT: 3.66 min.).
- This material was desilated directly by treatment with 2 mL of methanol containing 1 drop of water and 100 mg of potassium carbonate for 0.5 hours.
- the heterogeneous reaction mixture was filtered through Celite and vacuum evaporated to a residue which was dissolved in excess 1N HCl in methanol, precipitated with ethyl ether, filtered and dried in vacuo at 70° C. to afford the title product; 160 mg (75%); mp 258°-259.5° C.
- 6-Methyl-quinazolin-4-one (350 mg, 2.18 mmol) was added to a suspension of polymer-supported triphenylphosphine (from Fluka, 3.63 g of about 3 mmol P/g resin; 10.9 mmol) in a mixture of CCl 4 (3.35 g, 21.80 mmol) and 1,2 dichloroethane (10 mL). The mixture was heated to 60° C. for 2 hours and then the polymer was removed by filtration and washed with dichloroethane. The filtrate was collected in a flask containing 3-ethynyl-aniline (0.644 g, 2.18 mmol) and concentrated to 5 mL by evaporation.
- Example 34 The title product of Example 34 (150 mg, 0.34 mmol) was added to a solution of thiolactic acid (100 ⁇ L, 1.14 mmol) and KOH (150 mg, 2.7 mmol) in degassed DMF (5 mL)/H 2 O (0.5 mL). The reaction mixture was stirred at 50° C. under an atmosphere of N 2 for 72 hours and then cooled to room temperature. The pH of the mixture was adjusted to about 4.0 with acetic acid and then partitioned between CHCl 3 and brine. The organic extracts were washed with brine, dried over Na 2 SO 4 , filtered and concentrated in vacuo.
- the title product was prepared from the title product of Example34 and mercaptoacetic acid according to the method of Example 45. (3%; LC-MS: 454 (MH + ); anal. RP-HPLC RT: 3.37 min).
- Example 30 The title product of Example 30 (107 mg, 0.245 mmol) was treated with sodium ethoxide (0.582 mmol) in refluxing ethanol (3 mL) for 24 hours. The solvent was removed in vacuo and the product was isolated by flash chromatography on silica using 10% acetone/CH 2 Cl 2 to provide 30 mg of the 6-vinyloxy product (33%; M.P. 113°-114° C.; LC-MS: 362 (MH + ); anal. RP-HPLC RT: 4.84 min). The 6-(2-ethoxy-ethoxy) derivative eluted as a more polar product (45 mg) and was converted to its HCl salt according to the procedure described for Example28 (43%; M.P. 220°-225° C. (dec); LC-MS: 408 (MH + ); anal. RP-HPLC RT: 4.35 min).
- the free base of this product was prepared from the title product of Example 30 and the sodium salt of pyrid-4-one as described for Example 50.
- the free base was isolated by flash chromatography with 15% methanol/CHCl 3 and converted to the title product according to the procedure described for Example 28 (32%; M.P. 155°-168° C. (dec); LC-MS: 457 (MH + ); anal. RP-HPLC RT: 3.45 min).
- RP18-HPLC RT 5.82 min.
- the analytical RP18-HPLC system consisted of a Waters 717 (trademark) autosampler, Waters 996 Photodiode Array Detector (trademark), and Waters 600 quarternary solvent delivery system, and was controlled by Millennium (trademark) software.
- 6,7-Dibutoxyquinazolin-4-one (105 mg, 0.362 mmol), triphenylphosphine (208 mg, 0.796 mmol) and 5 mL of carbon tetrachloride were refluxed for 16 hours and the reaction mixture was concentrated in vacuo to a residue which was diluted with 3 mL of isopropyl alcohol and 3-ethynylaniline (47 mg, 0.398 mmol) and refluxed for 3 hours.
- 6-Chloro-7-(2-methoxyethylsulfanyl)-quinazolin-4-one 200 mg, 0.739 mmol
- triphenylphosphine 427 mg, 1.63 mmol
- 0.7 mL of carbon tetrachloride 0.7 mL
- the hot reaction mixture was filtered to isolate crude product which was column chromatographed on silica gel eluted with 5% methanol in chloroform. Fractions containing the pure product were concentrated in vacuo to afford the title product as a solid; 23 mg (8.4%); mp 230°-232° C.
- This product was prepared from the title product of Example 30 and mercaptoacetic acid at 22° C. over 10 days according to the method outlined in Example 45. (16%; M.P. 98°-113° C. (dec); LC-MS 454 (MH + ); anal. RP-HPLC 3.24 min.)
- the catalyst was removed by filtration through Celite, and the filtrate was concentrated in vacuo to a thick slurry which was diluted with ether (400 mL).
- the solid white hydrochloride salt of ethyl 2-amino-4,5-bis-(2-methoxy-ethoxy)benzoate was filtered and dried in vacuo (44.7 g; 88%).
- a portion of this material (42 g, 0.12 mol) and ammonium formate (7.6 g, 0.12 mol) were dissolved in formamide (63 mL) and the stirred mixture was heated to 160°-165° C. under an atmosphere of N 2 for 3 hours.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The invention relates to compounds of the formula
and to pharmaceutically acceptable salts thereof, wherein R1, R2, R3, R4, n and m are as defined herein. The compounds of formula I are useful in the treatment of hyperproliferative diseases, such as cancer. The invention further relates to processes of making the compounds of formula I and to methods of using such compounds in the treatment of hyperproliferative diseases.
and to pharmaceutically acceptable salts thereof, wherein R1, R2, R3, R4, n and m are as defined herein. The compounds of formula I are useful in the treatment of hyperproliferative diseases, such as cancer. The invention further relates to processes of making the compounds of formula I and to methods of using such compounds in the treatment of hyperproliferative diseases.
Description
This application is a continuation-in-part of PCT international application number PCT/IB95/00436, filed Jun. 6, 1995, which designates the United States.
This invention relates to 4-(substituted phenylamino) quinazoline derivatives which are useful in the treatment of hyperproliferative diseases, such as cancers, in mammals.
Many of the current treatment regimes for cancer utilize compounds which inhibit DNA synthesis. Such compounds are toxic to cells generally but their toxic effect on the rapidly dividing tumor cells can be beneficial. Alternative approaches to anti-cancer agents which act by mechanisms other than the inhibition of DNA synthesis have been explored in order to enhance the selectivity of action against cancer cells.
It is known that a cell may become cancerous by virtue of the transformation of a portion of its DNA into an oncogene (i.e. a gene which, on activation, leads to the formation of malignant tumor cells). Many oncogenes encode proteins which are aberrant tyrosine kinases capable of causing cell transformation. Alternatively, the overexpression of a normal proto-oncogenic tyrosine kinase may also result in proliferative disorders, sometimes resulting in a malignant phenotype.
Receptor tyrosine kinases are large enzymes which span the cell membrane and possess an extracellular binding domain for growth factors such as epidermal growth factor, a transmembrane domain, and an intracellular portion which functions as a kinase to phosphorylate specific tyrosine residues in proteins and hence to influence cell proliferation. It is known that such kinases are frequently aberrantly expressed in common human cancers such as breast cancer, gastrointestinal cancer such as colon, rectal or stomach cancer, leukemia, and ovarian, bronchial or pancreatic cancer. It has also been shown that epidermal growth factor receptor (EGFR) which possesses tyrosine kinase activity is mutated and/or overexpressed in many human cancers such as brain, lung, squamous cell, bladder, gastric, breast, head and neck, oesophageal, gynecological and thyroid tumors.
Accordingly, it has been recognized that inhibitors of receptor tyrosine kinases are useful as a selective inhibitors of the growth of mammalian cancer cells. For example, erbstatin, a tyrosine kinase inhibitor selectively attenuates the growth in athymic nude mice of a transplanted human mammary carcinoma which expresses epidermal growth factor receptor tyrosine kinase (EGFR) but is without effect on the growth of another carcinoma which does not express the EGF receptor.
Various other compounds, such as styrene derivatives, have also been shown to possess tyrosine kinase inhibitory properties. More recently five European patent publications, namely EP 0 566 226 A1, EP 0 602 851 A1, EP 0 635 507 A1, EP 0 635 498 A1 and EP 0 520 722 A1 have disclosed that certain quinazoline derivatives possess anti-cancer properties which result from their tyrosine kinase inhibitory properties. Also PCT publication WO 92/20642 discloses bis-mono and bicyclic aryl and heteroaryl compounds as tyrosine kinase inhibitors.
Although the anti-cancer compounds described above make a significant contribution to the art there is a continuing search in this field of art for improved anti-cancer pharmaceuticals.
This invention relates to compounds of the formula
and to pharmaceutically acceptable salts and prodrugs thereof, wherein:
and to pharmaceutically acceptable salts and prodrugs thereof, wherein:
-
- m is 1, 2, or 3;
- each R1 is independently selected from the group consisting of hydrogen, halo, hydroxy, hydroxyamino, carboxy, nitro, guanidino, ureido, cyano, trifluoromethyl, and -(C1-C4 alkylene)-W-(phenyl) wherein W is a single bond, O, S or NH;
- or each R1 is independently selected from R9 and (C1-C4)-alkyl substituted by cyano, wherein R9 is selected from the group consisting of R5, —OR6, —NR6R6, —C(O)R7, —NHOR5, —OC(O)R6, cyano, A and —YR5; R5 is C1-C4 alkyl; R6 is independently hydrogen or R5; R7 is R5, —OR6 or —NR6R6; A is selected from piperidino, morpholino, pyrrolidino, 4-R6-piperazin-1-yl, imidazol-1-yl, 4-pyridon-1-yl, -(C1-C4 alkylene)(CO2H), phenoxy, phenyl, phenylsulfanyl, C2-C4 alkenyl, and -(C1-C4 alkylene)C(O)NR6R6; and Y is S, SO, or SO2; wherein the alkyl moieties in R5, —OR6 and —NR6R6 are optionally substituted by one to three substituents independently selected from halo and R9, and wherein the alkyl moieties of said optional substituents are optionally substituted by halo or R9, with the proviso that two heteroatoms are not attached to the same carbon atom, and with the further proviso that no more than three R9 groups may comprise a single R1 group;
- or each R1 is independently selected from —NHSO2R5, phthalimido-(C1-C4)-alkylsulfonylamino, benzamido, benzenesulfonylamino, 3-phenylureido, 2-oxopyrrolidin-1-yl, 2,5-dioxopyrrolidin-1-yl, and R10-(C2-C4)-alkanoylamino wherein R10 is selected from halo, —OR6, C2-C4 alkanoyloxy, —C(O)R7, and —NR6R6; and wherein the foregoing R1 groups are optionally substituted by 1 or 2 substituents independently selected from halo, C1-C4 alkyl, cyano, methanesulfonyl and C1-C4 alkoxy;
- or two R1 groups are taken together with the carbons to which they are attached to form a 5-8 membered ring that includes 1 or 2 heteroatoms selected from O, S and N;
- R2 is hydrogen or C1-C6 alkyl optionally substituted by 1 to 3 substituents independently selected from halo, C1-C4 alkoxy, —NR6R6, and —SO2R5;
- n is 1 or 2 and each R3 is independently selected from hydrogen, halo, hydroxy, C1-C6 alkyl, —NR6R6, and C1-C4 alkoxy, wherein the alkyl moieties of said R3 groups are optionally substituted by 1 to 3 substituents independently selected from halo, C1-C4 alkoxy, —NR6R6, and —SO2R5; and,
- R4 is azido or -(ethynyl)-R11 wherein R11 is hydrogen or C1-C6 alkyl optionally substituted by hydroxy, —OR6, or —NR6R6.
Preferred compounds of formula I include those wherein R2 is hydrogen and R4 is -(ethynyl)-R11.
Other preferred compounds of formula I include those wherein m is 1 or 2;
-
- each R1 is independently selected from the group consisting of hydrogen, hydroxy, hydroxyamino, carboxy, nitro, carbamoyl, ureido, R5 optionally substituted with halo, —OR6, carboxy, —C(O)NR6R6, A or —NR6R6; —OR5 optionally substituted with halo, —OR6, —OC(O)R6, —NR6R6, or A; —NR6R6, —C(O)R6 R5, —SR5, phenyl-(C2-C4)-alkoxy, cyano, phenyl; —NHR5 optionally substituted with halo or R9 wherein said R9 is optionally substituted by R9; —NHOR5, —SR5, C1-C4 alkylsulfonylamino, phthalimido-(C1-C4)-alkylsulfonylamino, 3-phenylureido, 2-oxopyrrolidin-1-yl, 2,5-dioxopyrrolidin-1-yl, halo-(C2-C4)-alkanoylamino, hydroxy-(C2-C4)-alkanoylamino, (C2-C4)-alkanoyloxy-(C2-C4)-alkanoylamino, (C1-C4)-alkoxy-(C2-C4)-alkanoylamino, (C1-C4)-alkoxycarbonyl-(C2-C4)-alkanoylamino, carbamoyl-(C2-C4)-alkanoylamino, N-(C1-C4)-alkylcarbamoyl-(C2-C4)-alkanoylamino, N,N-di-[(C1-C4)-alkyl]carbamoyl-(C2-C4)-alkanoylamino, amino-(C2-C4)-alkanoylamino, (C1-C4)-alkyl-amino-(C2-C4)-alkanoylamino, and di-(C1-C4)-alkyl-amino-(C2-C4)-alkanoylamino, and wherein said phenyl or phenoxy or anilino substituent in the foregoing R1 groups is optionally substituted with one or two substituents independently selected from halo, C1-C4 alkyl and C1-C4 alkoxy;
- each R3 is independently selected from hydrogen, methyl, ethyl, amino, halo and hydroxy; and,
- R4 is ethynyl.
Other preferred compounds of formula I include those wherein each R1 is independently selected from hydrogen, hydroxy, hydroxyamino, nitro, carbamoyl, ureido, R5 optionally substituted with halo, —OR6, carboxy, or —C(O)NH2; —OR5 optionally substituted with halo, —OR6, —OC(O)R6, —NR6R6, or A; —NR6R6, —C(O)NR6R6, —SR5, phenyl-(C2-C4)-alkoxy wherein said phenyl moiety is optionally substituted with 1 or 2 substituents independently selected from halo, R5 or —OR5.
Other preferred compounds of formula I include those wherein R2 is hydrogen and R4 is azido.
Other preferred compounds of formula I include those wherein R3 is halo and R1 is hydrogen or —OR5.
Other preferred compounds of formula I include those wherein R1 is methoxy.
Specific preferred compounds of formula I include the following:
- (6,7-dimethoxyquinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6,7-dimethoxyquinazolin-4-yl)-[3-(3′-hydroxypropyn-1-yl)phenyl]-amine;
- [3-(2′-(aminomethyl)-ethynyl)phenyl]-(6,7-dimethoxyquinazolin-4-yl)-amine;
- (3-ethynylphenyl)-(6-nitroquinazolin-4-yl)-amine;
- (6,7-dimethoxyquinazolin-4-yl)-(4-ethynylphenyl)-amine;
- (6,7-dimethoxyquinazolin-4-yl)-(3-ethynyl-2-methylphenyl)-amine;
- (6-aminoquinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (3-ethynylphenyl)-(6-methanesulfonylaminoquinazolin-4-yl)-amine;
- (3-ethynylphenyl)-(6,7-methylenedioxyquinazolin-4-yl)-amine;
- (6,7-dimethoxyquinazolin-4-yl)-(3-ethynyl-6-methylphenyl)-amine;
- (3-ethynylphenyl)-(7-nitroquinazolin-4-yl)-amine;
- (3-ethynylphenyl)-[6-(4′-toluenesulfonylamino)quinazolin-4-yl]-amine;
- (3-ethynylphenyl)-{6-[2′-phthalimido-eth-1′-yl-sulfonylamino]quinazolin-4-yl}-amine;
- (3-ethynylphenyl)-(6-guanidinoquinazolin-4-yl)-amine;
- (7-aminoquinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (3-ethynylphenyl)-(7-methoxyquinazolin-4-yl)-amine;
- (6-carbomethoxyquinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (7-carbomethoxyquinazolin-4-yl)-(3-ethynylphenyl)-amine;
- [6,7-bis(2-methoxyethoxy)quinazolin-4-yl]-(3-ethynylphenyl)-amine;
- (3-azidophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine;
- (3-azido-5-chlorophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine;
- (4-azidophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine;
- (3-ethynylphenyl)-(6-methansulfonyl-quinazolin-4-yl)-amine;
- (6-ethansulfanyl-quinazolin-4-yl)-(3-ethynylphenyl)-amine
- (6,7-dimethoxy-quinazolin-4-yl)-(3-ethynyl-4-fluoro-phenyl)-amine;
- (6,7-dimethoxy-quinazolin-4-yl)-[3-(propyn-1′-yl)-phenyl]-amine;
- [6,7-bis-(2-methoxy-ethoxy)-quinazolin-4-yl]-(5-ethynyl-2-methyl-phenyl)-amine;
- [6,7-bis-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-4-fluoro-phenyl)-amine;
- [6,7-bis-(2-chloro-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
- [6-(2-chloro-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
- [6,7-bis-(2-acetoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
- 2-[4-(3-ethynyl-phenylamino)-7-(2-hydroxy-ethoxy)-quinazolin-6-yloxy]-ethanol;
- [6-(2-acetoxy-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
- [7-(2-chloro-ethoxy)-6-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
- [7-(2-acetoxy-ethoxy)-6-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
- 2-[4-(3-ethynyl-phenylamino)-6-(2-hydroxy-ethoxy)-quinazolin-7-yloxy]-ethanol;
- 2-[4-(3-ethynyl-phenylamino)-7-(2-methoxy-ethoxy)-quinazolin-6-yloxy]-ethanol;
- 2-[4-(3-ethynyl-phenylamino)-6-(2-methoxy-ethoxy)-quinazolin-7-yloxy]-ethanol;
- [6-(2-acetoxy-ethoxy)-7-(2 -methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
- (3-ethynyl-phenyl)-{6-(2-methoxy-ethoxy)-7-[2-(4methyl-piperazin-1-yl)-ethoxy]-quinazolin-4-yl}-amine;
- (3-ethynyl-phenyl)-[7-(2-methoxy-ethoxy)-6-(2-morpholin-4-yl)-ethoxy)-quinazolin-4-yl]-amine;
- (6,7-diethoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
- (6,7-dibutoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
- (6,7-diisopropoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
- (6,7-diethoxyquinazolin-1-yl)-(3-ethynyl-2-methyl-phenyl)-amine;
- [6,7-bis-(2-methoxy-ethoxy)-quinazolin-1-yl]-(3-ethynyl-2-methyl-phenyl)-amine;
- (3-ethynylphenyl)-[6-(2-hydroxy-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-1-yl]-amine;
- [6,7-bis-(2-hydroxy-ethoxy)-quinazolin-1-yl]-(3-ethynylphenyl)-amine; and
- 2-[4-(3-ethynyl-phenylamino)-6-(2-methoxy-ethoxy)-quinazolin-7-yloxy]-ethanol.
Other specific preferred compounds of formula I include the following:
- (6,7-dipropoxy-quinazolin-4-yl)-(3-ethynyl-phenyl)-amine;
- (6,7-diethoxy-quinazolin-4-yl)-(3-ethynyl-5-fluoro-phenyl)-amine;
- (6,7-diethoxy-quinazolin-4-yl)-(3-ethynyl-4-fluoro-phenyl)-amine;
- (6,7-diethoxy-quinazolin-4-yl)-(5-ethynyl-2-methyl-phenyl)-amine;
- (6,7-diethoxy-quinazolin-4-yl)-(3-ethynyl-4-methyl-phenyl)-amine;
- (6-aminomethyl-7-methoxy-quinazolin-4-yl)-(3-ethynyl-phenyl)-amine;
- (6-aminomethyl-7-methoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6-aminocarbonylmethyl-7-methoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6-aminocarbonylethyl-7-methoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6-aminocarbonylmethyl-7-ethoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6-aminocarbonylethyl-7-ethoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6-aminocarbonylmethyl-7-isopropoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6-aminocarbonylmethyl-7-propoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6-aminocarbonylmethyl-7-methoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
- (6-aminocarbonylethyl-7-isopropoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine; and
- (6-aminocarbonylethyl-7-propoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine.
Other specific preferred compounds of formula I include the following:
- (6,7-diethoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
- (3-ethynylphenyl)-[6-(2-hydroxy-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-1-yl]-amine;
- [6,7-bis-(2-hydroxy-ethoxy)-quinazolin-1-yl]-(3-ethynylphenyl)-amine;
- [6,7-bis-(2-methoxy-ethoxy)-quinazolin-1-yl]-(3-ethynylphenyl)-amine;
- (6,7-dimethoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
- (3-ethynylphenyl)-(6-methanesulfonylamino-quinazolin-1-yl)-amine; and,
- (6-amino-quinazolin-1-yl)-(3-ethynylphenyl)-amine.
The invention further relates to a pharmaceutical composition for the treatment of a hyperproliferative disorder in a mammal which comprises a therapeutically-effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier.
The invention further relates to a method of treating a hyperproliferative disorder in a mammal which comprises administering to said mammal a therapeutically-effective amount of the compound of claim 1.
In a preferred embodiment, the method of treating hyperproliferative disorders includes those wherein said hyperproliferative disorder is cancer.
In another preferred embodiment, the method of treating hyperproliferative disorders includes those wherein said hyperproliferative disorder is said cancer is brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, oesophageal, gynecological or thyroid cancer.
In another preferred embodiment, the method of treating hyperproliferative disorders includes those wherein said hyperproliferative disorder is noncancerous.
In another preferred embodiment, the method of treating hyperproliferative disorders includes those wherein said hyperproliferative disorder is a benign hyperplasia of the skin or prostate.
The invention further relates to a process for preparing a compound of the formula
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
-
- m is 1, 2, or 3;
- each R1 is independently selected from the group consisting of hydrogen, halo, hydroxy, hydroxyamino, carboxy, nitro, guanidino, ureido, cyano, trifluoromethyl, and -(C1-C4 alkylene)-W-(phenyl) wherein W is a single bond, O, S or NH;
- or each R1 is independently selected from R9 and (C1-C4)-alkyl substituted by cyano, wherein R9 is selected from the group consisting of R5, —OR6, —NR6R6, —C(O)R7, —NHOR5, —OC(O)R6, cyano, A and —YR5; R5 is C1-C4 alkyl; R6 is independently hydrogen or R5; R7 is R5, —OR6 or —NR6R6; A is selected from piperidino, morpholino, pyrrolidino, 4-R6-piperazin-1-yl, imidazol-1-yl, 4-pyridon-1-yl, -(C1-C4 alkylene)(CO2H), phenoxy, phenyl, phenylsulfanyl, C2-C4 alkenyl, and -(C1-C4 alkylene)C(O)NR6R6; and Y is S, SO, or SO2; wherein the alkyl moieties in R5, —OR6 and —NR6R6 are optionally substituted by one to three substituents independently selected from halo and R9, and wherein the alkyl moieties of said optional substituents are optionally substituted by halo or R9, with the proviso that two heteroatoms are not attached to the same carbon atom, and with the further proviso that no more than three R9 groups may comprise a single R1 group;
- or each R1 is independently selected from —NHSO2R5, phthalimido-(C1-C4)-alkylsulfonylamino, benzamido, benzenesulfonylamino, 3-phenylureido, 2-oxopyrrolidin-1-yl, 2,5-dioxopyrrolidin-1-yl, and R10-(C2-C4)-alkanoylamino wherein R10 is selected from halo, —OR6, C2-C4 alkanoyloxy, —C(O)R7, and —NR6R6; and wherein the foregoing R1 groups are optionally substituted by 1 or 2 substituents independently selected from halo, C1-C4 alkyl, cyano, methanesulfonyl and C1-C4 alkoxy;
- or two R1 groups are taken together with the carbons to which they are attached to form a 5-8 membered ring that includes 1 or 2 heteroatoms selected from O, S and N;
- R2 is hydrogen or C1-C6 alkyl optionally substituted by 1 to 3 substituents independently selected from halo, C1-C4 alkoxy, —NR6R6, and —SO2R5;
- n is 1 or 2 and each R3 is independently selected from hydrogen, halo, hydroxy, C1-C6 alkyl, —NR6R6, and C1-C4 alkoxy, wherein the alkyl moieties of said R3 groups are optionally substituted by 1 to 3 substituents independently selected from halo, C1-C4 alkoxy, —NR6R6, and —SO2R5; and,
- R4 is azido or -(ethynyl)-R11 wherein R11 is hydrogen or C1-C6 alkyl optionally substituted by hydroxy, —OR6, or —NR6R6; which comprises
- a) treating a compound of the formula
- a) treating a compound of the formula
- wherein R1 and m are as defined above, with CCl4 and (C6-C10aryl)3P, optionally supported on an inert polymer, wherein the aryl moieties of said (C6-C10aryl)3P are optionally substituted by C1-C6 alkyl; and
- b) treating the product of step a) with a compound of the formula
- b) treating the product of step a) with a compound of the formula
- wherein R2, R3 and n are as defined above, and J is Y or R4, wherein R4 is as defined above and wherein Y is NH2, Br, I or trifluoromethanesulfonyloxy, with the proviso that when J is Y then the product of step b) must further be treated with an alkyne where Y is Br, I or trifluoromethanesulfonyloxy, or an azide where Y is NH2.
Preferred processes for preparing the compound of formula I include those wherein each aryl group is selected from phenyl, naphth-1-yl and naphth-2-yl.
Other preferred processes for preparing the compound of formula I include those wherein each Ar in (C6-C10aryl)3P is phenyl.
Other preferred processes for preparing the compound of formula I include those wherein said (C6-C10aryl)3P is supported on an inert polymer.
Other preferred processes for preparing the compound of formula I include those wherein said inert polymer is a divinylbenzene-cross-linked polymer of styrene.
The term “halo”, as used herein, unless otherwise indicated, means chloro, bromo, iodo, or fluoro.
The term “alkyl”, as used herein, unless otherwise indicated, means straight chained, cyclic or branched, saturated or unsaturated hydrocarbon moiety with the proviso that said alkyl must comprise three or more carbon atoms if it is branched or cyclic.
As used herein, the expression “reaction-inert solvent” refers to a solvent which does not interact with starting materials, reagents, intermediates or products in a manner which adversely affects the yield of the desired product.
Other features and advantages will be apparent from the specification and claims which describe the invention.
The Formula I compounds, pharmaceutically acceptable salts and prodrugs thereof (hereafter the active compounds) may be prepared by any process known to be applicable to the preparation of chemically-related compounds.
In general the active compounds may be made from the appropriately substituted quinazoline using the appropriately substituted amine.
As shown in the Scheme the appropriate 4-substituted quinazoline 2 wherein X is a suitable displaceable leaving group such as halo, aryloxy, alkylsulfinyl, alkylsulfonyl such as trifluoromethanesulfonyloxy, arylsulfinyl, arylsulfonyl, siloxy, cyano, pyrazolo, triazolo or tetrazolo, preferably a 4-chloroquinazoline, is reacted with the appropriate amine or amine hydrochloride 4 or 5, wherein R4 is as described above and Y is Br, I, or trifluoromethane-sulfonyloxy in a solvent such as a (C1-C6)alcohol, dimethylformamide (DMF), N-methylpyrrolidin-2-one, chloroform, acetonitrile, tetrahydrofuran (THF), 1-4 dioxane, pyridine or other aprotic solvent. The reaction may be effected in the presence of a base, preferably an alkali or alkaline earth metal carbonate or hydroxide or a tertiary amine base, such as pyridine, 2,6-lutidine, collidine, N-methyl-morpholine, triethylamine, 4-dimethylamino-pyridine or N,N-dimethylaniline. These bases are hereinafter refered to as suitable bases. The reaction mixture is maintained at a temperature from about ambient to about the reflux temperature of the solvent, preferably from about 35° C. to about reflux, until substantially no remaining 4-haloquinazoline can be detected, typically about 2 to about 24 hours. Preferably, the reaction is performed under an inert atmosphere such as dry nitrogen.
Generally the reactants are combined stoichiometrically. When an amine base is used for those compounds where a salt (typically the HCl salt) of an amine 4 or 5 is used, it is preferable to use excess amine base, generally an extra equivalent of amine base. (Alternatively, if an amine base is not used an excess of the amine 4 or 5 may be used).
For those compounds where a sterically hindered amine 4 (such as a 2-alkyl-3-ethynylaniline) or very reactive 4-haloquinazoline is used it is preferable to use t-butyl alcohol or a polar aprotic solvent such as DMF or N-methylpyrrolidin-2-one as the solvent.
Alternatively, a 4-substituted quinazoline 2 wherein X is hydroxyl or oxo (and the 2-nitrogen is hydrogenated) is reacted with carbon tetrachloride and an optionally substituted triarylphosphine which is optionally supported on an inert polymer (e.g. triphenylphosphine, polymer supported, Aldrich Cat. No. 36,645-5, which is a 2% divinylbenzene cross-linked polystyrene containing 3 mmol phosphorous per gram resin) in a solvent such as carbon tetrachloride, chloroform, dichloroethane, tetrahydrofuran, acetonitrile or other aprotic solvent or mixtures thereof. The reaction mixture is maintained at a temperature from about ambient to reflux, preferably from about 35° C. to reflux, for 2 to 24 hours. This mixture is reacted with the appropriate amine or amine hydrochloride 4 or 5 either directly or after removal of solvent, for example by vacuum evaporation, and addition of a suitable alternative solvent such as a (C1-C6) alcohol, DMF, N-methylpyrrolidin-2-one, pyridine or 1-4 dioxane. Then, the reaction mixture is maintained at a temperature from about ambient to the reflux temperature of the solvent preferably from about 35° C. to about reflux, until substantially complete formation of product is acheived, typically from about 2 to about 24 hours. Preferably the reaction is performed under an inert atmosphere such as dry nitrogen.
When compound 4, wherein Y is Br, I, or trifluoromethanesulfonyloxy, is used as starting material in the reaction with quinazoline 2, a compound of formula 3 is formed wherein R1, R2, R3, and Y are as described above. Compound 3 is converted to compounds of formula 1 wherein R4 is R11ethynyl, and R11 is as defined above, by reaction with a suitable palladium reagent such as tetrakis (triphenylphosphine)palladium or bis(triphenylphosphine) palladium dichloride in the presence of a suitable Lewis acid such as cuprous chloride and a suitable alkyne such as trimethylsilylacetylene, propargyl alcohol or 3-(N,N-dimethylamino)-propyne in a solvent such as diethylamine or triethylamine. Compounds 3, wherein Y is NH2, may be converted to compounds 1 wherein R4 is azide by treatment of compound 3 with a diazotizing agent, such as an acid and a nitrite (e.g., acetic acid and NaNO2) followed by treatment of the resulting product with an azide, such as NaN3.
For the production of those compounds of Formula I wherein an R1 is an amino or hydroxyamino group the reduction of the corresponding Formula I compound wherein R1 is nitro is employed.
The reduction may conveniently be carried out by any of the many procedures known for such transformations. The reduction may be carried out, for example, by hydrogenation of the nitro compound in a reaction-inert solvent in the presence of a suitable metal catalyst such as palladium, platinum or nickel. A further suitable reducing agent is, for example, an activated metal such as activated iron (produced by washing iron powder with a dilute solution of an acid such as hydrochloric acid). Thus, for example, the reduction may be carried out by heating a mixture of the nitro compound and the activated metal with concentrated hydrochloric acid in a solvent such as a mixture of water and an alcohol, for example, methanol or ethanol, to a temperature in the range, for example, 50° to 150° C., conveniently at or near 70° C. Another suitable class of reducing agents are the alkali metal dithionites, such as sodium dithionite, which may be used in (C1-C4)alkanoic acids, (C1-C6)alkanols, water or mixtures thereof.
For the production of those compounds of Formula I wherein R2 or R3 incorporates a primary or secondary amino moiety (other than the amino group intended to react with the quinazoline), such free amino group is preferably protected prior to the above described reaction followed by deprotection, subsequent to the above described reaction with 4-(substituted)quinazoline 2.
Several well known nitrogen protecting groups can be used. Such groups include (C1-C6)alkoxycarbonyl, optionally substituted benzyloxycarbonyl, aryloxycarbonyl, trityl, vinyloxycarbonyl, O-nitrophenylsulfonyl, diphenylphosphinyl, p-toluenesulfonyl, and benzyl. The addition of the nitrogen protecting group may be carried out in a chlorinated hydrocarbon solvent such as methylene chloride or 1,2-dichloroethane, or an ethereal solvent such as glyme, diglyme or THF, in the presence or absence of a tertiary amine base such as triethylamine, diisopropylethylamine or pyridine, preferably triethylamine, at a temperature from about 0° C. to about 50° C., preferably about ambient temperature. Alternatively, the protecting groups are . conveniently attached using Schotten-Baumann conditions.
Subsequent to the above described coupling reaction, of compounds 2 and 5, the protecting group may be removed by deprotecting methods known to those skilled in the art such as treatment with trifluoroacetic acid in methylene chloride for the tert-butoxycarbonyl protected products.
For a description of protecting groups and their use, see T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis” Second Ed., John Wiley & Sons, New York, 1991.
For the production of compounds of Formula I wherein R1 or R2 is hydroxy, cleavage of a Formula I compound wherein R1 or R2 is (C1-C4)alkoxy is preferred.
The cleavage reaction may conveniently be carried out by any of the many procedures known for such a transformation. Treatment of the protected formula I derivative with molten pyridine hydrochloride (20-30 eq.) at 150° to 175° C. may be employed for O-dealkylations. Alternatively, the cleavage reaction may be carried out, for example, by treatment of the protected quinazoline derivative with an alkali metal (C1-C4)alkylsulphide, such as sodium ethanethiolate or by treatment with an alkali metal diarylphosphide such as lithium diphenylphosphide. The cleavage reaction may also, conveniently, be carried out by treatment of the protected quinazoline derivative with a boron or aluminum trihalide such as boron tribromide. Such reactions are preferably carried out in the presence of a reaction-inert solvent at a suitable temperature.
Compounds of formula I, wherein R1 or R2 is a (C1-C4) alkylsulphinyl or (C1-C4)alkylsulphonyl group are preferably prepared by oxidation of a formula I compound wherein R1 or R2 is a (C1-C4)alkylsulfanyl group. Suitable oxidizing agents are known in the art for the oxidation of sulfanyl to sulphinyl and/or sulphonyl, e.g., hydrogen peroxide, a peracid (such as 3-chloroperoxybenzoic or peroxyacetic acid), an alkali metal peroxysulphate (such as potassium peroxymonosulphate), chromium trioxide or gaseous oxygen in the presence of platinum. The oxidation is generally carried out under as mild conditions as possible using the stoichiometric amount of oxidizing agent in order to reduce the risk of over oxidation and damage to other functional groups. In general, the reaction is carried out in a suitable solvent such as methylene chloride, chloroform, acetone, tetrahydrofuran or tert-butyl methyl ether and at a temperature from about −25° to 50° C., preferably at or near ambient temperature, i.e., in the range of 15° to 35° C. When a compound carrying a sulphinyl group is desired a milder oxidizing agents should be used such as sodium or potassium metaperiodate, conveniently in a polar solvent such as acetic acid or ethanol. The compounds of formula I containing a (C1-C4)alkylsulphonyl group may be obtained by oxidation of the corresponding (C1-C4)alkylsulphinyl compound as well as of the corresponding (C1C4)alkylsulfanyl compound.
Compounds of formula I wherein R1 is optionally substituted (C2-C4)alkanoylamino, ureido, 3-phenylureido, benzamido or sulfonamido can be prepared by acylation or sulfonylation of a corresponding compound wherein R1 is amino. Suitable acylating agents are any agents known in the art for the acylation of amino to acylamino, for example, acyl halides, e.g., a (C2-C4)alkanoyl chloride or bromide or a benzoyl chloride or bromide, alkanoic acid anhydrides or mixed anhydrides (e.g., acetic anhydride or the mixed anhydride formed by the reaction of an alkanoic acid and a (C1-C4)alkoxycarbonyl halide, for example (C1-C4) alkoxycarbonyl chloride, in the presence of a suitable base. For the production of those compounds of Formula I wherein R1 is ureido or 3-phenylureido, a suitable acylating agent is, for example, a cyanate, e.g., an alkali metal cyanate such as sodium cyanate, or an isocyanate such as phenyl isocyanate. N-sulfonylations may be carried out with suitable sulfonyl halides or sulfonylanhydrides in the presence of a tertiary amine base. In general the acylation or sulfonylation is carried out in a reaction-inert solvent and at a temperature in the range of about −30° to 120° C., conveniently at or near ambient temperature.
Compounds of Formula I wherein R1 is (C1-C4)alkoxy or substituted (C1-C4)alkoxy or R1 is (C1-C4)alkylamino or substituted mono-N- or di-N,N-(C1-C4)alkylamino, are prepared by the alkylation, preferably in the presence of a suitable base, of a corresponding compound wherein R1 is hydroxy or amino, respectively. Suitable alkylating agents include alkyl or substituted alkyl halides, for example, an optionally substituted (C1-C4)alkyl chloride, bromide or iodide, in the presence of a suitable base in a reaction-inert solvent and at a temperature in the range of about 10° to 140° C., conveniently at or near ambient temperature.
For the production of those compounds of Formula I wherein R1 is an amino-, oxy- or cyano-substituted (C1-C4)alkyl substituent, a corresponding compound wherein R1 is a (C1-C4)alkyl substituent bearing a group which is displacable by an amino-, alkoxy-, or cyano group is reacted with an appropriate amine, alcohol or cyanide, preferably in the presence of a suitable base. The reaction is preferably carried out in a reaction-inert solvent or diluent and at a temperature in the range of about 10° to 100° C., preferably at or near ambient temperature.
Compounds of Formula I, wherein R1 is a carboxy substituent or a substituent which includes a carboxy group are prepared by hydrolysis of a corresponding compound wherein R1 is a (C1-C4)alkoxycarbonyl substituent or a substituent which includes a (C1-C4)alkoxycarbonyl group. The hydrolysis may conveniently be performed, for example, under basic conditions, e.g., in the presence of alkali metal hydroxide as illustrated in the accompanying Examples.
Compounds of Formula I wherein R1 is amino, (C1-C4) alkylamino, di-[(C1-C4)alkyl]amino, pyrrolidin-1-yl, piperidino, morpholino, piperazin-1-yl, 4-(C1-C4) alkylpiperazin-1-yl or (C1-C4)alkysulfanyl, may be prepared by the reaction, in the presence of a suitable base, of a corresponding compound wherein R1 is an amine or thiol displaceable group with an appropriate amine or thiol. The reaction is preferably carried out in a reaction-inert solvent or diluent and at a temperature in the range of about 10° to 180° C., conveniently in the range 100° to 150° C.
Compounds of Formula I wherein R1 is 2-oxopyrrolidin-1-yl or 2-oxopiperidin-1-yl are prepared by the cyclisation, in the presence of a suitable base, of a corresponding compound wherein R1 is a halo-(C2-C4)alkanoylamino group. The reaction is preferably carried out in a reaction-inert solvent or diluent and at a temperature in the range of about 10° to 100° C., conveniently at or near ambient temperature.
For the production of compounds of Formula I in which R1 is carbamoyl, substituted carbamoyl, alkanoyloxy or substituted alkanoyloxy, the carbamoylation or acylation of a corresponding compound wherein R1 is hydroxy is convenient.
Suitable acylating agents known in the art for acylation of hydroxyaryl moieties to alkanoyloxyaryl groups include, for example, (C2-C4)alkanoyl halides, (C2-C4)alkanoyl anhydrides and mixed anhydrides as described above, and suitable substituted derivatives thereof may be employed, typically in the presence of a suitable base. Alternatively, (C2-C4)alkanoic acids or suitably substituted derivatives thereof may be coupled with a Formula I compound wherein R1 is hydroxy with the aid of a condensing agent such as a carbodiimide. For the production of those compounds of Formula I in which R1 is carbamoyl or substituted carbamoyl, suitable carbamoylating agents are, for example, cyanates or alkyl or arylisocyanates, typically in the presence of a suitable base. Alternatively, suitable intermediates such as the chloroformate or carbonylimidazolyl derivative of a compound of Formula I in which R1 is hydroxy may be generated, for example, by treatment of said derivative with phosgene (or a phosgene equivalent) or carbonyidiimidazole. The resulting intermediate may then be reacted with an appropriate amine or substituted amine to produce the desired carbamoyl derivatives.
Compounds of formula I wherein R1 is aminocarbonyl or a substituted aminocarbonyl can be prepared by the aminolysis of a suitable intermediate in which R1 is carboxy.
The activation and coupling of formula I compounds wherein R1 is carboxy may be performed by a variety of methods known to those skilled in the art. Suitable methods include activation of the carboxyl as an acid halide, azide, symmetric or mixed anhydride, or active ester of appropriate reactivity for coupling with the desired amine. Examples of such types of intermediates and their production and use in couplings with amines may be found extensively in the literature; for example M. Bodansky and A. Bodansky, “The Practice of Peptide Synthesis”, Springer,-Verlag, New York, 1984. The resulting formula I compounds may be isolated and purified by standard methods, such as solvent removal and recrystallization or chromatography.
The starting materials for the above described reaction schemes (e.g., amines, quinazolines and amine protecting groups) are readily available or can be easily synthesized by those skilled in the art using conventional methods of organic synthesis. For example, the preparation of 2,3-dihydro-1,4-benzoxazine derivatives are described in R. C. Elderfield, W. H. Todd, S. Gerber, Ch. 12 in “Heterocyclic Compounds”, Vol. 6, R. C. Elderfield ed., John Wiley and Sons, Inc., N.Y., 1957. Substituted 2,3-dihydrobenzothiazinyl compounds are described by R. C. Elderfield and E. E. Harris in Ch. 13 of Volume 6 of the Elderfield “Heterocyclic Compounds” book.
Certain Formula I quinazolines can exist in solvated, as well as unsolvated forms, such as the hydrated forms. It is to be understood that the invention encompasses all such solvated, as well as unsolvated forms, which possess activity against hyperproliferative diseases.
A suitable pharmaceutically-acceptable salt of a compound of formula I is, for example, an acid-addition salt of a corresponding compound which is sufficiently basic, e.g., an acid-addition salt with, for example, an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric, phosphoric, methanesulfonic, benzenesulfonic, trifluoroacetic, citric, lactic or maleic acid. A suitable pharmaceutically-acceptable base-addition salt of a compound of formula I which is acidic is an alkali metal salt, for example, a lithium, sodium or potassium salt; an alkaline earth metal salt, for example, a calcium or magnesium salt; an ammonium salt; or a salt with an organic base which affords a physiologically-acceptable cation for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine. All such salts are within the scope of this invention and they can be prepared by conventional methods. For example, they can be prepared simply by contacting the acidic and basic entities, usually in a stoichiometric ratio, in either an aqueous, non-aqueous or partially aqueous medium, as appropriate. The salts are recovered by filtration; by precipitation with a non-solvent, preferably an etheral or hydrocarbon solvent, followed by filtration and by evaporation of a solvent, or, in the case of aqueous solutions, by lyophilization.
Some of the compounds of Formula I have asymmetric carbon atoms. Such diasteromeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods known per se., for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixtures into a diastereomric mixture by reaction with an appropriate optically active compound (e.g., alcohol), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. All such isomers, including diastereomers mixtures and pure enantiomers are considered as part of the invention.
The active compounds of this invention are potent inhibitors of the erbB family of oncogenic and protooncogenic protein tyrosine kinases such as epidermal growth factor receptor (EGFR), erbB2, HER3, or HER4 and thus are all adapted to therapeutic use as antiproliferative agents (e.g., anticancer) in mammals, particularly humans. In particular, the compounds of this invention are therapeutants or prophylactics for the treatment of a variety of human tumors (renal, liver, kidney, bladder, breast, gastric, ovarian, colorectal, prostate, pancreatic, lung, vulval, thyroid, hepatic carcinomas, sarcomas, glioblastomas, various head and neck tumors), and other hyperplastic conditions such as benign hyperplasia of the skin (e.g., psoriasis) or prostate (e.g., BPH). It is, in addition, expected that a quinazoline of the present invention may possess activity against a range of leukemias and lymphoid malignancies.
The active compounds may also be expected to be useful in the treatment of additional disorders in which aberrant expression ligand/receptor interactions, activation or signalling events related to various protein tyrosine kinases, whose activity is inhibited by the agents of Formula I, are involved.
Such disorders may include those of neuronal, glial, astrocytal, hypothalamic, and other glandular, macrophagal, epithelial, stromal, and blastocoelic nature in which aberrant function, expression, activation or signalling of the erbB tyrosine kinases may be involved. In addition, compounds of Formula I may have therapeutic utility in inflammatory, angiogenic and immunologic disorders involving both identified and as yet unidentified tyrosine kinases which are inhibited by compounds of Formula I.
The in vitro activity of the active compounds in inhibiting the receptor tyrosine kinase (and thus subsequent proliferative response, e.g., cancer) may be determined by the procedure detailed below.
Activity of the active compunds, in vitro, can be determined by the amount of inhibition of the phosphorylation of an exogenous substrate (e.g., Lys3-Gastrin or polyGluTyr (4:1) random copolymer (I. Posner et. al., J. Biol. Chem. 267 (29), 20638-47 (1992)) on tyrosine by epidermal growth factor receptor kinase by a test compound relative to a control. Affinity purified, soluble human EGF receptor (96 ng) is obtained according to the procedure in G. N. Gill, W. Weber, Methods in Enzymology 146, 82-88 (1987) from A431 cells (American Type Culture Collection, Rockville, Md.) and preincubated in a microfuge tube with EGF (2 μg/ml) in phosphorylation buffer+vanadate (PBV: 50 mM HEPES, pH 7.4; 125 mM NaCl; 24 mM MgCl2; 100 μM sodium orthovanadate), in a total volume of 10 μl, for 20-30 minutes at room temperature. The test compound, dissolved in dimethylsulfoxide (DMSO), is diluted in PBV, and 10 μl is mixed with the EGF receptor /EGF mix, and incubated for 10-30 minutes at 30° C. The phosphorylation reaction is initiated by addition of 20 μl 33P-ATP/substrate mix (120 μM Lys3-Gastrin (sequence in single letter code for amino acids, KKKGPWLEEEEEAYGWLDF), 50 mM Hepes pH 7.4, 40 μM ATP, 2 μCi γ-[33P]-ATP) to the EGFr/EGF mix and incubated for 20 minutes at room temperature. The reaction is stopped by addition of 10 μl stop solution (0.5M EDTA, pH 8; 2mM ATP) and 6 μl 2N HCl. The tubes are centrifuged at 14,000 RPM, 4° C., for 10 minutes. 35 μl of supernatant from each tube is pipetted onto a 2.5 cm circle of Whatman P81 paper, bulk washed four times in 5% acetic acid, 1 liter per wash, and then air dried. This results in the binding of substrate to the paper with loss of free ATP on washing. The [33P] incorporated is measured by liquid scintillation counting. Incorporation in the absence of substrate (e.g., lys3-gastrin) is subtracted from all values as a background and percent inhibition is calculated relative to controls without test compound present.
Such assays, carried out with a range of doses of test compounds, allow the determination of an approximate IC50 value for the in vitro inhibition of EGFR kinase activity. Although the inhibitory properties of the compounds of Formula I vary with structural change as expected, the activity generally exhibited by these agents, determined in the manner described above, is in the range of IC50=0.0001−30 μM.
Activity of the active compounds, in vivo, can be determined by the amount of inhibition of tumor growth by a test compound relative to a control. The tumor growth inhibitory effects of various compounds are measured according to the methods of Corbett T. H., et al. “Tumor Induction Relationships in Development of Transplantable Cancers of the Colon in Mice for Chemotherapy Assays, with a Note on Carcinogen Structure”, Cancer Res., 35, 2434-2439 (1975) and Corbett, T. H., et al., “A Mouse Colon-tumor Model for Experimental Therapy”, Cancer Chemother. Rep. (Part 2)”, 5, 169-186 (1975), with slight modifications. Tumors are induced in the left flank by s.c. injection of 1×106 log phase cultured tumor cells (human MDA-MB-468 breast or human HN5 head and neck carcinoma cells) suspended in 0.10 ml RPMI 1640. After sufficient time has elapsed for the tumors to become palpable (2-3 mm in diameter) the test animals (athymic mice) are treated with active compound (formulated by dissolution in DMSO typically at a concentration of 50 to 100 mg/mL followed by 1:9 dilution into saline or, alternatively, 1:9 dilution into 0.1% Pluronic® P105 in 0.9% saline) by the intraperitoneal (ip) or oral (po) routes of administration twice daily (i.e., every 12 hours) for 5 consecutive days. In order to determine an anti-tumor effect, the tumor is measured in millimeters with Vernier calipers across two diameters and the tumor size (mg) is calculated using the formula: Tumor weight=(length×[width]2)/2, according to the methods of Geran, R. I., et al. “Protocols for Screening Chemical Agents and Natural Products Against Animal Tumors and Other Biological Systems”, Third Edition, Cancer Chemother. Rep., 3, 1-104 (1972). Results are expressed as percent inhibition, according to the formula: Inhibition (%)=(TuWcontrol−TuWtest)/TUWcontrol×100%. The flank site of tumor implantation provides reproducible dose/response effects for a variety of chemotherapeutic agents, and the method of measurement (tumor diameter) is a reliable method for assessing tumor growth rates.
Administration of the active compounds can be effected by any method which enables delivery of the compounds to the site of action (e.g., cancer cells). These methods include oral routes, intraduodenal routes, parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion), topical administration, etc.
The amount of active compound administered will, of course, be dependent on the subject being treated, on the severity of the affliction, on the manner of administration and on the judgement of the prescribing physician. However an effective dosage is in the range of approximately 0.001-100 mg/kg, preferably 1 to 35 mg/kg in single or divided doses. For an average 70 kg human, this would amount to 0.05 to 7 g/day, preferably 0.2 to 2.5 g/day.
The composition may, for example, be in a form suitable for oral administration as a tablet, capsule, pill, powder, sustained release formulations, solution, suspension, for parenteral injection as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository. The pharmaceutical composition may be in unit dosage forms suitable for single administration of precise dosages. The pharmaceutical composition will include a conventional pharmaceutical carrier or excipient and a compound according to the invention as an active ingredient. In addition, it may include other medicinal or pharmaceutical agents, carriers, adjuvants, etc.
Pharmaceutical compositions according to the invention may contain 0.1%-95% of the compound, preferably 1%-70%. In any event, the composition or formulation to be administered will contain a quantity of active compound in an amount effective to alleviate or reduce the signs in the subject being treated, i.e., hyperproliferative diseases, over the course of the treatment.
Exemplary parenteral administration forms include solutions or suspensions of active compounds in sterile aqueous solutions, for example aqueous propylene glycol or dextrose solutions. Such dosage forms can be suitably buffered, if desired.
Suitable pharmaceutical carriers include inert diluents or fillers, water and various organic solvents. The pharmaceutical compositions may, if desired, contain additional ingredients such as flavorings, binders, excipients and the like. Thus for oral administration, tablets containing various excipients, such as citric acid may be employed together with various disintegrants such as starch, alginic acid and certain complex silicates and with binding agents such as sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often useful for tableting purposes. Solid compositions of a similar type may also be employed in soft and hard filled gelatin capsules. Preferred materials, therefor, include lactose or milk sugar and high molecular weight polyethylene glycols. When aqueous suspensions or elixirs are desired for oral administration the active compound therein may be combined with various sweetening or flavoring agents, coloring matters or dyes and, if desired, emulsifying agents or suspending agents, together with diluents such as water, ethanol, propylene glycol, glycerin, or combinations thereof.
Methods of preparing various pharmaceutical compositions with a specific amount of active compound are known, or will be apparent, to those skilled in this art. For examples, see Remington's Pharmaceutical Sciences., Mack Publishing Company, Easter, Pa., 15th Edition (1975).
The hyperproliferative disease treatment described above may be applied as a sole therapy or may involve, in addition to the active compound, one or more other antitumor substances. Such conjoint treatment may be achieved by way of the simultaneous, sequential, cyclic or separate dosing of the individual components of the treatment.
High pressure liquid chromatography (HPLC) used in the following examples and preparations was effected according to the following method unless modified in specific examples. Perkin-Elmer Pecosphere® 3×3C cartridge column (3mm×3cm, C18; available from Perkin Elmer Corp., Norwalk, Conn. 06859) with a Brownlee (trademark) RP-8Newguard precolumn (7 micron, 3.2 mm×15 mm, available from Applied Biosystems Inc. San Jose, Calif. 95134) which was previously equilibrated in pH 4.50, 200 mM ammonium acetate buffer. Samples were eluted using a linear gradient of 0-100% acetonitrile/pH4.50, 200 mM NH4 acetate over 10 minutes with a flow rate of 3.0 mL/min. Chromatograms were generated over the range 240-400 nm using a diode array detector.
It should be understood that the invention is not limited to the particular embodiments shown and described herein, but that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the claims.
4-Chloro-6,7-dimethoxyquinazoline (250 mg, 1.12 mmol) and 4-azidoaniline hydrochloride (200 mg, 1.11 mmol) were refluxed in 10 mL of isopropyl alcohol for 0.5 hour, cooled and filtered to afford solid title product which was washed with 10 mL of isopropyl alcohol and dried in vacuo, at 70° C., 392 mg (98%); mp 200°-205° C. (dec).
4-Chloro-6,7-dimethoxyquinazoline (250 mg, 1.12 mmol) and 3-ethynyl-aniline (137 mg, 1.17 mmol) were refluxed in 10 mL of isopropyl alcohol for 0.5 hour, cooled and filtered to afford solid title product which was washed with 10 mL of isopropyl alcohol and dried in vacuo, at 70° C., 338 mg (99%); mp 269°-270° C.
A mixture of (3′-bromophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine hydrochloride (250 mg, 0.591 mmol), tetrakis(triphenylphosphine)palladium (100 mg), propargyl alcohol (600 μL), 7 mL of dry, nitrogen purged diethylamine and cuprous iodide (10 mg) was refluxed for 5 hours, cooled and filtered to afford solid title product which was washed two times with 2 mL of 50% diethylamine:methanol; 136 mg. The solid was recrystallized from methanol to give pure title product after drying, in vacuo,, at 70° C., 73 mg (37%); mp 267°-268° C.
The title product of Example 3 (50 mg, 0.149 mmol), triphenylphosphine (60 mg, 0.225 mmol)), phthalimide (165 mg, 1.12 mmol) and diethyl azodicarboxylate (36 μL, 0.228 mmol) were stirred at room temperature in 3 mL of dry tetrahydrofuran for 16 hours. The reaction mixture was concentrated to a solid and flash chromatographed on silica gel eluted with 15% acetone:methylene chloride to afford pure solid [3-(2′-{phthalimidomethyl}-ethynyl)phenyl]-(6,7-dimethoxyquinazoline-4-yl)amine which was converted to its hydrochloride salt by addition of 1 mL of anhydrous 1M HCl in methanol followed by 3 mL of isopropyl alcohol. The salt was collected by filtration, dried and used immediately in the next step; 15 mg. This 15 mg, 0.0323 mmol was treated with 0.5 ml of hydrazine hydrate and 1 mL of methanol for 0.5 hours. The reaction mixture was evaporated, in vacuo, and the product isolated by flash chromatography eluted with 10% methanol in methylene chloride. Pure title product was isolated after conversion to its hydrochloride salt with 1 mL of 1M HCl in methanol, precipitation with isopropyl alcohol and diethyl ether and drying, in vacuo,; 5.6 mg (47%) mp 275° C. dec.
4-Chloro-6-nitroquinazoline (1.06 g,5.00 mmol) and 3-ethynylaniline (1.00 g,5.30 mmol) were refluxed in 10 mL of isopropyl alcohol for 3 hours, cooled and, after 16 hours at room temperature, filtered to afford solid title product which was washed with 10 mL of isopropyl alcohol and dried in vacuo, at 70° C., 1.27 g (78%); mp 255°-256° C.
The title product was prepared in the following three step sequence without purification of the intermediates. 4-Chloro-6,7-dimethoxyquinazoline (250 mg, 1.113 mmol) and 4-iodoaniline (268 mg, 1.224 mmol) were refluxed in 10 mL of isopropyl alcohol for 3 hours, cooled to room temperature and filtered to afford solid (4-iodophenyl)-(6,7-dimethoxyquinazoline-4-yl)amine hydrochloride which was washed with 10 mL of isopropyl alcohol and dried in vacuo at 70° C., 396 mg (76%). A mixture consisting of (4′-iodophenyl)-(6,7-dimethoxyquinazoline-4-yl)amine hydrochloride (250 mg, 0.564 mmol), tetrakis (triphenylphosphine)palladium (50 mg), trimethylsilylacetylene (160 μL, 1.13 mmol), 4 mL of dry, nitrogen purged diethylamine and cuprous iodide (10 mg) was refluxed for 2 hours, cooled and concentrated in vacuo, to afford a residue which was partitioned between chloroform and 1N HCL. Solid [4-(2′-{trimethylsilyl}-ethynyl) phenyl]-(6,7-dimethoxyquinazoline-4-yl)amine formed at the interface of the two liquid phases and was filtered and dried in vacuo; 170 mg (80%).
[4-(2′-{Trimethylsilyl}ethynyl)phenyl]-(6,7-dimethoxyquinazoline-4-yl)amine (100 mg, 0.265 mmol) and anhydrous potassium carbonate (125 mg, 0.906 mmol) were stirred in 3 mL of methanol and 1 mL of water at room temperature for 2.5 hours. The reaction mixture was concentrated in vacuo, and partitioned between 20 mL of chloroform and 20 mL of 1N hydrochloric acid. The organic layer was dried with magnesium sulfate, filtered and vacuum evaporated to give the title product which was triturated with diethyl ether and dried in vacuo at 70° C.; 81 mg (90%) mp 239° C. dec.
The title product was prepared in the following three step sequence with out purification of the intermediates. A mixture consisting of 3-bromo-2-methylaniline (1.00 g, 5.37 mmol), tetrakis(triphenylphosphine)palladium (200 mg), trimethylsilylacetylene (1.053 g, 10.75 mmol), 10 mL of dry, nitrogen purged diethylamine and cuprous iodide 910 mg) was refluxed for 16 hours, cooled and concentrated, in vacuo, to afford a residue which was partitioned between chloroform and 1N HCL. The organic layer was washed with brine, dried with magnesium sulfate and vacuum evaporated to yield a residue, 3-[2′-(trimethylsilyl)ethynyl]-2-methylaniline which was purified by flash chromatography on silica gel eluted with 1:1 hexanes:methylene chloride; 200 mg (18%).
4-Chloro-6,7-dimethoxyquinazoline (104 mg, 0.466 mmol) and 3-[2′-(trimethylsilyl)ethinyl]-2-methylaniline (100 mg, 0.491 mmol) were refluxed in 3 mL of isopropyl alcohol for 16 hour, cooled to room temperature and filtered to afford a residue of solid {3-[2′-(trimethylsilyl)ethynyl]-2′-methylphenyl|}-(6,7dimethoxyquinazoline -4-yl)amine hydrochloride which was washed with 10 mL of isopropyl alcohol and triturated for 16 hours with diethyl ether. Thin layer chromatography on silica gel eluted with 9:1 chloroform:methanol indicated that the residue was impure product. The residue was purified by flash chromatography on silica gel eluted with 9:1 methylene chloride:methanol to afford after concentration and drying, in vacuo, pure product, 64 mg (33%). The product was dissolved in 3 mL of methanol and treated with 64 mg of anhydrous potassium carbonate at room temperature for 3 hours. The reaction mixture was concentrated in vacuo and partitioned between 1N HCl and chloroform. Solid title product formed at the interface of the two liquid phases and was filtered and dried, in vacuo; 40 mg (84%) mp 225° C. dec.
(3-Ethynyl-phenyl)-(6-nitro-quinazolin-4-yl)-amine hydrochloride (500 mg, 1.50 mmol) was dissolved in 10 mL of formic acid and treated portion-wise with sodium dithionite (1.10 g, 6.28 mmol) at room temperature. After 2 hours the mixture was quenched with 120 mL of water and filtered. The filtrate was evaporated in vacuo to a residue which was dissolved in 100 mL of 1:1 methanol:chloroform, filtered and evaporated in vacuo to a second residue. This was triturated with 200 mL of 5% sodium bicarbonate for 30 minutes, filtered, washed with water and dried in vacuo for 16 hours. Flash chromatography on silica gel eluted with ethyl acetate afforded pure (6-aminoquinazolin-4-yl)-(3-ethynylphenyl)-amine; 140 mg (34%); mp 165° C. dec.
The title product of Example 8 (100 mg, 0.384 mmol), pyridine (140 μL, 1.68 mmol) and methanesulfonyl chloride (99 μL, 1.26 mmol) were refluxed in 10 mL of 1,2-dichloroethane for 7 hours. The reaction mixture was cooled and evaporated in a vacuo to a residue which was triturated in 10 mL of 1N HCl, filtered and dried in vacuo to yield (3-ethynylphenyl)-(6-methanesulfonylaminoquinazoline-4-yl)amine; 102 mg (78%) mp 248° C. dec.
4-Chloro-6,7-methylenedioxyquinazoline (200 mg, 1.04 mmol) and 3-ethynylaniline (127 mg, 1.09 mmol) were refluxed in 5 mL of isopropyl alcohol for 16 hour, cooled and filtered to afford solid title product which was washed with 10 mL of isopropyl alcohol and dried in vacuo at 70° C., 266 mg (79%); mp >350° C.
The title product was prepared in the following three step sequence without purification of the intermediates. A mixture consisting of 4-bromo-2-nitrotoluene (1.50 g, 6.94 mmol) tetrakis(triphenylphosphine)palladium (750 mg), trimethylsilylacetylene (3.00 mL, 21.21 mmol) and cuprous iodide (20 mg) in 20 mL of nitrogen purged, dry diethylamine was refluxed for 2 hours, cooled and concentrated, in vacuo, to afford a residue which was partitioned between 100 mL of ethyl acetate and 100 mL of 1N HCl. The organic layer was washed two times with 50 mL of 1N HCl followed by brine, dried with magnesium sulfate and vacuum evaporated to a residue. The residue was dissolved in 10 mL of ethyl acetate and diluted with 200 mL of petroleum ether. The solids were filtered off and the oil, obtained upon vacuum evaporation of the filtrate, solidified to give 4-[2′-(trimethylsilyl)ethinyl]-2-nitrotoluene. This product was reduced to the amino product by treatment with iron powder (1.76 g, 98.5 mmol) in 30 mL of methanol and 5 mL of concentrated hydrochloric acid at 80° C. for 2 hours. The cooled reaction mixture was filtered through Celite® and the filtrate was evaporated in vacuum. The residue was partitioned between ethyl acetate and 5% aqueous sodium bicarbonate. The organic layer was washed with brine, dried with magnesium sulfate, filtered and vacuum evaporated to yield an oil, 5-[2′-(trimethylsilyl)ethynyl)-2-methylaniline which solidified upon standing: 1.37 g.
The above product (185 mg, 0.909 mmol) and 4-chloro-6,7-dimethoxyquinazoline (200 mg, 0.890 mmol) were refluxed in tert-butyl alcohol for 16 hours. After cooling the reaction mixture was filtered to yield pure [2-methyl-5-(2′-{trimethylsilyl}-ethynyl)-phenyl]-(6,7-dimethoxyquinazoline-4-yl-amine hydrochloride after washing with ether and drying in vacuum; 326 mg (85%). The trimethylsilyl group was removed by dissolving the above product in 5 mL of methanol and 1 mL of water and treatment with potassium carbonate (320 mg). After stirring for 1 hour the mixture was filtered and concentrated in vacuo. The residue thus obtained was partitioned between 100 mL of methylene chloride and 100 mL of 1N HCl. The aqueous layer was extracted with an additional 100 mL of methylene chloride. The pooled organic layers were dried with magnesium sulfate, filtered and vacuum evaporated to a residue which was dissolved in anhydrous 1N HCl in methanol, concentrated and precipitated with ether. The solid title product was collected by filtration and washed with diethyl ether then dried in vacuo at 70° C.; 236 mg (88%) mp 266°-267° C.
4-Chloro-7-nitroquinazoline (7.97 g, 38.0 mmol) and 3-ethynylaniline (4.54 g, 38.8 mmol) were refluxed in 125 mL of tert-butyl alcohol for 3 hours, cooled to room temperature and filtered to afford the title product as a solid which was washed with 10 mL of isopropyl alcohol and dried in vacuo at 70° C., 9.95 g (80%); mp 209°-210° C. dec.
The title product of example 8 (0.201 mg, 0.774 mmol) and 4-toluenesulfonyl chloride (0.441 mg, 2.31 mmol) were refluxed in 3 mL of 1,2-dichloroethane and 0.5 mL of pyridine for 5 minutes. The reaction mixture was cooled to room temperature, diluted with 75 mL of ethyl acetate and washed two times with 75 mL of water once with 75 mL of 3% sodium bicarbonate and once with 75 mL of brine. The organic layer was dried with magnesium sulfate, filtered and vacuum evaporated to a residue which was purified by chromatography using a Chromatotron (trademark) eluted with ethyl acetate, to afford solid title product; 86.7 mg (27%) mp 220°-222° C.
The title product of example 8 (0.20 mg, 0.768 mmol) and 2-phthalimido-1-ethanesulfonyl chloride (0.615 mg, 2.25 mmol) were refluxed in 2 mL of 1,2-dichloroethane and 0.5 mL of pyridine for 16 hours, cooled to room temperature, diluted with 100 mL of chloroform and washed with 50 mL of 3% sodium bicarbonate and 50 mL of brine. The organic layer was dried with magnesium sulfate, filtered and vacuum evaporated to a residue which was dissolved in minimal methylene chloride and precipitated with petroleum ether, 188 mg. The precipitate was purified by chromatography using Chromatotron@ eluted with ethyl acetate, to afford the title product as a solid; 53.4 mg (14%) mp 197°-200° C.
The title product of example 8, (0.302 mg, 1.16 mmol) and 3,5-dimethylpyrazole-1-carboxamidine (0.328 mg, 2.36 mmol) were refluxed in 10 mL of 1,2-dichloroethane and 0.97 mL of acetic acid for 24 hours, cooled to room temperature and filtered to yield the crude acetate of the title product. The product was dissolved in 35 mL of methanol and treated with 15 mL of anhydrous 1N HCl in methanol for 15 minutes and then precipitated with 75 mL of diethyl ether. Solid title product was collected by filtration and dried in vacuo at 70° C.; 91.2 mg (23%) mp>400° C.
The title product of example 12 (1.039 g, 3.18 mmol) was dissolved in 50 mL of tetrahydrofuran, 10 mL of methanol and 5 mL of chloroform at 50° C. Sodium dihydrogen phosphite (NaH2PO2, 3.822 g, 36 mmol) and 10% palladium on carbon (0.19 g) were added followed by dropwise addition of 10 mL of water. When 3 mL of water had been added the mixture became noticeably more homogeneous. After 1 hour the mixture was filtered through Celite. The Celite was washed thoroughly with methanol and chloroform. The combined organic solutions were vacuum evaporated to a residue which was triturated with water, 3% aqueous sodium bicarbonate and filtered. The solid title product was washed with water then diethyl ether and dried in vacuo, 1.054 gm (127%, wet). A portion of the above product was recrystallized from a minimum amount of hot ethanol and water to give, after removal of a small first crop of impure material, pure title product, (43%), mp 180° C. (dec).
4-Chloro-7-methoxyquinazoline (274 mg, 3.72 mmol) and 3-ethynylaniline (436 mg, 3.72 mmol) were refluxed in 15 mL of tert-butyl alcohol for 3 hours, cooled and filtered to afford solid title product which was washed with 10 mL of isopropyl alcohol and dried in vacuo at 70° C., 977 mg (84%); mp 229°-231° C.
4-Chloro-6-carbomethoxyquinazoline (100 mg, 0.450 mmol) and 3-ethynylaniline hydrochloride (53.4 mg, 0.456 mmol) were refluxed in 2 mL of tert-butyl alcohol for 2 hours, cooled, diluted with 2 mL of isopropyl alcohol and filtered to afford solid title product which was washed with 10 mL of diethyl ether and dried, in vacuo, at 70° C., 122 mg (80%); mp 232°-233° C. (dec).
4-Chloro-7-carbomethoxyquinazoline (202 mg, 0.907 mmol) and 3-ethynylaniline (110 mg, 0.939 mmol) were refluxed in 4 mL of tert-butyl alcohol for 2 hours, cooled, diluted with 4 mL of isopropyl alcohol and filtered to afford solid title product which was washed with 10 mL of diethyl ether and dried, in vacuo, at 70° C., 248 mg (80%); mp 219.5°-221° C.
3-Ethynylaniline (37 mg, 0.32 mmol.), and 4-chloro-6,7-bis-(2-methoxy-ethoxy)quinazoline (90 mg, 0.29 mmol) were added to isopropanol (1.5 mL) containing pyridine (25 μL, 0.32 mmol) and the mixture was refluxed 4 hours under an atomospher of dry nitrogen. The solvent was removed, in vacuo, and the residue partitioned between 10% methanol in CHCl3 and saturated aqueous NaHCO3. The organic phase was dried over Na2SO4, filtered and concentrated in vacuo. The residue was flash chromatographed on silica using 30% acetone in hexanes to afford 81 mg of the free base of the title product as a pale yellow solid. The free-base was dissolved in a minimum volume of CHCl3, diluted with several volumes of ether, and titrated with 1M HCl in ether to precipitate the title product as its hydrochloride salt; 90 mg; 71%; mp 228°-230° C.
4-Chloro-6,7-dimethoxyquinazoline (5.01 g, 22.3 mmol) was added in portions, over 1.5 hours, to m-phenylenediamine (2.66 g, 24.6 mmol) in refluxing isopropanol (100 mL) under an atmosphere of dry nitrogen. After the addition was complete the mixture was heated at reflux for 4 hours. The mixture was cooled to 20° C., and the precipitate was filtered, washed with chilled isopropanol and dried in vacuo to afford 6.97 g (93%) of (3-aminophenyl)-(6,7-dimethoxyquinazolin-4-yl)amine hydrochloride (LC-MS: 297 (MH+). To a solution of the above product (50 mg, 0.169 mmol) in 80% acetic acid/H2O (2 mL), at 0° C., was added a solution of NaNO2 (18.4 mg, 0.186 mmol) in H2O (100 μL). After stirring 10 minutes at 0° C. a solution of NaN3 (12 mg, 0.185 mmol) in H2O (100 μL) was added. The mixture was allowed to warm to 20° C. and stirred for 1.5 hours. The reaction mixture was lyophilized and the residue partitioned between ethyl acetate and saturated aqueous NaHCO3. The organic phase was wahsed further with brine, dried over Na2SO4, filtered, and concentrated, in vacuo. Recrystallization from CHCl3/hexanes afforded 36 mg of the title product as a white solid; mp 110°-113° C.
4-Chloro-6,7-dimethoxyquinazoline (200 mg, 0.89 mmol) and 5-amino-3-chloroaniline (253 mg, 1.78 mmol) were combined in isopropanol (3 mL) and heated to reflux for 16 hours under an atmosphere of dry nitrogen. After cooling to 20° C. the mixture was diluted with methanol (5 mL) and the resulting precipitate was filtered and dried, in vacuo, to afford 252 mg (77%) of (3-amino-5-chlorophenyl)-(6,7-dimethoxyquinazolin-4-yl)amine hydrochloride (mp. 298°-301° C.; LC-MS: 331 (MH+)). A portion of this product (175 mg, 0.476 mmol) was dissolved in 80% acetic acid/H2O (12 mL), cooled to 0° C., and a solution of NaNO2 (36 mg, 0.516 mmol) in H2O (300 μL) was added. The solution was stirred for 10 minutes at 0° C. and NaN3 (33 mg, 0.50 mmol) in H2O (300 μL) was added. The reaction mixture was allowed to warm to 20° C. and stirred 16 hours. The resulting precipitate was filtered and dissolved in 10% methanol in CHCl3 and the solution was washed with saturated aqueous NaHCO3, and brine, dried over Na2SO4, filtered and concentrated in vacuo to yield 59 mg (35%) of the title product as a yellow solid; mp 205°-206° C.
6-Methanesulfonyl-quinazolin-4-one (200 mg, 0.89 mmol), triphenyl phosphine (566 mg, 2.15 mmol) and carbon tetrachloride (815 μL, 8.92 mmol) were refluxed in 3 mL of chloroform for 3.5 hours. The solvent was vacuum evaporated to afford a residue. This was dissolved in 5 mL of isopropyl alcohol and 3-ethynylaniline (156 mg, 1.33 mmol) and heated at reflux for 16 hours. The cooled reaction mixture was filtered, washed with a minimum of cold isopropyl alcohol and dried in vacuo at 70° C. for 16 hours to afford pure title product; 63 mg (20%) mp 281°-282° C.
6-Ethanesulfanyl-quinazolin-4-one (100 mg, 0.48 mmol), triphenyl phosphine (305 mg, 1.16 mmol) and 3 mL of carbon tetrachloride were refluxed for 16 hours. The solvent was vacuum evaporated to afford a residue. This was dissolved in 5 mL of isopropyl alcohol and 3-ethynylaniline (68 mg, 0.58 mmol) and heated at reflux for 1 hour. The cooled reaction mixture was filtered, washed with a minimum of cold isopropyl alcohol and dried in vacuo at 70° C. for 16 hours to afford pure title product; 70 mg (42%) mp 239°-40° C.
4-Chloro-6,7-dimethoxyquinazoline (500 mg, 2.23 mmol) and 3-(2′-trimethylsilylethynyl)-4-fluoroaniline (507 mg, 2.44 mmol) were refluxed in 5 mL of tert-butyl alcohol for 16 hours, cooled and filtered to afford solid (6,7-dimethoxy-quinazolin-4-yl)-(3′-ethynyl-phenyl)-amine hydrochloride which was washed with 10 mL of isopropyl alcohol and dried in vacuo at 70° C., 832 mg (83%). This was reacted in 10 mL of methanol and 1 drop of water containing 250 mg of potassium carbonate for 3 hours. The mixture was filtered and the filtrate vacuum evaoprated. This residue was triturated for 1 hour with 1N hydrochloric acid, filtered and washed with a minimum amount of water then methanol and dried in vacuo; 506 mg (63%) mp 229° C. dec.
3-(2′-Trimethylsilyl-ethynyl)-4-fluoroaniline, used above, was prepared from 3-bromo-4-fluoroaniline (7.0 gm, 36.8 mmol) tetrakis(triphenylphosphine)palladium (1.4 gm), trimethylsilyl-acetylene (7.2 gm, 74 mmol) and cuprous iodide (40 mg) in 140 mL of nitrogen purged dry diethylamine at reflux for 16 hours. The cooled reaction mixture was filtered through Celite and the Celite washed with ether. The combined filtrates were vacuum evaporated to a residue which was purified by flash chromatography on silica gel eluted with 35% hexanes in methylene chloride. Fractions containing the pure 3-(2′-trimethylsilyl-ethynyl)-4-fluoroaniline were vacuum evaporated to a residue and used without further purification.
4-Chloro-6,7-dimethoxyquinazoline (585 mg, 2.60 mmol) and 3-(propyn-1-yl)aniline (361 mg, 2.74 mmol) were refluxed in 5 mL of tert-butyl alcohol for 16 hours, cooled and filtered to afford solid (6,7-dimethoxy-quinazolin-4-yl)-[3-(propyn-1-yl)phenyl)]-amine hydrochloride which was washed with 5 mL of isopropyl alcohol and 25 mL of ether then dried in vacuo at 70° C., 869 mg (94%); mp 260°-261° C.
3-(Propyn-1-yl)aniline, used above, was prepared from 3-bromo-nitrobenzene in four steps. 3-Bromo-nitrobenzene (5.0 gm, 24.7 mmol), tetrakis(triphenylphosphine)palladium (1.0 gm), trimethylsilyl-acetylene (3.6 gm, 37 mmol) and cuprous iodide (20 mg) in 20 mL of nitrogen purged, dry diethylamine at reflux for 16 hours. The cooled reaction mixture was vacuum evaporated, diluted with 50 mL of methylene chloride and 50 mL of 1N hydrochloric acid and filtered. The organic layer was collected and dried with magnesium sulfate filtered and vacuum evaporated to a residue. The 3-trimethylsilylethynylnitrobenzene was purified by flash chromatography on silica gel eluted with 2:1 hexanes:methylene chloride. Fractions containing the pure material were vacuum evaporated to afford pure 3-trimethylsilylethynyl nitrobenzene (4.6 gm). 4.0 gm of this were dissolved in 30 mL of methanol and 1 drop of water containing 1.16 gm of potassium carbonate. After one hour the mixture was vacuum evaporated and diluted with 100 mL of methylene chloride. The organic layer was washed with 100 mL of 1N hydrochloric acid, dried with magnesium sulfate, filtered and vacuum evaporated to a residue (2.96 gm). 790 mg of this was dissolved in 10 mL of benzene and treated with finely pulverized 87% potassium hydroxide (377 mg, 5.91 mmol), methyl iodide (2 mL) and 10 mg of 18-Crown-6 (Aldrich) at reflux for 16 hours. An additional 0.5 mL of methyl iodide were added and the reflux continued for an additional 2 hours. The cooled reaction mixture was vacuum evaporated to a residue which was diluted with 100 mL of methylene chloride and washed with 100 mL of 1N hydrochloric acid, dried with magnesium sulfate, filtered and vacuum evaporated to an oil. This was purified by flash chromatography on silica gel eluted with 1:1 hexanes:methylene chloride. Fractions containing pure 3-(propyn-1-yl)-nitrobenzene were vacuum evaporated to an oil which was used without further purification; 530 mg (61%). 3-(Propyn-1-yl)-nitrobenzene (530 mg, 3.3 mmol), iron powder (400 mg, 7.27 mmol), 3 mL of concentrated hydrochloric acid and 10 mL of methanol were refluxed for 1 hour. The reaction mixture was filtered and vacuum evaporated to a solid which was partitioned between 100 mL of methylene chloride and 100 mL of 1N sodium hydroxide. The two phases were filtered and then the organic phase was separated, dried with magnesium sulfate, filtered and vacuum evaporated to an oil which was used directly in the preparation of the title product; 321 mg (78%).
4-Chloro-6,7-bis-(2-methoxy-ethoxy)-quinazoline (140 mg, 0.446 mmol) and 3-ethynyl-4-fluoroaniline (66 mg, 0.452 mmol) were reacted in refluxing isopropanol (3 mL) under an atmosphere of N2 for 16 hours. The solvent was removed in vacuo and the residue was partitioned between CHCl3 and saturated aqueous NaHCO3. The organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was chromatographed on silica using 40% acetone/CH2Cl2 to provide 116 mg of the pure title product as its free base. This oil was dissolved in a minimum volume of CHCl3, diluted with several volumes of ether and titrated with 1M HCl in ether to precipitate the title product as a white solid (99 mg; 50%; M.P. 170°-190° C. (dec); LC-MS: 412 (MH+); anal. RP18-HPLC RT: 4.33 min.).
4-Chloro-6,7-bis-(2-methoxy-ethoxy)-quinazoline (153 mg, 0.49 mmol), pyridine (40 μL) and 3-ethynyl-6-methylaniline (71 mg, 0.54 mmol) were reacted in DMF (3 mL) at 110° C. under an atmosphere of N2 for 36 hours. The solvent was removed in vacuo and the residue was partitioned between CHCl3 and saturated aqueous NaHCO3. The organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was chromatographed on silica using 40% acetone/CH2Cl2 to provide 40 mg (19%) of pure product as its free base. This oil was dissolved in a minimum volume of CHCl3, diluted with several volumes of ether, and triturated with 1M HCl in ether to precipitate the title product as a white solid (M.P. 170°-185° C. (dec); LC-MS: 408 (MH+); anal. RP18-HPLC RT: 3.93 min.).
4-Chloro-6,7-bis-(2-chloro-ethoxy)-quinazoline (600 mg, 1.87 mmol) and 3-ethynyl-aniline (219 mg, 1.87 mmol) were reacted in refluxing isopropanol (15 mL) under an atmosphere of N2 for 2.5 hours. The mixture was cooled to 20° C. and the precipitated product was filtered, washed With isopropanol and ether and dried in vacuo. (707 mg; 86%; M.P. 230°-240° C. (dec); LC-MS: 402 (MH+); anal. RP18-HPLC RT: 5.35 min.).
The title product was prepared from 4-chloro-6-(2-chloro-ethoxy)-7-(2-methoxyethoxy)-quinazoline (399 mg, 1.26 mmol) and 3-ethynyl-aniline (147 mg, 1.26 mmol) as described for Example 29. (515 mg; 94%; M.P. 215°-225° C. (dec); LC-MS: 398 (MH+); anal. RP18-HPLC RT: 4.85 min.).
The title product of Example 29 (200 mg, 0.456 mmol) was treated with cesuim acetate (1.75 g, 9.12 mmol) in DMF (3 mL) at 120° C. under an atmosphere of N2 for 16 hours. The reaction mixture was partitioned between brine and CHCl3, and the organic extract was washed with brine, dried over Na2SO4, filtered and concentrated in vacuo to afford an oil (277 mg) which was recrystallized from CH2Cl2/hexane. (184 mg; 90%; M.P. 137°-138° C.; LC-MS: 450 (MH+); anal. RP18-HPLC RT: 4.64 min.).
6,7-Bis-(2-acetoxy-ethoxy)-4-(3-ethynyl-phenyl-amino)-quinazoline (199 mg, 0.443 mmol) in methanol (3 mL) was treated with 7M aqueous KOH (0.25 mL). The mixture was stirred at 20° C. for 2 hours before removing the solvent in vacuo. The solid residue was washed with water to remove salts, and dried azeotropically by dissolution two times in acetonitrile and concentration in vacuo to afford 116 mg of title product as its free base. This material was converted to its HCl salt according to the method used in Example 28 (115 mg; 65%; M.P.215°-218° C. (dec); LC-MS: 366 (MH+); anal. RP18-HPLC RT: 3.08 min.).
The title product of Example 30 (160 mg, 0.368 mmol); was treated with cesium acetate (707 mg, 3.68 mmol) in DMF (3 mL) at 120° C. under an atmosphere of N2 for 16 hours. The reaction mixture was partitioned between brine and CHCl3, and the organic extract was washed with brine, dried over Na2SO4, filtered and concentrated in vacuo to afford a residue (285 mg) which was recrystallized from ethylacetate/hexane. (134 mg; M.P. 84°-87° C.; LC-MS: 422 (MH+); anal. RP18-HPLC RT: 4.38 min.).
This product was prepared from 4-chloro-7-(2-chloro-ethoxy)-6-(2-methoxy-ethoxy)-quinazoline (600 mg, 1.89 mmol) and 3-ethynyl-aniline (147 mg, 1.26 mmol) as described for Example 29. (737 mg; 90%; M.P. 225°-235° C. (dec); LC-MS: 398 (MH+); anal. RP18-HPLC RT: 4.89 min.).
The title product of Example 34 (160 mg, 0.368 mmol); was treated with cesium acetate (707 mg, 3.68 mmol) in DMF (3 mL) at 120° C. under an atmosphere of N2 for 16 hours. The reaction mixture was partitioned between brine and CHCl3, and the organic extract was washed with brine, dried over Na2SO4, filtered and concentrated in vacuo to afford a residue (288 mg) which was recrystallized from ethyl acetate/hexanes. (134 mg; M.P.134°-135° C.; LC-MS: 422 (MH+); anal. RP18-HPLC RT: 4.43 min.).
The title product of Example 35 (149 mg, 0.354 mmol) in methanol (3 mL) was treated with 5M aqueous KOH (0.25 mL). The mixture was stirred at 20° C. for 30 minutes before removing the solvent in vacuo. The solid residue was washed with water to remove salts, and dried azeotropically by dissolution two times in acetonitrile and concentration in vacuo to afford 100 mg of title product as its free base. This material was converted to its HCl salt according to the method used in Example 28 (87 mg; 59%; M.P. 230°-235° C. (dec); LC-MS: 380 (MH+); anal. RP18-HPLC RT: 3.42 min.).
The title product of Example 34 (110 mg, 0.253 mmol) in DMF (2 mL) was treated with N-methyl-piperazine (281 μL, 2.53 mmol) at 110° C. for 16 hours. The reaction mixture was partitioned between CHCl3 and saturated aqueous NaHCO3. The organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was chromatographed on silica using 15% methanol/CH2Cl2 to provide 56 mg of pure product as its free base. This white solid was dissolved in a minimum volume of CHCl3, and titrated with 2 equivalents of 1M HCl in ether to precipitate the title product as a white solid (65 mg; 48%; M.P. 130°-142° C. (dec); LC-MS: 462 (MH+); anal. RP18-HPLC RT: 3.69 min.).
The title product from Example 34 (110 mg, 0.253 mmol) in DMF (2 mL) was treated with imidazole (172 mg, 2.53 mmol) at 110° C. for 48 hours. The reaction mixture was partitioned between CHCl3 and saturated aqueous NaHCO3. The organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product (119 mg) was chromatographed on silica using 10% methanol/CH2Cl2 to provide 85 mg of pure title product as its free base. This white solid was dissolved in a minimum volume of CHCl3, and titrated with 2 equivalents of 1M HCl in ether to precipitate the title product as a white solid (95 mg; 75%; M.P. 220°-227° C. (dec); LC-MS: 430 (MH+); anal. RP18-HPLC RT: 3.75 min.).
The title product of Example 30 (110 mg, 0.253 mmol) in DMF (2 mL) was treated with imidazole (172 mg, 2.53 mmol) at 110° C. for 48 hours. The reaction mixture was partitioned between CHCl3 and saturated aqueous NaHCO3. The organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product (125 mg) was chromatographed on silica using 10% methanol/CH2Cl2 to provide 86 mg of pure title product as its free base. This white solid was dissolved in a minimum volume of CHCl3, and titrated with 2 equivalents of 1M HCl in ether to precipitate the title product as a white solid dihydrochloride salt (95 mg; 78%; M.P. 85°-100° C. (dec); LC-MS: 430 (MH+); anal. RP18-HPLC RT: 4.13 min.).
The title product from Example 30 (107 mg, 0.245 mmol) in DMF (2 mL) was treated with morpholine (214 μL, 2.45 mmol) at 80° C. for 24 hours. The reaction mixture was partitioned between CHCl3 and saturated aqueous NaHCO3. The organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product (168 mg) was chromatographed on silica using 7.5% methanol/CH2Cl2 to provide 65 mg of pure title product as its free base. This white solid was dissolved in a minimum volume of CHCl3, and titrated with 2 equivalents of 1M HCl in ether to precipitate the title product as a white solid (88 mg; 59%; M.P. 115°-130° C. (dec); LC-MS: 449 (MH+); anal. RP18-HPLC RT: 4.00 min.).
The title product from Example 33 (149 mg, 0.354 mmol) in methanol (3 mL) was treated with 5M aqueous KOH (0.25 mL). The mixture was stirred at 20° C. for 30 minutes before removing the solvent in vacuo. The solid residue was washed with water to remove salts, and dried azeotropically by dissolution two times in acetonitrile and concentration in vacuo to afford 95 mg of title product as its free base. This material was converted to its HCl salt according to the method used in Example 28 (89 mg; 61%; M.P. 190°-215° C. (dec); LC-MS: 380 (MH+); anal. RP18-HPLC RT: 3.66 min.).
6,7-Diethoxyquinazolin-4-one (120 mg, 0.512 mmol), triphenylphosphine (295 mg, 1.126 mmol) and 3 mL of carbon tetrachloride were refluxed for 16 hours. The reaction mixture was concentrated in vacuo to a residue which was diluted with 3 mL of isopropyl alcohol and 3-ethynylaniline (66 mg, 0.563 mmol) and refluxed for 3 hours. The cooled reaction mixture was filtered to afford solid title product which was washed with 10 mL of isopropyl alcohol and dried in vacuo at 70° C., 140 mg (75%); mp 269°-270° C.
4-Chloro-6,7-diethoxyquinazoline (200 mg, 0.792 mmol) and 3-(2′-trimethylsilylethynyl-2-methyl-aniline (168 mg, 0.871 mmol) in 4 mL of tert-butyl alcohol was refluxed for 16 hours. The cooled reaction mixture was diluted with 5 mL of ethyl ether and filtered to afford solid (6,7-diethoxy-quinazolin-4-yl)-(3-(2′-trimethylsilyl-ethynyl)-2-methyl-phenyl)-amine hydrochloride which was washed with 10 mL of ethyl ether and dried in vacuo at 70° C. This material was desilated directly by treatment with 2 mL of methanol containing 1 drop of water and 100 mg of potassium carbonate for 0.5 hours. The heterogeneous reaction mixture was filtered through Celite and vacuum evaporated to a residue which was dissolved in excess 1N HCl in methanol, precipitated with ethyl ether, filtered and dried in vacuo at 70° C. to afford the title product; 160 mg (75%); mp 258°-259.5° C.
6-Methyl-quinazolin-4-one (350 mg, 2.18 mmol) was added to a suspension of polymer-supported triphenylphosphine (from Fluka, 3.63 g of about 3 mmol P/g resin; 10.9 mmol) in a mixture of CCl4 (3.35 g, 21.80 mmol) and 1,2 dichloroethane (10 mL). The mixture was heated to 60° C. for 2 hours and then the polymer was removed by filtration and washed with dichloroethane. The filtrate was collected in a flask containing 3-ethynyl-aniline (0.644 g, 2.18 mmol) and concentrated to 5 mL by evaporation. After 4 hours reflux under N2, followed by cooling to 20° C., the title product was collected by filtration (551 mg; 86%; M.P. 256°-257° C.; LC-MS: 260 (MH+); anal. RP-HPLC RT: 4.41 min).
The title product of Example 34 (150 mg, 0.34 mmol) was added to a solution of thiolactic acid (100 μL, 1.14 mmol) and KOH (150 mg, 2.7 mmol) in degassed DMF (5 mL)/H2O (0.5 mL). The reaction mixture was stirred at 50° C. under an atmosphere of N2 for 72 hours and then cooled to room temperature. The pH of the mixture was adjusted to about 4.0 with acetic acid and then partitioned between CHCl3 and brine. The organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by preparative RP18 HPLC utilizing a gradient of 15% to 100% CH3CN/pH 4.5, 50 mM ammonium acetate followed by lyophilization of the appropriate pure fractions to afford the title product (28 mg; 18%; M.P. 95°-103° C. (dec); LC-MS: 468 (MH+); anal. RP-HPLC RT: 3.57 min).
The title product was prepared from the title product of Example34 and mercaptoacetic acid according to the method of Example 45. (3%; LC-MS: 454 (MH+); anal. RP-HPLC RT: 3.37 min).
This product was isolated as a more lipophilic product (by preparative RP18 HPLC) from the reaction used to generate the title product of Example 46 (5%; LC-MS: 336 (MH+); anal. RP-HPLC RT: 3.60 min).
The title product of Example 30 (107 mg, 0.245 mmol) was treated with sodium ethoxide (0.582 mmol) in refluxing ethanol (3 mL) for 24 hours. The solvent was removed in vacuo and the product was isolated by flash chromatography on silica using 10% acetone/CH2Cl2 to provide 30 mg of the 6-vinyloxy product (33%; M.P. 113°-114° C.; LC-MS: 362 (MH+); anal. RP-HPLC RT: 4.84 min). The 6-(2-ethoxy-ethoxy) derivative eluted as a more polar product (45 mg) and was converted to its HCl salt according to the procedure described for Example28 (43%; M.P. 220°-225° C. (dec); LC-MS: 408 (MH+); anal. RP-HPLC RT: 4.35 min).
(3-Ethynyl-phenyl)-[7-(2-methoxy-ethoxy)-6-vinyloxy-quinazolin-4-yl]-amine (20 mg; from Example 48) was hydrolyzed by treatment with 6M HCl/methanol (30:70; 3 mL) at 50° C. for 5 days. The solution was concentrated in vacuo, and the residue was partitioned between CHCl3 and brine at a pH of about 7. The organic extracts were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo to afford the title product as its free base (15 mg), which was converted to its HCl salt according to the procedure described for Example 28 (M.P. 135°-150° C. (dec); LC-MS: 336 (MH+); anal. RP-HPLC RT: 3.77 min).
NaH (30 mg of 60% in mineral oil, 0.77 mmol) was added to anhydrous DMF (2.0 mL) followed by pyrid-4-one (79 mg, 0.83 mmol). The mixture was stirred 40 minutes at 22° C. until all solids dissolved and the evolution of H2 ceased. The title product of Example 34 (120 mg, 0.28 mmol) and tetrabutylammonium iodide (15 mg) were added and the reaction mixture was stirred at 22° C. for 7 days under N2. Additional pyrid-4-one (79 mg) and NaH (30 mg of 60%) were dissolved in DMF (2 mL) and the solution was added to the reaction mixture. After another 4 days stirring the mixture was partitioned between CHCl3 and brine. The organic extracts were dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica utilizing 10% methanol/CH2Cl2 to afford 65 mg of the free base of the title product which was converted to the mono-hydrochloride salt according to the procedure described for Example 28 (66 mg; M.P. 240°-248° C. (dec); LC-MS: 457 (MH+); anal. RP-HPLC RT: 3.23 min)
The free base of this product was prepared from the title product of Example 30 and the sodium salt of pyrid-4-one as described for Example 50. The free base was isolated by flash chromatography with 15% methanol/CHCl3 and converted to the title product according to the procedure described for Example 28 (32%; M.P. 155°-168° C. (dec); LC-MS: 457 (MH+); anal. RP-HPLC RT: 3.45 min).
A 25 mM solution of 6-methoxy-3H-quinazolin-4-one in 1,2-dichloroethane was added to polymer-supported triphenylphosphine (from Fluka, about 3 mmol P/g polymer; 2.5 mol equiv) and carbon tetrachloride (100 mole equiv). The reaction mixture was heated, with shaking, at 60° C. for 21 hours, cooled to 22° C., and a 30 mM solution of the 3-ethynylaniline (1.5 mole equiv) in t-butanol was added. The resulting mixture was then heated, with shaking, at 60° C. for 18 hours followed by cooling to 22° C. The polymer was filtered off and washed twice with methanol. The methanol washes were added to the filtrate and the solution was concentrated in vacuo to afford the title product (73%; LC-MS: 276 (MH+); anal. RP18-HPLC RT: 5.82 min). For these cases the analytical RP18-HPLC system consisted of a Waters 717 (trademark) autosampler, Waters 996 Photodiode Array Detector (trademark), and Waters 600 quarternary solvent delivery system, and was controlled by Millennium (trademark) software. The aliquots of samples were chromatographed using a linear gradient of 0% to 100% acetonitrile/0.2M ammonium acetate buffer (pH 4.5) over ten minutes at a flow rate of 3 ml/min. using a Perkin-Elmer Pecosphere (trademark) (3 mm×3 cm) C18 column.
The compounds of Examples 53-94, as their hydrochloride salts, were prepared in an analogous manner to that of Example 52 from the appropriate 3H-quinazolin-4-one derivative and 3-ethynyl-aniline:
HPLC | ||||
Exam- | % | LC-MS | RT | |
ple | Product | Yield | (MH+) | (mins) |
53 | (6-Chloro-quinazolin-4-yl)-(3- | 60 | 280, 282 | 6.44 |
ethynyl-phenyl)-amine | ||||
54 | [7-Chloro-6-(2,5-dichloro- | 51 | 456, 458 | 8.74 |
phenylsulfanyl)-quinazolin-4-yl]- | ||||
(3-ethynyl-phenyl)-amine | ||||
55 | 7-Chloro-4-(3-ethyl-phenylamino)- | 12 | 305, 307 | 6.51 |
quinazolin-6-carbonitrile | ||||
56 | [6-Bromo-7-(4-chloro-phenoxy)- | 28 | 450, 452 | 8.05 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
57 | [6-(4-Bromo-benzylsulfanyl)- | 50 | 446, 448 | 7.99 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
58 | (7-Bromo-6-methylsulfanyl- | 46 | 370, 372 | 6.99 |
quinazolin-4-yl)-(3-ethynyl- | ||||
phenyl)-amine | ||||
59 | {7-Chloro-6-[4-(4-chloro- | 82 | 514, 516 | 9.45 |
phenylsulfanyl)-phenoxy]- | ||||
quinazolin-4-yl}-(3-ethynyl- | ||||
phenyl)-amine | ||||
60 | (3-Ethynyl-phenyl)-(7- | 88 | 354 | 7.40 |
phenylsulfanyl-quinazolin-4-yl)- | ||||
amine | ||||
61 | (3-Ethynyl-phenyl)-(6-iodo- | 64 | 372 | 6.81 |
quinazolin-4-yl)-amine | ||||
62 | (3-Ethynyl-phenyl)-(6- | 53 | 314 | 6.73 |
0trifluoromethyl-quinazolin-4-yl)- | ||||
amine | ||||
63 | [7-Chloro-6-(4-(4-chloro- | 78 | 406, 408 | 8.06 |
phenoxy)-quinazolin-4-yl]-(3- | ||||
ethynyl-phenyl)-amine | ||||
64 | [7-Chloro-6-(4-chloro- | 68 | 422, 424 | 8.45 |
phenylsulfanyl)-quinazolin-4-yl]- | ||||
(3-ethynyl-phenyl)-amine | ||||
65 | [7-Chloro-6-(4-methoxy-phenoxy)- | 88 | 402, 404 | 7.55 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
66 | [7-Chloro-6-(4-fluoro-phenoxy)- | 80 | 390 | 7.61 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
67 | [6-(4-Chloro-phenoxy)-quinazolin- | 79 | 372, 374 | 7.66 |
4-yl]-(3-ethynyl-phenyl)-amine | ||||
68 | 7-Bromo-4-(3-ethynyl- | 61 | 431, 433 | 6.44 |
phenylamino)-quinazolin-6- | ||||
sulfonic acid | ||||
69 | (6-Bromo-7-chloro-quinazolin-4- | 80 | 358, 360 | 7.17 |
yl0-(3-ethynyl-phenyl)-amine | ||||
70 | 4-(3-Ethynyl-phenylamino)- | 72 | 271 | 5.84 |
quinazolin-6-carbonitrile | ||||
71 | [6-(4-Bromo-phenylsulfanyl)-7- | 70 | 466, 468 | 8.56 |
chloro-quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
72 | {6-[2-(4-Bromo-phenoxy)- | 79 | 478, 478 | 8.11 |
ethylsulfanyl]-quinazolin-4-yl}-(3- | ||||
ethynyl-phenyl)-amine | ||||
73 | 4-[7-Chloro-4-(3-ethynyl- | 85 | 427, 429 | 7.56 |
phenylamino)-quinazolin-6- | ||||
ylsulfanyl-methyl]-benzonitrile | ||||
74 | [7-Chloro-6-(3-chloro-phenoxy)- | 80 | 406, 408 | 8.10 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
75 | [6-(3-Bromo-phenoxy)-7-chloro- | 82 | 450, 452 | 8.22 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
76 | (7-Chloro-6-phenoxy-quinazolin-4- | 83 | 372, 374 | 7.59 |
yl)-3-ethynyl-phenyl)-amine | ||||
77 | [7-Chloro-6-(4-methylsulfanyl- | 86 | 418, 420 | 8.02 |
phenoxy)-quinazolin-4-yl]-(3- | ||||
ethynyl-phenyl)-amine | ||||
78 | [7-Chloro-6-(4-methanesulfonyl- | 73 | 450, 452 | 6.73 |
phenoxy)-quinazolin-4-yl]-(3- | ||||
ethynyl-phenyl)-amine | ||||
79 | (7-Chloro-6-p-tolyloxy-quinazolin- | 85 | 386, 388 | 4.95 |
4-yl]-(3-ethynyl-phenyl)-amine | ||||
80 | (e-Ethynyl-phenyl)-[6-(4-phenoxy- | 81 | 430 | 8.29 |
phenoxy)-quinazoin-4-yl]-amine | ||||
81 | (7-Chloro-6-phenylsulfanyl- | 80 | 388, 390 | 7.96 |
quinazolin-4-yl)-(3-ethynyl- | ||||
phenyl)-amine | ||||
82 | [6-(3-Chloro-phenoxy)-quinazolin- | 77 | 372, 374 | 7.71 |
4-yl]-(3-ethynyl-phenyl)-amine | ||||
83 | [6-(3,5-Dichloro-phenoxy)- | 61 | 406, 408 | 8.30 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
84 | [6-(2-Chloro-phenoxy)-quinazolin- | 70 | 372, 374 | 7.38 |
4-yl]-(3-ethynyl-phenyl)-amine | ||||
85 | (7-Chloro-6-methanesulfonyl- | 74 | 358, 360 | 5.74 |
quinazooin-4-yl)-(3-ethynyl- | ||||
phenyl)-amine | ||||
86 | [6-(3,4-Dichloro-phenoxy)- | 62 | 406, 408 | 8.14 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
87 | [6-(4-Bromo-phenoxy)-quinazolin- | 68 | 416, 418 | 7.81 |
4-yl]-(3-ethynyl-phenyl)-amine | ||||
88 | [6-(4-Chloro-2-methyl-phenoxy)- | 73 | 386, 388 | 8.02 |
quinazolin-4-yl]-(3-ethynyl- | ||||
phenyl)-amine | ||||
89 | [7-Chloro-4-(3-ethynyl- | 70 | 351 | 6.44 |
phenylamino)-quinazolin-6- | ||||
ylsulfanyl]-acetonitrile** | ||||
90 | (6-Allylsulfanyl-quinazolin-4-yl)- | 72 | 318 | 6.93 |
(3-ethynyl-phenyl)-amine | ||||
91 | (7-Chloro-6-propylsulfanyl- | 69 | 354, 356 | 7.79 |
quinazolin-4-yl)-(3-ethynyl- | ||||
phenyl)-amine | ||||
92 | (7-Chloro-6-methyl-sulfanyl- | 72 | 326, 328 | 6.94 |
quinazolin-4-yl)-(3-ethynyl- | ||||
phenyl)-amine | ||||
93 | [7-Chloro-6-(2-methyl-sulfanyl- | 71 | 386, 388 | 7.56 |
ethylsulfanyl)-quinazolin-4-yl]-(3- | ||||
ethynyl-phenyl)-amine | ||||
94 | (6-Chloro-7-methoxy-quinazolin-4- | 87 | 310, 312 | 6.65 |
yl)-(3-ethynyl-phenyl)-amine | ||||
**[7-Chloro-4-(3-ethynyl-phenylamino)-quinazolin-6-ylsulfanyl]-acetonitrile was obtained from 2-(7-chloro-4-oxo-3,4-dihydro-quinazolin-6-ylsulfanyl)-acetamide under these conditions. |
6,7-Dibutoxyquinazolin-4-one (105 mg, 0.362 mmol), triphenylphosphine (208 mg, 0.796 mmol) and 5 mL of carbon tetrachloride were refluxed for 16 hours and the reaction mixture was concentrated in vacuo to a residue which was diluted with 3 mL of isopropyl alcohol and 3-ethynylaniline (47 mg, 0.398 mmol) and refluxed for 3 hours. The cooled reaction mixture was filtered to afford solid (6,7-dibutoxy-quinazolin-4-yl)-(3-ethynyl-phenyl)-amine hydrochloride which was washed with 10 mL of isopropyl alcohol and dried in vacuo at 70° C., 92 mg (60%); mp 247°-248° C.
6,7-Diisopropoxyquinazolin-4-one (55 mg, 0.210 mmol), triphenylphosphine (121 mg, 0.462 mmol) and 3 mL of carbon tetrachloride were refluxed for 16 hours and the reaction mixture was concentrated in vacuo to a residue which was diluted with 3 mL of isopropyl alcohol and 3-ethynylaniline (30 mg, 0.257 mmol) and refluxed for 3 hours. The cooled reaction mixture was vacuum evaporated to afford the solid title product which was column chromatographed on silica gel eluted with 5% acetone in methylene chloride containing 0.25% triethylamine. Fractions containing the pure product were concentrated in vacuo to a solid which was dissolved in 2 mL of 1N HCl in methanol, precipitated with ethyl ether, filtered and dried in vacuo at 70° C. to afford the title product; 140 mg (75%); mp 241°-242° C.
6-Chloro-7-(2-methoxyethylsulfanyl)-quinazolin-4-one (200 mg, 0.739 mmol), triphenylphosphine (427 mg, 1.63 mmol) and 0.7 mL of carbon tetrachloride were refluxed in 4 ml of 1,2-dichloroethane for 4 hours, concentrated in vacuo to a residue, diluted with 4 mL of isopropyl alcohol and 3-ethynylaniline (129 mg, 1.104 mmol) and refluxed for 16 hours. The hot reaction mixture was filtered to isolate crude product which was column chromatographed on silica gel eluted with 5% methanol in chloroform. Fractions containing the pure product were concentrated in vacuo to afford the title product as a solid; 23 mg (8.4%); mp 230°-232° C.
6,7-Bis-[2-methoxyethoxy]-4-chloro-quinazoline (90 mg, 0.288 mmol) and 3-(2′-trimethylsilylethynyl-2-methyl-aniline (62 mg, 0.317 mmol) were refluxed in 4 mL of tert-butyl alcohol for 16 hours. The cooled reaction mixture was diluted with 1 mL of isopropyl alcohol and filtered to afford solid (6,7-bis-(methoxyethoxy)-quinazolin-4-yl)-(3-(2′-trimethylsilyl-ethyn-1yl) -2-methyl-phenyl)-amine hydrochloride which was washed with 10 mL of ethyl ether and dried in vacuo at 70° C.; 70 mg. Of this material 51 mg was desilated by treatment with in 3 mL of methanol containing 1 drop of water and 50 mg of potassium carbonate for 0.5 hours at room temperature. The heterogeneous reaction mixture was filtered through celite and vacuum evaporated to a residue which was dried in vacuo at 70° C. to afford the title product as a dry foam; 38 mg (75%); mp 232° C.
6,7-Bis[2-methoxyethoxy]-4-chloro-quinazoline (90 mg, 0.288 mmol) and 3-(2′-trimethylsilylethynyl-5-fluoro-aniline (69 mg, 0.317 mmol) were refluxed in 3 mL of tert-butyl alcohol for 5 hours. The cooled reaction mixture was diluted with 2 mL of isopropyl alcohol and filtered to afford solid (6,7-bis-methoxyethoxy-quinazolin-4-yl)-(3-(2′-trimethylsilyl-ethynyl)-5′-fluoro-phenyl)-amine hydrochloride which was washed with 10 mL of ethyl ether and dried in vacuo at 70° C.; 131 mg. All of this material was desilated by dissolution in 3 mL of methanol containing 1 drop of water and 35 mg of potassium carbonate for 0.5 hours at room temperature. The reaction mixture was adjusted to pH 2.5 with aqueous 1N hydrochloric acid and filtered. The solid was dried in vacuo at 70° C. to afford the title product; 92 mg (78%); mp 249°-250° C.
7-Propylsulfanyl-quinazolin-4-one (300 mg, 1.36 mmol), triphenylphosphine (785 mg, 2.99 mmol), 1.31 mL of carbon tetrachloride and 5 mL of chloroform were refluxed for 16 hours and the reaction mixture was concentrated in vacuo to a residue which was diluted with 5 mL of isopropyl alcohol and 3-ethynylaniline (175 mg, 1.49 mmol) and refluxed for 3 hours. The cooled reaction mixture was concentrated in vacuo and the residue purified by column chromatography on silica gel eluted with 10% methanol in chloroform. Fractions containing the pure title product, as the frree amine, were concentrated in vacuo to afford solid which was added to 3 mL of 1N HCl in methanol. This solution was evaporated in vacuo to a residue which was triturated with 4 mL of hot isopropyl alcohol cooled and filtered. The solid thus obtained was dried in vacuo at 70° C. to afford pure title product; 239 mg (55%); mp 229°-230° C.
In the same manner as Example 42 [7-(2-methoxyethylsulfanyl)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine hydrochloride was prepared from 7-(2-methoxyethylsulfanyl)-quinazolin-4-one (200 mg, 0.847 mmol), triphenylphosphine (533 mg, 2.03 mmol) and 3 mL of carbon tetrachloride in 74% yield; 233 mg; mp 208°-209° C.
7-Chloro-6-nitro-quinazolin-4-one (1.002 g, 4.44mmol), phosphorous oxychloride (11.5 g, 7.51 mmol) and phosphorous pentachloride (1.62 g, 7.74 mmol) were refluxed for 2 hours and the reaction mixture was concentrated in vacuo to a residue which was triturated with toluene and then again with chloroform and dried in vacuo to afford crude 4,7-dichloro-6-nitro-quinazoline. This was dissolved in 35 mL of isopropyl alcohol and 3-ethynylaniline (639 mg, 5.45 mmol) and refluxed for 3 hours. The cooled reaction mixture was filtered to afford the title product as a solid which was washed with 10 mL of isopropyl alcohol and dried in vacuo at 70° C., 1.055 g (66%); mp 230.8°-232.6° C.
(7-Chloro-6-nitro-quinazolin-4-yl)-(3-ethynyl-phenyl)-amine hydrochloride (166 mg, 0.295 mmol) and sodium dithionite (207 mg, 1.19 mmol) were stirred in 1.5 mL of formic acid for 4 hours at room temperature. 45 mL of methanol were added to the reaction mixture which was set aside for 16 hours at room temperature. The precipitate thus obtained was filtered, triturated with 3% sodium bicarbonate for 0.5 hours and refiltered. The solid was dissolved in 20 mL of 1N HCl in methanol and precipitated with 200 mL of ethyl ether. This was filtered and dried in vacuo at 70° C. to afford the title product, 72 mg (83%); mp 260°-265° C.
(7-Chloro-6-nitroquinazolin-4-yl)-(3-ethynyl-phenyl)-amine hydrochloride (100 mg, 0.306 mmol and dry sodium methoxide (120 mg, 2.22 mmol) were stirred in 2 mL of dry 2-methylpyrrolidin-1-one for 8 hours at 30° C. To the cooled reaction mixture 0.93 mL of 3N and 1 mL of water were added. The mixture was diluted with 60 mL of water and extracted with two time 60 mL of ethyl acetate. The pooled organic layers were washed with three times 50 mL of water and 50 mL of brine, dried with magnesium sulfate, filtered and vacuum evaporated to afford the title product as a solid; 80 mg (82%); mp 213°-218° C. dec.
This product was prepared from the title product of Example 30 and mercaptoacetic acid at 22° C. over 10 days according to the method outlined in Example 45. (16%; M.P. 98°-113° C. (dec); LC-MS 454 (MH+); anal. RP-HPLC 3.24 min.)
To ethyl 3,4-dihydroxybenzoate (36.4 g, 0.200 mol), K2CO3 (60.8 g, 0.44 mol) and tetrabutylammonium iodide (750 mg) in degassed acetone (400 mL) was added 2-bromoethyl methyl ether (69.5 g, 47 mL). The mixture was stirred under N2 at reflux for 64 hours. Ether (600 mL) was added to the mixture and after stirring 30 minutes at 20° C. the precipitated salts were removed by filtration. The filtrate was concentrated in vacuo and the residue was triturated with hexane (500 mL) for 30 minutes and the white solid ethyl 3,4-bis(2-methoxy-ethoxy)benzoate was filtered and dried in vacuo (55.5 g; 93%; M.P. 50°-51° C.). A portion of this product (45.7 g, 0.158 mol) in acetic acid (150 mL) was treated dropwise with conc. HNO3 (40 mL) at 5° C. and the solution stirred 24 hours before pouring into cold H2O (1.6 L). The mixture was extracted with ethyl acetate (1.1 L), and the organic phase was washed three times with 200 mL H2O, and brine, dried over Na2SO4, filtered and concentrated in vacuo to afford ethyl 4,5-bis-(2-methoxy-ethoxy)-2-nitro-benzoate (54.3 g) as a brown oil. This nitro product (52.0 g, 0.15 mol) was dissolved in ethanol (1000 mL) containing 1 equivalent of HCl (generated in the ethanol by prior addition of 11 mL acetyl chloride), PtO2.H2O (1.0 g) was added, and the mixture was hydrogenated under 45 psi H2 for 6 hours. The catalyst was removed by filtration through Celite, and the filtrate was concentrated in vacuo to a thick slurry which was diluted with ether (400 mL). The solid white hydrochloride salt of ethyl 2-amino-4,5-bis-(2-methoxy-ethoxy)benzoate was filtered and dried in vacuo (44.7 g; 88%). A portion of this material (42 g, 0.12 mol) and ammonium formate (7.6 g, 0.12 mol) were dissolved in formamide (63 mL) and the stirred mixture was heated to 160°-165° C. under an atmosphere of N2 for 3 hours. H2O (200 mL) was added and after cooling the precipitated crude title product was recovered by filtration, washed with cold H2O, and dried in vacuo. The filtrate was extracted five times with CHCl3, and the pooled organic extracts were washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue and crude quinazolone precipitate were combined, triturated in hot acetonitrile (250 mL) for 30 minutes, cooled to 20° C. and treated with ether (250 mL). After cooling to 4° C. the white solid was filtered and dried in vacuo (30.4 g, 86%; GC-MS m/z 294 (M+)).
To 6,7-bis(2-methoxy-ethoxy)-quinazolone (500 mg, 1.7 mmol), from Preparation 1, in CHCl3 (10 mL) containing one drop of DMF was added oxalylchloride (490 μL, 5.6 mmol) in several portions over 5 minutes. Once foaming ceased the solution was refluxed 1.5 hours. The solvent was removed in vacuo and the residue was dissolved in 1,2-dichloroethane (20 mL) and washed two times with 80 mL saturated aqueous Na2CO3. The organic phase was dried over Na2SO4, and concentrated in vacuo to afford solid title product (520 mg, 92%; M.P. 108°-109° C.).
6,7-Bis(2-methoxy-ethoxy)-quinazolone (5.4 g, 18.3 mmol), from Preparation 1, and pyridine (3.0 mL, 37 mmol) were heated in refluxing POCl3 (22 mL) under an atmosphere of dry nitrogen for 2.5 hours. Following concentration of the mixture in vacuo at 60° C. the residue was dissolved in CHCl3 (150 mL) and carefully added in portions with stirring to cold saturated aqueous NaHCO3 (100 mL). The mixture was stirred 10 min. after the addition was complete and the organic phase was separated, washed with brine, dried over Na2SO4, and concentrated in vacuo. The residue was flash chromatographed on silica using a gradient of 20% to 60% ethyl acetate/hexanes to afford 3.41 g of 4-chloro-6,7-bis-(2-methoxy-ethoxy)-quinazoline, 234 mg of 4-chloro-6-(2-chloro-ethoxy)-7-(2-methoxy-ethoxy)-quinazoline, 532 mg of 4-chloro-7-(2-chloro-ethoxy)-6-(2-methoxy-ethoxy)-quinazoline, and 330 mg of 4-chloro-6,7-bis-(2-chloroethoxy)-quinazoline.
Claims (35)
or a pharmaceutically acceptable salt thereof wherein:
m is 1, 2, or 3;
each R1 is independently selected from the group consisting of hydrogen, halo, hydroxy, hydroxyamino, carboxy, nitro, guanidino, ureido, cyano, trifluoromethyl, and -(C1-C4 alkylene)-W-(phenyl) wherein W is a single bond, O, S or NH;
or each R1 is independently selected from R9 and C1-C4-alkyl substituted by cyano, wherein R9 is selected from the group consisting of R5, —OR6, —NR6R6, —C(O)R7, —NHOR5, —OC(O)R6, cyano, A and —YR5; R5 is C1-C4 alkyl; R6is independently hydrogen or R5; R7 is R5, —OR6 or —NR6R6; A is selected from piperidino, morpholino, pyrrolidino, 4-R6-piperazin-1-yl, imidazol-1-yl, 4-pyridon-1-yl, -(C1-C4 alkylene) (CO2H), phenoxy, phenyl, phenylsulfanyl, C2-C4 alkenyl, and -(C1-C4 alkylene)C(O)NR6R6; and Y is S, SO, or SO2; wherein the alkyl moieties in R5, —OR6 and —NR6R6 are optionally substituted by one to three halo substituents and the alkyl moieties in R5, —OR6 and —NR6R6 are optionally substituted by 1 or 2 R9 groups, and wherein the alkyl moieties of said optional substituents are optionally substituted by halo or R9, with the proviso that two heteroatoms are not attached to the same carbon atom;
or each R1 is independently selected from —NHSO2R5, phthalimido-(C1-C4) -alkylsulfonylamino, benzamido, benzenesulfonylamino, 3-phenylureido, 2-oxopyrrolidin-1-yl, 2,5-dioxopyrrolidin-1-yl, and R10-(C2-C4) -alkanoylamino wherein R10 is selected from halo, —OR6, C2-C4 alkanoyloxy, —C(O)R7, and —NR6R6; and wherein said —NHSO2R5, phthalimido-(C1-C4-alkylsulfonylamino, benzamido, benzenesulfonylamino, 3-phenylureido, 2-oxopyrrolidin-1-yl, 2,5-dioxopyrrolidin-1-yl, and R10-(C2-C4)-alkanoylamino R1 groups are optionally substituted by 1 or 2 substituents independently selected from halo, C1-C4 alkyl, cyano, methanesulfonyl and C1-C4 alkoxy;
or two R1 groups are taken together with the carbons to which they are attached to form a 5-8 membered ring that includes 1 or 2 heteroatoms selected from O, S and N;
R2 is hydrogen or C1-C6 alkyl optionally substituted by 1 to 3 substituents independently selected from halo, C1-C4 alkoxy, —NR6R6, and —SO2R5;
n is 1 or 2 and each R3 is independently selected from hydrogen, halo, hydroxy, C1-C6 alkyl, —NR6R6, and C1-C4 alkoxy, wherein the alkyl moieties of said R3 groups are optionally substituted by 1 to 3 substituents independently selected from halo, C1-C4 alkoxy, —NR6R6, and —SO2R5; and,
R4 is azido or -(ethynyl)-R11 wherein R11 is hydrogen or C1-C6 alkyl optionally substituted by hydroxy, —OR6, or —NR6R6.
2. The compound according to claim 1 wherein R2 is hydrogen and R4 is -(ethynyl)-R11.
3. A pharmaceutical composition for the treatment of a hyperproliferative disorder in a mammal which comprises a pharmaceutically effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier.
4. The compound of claim 1 wherein each R1 is independently selected from hydrogen, hydroxy, hydroxyamino, nitro, carbamoyl, ureido, R5 optionally substituted with halo, —OR6, carboxy, or —C(O)NH2; —OR5 optionally substituted with halo, —OR6, —OC(O)R6, —NR6R6, or A; —NR6R6, —C(O)NR6R6, —SR5, phenyl-(C2-C4)-alkoxy wherein said phenyl moiety is optionally substituted with 1 or 2 substituents independently selected from halo, R5 or —OR5.
5. The compound according to claim 1 wherein R2 is hydrogen and R4 is azido.
6. The compound of claim 1 wherein R3 is halo and R1 is hydrogen or —OR5.
7. The compound of claim 6 wherein R1 is methoxy.
8. The compound of claim 1 selected from the group consisting of:
(6,7-dimethoxyquinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6,7-dimethoxyquinazolin-4-yl)-[3-(3′-hydroxypropyn-1-yl)phenyl]-amine;
[3-(2′-(aminomethyl)-ethynyl)phenyl]-(6,7-dimethoxyquinazolin-4-yl)-amine;
(3-ethynylphenyl)-(6-nitroquinazolin-4-yl)-amine;
(6,7-dimethoxyquinazolin-4-yl)-(4-ethynylphenyl)-amine;
(6,7-dimethoxyquinazolin-4-yl)-(3-ethynyl-2-methylphenyl)-amine;
(6-aminoquinazolin-4-yl)-(3-ethynylphenyl)-amine;
(3-ethynylphenyl)-(6-methanesulfonylaminoquinazolin-4-yl)-amine;
(3-ethynylphenyl)-(6,7-methylenedioxyquinazolin-4-yl)-amine;
(6,7-dimethoxyquinazolin-4-yl)-(3-ethynyl-6-methylphenyl)-amine;
(3-ethynylphenyl)-(7-nitroquinazolin-4-yl)-amine;
(3-ethynylphenyl)-[6-(4′-toluenesulfonylamino)quinazolin-4-yl]-amine;
(3-ethynylphenyl)-{6-[2′-phthalimido-eth-1′-yl-sulfonylamino]quinazolin-4-yl}-amine;
(3-ethynylphenyl)-(6-guanidinoquinazolin-4-yl)-amine;
(7-aminoquinazolin-4-yl)-(3-ethynylphenyl)-amine;
(3-ethynylphenyl)-(7-methoxyquinazolin-4-yl)-amine;
(6-carbomethoxyquinazolin-4-yl)-(3-ethynylphenyl)-amine;
(7-carbomethoxyquinazolin-4-yl)-(3-ethynylphenyl)-amine;
[6,7-bis(2-methoxyethoxy)quinazolin-4-yl]-(3-ethynylphenyl)-amine;
(3-azidophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine;
(3-azido-5-chlorophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine;
(4-azidophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine;
(3-ethynylphenyl)-(6-methansulfonyl-quinazolin-4-yl)-amine;
(6-ethansulfanyl-quinazolin-4-yl)-(3-ethynylphenyl)-amine
(6,7-dimethoxy-quinazolin-4-yl)-(3-ethynyl-4-fluoro-phenyl)-amine;
(6,7-dimethoxy-quinazolin-4-yl)-[3-(propyn-1′-yl)-phenyl]-amine;
[6,7-bis-(2-methoxy-ethoxy)-quinazolin-4-yl]-(5-ethynyl-2-methyl-phenyl)-amine;
[6,7-bis-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-4-fluoro-phenyl)-amine;
[6,7-bis-(2-chloro-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
[6-(2-chloro-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
[6,7-bis-(2-acetoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
2-[4-(3-ethynyl-phenylamino)-7-(2-hydroxy-ethoxy)-quinazolin-6-yloxy]-ethanol;
[6-(2-acetoxy-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
[7-(2-chloro-ethoxy)-6-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
[7-(2-acetoxy-ethoxy)-6-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
2-[4-(3-ethynyl-phenylamino)-6-(2-hydroxy-ethoxy)-quinazolin-7-yloxy]-ethanol;
2-[4-(3-ethynyl-phenylamino)-7-(2-methoxy-ethoxy)-quinazolin-6-yloxy]-ethanol;
2-[4-(3-ethynyl-phenylamino)-6-(2-methoxy-ethoxy)-quinazolin-7-yloxy]-ethanol;
[6-(2-acetoxy-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)-amine;
(3-ethynyl-phenyl)-{6-(2-methoxy-ethoxy)-7-[2-(4-methyl-piperazin-1-yl)-ethoxy]-quinazolin-4-yl}-amine;
(3-ethynyl-phenyl)-[7-(2-methoxy-ethoxy)-6-(2-morpholin-4-yl)-ethoxy)-quinazolin-4-yl]-amine;
(6,7-diethoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
(6,7-dibutoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
(6,7-diisopropoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
(6,7-diethoxyquinazolin-1-yl)-(3-ethynyl-2-methyl-phenyl)-amine;
[6,7-bis-(2-methoxy-ethoxy)-quinazolin-1-yl]-(3-ethynyl-2-methyl-phenyl)-amine;
(3-ethynylphenyl)-[6-(2-hydroxy-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-1-yl]-amine;
[6,7-bis-(2-hydroxy-ethoxy)-quinazolin-1-yl]-(3-ethynylphenyl)-amine; and
2-[4-(3-ethynyl-phenylamino)-6-(2-methoxy-ethoxy)-quinazolin-7-yloxy]-ethanol. that is [6,7-bis( 2 -methoxyethoxy)quinazolin- 4 -yl]-( 3 -ethynylphenyl)-amine.
9. The compound of claim 1 selected from the group consisting of
(6,7-dipropoxy-quinazolin-4-yl)-(3-ethynyl-phenyl)-amine;
(6,7-diethoxy-quinazolin-4-yl)-(3-ethynyl-5-fluoro-phenyl)-amine;
(6,7-diethoxy-quinazolin-4-yl)-(3-ethynyl-4-fluoro-phenyl)-amine;
(6,7-diethoxy-quinazolin-4-yl)-(5-ethynyl-2-methyl-phenyl)-amine;
(6,7-diethoxy-quinazolin-4-yl)-(3-ethynyl-4-methyl-phenyl)-amine;
(6-aminomethyl-7-methoxy-quinazolin-4-yl)-(3-ethynyl-phenyl)-amine;
(6-aminomethyl-7-methoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6-aminocarbonylmethyl-7-methoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6-aminocarbonylethyl-7-methoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6-aminocarbonylmethyl-7-ethoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6-aminocarbonylethyl-7-ethoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6-aminocarbonylmethyl-7-isopropoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6-aminocarbonylmethyl-7-propoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6-aminocarbonylmethyl-7-methoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine;
(6-aminocarbonylethyl-7-isopropoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine; and
(6-aminocarbonylethyl-7-propoxy-quinazolin-4-yl)-(3-ethynylphenyl)-amine.
10. The compound of claim 1 selected from the group consisting of:
(6,7-diethoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
(3-ethynylphenyl)-[6-(2-hydroxy-ethoxy)-7-(2-methoxy-ethoxy)-quinazolin-1-yl]-amine;
[6,7-bis-(2-hydroxy-ethoxy)-quinazolin-1-yl]-(3-ethynylphenyl)-amine;
[6,7-bis-(2-methoxy-ethoxy)-quinazolin-1-yl]-(3-ethynylphenyl)-amine;
(6,7-dimethoxyquinazolin-1-yl)-(3-ethynylphenyl)-amine;
(3-ethynylphenyl)-(6-methanesulfonylamino-quinazolin-1-yl)-amine; and,
(6-amino-quinazolin-1-yl)-(3-ethynylphenyl)-amine.
11. A pharmaceutical composition for the treatment of a hyperproliferative disorder in a mammal which comprises a therapeutically-effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier.
12. A method of treating a hyperproliferative disorder in a mammal which comprises administering to said mammal a therapeutically-effective amount of the compound of claim 1 .
13. The method of claim 12 wherein said hyperproliferative disorder is cancer.
14. The method of claim 13 wherein said cancer is brain, lung, squamous cell, bladder, gastric, pancreatic, breast, head, neck, oesophageal, gynecological or thyroid cancer.
15. The method of claim 12 wherein the hyperproliferative disease is noncancerous.
16. The method of claim 15 wherein said disorder is a benign hyperplasia of the skin or prostate.
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
m is 1, 2, or 3;
each R1 is independently selected from the group consisting of hydrogen, halo, hydroxy, hydroxyamino, carboxy, nitro, guanidino, ureido, cyano, trifluoromethyl, and -(C1-C4 alkylene)-W-(phenyl) wherein W is a single bond, O, S or NH;
or each R1 is independently selected from R9 and (C1-C4)-alkyl substituted by cyano, wherein R9 is selected from the group consisting of R5, —OR6, —NR6R6, —C(O)R7, —NHOR5, —OC(O)R6, cyano, A and —YR5; R5is C1-C4 alkyl; R6 is independently hydrogen or R5; R7 is R5, —OR6 or —NR6R6; A is selected from piperidino, morpholino, pyrrolidino, 4-R6-piperazin-1-yl, imidazol-1-yl, 4-pyridon-1-yl, -(C1-C4 alkylene)(CO2H), phenoxy, phenyl, phenylsulfanyl, C2-C4 alkenyl, and -(C1-C4 alkylene)C(O)NR6R6; and Y is S, SO, or SO2; wherein the alkyl moieties in R5, —OR6 and —NR6R6 are optionally substituted by one to three substituents independently selected from halo and R9, and wherein the alkyl moieties of said optional substituents are optionally substituted by halo or R9, with the proviso that two heteroatoms are not attached to the same carbon atom, and with the further proviso that no more than three R9 groups may comprise a single R1 group;
or each R1 is independently selected from —NHSO2R5, phthalimido-(C1-C4)-alkylsulfonylamino, benzamido, benzenesulfonylamino, 3-phenylureido, 2-oxopyrrolidin-1-yl, 2,5-dioxopyrrolidin-1-yl, and R10-(C2-C4)-alkanoylamino wherein R10 is selected from halo, —OR6, C2-C4 alkanoyloxy, —C(O)R7, and —NR6R6; and wherein the foregoing R1 groups are optionally substituted by 1 or 2 substituents independently selected from halo, C1-C4 alkyl, cyano, methanesulfonyl and C1-C4 alkoxy;
or two R1 groups are taken together with the carbons to which they are attached to form a 5-8 membered ring that includes 1 or 2 heteroatoms selected from O, S and N;
R2 is hydrogen or C1-C6 alkyl optionally substituted by 1 to 3 substituents independently selected from halo, C1-C4 alkoxy, —NR6R6, and —SO2R5;
n is 1 or 2 and each R3 is independently selected from hydrogen, halo, hydroxy, C1-C6 alkyl, —NR6R6, and C1-C4 alkoxy, wherein the alkyl moieties of said R3 groups are optionally substituted by 1 to 3 substituents independently selected from halo, C1-C4 alkoxy, —NR6R6, and —SO2R5; and,
R4 is azido or -(ethynyl)-R11 wherein R11 is hydrogen or C1-C6 alkyl optionally substituted by hydroxy, —OR6, or —NR6R6;
wherein R1 and m are as defined above, with CCl4 and (C6-C10aryl)3P, optionally supported on an inert polymer, wherein the aryl moieties of said (C6-C10aryl)3P are optionally substituted by C1-C6 alkyl; and
wherein R2, R3 and n are as defined above, and J is Y or R4, wherein R4 is as defined above and wherein Y is NH2, Br, I or trifluoromethanesulfonyloxy, with the proviso that when J is Y then the product of step b) must further be treated with an alkyne where Y is Br, I or trifluoromethanesulfonyloxy, or an azide where Y is NH2.
18. The process of claim 17 wherein each aryl group is selected from phenyl, naphth-1-yl and naphth-2-yl.
19. The process of claim 17 wherein each Ar in (C6-C10aryl)3P is phenyl.
20. The process of claim 17 wherein said (C6-C10aryl)3P is supported on an inert polymer.
21. The process of claim 20 wherein said inert polymer is a divinylbenzene-cross-linked polymer of styrene.
22. The composition of claim 3 wherein said hyperproliferative disorder is cancer.
23. The composition of claim 22 wherein said cancer is selected from the group consisting of renal, liver, kidney, colorectal, brain, lung, skin, bladder, gastric, pancreatic, breast, head, neck, oesophageal, vulval, gynecological, and thyroid cancer.
24. The composition of claim 3 wherein said hyperproliferative disorder is benign.
25. The composition of claim 24 wherein said hyperproliferative disorder is benign hyperplasia of the skin or prostate.
26. The composition of claim 25 wherein said hyperproliferative disorder is A pharmaceutical composition for the treatment of psoriasis in a mammal which comprises a therapeutically effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier.
27. A method of treating a hyperproliferative disorder in a mammal which comprises administering to said mammal a pharmaceutically effective amount of the compound of claim 1 .
28. The method of claim 27 wherein said hyperproliferative disorder is cancer.
29. The method of claim 28 wherein said cancer is selected from the group consisting of renal, liver, kidney, colorectal, brain, lung, skin, bladder, gastric, pancreatic, breast, head, neck, oesophageal, vulval, gynecological, and thyroid cancer.
30. The method of claim 27 wherein said hyperproliferative disorder is benign.
31. The method of claim 30 wherein said hyperproliferative disorder is benign hyperplasia of the skin or prostate.
32. The method of claim 31 wherein said hyperproliferative disorder is A method of treating psoriasis in a mammal which comprises administering to said mammal a therapeutically effective amount of the compound of claim 1 .
33. A pharmaceutical composition for the treatment of psoriasis in a mammal which comprises a therapeutically effective amount of the compound of claim 8 and a pharmaceutically acceptable carrier.
34. A compound that is a pharmaceutically acceptable salt of [6,7-bis( 2 -methoxyethoxy)quinazolin- 4 -yl]-( 3 -ethynylphenyl)-amine.
35. A compound that is a hydrochloride salt of [6,7-bis( 2 -methoxyethoxy)quinazolin- 4 -yl]-( 3 -ethynylphenyl)-amine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/038,530 USRE41065E1 (en) | 1995-06-06 | 2008-02-27 | Alkynl and azido-substituted 4-anilinoquinazolines |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB1995/000436 WO1996030347A1 (en) | 1995-03-30 | 1995-06-06 | Quinazoline derivatives |
US08/653,786 US5747498A (en) | 1996-05-28 | 1996-05-28 | Alkynyl and azido-substituted 4-anilinoquinazolines |
US12/038,530 USRE41065E1 (en) | 1995-06-06 | 2008-02-27 | Alkynl and azido-substituted 4-anilinoquinazolines |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/653,786 Reissue US5747498A (en) | 1995-06-06 | 1996-05-28 | Alkynyl and azido-substituted 4-anilinoquinazolines |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE41065E1 true USRE41065E1 (en) | 2009-12-29 |
Family
ID=24622307
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/653,786 Ceased US5747498A (en) | 1995-06-06 | 1996-05-28 | Alkynyl and azido-substituted 4-anilinoquinazolines |
US12/038,530 Expired - Lifetime USRE41065E1 (en) | 1995-06-06 | 2008-02-27 | Alkynl and azido-substituted 4-anilinoquinazolines |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/653,786 Ceased US5747498A (en) | 1995-06-06 | 1996-05-28 | Alkynyl and azido-substituted 4-anilinoquinazolines |
Country Status (1)
Country | Link |
---|---|
US (2) | US5747498A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090226443A1 (en) * | 2008-03-06 | 2009-09-10 | Genentech, Inc. | Combination therapy with c-met and egfr antagonists |
WO2011133520A1 (en) | 2010-04-19 | 2011-10-27 | Synta Pharmaceuticals Corp. | Cancer therapy using a combination of a hsp90 inhibitory compounds and a egfr inhibitor |
WO2012068483A1 (en) | 2010-11-18 | 2012-05-24 | Synta Pharmaceuticals Corp. | Preselection of subjects for therapeutic treatment based on hypoxic status |
WO2012068487A1 (en) | 2010-11-18 | 2012-05-24 | Synta Pharmaceuticals Corp. | Preselection of subjects for therapeutic treatment with oxygen sensitive agents based on hypoxic status |
WO2012125913A1 (en) | 2011-03-17 | 2012-09-20 | The Trustees Of The University Of Pennsylvania | Methods and use of bifunctional enzyme-building clamp-shaped molecules |
WO2013091507A1 (en) | 2011-12-20 | 2013-06-27 | Qian Wei | Heterocycle amido alkyloxy substituted quinazoline derivative and use thereof |
WO2013170182A1 (en) | 2012-05-11 | 2013-11-14 | Synta Pharmaceuticals Corp. | Treating cancer with an hsp90 inhibitory compound |
WO2014118737A1 (en) | 2013-01-31 | 2014-08-07 | Ranbaxy Laboratories Limited | Erlotinib salts |
US9295676B2 (en) | 2011-03-17 | 2016-03-29 | The Trustees Of The University Of Pennsylvania | Mutation mimicking compounds that bind to the kinase domain of EGFR |
US10240207B2 (en) | 2014-03-24 | 2019-03-26 | Genentech, Inc. | Cancer treatment with c-met antagonists and correlation of the latter with HGF expression |
WO2019178433A1 (en) | 2018-03-15 | 2019-09-19 | Abbvie Inc. | Abbv-621 in combination with anti-cancer agents for the treatment of pancreatic cancer |
US10710968B2 (en) | 2016-01-13 | 2020-07-14 | Hadasit Medical Research Services And Development Ltd. | Radiolabeled erlotinib analogs and uses thereof |
US10717825B2 (en) | 2015-07-01 | 2020-07-21 | California Instite of Technology | Cationic mucic acid polymer-based delivery system |
US11285212B2 (en) | 2013-03-01 | 2022-03-29 | California Institute Of Technology | Targeted nanoparticles |
US11708335B2 (en) | 2017-12-18 | 2023-07-25 | Sterngreene, Inc. | Pyrimidine compounds useful as tyrosine kinase inhibitors |
US11998616B2 (en) | 2018-06-13 | 2024-06-04 | California Institute Of Technology | Nanoparticles for crossing the blood brain barrier and methods of treatment using the same |
Families Citing this family (659)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480883A (en) * | 1991-05-10 | 1996-01-02 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
GB9424233D0 (en) * | 1994-11-30 | 1995-01-18 | Zeneca Ltd | Quinazoline derivatives |
KR19990082463A (en) | 1996-02-13 | 1999-11-25 | 돈 리사 로얄 | Quinazolin derivatives as vascular endothelial growth factor inhibitors |
CN1116286C (en) | 1996-03-05 | 2003-07-30 | 曾尼卡有限公司 | 4-anilinoquinazoline derivatives |
GB9718972D0 (en) | 1996-09-25 | 1997-11-12 | Zeneca Ltd | Chemical compounds |
US6225318B1 (en) | 1996-10-17 | 2001-05-01 | Pfizer Inc | 4-aminoquinazolone derivatives |
ATE295839T1 (en) * | 1998-04-29 | 2005-06-15 | Osi Pharm Inc | N-(3-ETHINYLPHENYLAMINO)-6,7-BIS(2-METHOXYETHOX )-4-CHINAZOLINAMIN MESYLATE ANHYDRATE AND MONOHYDRATE |
US6706721B1 (en) * | 1998-04-29 | 2004-03-16 | Osi Pharmaceuticals, Inc. | N-(3-ethynylphenylamino)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine mesylate anhydrate and monohydrate |
BR9911612A (en) | 1998-06-02 | 2001-02-06 | Osi Pharm Inc | Pyrrole [2,3d] pyrimidine compositions and their uses |
US6686366B1 (en) | 1998-06-02 | 2004-02-03 | Osi Pharmaceuticals, Inc. | Compounds specific to adenosine A3 receptor and uses thereof |
US6878716B1 (en) | 1998-06-02 | 2005-04-12 | Osi Pharmaceuticals, Inc. | Compounds specific to adenosine A1 receptor and uses thereof |
CA2337422C (en) * | 1998-08-18 | 2010-11-02 | The Regents Of The University Of California | Preventing airway mucus production by administration of egf-r antagonists |
DE69923849T2 (en) | 1998-08-27 | 2006-01-12 | Pfizer Products Inc., Groton | QUINOLIN-2-ON DERIVATIVES USE AS ANTICROPHOSIS |
OA11645A (en) | 1998-08-27 | 2004-11-16 | Pfizer Prod Inc | Alkynyl-substituted quinolin-2-one derivatives useful as anticancer agents. |
US8124630B2 (en) | 1999-01-13 | 2012-02-28 | Bayer Healthcare Llc | ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors |
CA2359244C (en) | 1999-01-13 | 2013-10-08 | Bayer Corporation | .omega.-carboxy aryl substituted diphenyl ureas as p38 kinase inhibitors |
JP3270834B2 (en) | 1999-01-27 | 2002-04-02 | ファイザー・プロダクツ・インク | Heteroaromatic bicyclic derivatives useful as anticancer agents |
UA71945C2 (en) | 1999-01-27 | 2005-01-17 | Pfizer Prod Inc | Substituted bicyclic derivatives being used as anticancer agents |
DE19911509A1 (en) * | 1999-03-15 | 2000-09-21 | Boehringer Ingelheim Pharma | Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation |
US6258820B1 (en) * | 1999-03-19 | 2001-07-10 | Parker Hughes Institute | Synthesis and anti-tumor activity of 6,7-dialkoxy-4-phenylamino-quinazolines |
YU13200A (en) * | 1999-03-31 | 2002-10-18 | Pfizer Products Inc. | Process and intermediates for preparing anti-cancer compounds |
US6126917A (en) * | 1999-06-01 | 2000-10-03 | Hadasit Medical Research Services And Development Ltd. | Epidermal growth factor receptor binding compounds for positron emission tomography |
US6432979B1 (en) | 1999-08-12 | 2002-08-13 | American Cyanamid Company | Method of treating or inhibiting colonic polyps and colorectal cancer |
US6545004B1 (en) | 1999-10-27 | 2003-04-08 | Cytokinetics, Inc. | Methods and compositions utilizing quinazolinones |
US7230000B1 (en) | 1999-10-27 | 2007-06-12 | Cytokinetics, Incorporated | Methods and compositions utilizing quinazolinones |
PT1244647E (en) | 1999-11-05 | 2006-10-31 | Astrazeneca Ab | QUINAZOLINE DERIVATIVES AS VEGF INHIBITORS |
UA74803C2 (en) * | 1999-11-11 | 2006-02-15 | Осі Фармасьютікалз, Інк. | A stable polymorph of n-(3-ethynylphenyl)-6,7-bis(2-methoxyetoxy)-4-quinazolinamine hydrochloride, a method for producing thereof (variants) and pharmaceutical use |
US7087613B2 (en) * | 1999-11-11 | 2006-08-08 | Osi Pharmaceuticals, Inc. | Treating abnormal cell growth with a stable polymorph of N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine hydrochloride |
US6664252B2 (en) | 1999-12-02 | 2003-12-16 | Osi Pharmaceuticals, Inc. | 4-aminopyrrolo[2,3-d]pyrimidine compounds specific to adenosine A2a receptor and uses thereof |
US6680322B2 (en) | 1999-12-02 | 2004-01-20 | Osi Pharmaceuticals, Inc. | Compounds specific to adenosine A1 receptors and uses thereof |
US7160890B2 (en) * | 1999-12-02 | 2007-01-09 | Osi Pharmaceuticals, Inc. | Compounds specific to adenosine A3 receptor and uses thereof |
GB0002952D0 (en) * | 2000-02-09 | 2000-03-29 | Pharma Mar Sa | Process for producing kahalalide F compounds |
US20060063752A1 (en) * | 2000-03-14 | 2006-03-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Bicyclic heterocycles, pharmaceutical compositions containing them, their use, and processes for preparing them |
CA2403721C (en) * | 2000-03-20 | 2009-06-09 | Pfizer Products, Inc. | Combined treatment with keratinocyte growth factor and epidermal growth factor inhibitor |
EP1274692B1 (en) * | 2000-04-07 | 2006-08-02 | AstraZeneca AB | Quinazoline compounds |
AU2001292137A1 (en) * | 2000-10-13 | 2002-04-22 | Astrazeneca Ab | Quinazoline derivatives |
WO2002036587A2 (en) | 2000-11-01 | 2002-05-10 | Cor Therapeutics, Inc. | Process for the production of 4-quinazolinylpiperazin-1-carboxylic acid phenylamides |
WO2002041882A2 (en) * | 2000-11-22 | 2002-05-30 | Novartis Ag | Combination comprising an agent decreasing vegf activity and an agent decreasing egf activity |
US6680324B2 (en) * | 2000-12-01 | 2004-01-20 | Osi Pharmaceuticals, Inc. | Compounds specific to adenosine A1 receptors and uses thereof |
US6673802B2 (en) | 2000-12-01 | 2004-01-06 | Osi Pharmaceuticals, Inc. | Compounds specific to adenosine A3 receptor and uses thereof |
AUPR213700A0 (en) | 2000-12-18 | 2001-01-25 | Biota Scientific Management Pty Ltd | Antiviral agents |
CA2632091C (en) | 2000-12-19 | 2011-03-22 | Pfizer Products Inc. | Crystal forms of 6-[(4-chloro-phenyl)-hydroxy-(3-methyl-3h-imidazol-4-yl)-methyl]-4-(3-ethynyl-phenyl)-1-methyl-1h-quinolin-2-one, 2,3-dihydroxybutanedioate salts and method of production |
PL228041B1 (en) | 2001-01-05 | 2018-02-28 | Amgen Fremont Inc | Antibody against the receptor of insulin-like growth factor I, pharmaceutical composition containing it, method for producing it, applications, cell line, isolated molecule of nucleic acid, vector, host cell and transgenic animal |
EP2269603B1 (en) | 2001-02-19 | 2015-05-20 | Novartis AG | Treatment of breast tumors with a rapamycin derivative in combination with exemestane |
JP2002293773A (en) * | 2001-03-30 | 2002-10-09 | Sumika Fine Chemicals Co Ltd | Method for producing quinazoline derivative |
PL392652A1 (en) | 2001-05-16 | 2010-12-06 | Novartis Ag | A combination consisting of N-{5-[4-(4-methyl-piperazine-methyl)-benzoiloamido]-2-methylphenyl} -4-(3-pyridyl)-2-pyrimidine-amine and the chemotherapeutic agent, the use thereof, pharmaceutical composition containing thereof a kit containing such a combination |
EP1408980A4 (en) * | 2001-06-21 | 2004-10-20 | Ariad Pharma Inc | Novel quinazolines and uses thereof |
US6995171B2 (en) | 2001-06-21 | 2006-02-07 | Agouron Pharmaceuticals, Inc. | Bicyclic pyrimidine and pyrimidine derivatives useful as anticancer agents |
US6740757B2 (en) | 2001-08-29 | 2004-05-25 | Pfizer Inc | Enantiomers of 6-[(4-chloro-phenyl)-hydroxy-(3-methyl-3h-imidazol-4-yl)-methyl]-4-[3-(3-hydroxy-3-methyl-but-1-ynyl)-phenyl]-1-methyl-1h-quinolin-2-one and salts thereof, useful in the treatment of cancer |
EP1435959A2 (en) * | 2001-10-09 | 2004-07-14 | University of Cincinnati | Inhibitors of the egf receptor for the treatment of thyroid cancer |
GB0126433D0 (en) * | 2001-11-03 | 2002-01-02 | Astrazeneca Ab | Compounds |
MXPA04004219A (en) * | 2001-11-03 | 2004-09-10 | Astrazeneca Ab | Quinazoline derivatives as antitumor agents. |
AR039067A1 (en) * | 2001-11-09 | 2005-02-09 | Pfizer Prod Inc | ANTIBODIES FOR CD40 |
KR101019131B1 (en) * | 2001-11-19 | 2011-03-07 | 인터레우킨 제네틱스, 인코포레이티드 | Functional polymorphisms of the interleukin-1 locus affecting transcription and susceptibility to inflammatory and infectious diseases |
WO2003043995A1 (en) * | 2001-11-20 | 2003-05-30 | Cytokinetics, Inc. | Process for the racemization of chiral quinazolinones |
GB0128510D0 (en) * | 2001-11-28 | 2002-01-23 | Novartis Ag | Organic compounds |
JP2005529062A (en) * | 2001-11-30 | 2005-09-29 | オーエスアイ・ファーマスーティカルズ・インコーポレーテッド | Compounds specific for adenosine A1 and A3 receptors and uses thereof |
EP1465631B1 (en) | 2001-12-20 | 2010-02-24 | OSI Pharmaceuticals, Inc. | Pyrimidine a2b selective antagonist compounds, their synthesis and use |
CN101973998A (en) * | 2001-12-20 | 2011-02-16 | Osi药物公司 | Pyrrolopyrimidine A2b selective antagonist compounds, their synthesis and use |
MXPA04006882A (en) | 2002-01-17 | 2004-12-06 | Neurogen Corp | Substituted quinazolin-4-ylamine analogues as modulators of capsaicin. |
AU2003207291A1 (en) * | 2002-02-06 | 2003-09-02 | Ube Industries, Ltd. | Process for producing 4-aminoquinazoline compound |
DK1478358T3 (en) | 2002-02-11 | 2013-10-07 | Bayer Healthcare Llc | Sorafenibtosylate for the treatment of diseases characterized by abnormal angiogenesis |
JP2005529076A (en) * | 2002-02-15 | 2005-09-29 | サイトキネティクス・インコーポレーテッド | Synthesis of quinazolinone |
US7078409B2 (en) | 2002-03-28 | 2006-07-18 | Beta Pharma, Inc. | Fused quinazoline derivatives useful as tyrosine kinase inhibitors |
TW200813014A (en) * | 2002-03-28 | 2008-03-16 | Astrazeneca Ab | Quinazoline derivatives |
AU2003226705B2 (en) * | 2002-03-30 | 2008-11-06 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 4-(N-phenylamino)-quinazolines / quinolines as tyrosine kinase inhibitors |
US6924285B2 (en) * | 2002-03-30 | 2005-08-02 | Boehringer Ingelheim Pharma Gmbh & Co. | Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them |
AU2003270015A1 (en) | 2002-05-09 | 2003-12-02 | Cytokinetics, Inc. | Compounds, compositions, and methods |
MXPA04011074A (en) * | 2002-05-09 | 2005-06-08 | Cytokinetics Inc | Pyrimidinone compounds, compositions and methods. |
CN1652757B (en) | 2002-05-16 | 2012-02-08 | 诺瓦提斯公司 | Use of EDG receptor binding agents in cancer |
EP1513820A4 (en) * | 2002-05-23 | 2006-09-13 | Cytokinetics Inc | Compounds, compositions, and methods |
UA77303C2 (en) * | 2002-06-14 | 2006-11-15 | Pfizer | Derivatives of thienopyridines substituted by benzocondensed heteroarylamide useful as therapeutic agents, pharmaceutical compositions and methods for their use |
AU2003236527A1 (en) * | 2002-06-14 | 2003-12-31 | Cytokinetics, Inc. | Compounds, compositions, and methods |
ES2400339T3 (en) | 2002-07-15 | 2013-04-09 | Symphony Evolution, Inc. | Compounds, pharmaceutical compositions thereof and their use in the treatment of cancer |
US7211580B2 (en) * | 2002-07-23 | 2007-05-01 | Cytokinetics, Incorporated | Compounds, compositions, and methods |
JP2005536553A (en) * | 2002-08-21 | 2005-12-02 | サイトキネティクス・インコーポレーテッド | Compounds, compositions and methods |
WO2004034972A2 (en) * | 2002-09-30 | 2004-04-29 | Cytokinetics, Inc. | Compounds, compositions, and methods |
GB0304367D0 (en) * | 2003-02-26 | 2003-04-02 | Pharma Mar Sau | Methods for treating psoriasis |
US20040186160A1 (en) * | 2002-12-13 | 2004-09-23 | Sugen, Inc. | Hexahydro-cyclohepta-pyrrole oxindole as potent kinase inhibitors |
MXPA05006676A (en) * | 2002-12-19 | 2005-08-16 | Pfizer | 2-(1h-indazol-6-ylamino)-benzamide compounds as protein kinases inhibitors useful for the treatment of ophtalmic diseases. |
US7148231B2 (en) † | 2003-02-17 | 2006-12-12 | Hoffmann-La Roche Inc. | [6,7-Bis(2-methoxy-ethoxy)-quinazolin-4-yl]-(3-ethynyl-phenyl)amine hydrochloride polymorph |
MXPA05009063A (en) | 2003-02-26 | 2005-12-12 | Sugen Inc | Aminoheteroaryl compounds as protein kinase inhibitors. |
UY28213A1 (en) | 2003-02-28 | 2004-09-30 | Bayer Pharmaceuticals Corp | NEW CYANOPIRIDINE DERIVATIVES USEFUL IN THE TREATMENT OF CANCER AND OTHER DISORDERS. |
MXPA05009303A (en) * | 2003-04-03 | 2005-10-05 | Pfizer | Dosage forms comprising ag013736. |
GB0309009D0 (en) * | 2003-04-22 | 2003-05-28 | Astrazeneca Ab | Quinazoline derivatives |
US7452901B2 (en) * | 2003-04-25 | 2008-11-18 | Gilead Sciences, Inc. | Anti-cancer phosphonate analogs |
CN101410120A (en) * | 2003-04-25 | 2009-04-15 | 吉里德科学公司 | Anti-inflammatory phosphonate compounds |
US7470724B2 (en) * | 2003-04-25 | 2008-12-30 | Gilead Sciences, Inc. | Phosphonate compounds having immuno-modulatory activity |
WO2005002626A2 (en) | 2003-04-25 | 2005-01-13 | Gilead Sciences, Inc. | Therapeutic phosphonate compounds |
US20050261237A1 (en) * | 2003-04-25 | 2005-11-24 | Boojamra Constantine G | Nucleoside phosphonate analogs |
WO2004096285A2 (en) * | 2003-04-25 | 2004-11-11 | Gilead Sciences, Inc. | Anti-infective phosphonate conjugates |
US7432261B2 (en) * | 2003-04-25 | 2008-10-07 | Gilead Sciences, Inc. | Anti-inflammatory phosphonate compounds |
AU2004233897A1 (en) * | 2003-04-25 | 2004-11-11 | Gilead Sciences, Inc. | Kinase inhibitor phosphonate conjugates |
US7427636B2 (en) * | 2003-04-25 | 2008-09-23 | Gilead Sciences, Inc. | Inosine monophosphate dehydrogenase inhibitory phosphonate compounds |
EA014685B1 (en) | 2003-04-25 | 2010-12-30 | Джилид Сайэнс, Инк. | Phosphonate-containing antiviral compounds (variants) and pharmaceutical composition based thereon |
US20090247488A1 (en) * | 2003-04-25 | 2009-10-01 | Carina Cannizzaro | Anti-inflammatory phosphonate compounds |
US7407965B2 (en) * | 2003-04-25 | 2008-08-05 | Gilead Sciences, Inc. | Phosphonate analogs for treating metabolic diseases |
GB0309850D0 (en) * | 2003-04-30 | 2003-06-04 | Astrazeneca Ab | Quinazoline derivatives |
EP1633758B1 (en) * | 2003-05-15 | 2011-11-23 | Arqule, Inc. | Imidazothiazoles and imidazoxazole derivatives as inhibitors of p38 |
PE20050158A1 (en) | 2003-05-19 | 2005-05-12 | Irm Llc | IMMUNOSUPPRESSOR COMPOUNDS AND COMPOSITIONS |
MY150088A (en) | 2003-05-19 | 2013-11-29 | Irm Llc | Immunosuppressant compounds and compositions |
PT1626714E (en) | 2003-05-20 | 2007-08-24 | Bayer Pharmaceuticals Corp | Diaryl ureas for diseases mediated by pdgfr |
CN100378101C (en) * | 2003-06-10 | 2008-04-02 | 霍夫曼-拉罗奇有限公司 | 1.3.4-triaza-phenalene and 1,3,4,6-tetraazaphenalene derivatives |
CN1984660B (en) * | 2003-07-03 | 2010-12-15 | 美瑞德生物工程公司 | 4-arylamino-quinazolines as activators of aspartic acid specificity cysteine protease and inducers of apoptosis |
US8309562B2 (en) * | 2003-07-03 | 2012-11-13 | Myrexis, Inc. | Compounds and therapeutical use thereof |
MEP31408A (en) | 2003-07-18 | 2010-10-10 | Abgenix Inc | Specific binding agents to hepatocyte growth factor |
ES2297490T3 (en) | 2003-07-23 | 2008-05-01 | Bayer Pharmaceuticals Corporation | OMEGA-CARBOXIARILDIFENILUREA FLUORO REPLACED FOR THE TREATMENT AND PREVENTION OF DISEASES AND AFFECTIONS. |
GB0317665D0 (en) * | 2003-07-29 | 2003-09-03 | Astrazeneca Ab | Qinazoline derivatives |
UY28441A1 (en) * | 2003-07-29 | 2005-02-28 | Astrazeneca Ab | QUINAZOLINE DERIVATIVES |
WO2005012264A1 (en) | 2003-07-30 | 2005-02-10 | Ube Industries, Ltd. | Process for producing 6,7-bis(2-methoxyethoxy)-quinazolin-4-one |
HN2004000285A (en) | 2003-08-04 | 2006-04-27 | Pfizer Prod Inc | ANTIBODIES DIRECTED TO c-MET |
CA2536788A1 (en) * | 2003-08-29 | 2005-03-10 | Pfizer Inc. | Naphthalene carboxamides and their derivatives useful as new anti-angiogenic agents |
MXPA06002296A (en) * | 2003-08-29 | 2006-05-22 | Pfizer | Thienopyridine-phenylacet amides and their derivatives useful as new anti-angiogenic agents. |
GB0321066D0 (en) * | 2003-09-09 | 2003-10-08 | Pharma Mar Sau | New antitumoral compounds |
AR045563A1 (en) | 2003-09-10 | 2005-11-02 | Warner Lambert Co | ANTIBODIES DIRECTED TO M-CSF |
GB0321648D0 (en) * | 2003-09-16 | 2003-10-15 | Astrazeneca Ab | Quinazoline derivatives |
CN1882573A (en) * | 2003-09-16 | 2006-12-20 | 阿斯利康(瑞典)有限公司 | Quinazoline derivatives as tyrosine kinase inhibitors |
DK1667991T3 (en) * | 2003-09-16 | 2008-08-18 | Astrazeneca Ab | Quinazoline derivatives as tyrosine kinase inhibitors |
US20080234263A1 (en) * | 2003-09-16 | 2008-09-25 | Laurent Francois Andre Hennequin | Quinazoline Derivatives |
DK1667992T3 (en) * | 2003-09-19 | 2007-04-30 | Astrazeneca Ab | quinazoline |
WO2005028470A1 (en) * | 2003-09-19 | 2005-03-31 | Astrazeneca Ab | Quinazoline derivatives |
GB0322409D0 (en) * | 2003-09-25 | 2003-10-29 | Astrazeneca Ab | Quinazoline derivatives |
BRPI0414735A (en) * | 2003-09-25 | 2006-11-21 | Astrazeneca Ab | quinazoline derivative, compound, pharmaceutical composition, use of quinazoline derivative, method for producing an antiproliferative effect on a warm-blooded animal, and process for the preparation of a quinazoline derivative |
EP2612853A1 (en) * | 2003-09-26 | 2013-07-10 | Exelixis Inc. | c-Met modulators and methods of use |
US7456189B2 (en) * | 2003-09-30 | 2008-11-25 | Boehringer Ingelheim International Gmbh | Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation |
US7432273B2 (en) * | 2003-10-24 | 2008-10-07 | Gilead Sciences, Inc. | Phosphonate analogs of antimetabolites |
US7427624B2 (en) * | 2003-10-24 | 2008-09-23 | Gilead Sciences, Inc. | Purine nucleoside phosphorylase inhibitory phosphonate compounds |
US20050197327A1 (en) * | 2003-11-03 | 2005-09-08 | Gustave Bergnes | Compounds, compositions, and methods |
US20050148593A1 (en) * | 2003-11-07 | 2005-07-07 | Gustave Bergnes | Compounds, compositions, and methods |
GB0326459D0 (en) * | 2003-11-13 | 2003-12-17 | Astrazeneca Ab | Quinazoline derivatives |
WO2005051919A1 (en) * | 2003-11-26 | 2005-06-09 | Pfizer Products Inc. | Aminopyrazole derivatives as gsk-3 inhibitors |
US7439254B2 (en) * | 2003-12-08 | 2008-10-21 | Cytokinetics, Inc. | Compounds, compositions, and methods |
NZ547907A (en) * | 2003-12-22 | 2010-07-30 | Gilead Sciences Inc | 4'-Substituted carbovir-and abacavir-derivatives as well as related compounds with HIV and HCV antiviral activity |
US20050153990A1 (en) * | 2003-12-22 | 2005-07-14 | Watkins William J. | Phosphonate substituted kinase inhibitors |
US20070281907A1 (en) * | 2003-12-22 | 2007-12-06 | Watkins William J | Kinase Inhibitor Phosphonate Conjugates |
US20080113874A1 (en) * | 2004-01-23 | 2008-05-15 | The Regents Of The University Of Colorado | Gefitinib sensitivity-related gene expression and products and methods related thereto |
EP1713781B1 (en) * | 2004-02-03 | 2008-11-05 | AstraZeneca AB | Quinazoline derivatives |
WO2005094830A1 (en) * | 2004-03-30 | 2005-10-13 | Pfizer Products Inc. | Combinations of signal transduction inhibitors |
KR20080083220A (en) | 2004-04-07 | 2008-09-16 | 노파르티스 아게 | Inhibitors of iap |
UA85706C2 (en) * | 2004-05-06 | 2009-02-25 | Уорнер-Ламберт Компани Ллси | 4-phenylaminoquinazolin-6-yl amides |
WO2005116035A1 (en) * | 2004-05-27 | 2005-12-08 | Pfizer Products Inc. | Pyrrolopyrimidine derivatives useful in cancer treatment |
ES2537631T3 (en) * | 2004-05-27 | 2015-06-10 | The Regents Of The University Of Colorado | Methods for predicting the clinical outcome for epidermal growth factor receptor inhibitors for cancer patients |
CN1993349A (en) * | 2004-06-04 | 2007-07-04 | 阿斯利康(瑞典)有限公司 | Quinazoline derivatives as ERBB receptor tyrosine kinases |
US20100226931A1 (en) * | 2004-06-24 | 2010-09-09 | Nicholas Valiante | Compounds for immunopotentiation |
CA2571421A1 (en) * | 2004-06-24 | 2006-01-05 | Nicholas Valiante | Compounds for immunopotentiation |
EP1802341A1 (en) * | 2004-07-16 | 2007-07-04 | Pfizer Products Inc. | Combination treatment for non-hematologic malignancies using an anti-igf-1r antibody |
UA88313C2 (en) | 2004-07-27 | 2009-10-12 | Гилиад Сайенсиз, Инк. | Phosphonate analogs of hiv inhibitor compounds |
PT1784396E (en) * | 2004-08-26 | 2011-01-27 | Pfizer | Pyrazole-substituted aminoheteroaryl compounds as protein kinase inhibitors |
PL1786785T3 (en) * | 2004-08-26 | 2010-08-31 | Pfizer | Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors |
CA2578075A1 (en) * | 2004-08-26 | 2006-03-02 | Pfizer Inc. | Aminoheteroaryl compounds as protein tyrosine kinase inhibitors |
CA2584368A1 (en) * | 2004-10-19 | 2006-04-27 | Arqule, Inc. | Synthesis of imidazooxazole and imidazothiazole inhibitors of p38 map kinase |
WO2006047661A2 (en) * | 2004-10-26 | 2006-05-04 | Gilead Sciences, Inc. | Phosphonate derivatives of mycophenolic acid |
US20060107555A1 (en) * | 2004-11-09 | 2006-05-25 | Curtis Marc D | Universal snow plow adapter |
MX2007006230A (en) | 2004-11-30 | 2007-07-25 | Amgen Inc | Quinolines and quinazoline analogs and their use as medicaments for treating cancer. |
ATE501148T1 (en) | 2004-12-14 | 2011-03-15 | Astrazeneca Ab | PYRAZOLOPYRIMIDINE COMPOUNDS AS ANTI-TUMOR AGENTS |
EP1833482A4 (en) | 2005-01-03 | 2011-02-16 | Myriad Genetics Inc | Compounds and therapeutical use thereof |
US8258145B2 (en) * | 2005-01-03 | 2012-09-04 | Myrexis, Inc. | Method of treating brain cancer |
US7625911B2 (en) * | 2005-01-12 | 2009-12-01 | Mai De Ltd. | Amorphous form of erlotinib hydrochloride and its solid amorphous dispersion |
US20090155247A1 (en) * | 2005-02-18 | 2009-06-18 | Ashkenazi Avi J | Methods of Using Death Receptor Agonists and EGFR Inhibitors |
US20060188498A1 (en) * | 2005-02-18 | 2006-08-24 | Genentech, Inc. | Methods of using death receptor agonists and EGFR inhibitors |
US8735410B2 (en) * | 2005-02-26 | 2014-05-27 | Astrazeneca Ab | Quinazoline derivatives as tyrosine kinase inhibitors |
GB0504474D0 (en) * | 2005-03-04 | 2005-04-13 | Astrazeneca Ab | Chemical compounds |
US20080182865A1 (en) * | 2005-03-11 | 2008-07-31 | Witta Samir E | Histone deacetylase inhibitors sensitize cancer cells to epidermal growth factor inhibitors |
AU2006223086A1 (en) * | 2005-03-11 | 2006-09-21 | The Regents Of The University Of Colorado | Histone deacetylase inhibitors sensitize cancer cells to epidermal growth factor inhibitors |
US20060216288A1 (en) * | 2005-03-22 | 2006-09-28 | Amgen Inc | Combinations for the treatment of cancer |
EP1863848A4 (en) | 2005-03-31 | 2009-09-23 | Agensys Inc | Antibodies and related molecules that bind to 161p2f10b proteins |
CA2604735A1 (en) * | 2005-04-12 | 2006-10-19 | Elan Pharma International Limited | Nanoparticulate quinazoline derivative formulations |
GB0508715D0 (en) * | 2005-04-29 | 2005-06-08 | Astrazeneca Ab | Chemical compounds |
GB0508717D0 (en) * | 2005-04-29 | 2005-06-08 | Astrazeneca Ab | Chemical compounds |
US20070099856A1 (en) * | 2005-05-13 | 2007-05-03 | Gumerlock Paul H | Combined treatment with docetaxel and an epidermal growth factor receptor kinase inhibitor using an intermittent dosing regimen |
GB0510390D0 (en) | 2005-05-20 | 2005-06-29 | Novartis Ag | Organic compounds |
CA2621111A1 (en) * | 2005-09-06 | 2007-03-15 | T.K. Signal Ltd. | Polyalkylene glycol derivatives of 4- (phenylamino)quinazolines useful as irreversible inhibitors of epidermal gr0wth fact0r receptor tyrosine kinase |
EP1928861B1 (en) * | 2005-09-20 | 2010-11-17 | AstraZeneca AB | 4- (ih-indazol-5-yl-amino)-quinazoline compounds as erbb receptor tyrosine kinase inhibitors for the treatment of cancer |
WO2007035744A1 (en) | 2005-09-20 | 2007-03-29 | Osi Pharmaceuticals, Inc. | Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors |
JP2009508917A (en) * | 2005-09-20 | 2009-03-05 | アストラゼネカ アクチボラグ | Quinazoline derivatives as anticancer agents |
NO20220050A1 (en) | 2005-11-21 | 2008-08-12 | Novartis Ag | Neuroendocrine tumor treatment |
US7960545B2 (en) * | 2005-11-23 | 2011-06-14 | Natco Pharma Limited | Process for the prepartion of erlotinib |
US20090029968A1 (en) * | 2005-12-02 | 2009-01-29 | Bernard Christophe Barlaam | Quinazoline derivatives used as inhibitors of erbb tyrosine kinase |
WO2007063291A1 (en) * | 2005-12-02 | 2007-06-07 | Astrazeneca Ab | 4-anilino-substituted quinazoline derivatives as tyrosine kinase inhibitors |
JO2660B1 (en) | 2006-01-20 | 2012-06-17 | نوفارتيس ايه جي | PI-3 Kinase inhibitors and methods of their use |
PE20070978A1 (en) * | 2006-02-14 | 2007-11-15 | Novartis Ag | HETEROCICLIC COMPOUNDS AS INHIBITORS OF PHOSPHATIDYLINOSITOL 3-KINASES (PI3Ks) |
GB0605120D0 (en) | 2006-03-14 | 2006-04-26 | Novartis Ag | Organic Compounds |
KR20080109068A (en) | 2006-04-05 | 2008-12-16 | 노파르티스 아게 | Combinations comprising bcr-abl/c-kit/pdgf-r tk inhibitors for treating cancer |
EP2591775A1 (en) | 2006-04-05 | 2013-05-15 | Novartis AG | Combinations comprising mtor inhibitors for treating cancer |
TW200808739A (en) * | 2006-04-06 | 2008-02-16 | Novartis Vaccines & Diagnostic | Quinazolines for PDK1 inhibition |
WO2007123892A2 (en) * | 2006-04-17 | 2007-11-01 | Arqule Inc. | Raf inhibitors and their uses |
US20070293491A1 (en) | 2006-04-19 | 2007-12-20 | Novartis Vaccines And Diagnostics, Inc. | Indazole compounds and methods for inhibition of cdc7 |
BRPI0711385A2 (en) | 2006-05-09 | 2011-11-08 | Novartis Ag | combination comprising an iron chelator and an antineoplastic agent and its use |
FR2903387B1 (en) * | 2006-07-05 | 2008-08-29 | Alcatel Sa | ACTUATOR FOR SYSTEMS FOR GUIDING SPACE EQUIPMENTS WITH VARIABLE ROTATION RATIOS |
PE20080403A1 (en) | 2006-07-14 | 2008-04-25 | Amgen Inc | FUSED HETEROCYCLIC DERIVATIVES AND METHODS OF USE |
US8217177B2 (en) | 2006-07-14 | 2012-07-10 | Amgen Inc. | Fused heterocyclic derivatives and methods of use |
WO2008012105A1 (en) * | 2006-07-28 | 2008-01-31 | Synthon B.V. | Crystalline erlotinib |
SG174774A1 (en) * | 2006-09-11 | 2011-10-28 | Curis Inc | Quinazoline based egfr inhibitors containing a zinc binding moiety |
US7977347B2 (en) * | 2006-09-11 | 2011-07-12 | Curis, Inc. | Quinazoline based EGFR inhibitors |
US7547781B2 (en) * | 2006-09-11 | 2009-06-16 | Curis, Inc. | Quinazoline based EGFR inhibitors containing a zinc binding moiety |
JP2010502743A (en) * | 2006-09-11 | 2010-01-28 | キュリス,インコーポレイテッド | Multifunctional small molecules as antiproliferative drugs |
EP2061906B1 (en) | 2006-09-12 | 2011-08-31 | Genentech, Inc. | Methods and compositions for the diagnosis and treatment of lung cancer using pdgfra, kit or kdr gene as genetic marker |
CA2664697A1 (en) * | 2006-09-28 | 2008-04-10 | Follica, Inc. | Methods, kits, and compositions for generating new hair follicles and growing hair |
ATE502943T1 (en) | 2006-09-29 | 2011-04-15 | Novartis Ag | PYRAZOLOPYRIMIDINES AS PI3K LIPID KINASE INHIBITORS |
US8372856B2 (en) * | 2006-10-27 | 2013-02-12 | Synthon Bv | Hydrates of erlotinib hydrochloride |
SG176461A1 (en) | 2006-11-06 | 2011-12-29 | Supergen Inc | Imidazo[1,2-b]pyridazine and pyrazolo[1,5-a]pyrimidine derivatives and their use as protein kinase inhibitors |
EP1921070A1 (en) * | 2006-11-10 | 2008-05-14 | Boehringer Ingelheim Pharma GmbH & Co. KG | Bicyclic heterocycles, medicaments comprising them, their use and process for their preparation |
WO2008076949A2 (en) * | 2006-12-15 | 2008-06-26 | Concert Pharmaceuticals Inc. | Quinazoline derivatives and methods of treatment |
US20100260674A1 (en) * | 2006-12-15 | 2010-10-14 | Concert Pharmaceuticals, Inc. | Quinazoline derivatives and methods of treatment |
AU2007338792B2 (en) | 2006-12-20 | 2012-05-31 | Amgen Inc. | Substituted heterocycles and methods of use |
US7759344B2 (en) | 2007-01-09 | 2010-07-20 | Amgen Inc. | Bis-aryl amide derivatives and methods of use |
MX2009007610A (en) * | 2007-02-06 | 2009-07-24 | Boehringer Ingelheim Int | Bicyclic heterocycles, drugs containing said compounds, use thereof, and method for production thereof. |
BRPI0807812A2 (en) | 2007-02-15 | 2020-06-23 | Novartis Ag | COMBINATIONS OF LBH589 WITH OTHER THERAPEUTIC AGENTS TO TREAT CANCER |
US8314087B2 (en) | 2007-02-16 | 2012-11-20 | Amgen Inc. | Nitrogen-containing heterocyclyl ketones and methods of use |
US8349855B2 (en) * | 2007-02-21 | 2013-01-08 | Natco Pharma Limited | Polymorphs of erlotinib hydrochloride and method of preparation |
JP5524041B2 (en) * | 2007-04-04 | 2014-06-18 | シプラ・リミテッド | Method for producing erlotinib and pharmaceutically acceptable salts thereof |
AU2008236995A1 (en) * | 2007-04-10 | 2008-10-16 | Myrexis, Inc. | Dosages and methods for the treatment of cancer |
DE102007024470A1 (en) * | 2007-05-24 | 2008-11-27 | Bayer Schering Pharma Aktiengesellschaft | New sulfoximine-substituted quinoline and/or quinazoline derivatives are erythropoietin-producing hepatoma amplified sequence-receptor kinase inhibitors useful to prepare medicaments to e.g. treat endometriosis and stenosis |
CA2687611A1 (en) * | 2007-05-24 | 2008-11-27 | Bayer Schering Pharma Aktiengesellschaft | Novel sulphoximine-substituted quinoline and quinazoline derivatives as kinase inhibitors |
KR20100024494A (en) * | 2007-06-22 | 2010-03-05 | 아르퀼 인코포레이티드 | Quinazolinone compounds and methods of use thereof |
EP2162444B1 (en) * | 2007-07-11 | 2014-06-04 | Hetero Drugs Limited | An improved process for the preparation of erlotinib hydrochloride |
EP2170062A4 (en) * | 2007-07-12 | 2010-12-29 | Tragara Pharmaceuticals Inc | Methods and compositions for the treatment of cancer, tumors, and tumor-related disorders |
WO2009023876A1 (en) * | 2007-08-16 | 2009-02-19 | Myriad Genetics, Inc. | Method of treating non-small cell lung cancer |
EP2213665A1 (en) | 2007-08-17 | 2010-08-04 | Hetero Drugs Limited | Erlotinib hydrochloride |
TWI595005B (en) | 2007-08-21 | 2017-08-11 | 安健股份有限公司 | Human c-fms antigen binding proteins |
US20090124642A1 (en) * | 2007-08-23 | 2009-05-14 | Augusto Canavesi | Crystalline forms of Erlotinib HCI and formulations thereof |
WO2009025875A1 (en) * | 2007-08-23 | 2009-02-26 | Plus Chemicals Sa | Stable formulations of crystalline erlotinib hcl |
WO2009033094A2 (en) | 2007-09-07 | 2009-03-12 | Agensys, Inc. | Antibodies and related molecules that bind to 24p4c12 proteins |
DE102008012435A1 (en) * | 2008-02-29 | 2009-09-03 | Schebo Biotech Ag | New quinazoline compounds are tyrosin-kinase inhibitors e.g. to treat cancer, hematologic or solid tumors, non-Hodgkin tumors or T-cell lymphoma; and for the modulation of the cell cycle, cell differentiation, apoptosis or angiogenesis |
US8119616B2 (en) * | 2007-09-10 | 2012-02-21 | Curis, Inc. | Formulation of quinazoline based EGFR inhibitors containing a zinc binding moiety |
WO2009035718A1 (en) | 2007-09-10 | 2009-03-19 | Curis, Inc. | Tartrate salts or complexes of quinazoline based egfr inhibitors containing a zinc binding moiety |
EP2217580B1 (en) * | 2007-10-12 | 2011-12-21 | ArQule, Inc. | Substituted tetrazole compounds and uses thereof |
NZ584695A (en) * | 2007-10-19 | 2011-06-30 | Pharma Mar Sa | Improved antitumoral treatments using PM02734 and an EGFR tyrosine kinase inhibitor (erlotinib) |
CN101878203A (en) | 2007-10-29 | 2010-11-03 | 纳科法尔马有限公司 | Novel 4-(tetrazol-5-yl)-quinazoline derivatives as anti cancer agents |
EP2060565A1 (en) | 2007-11-16 | 2009-05-20 | 4Sc Ag | Novel bifunctional compounds which inhibit protein kinases and histone deacetylases |
US20110053991A1 (en) * | 2007-11-19 | 2011-03-03 | Gore Lia | Treatment of Histone Deacetylase Mediated Disorders |
PA8809001A1 (en) | 2007-12-20 | 2009-07-23 | Novartis Ag | ORGANIC COMPOUNDS |
ES2642159T3 (en) * | 2008-01-18 | 2017-11-15 | Natco Pharma Limited | Process for the preparation of 6,7-dialkoxy-quinazoline derivatives |
TWI472339B (en) | 2008-01-30 | 2015-02-11 | Genentech Inc | Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof |
EP2252315A1 (en) * | 2008-01-30 | 2010-11-24 | Pharma Mar, S.A. | Improved antitumoral treatments |
WO2009098061A1 (en) * | 2008-02-07 | 2009-08-13 | Boehringer Ingelheim International Gmbh | Spirocyclic heterocycles, medicaments containing said compounds, use thereof and method for their production |
CA2717117A1 (en) * | 2008-03-07 | 2009-09-11 | Pharma Mar, S.A. | Improved antitumoral treatments |
ES2524259T3 (en) | 2008-03-24 | 2014-12-04 | Novartis Ag | Aryl sulfonamide matrix metalloproteinase inhibitors |
ES2519474T3 (en) | 2008-03-26 | 2014-11-07 | Novartis Ag | Hydroxamate-based deacetylase B inhibitors |
JP2011516426A (en) * | 2008-03-28 | 2011-05-26 | コンサート ファーマシューティカルズ インコーポレイテッド | Quinazoline derivatives and methods of treatment |
NZ589883A (en) | 2008-05-13 | 2012-06-29 | Astrazeneca Ab | Fumarate salt of 4- (3-chloro-2-fluoroanilino) -7-methoxy-6- { [1- (n-methylcarbamoylmethyl) piperidin- 4-yl] oxy} quinazoline |
CN101584696A (en) * | 2008-05-21 | 2009-11-25 | 上海艾力斯医药科技有限公司 | Composition containing quinazoline derivatives, preparation method and use |
WO2010005924A1 (en) * | 2008-07-07 | 2010-01-14 | Plus Chemicals Sa | Crystalline forms of erlotinib base and erlotinib hcl |
EA018308B1 (en) | 2008-07-08 | 2013-07-30 | Джилид Сайэнс, Инк. | Salts of hiv inhibitor compounds |
JP5539351B2 (en) * | 2008-08-08 | 2014-07-02 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Cyclohexyloxy-substituted heterocycles, medicaments containing these compounds, and methods for producing them |
CN101653606B (en) * | 2008-08-19 | 2013-02-13 | 鼎泓国际投资(香港)有限公司 | Pharmaceutical composition containing protein kinase B inhibitor and epidermal growth factor recipient tyrosine kinase inhibitor and application thereof |
KR101132937B1 (en) | 2008-10-01 | 2012-04-06 | 주식회사종근당 | ?-3-ethynylphenyl-6,7-bis2-methoxyethoxy-4-quinazolinamine napsylate |
WO2010040212A1 (en) * | 2008-10-08 | 2010-04-15 | Apotex Pharmachem Inc. | Processes for the preparation of erlotinib hydrochloride |
CN101723906B (en) * | 2008-10-10 | 2011-09-28 | 山西仁源堂药业有限公司 | Compound, medical composition containing same as well as preparation method and application |
EP2344161B1 (en) * | 2008-10-16 | 2018-12-19 | Celator Pharmaceuticals, Inc. | Combinations of a liposomal water-soluble camptothecin with cetuximab or bevacizumab |
EP2334701A4 (en) | 2008-10-16 | 2014-01-08 | Univ Pittsburgh | Fully human antibodies to high molecular weight-melanoma associated antigen and uses thereof |
WO2010054264A1 (en) * | 2008-11-07 | 2010-05-14 | Triact Therapeutics, Inc. | Use of catecholic butane derivatives in cancer therapy |
US20100222371A1 (en) * | 2008-11-20 | 2010-09-02 | Children's Medical Center Corporation | Prevention of surgical adhesions |
CN102317293A (en) * | 2008-12-05 | 2012-01-11 | 艾科尔公司 | RAF inhibitors and their uses |
ES2531831T3 (en) | 2008-12-18 | 2015-03-20 | Novartis Ag | Polymorphic form of 1- (4- {1 - [(E) -4-cyclohexyl-3-trifluoromethyl-benzyloxyimino] -ethyl} -2-ethyl-benzyl) -azetidine-3-carboxylic acid |
MX2011006609A (en) | 2008-12-18 | 2011-06-30 | Novartis Ag | Hemifumarate salt of 1- [4- [1- ( 4 -cyclohexyl-3 -trifluoromethyl-benzyloxyimino ) -ethyl] -2 -ethyl-benzyl] -a zetidine-3-carboxylic acid. |
US8486930B2 (en) | 2008-12-18 | 2013-07-16 | Novartis Ag | Salts |
TWI447108B (en) | 2009-01-16 | 2014-08-01 | Exelixis Inc | Malate salts of n-(4-{[6,7-bis(methyloxy)quinolin-4-yl]oxy}phenyl)-n'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms thereof |
WO2010083617A1 (en) | 2009-01-21 | 2010-07-29 | Oncalis Ag | Pyrazolopyrimidines as protein kinase inhibitors |
SI2391366T1 (en) | 2009-01-29 | 2013-01-31 | Novartis Ag | Substituted benzimidazoles for the treatment of astrocytomas |
US20100204221A1 (en) * | 2009-02-09 | 2010-08-12 | Hariprasad Vankayalapati | Pyrrolopyrimidinyl axl kinase inhibitors |
US20120189641A1 (en) | 2009-02-25 | 2012-07-26 | OSI Pharmaceuticals, LLC | Combination anti-cancer therapy |
EP2400990A2 (en) | 2009-02-26 | 2012-01-04 | OSI Pharmaceuticals, LLC | In situ methods for monitoring the emt status of tumor cells in vivo |
US8465912B2 (en) | 2009-02-27 | 2013-06-18 | OSI Pharmaceuticals, LLC | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
TW201035088A (en) | 2009-02-27 | 2010-10-01 | Supergen Inc | Cyclopentathiophene/cyclohexathiophene DNA methyltransferase inhibitors |
WO2010099138A2 (en) | 2009-02-27 | 2010-09-02 | Osi Pharmaceuticals, Inc. | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
EP2401614A1 (en) | 2009-02-27 | 2012-01-04 | OSI Pharmaceuticals, LLC | Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation |
US20120064072A1 (en) | 2009-03-18 | 2012-03-15 | Maryland Franklin | Combination Cancer Therapy Comprising Administration of an EGFR Inhibitor and an IGF-1R Inhibitor |
RU2504553C2 (en) | 2009-03-20 | 2014-01-20 | Дженентек, Инк. | Antibodies to her |
EP2236139A1 (en) | 2009-03-31 | 2010-10-06 | F. Hoffmann-La Roche AG | Combination therapy of erlotinib with an anti-IGF-1R antibody, which does not inhibit binding of insulin to the insulin receptor |
CN102746242A (en) * | 2009-04-16 | 2012-10-24 | 欧美嘉股份有限公司 | Synthesis method of 6, 7-substituted-4-aniline quinazoline |
US8530492B2 (en) | 2009-04-17 | 2013-09-10 | Nektar Therapeutics | Oligomer-protein tyrosine kinase inhibitor conjugates |
JO2892B1 (en) | 2009-06-26 | 2015-09-15 | نوفارتيس ايه جي | Inhibitors of cyp 17 |
US8293753B2 (en) | 2009-07-02 | 2012-10-23 | Novartis Ag | Substituted 2-carboxamide cycloamino ureas |
US9050341B2 (en) * | 2009-07-14 | 2015-06-09 | Natco Pharma Limited | Methods of treating drug resistant and other tumors by administering 6,7-dialkoxy quinazoline derivatives |
US8389526B2 (en) | 2009-08-07 | 2013-03-05 | Novartis Ag | 3-heteroarylmethyl-imidazo[1,2-b]pyridazin-6-yl derivatives |
UA108618C2 (en) | 2009-08-07 | 2015-05-25 | APPLICATION OF C-MET-MODULATORS IN COMBINATION WITH THEMOSOLOMID AND / OR RADIATION THERAPY FOR CANCER TREATMENT | |
CA2770873A1 (en) | 2009-08-12 | 2011-02-17 | Novartis Ag | Heterocyclic hydrazone compounds and their uses to treat cancer and inflammation |
SG178454A1 (en) | 2009-08-17 | 2012-03-29 | Intellikine Inc | Heterocyclic compounds and uses thereof |
IN2012DN01453A (en) | 2009-08-20 | 2015-06-05 | Novartis Ag | |
BR112012008075A2 (en) | 2009-08-26 | 2016-03-01 | Novartis Ag | tetrasubstituted heteroaryl compounds and their use as mdm2 and / or mdm4 modulators |
PE20121471A1 (en) | 2009-11-04 | 2012-11-01 | Novartis Ag | HELPFUL HETEROCYCLIC SULFONAMIDE DERIVATIVES AS MEK INHIBITORS |
US20120302749A1 (en) | 2009-11-12 | 2012-11-29 | Ranbaxy Laboratories Limited | Processes for the preparation of erlotinib hydrochloride form a and erlotinib hydrochloride form b |
BR112012009997A2 (en) | 2009-11-12 | 2019-09-24 | Genentech Inc | '' method for increasing the density of dentitic pimples in neurons of a patient with a cognitive or psychiatric disorder, method of maintaining cognition in a subject during the aging process, use of a dr6 antagonist in the preparation of a drug for use in a patient with a cognitive or psychiatric disorder and use of a p75 antagonist in the preparation of a medicament for use in a patient with a cognitive or psychiatric disorder |
JP2013510564A (en) | 2009-11-13 | 2013-03-28 | パンガエア ビオテック、ソシエダッド、リミターダ | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
EP2896632B1 (en) | 2009-11-13 | 2017-10-25 | Daiichi Sankyo Europe GmbH | Material and methods for treating or preventing HER-3 associated diseases |
US20110130711A1 (en) * | 2009-11-19 | 2011-06-02 | Follica, Inc. | Hair growth treatment |
EA201200617A1 (en) | 2009-11-23 | 2012-11-30 | Серулин Фарма Инк. | POLYMERS ON THE BASIS OF CYCLODEXTRINE FOR DELIVERY OF MEDICINES |
WO2011068403A2 (en) | 2009-12-02 | 2011-06-09 | Ultimorphix Technologies B.V. | Novel n-{3-ethynylphenylamino)-6,7-bis(2-methoxyethoxy)-4-quinazolinamjne salts |
WO2011070030A1 (en) | 2009-12-08 | 2011-06-16 | Novartis Ag | Heterocyclic sulfonamide derivatives |
US8440693B2 (en) | 2009-12-22 | 2013-05-14 | Novartis Ag | Substituted isoquinolinones and quinazolinones |
CU24130B1 (en) | 2009-12-22 | 2015-09-29 | Novartis Ag | ISOQUINOLINONES AND REPLACED QUINAZOLINONES |
EP2348020A1 (en) | 2009-12-23 | 2011-07-27 | Esteve Química, S.A. | Preparation process of erlotinib |
TW201129565A (en) | 2010-01-12 | 2011-09-01 | Hoffmann La Roche | Tricyclic heterocyclic compounds, compositions and methods of use thereof |
WO2011090940A1 (en) | 2010-01-19 | 2011-07-28 | Cerulean Pharma Inc. | Cyclodextrin-based polymers for therapeutic delivery |
CA3024216C (en) | 2010-02-12 | 2021-03-30 | Pfizer Inc. | Salts and polymorphs of 8-fluoro-2-{4-[(methylamino)methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one |
SI2536748T1 (en) | 2010-02-18 | 2014-12-31 | Genentech, Inc. | Neuregulin antagonists and use thereof in treating cancer |
US20110275644A1 (en) | 2010-03-03 | 2011-11-10 | Buck Elizabeth A | Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors |
WO2011109584A2 (en) | 2010-03-03 | 2011-09-09 | OSI Pharmaceuticals, LLC | Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors |
RU2012141536A (en) | 2010-03-17 | 2014-04-27 | Ф. Хоффманн-Ля Рош Аг | IMIDAZOPYRIDINES, COMPOSITIONS AND METHODS OF APPLICATION |
US20110237686A1 (en) | 2010-03-26 | 2011-09-29 | Cerulean Pharma Inc | Formulations and methods of use |
CA2793892A1 (en) | 2010-04-16 | 2011-10-20 | Elizabeth Punnoose | Foxo3a as predictive biomarker for pi3k/akt kinase pathway inhibitor efficacy |
US20110288086A1 (en) | 2010-05-21 | 2011-11-24 | Jianqi Li | Polycyclic quinazolines, preparation thereof, and use thereof |
CN104689314B (en) | 2010-06-16 | 2018-02-02 | 高等教育联邦系统-匹兹堡大学 | Antibody of endoplasmin and application thereof |
WO2011161217A2 (en) | 2010-06-23 | 2011-12-29 | Palacký University in Olomouc | Targeting of vegfr2 |
CN102311438A (en) * | 2010-06-30 | 2012-01-11 | 和记黄埔医药(上海)有限公司 | Quinazoline compound |
UA112517C2 (en) | 2010-07-06 | 2016-09-26 | Новартіс Аг | TETRAHYDROPYRIDOPYRIMIDINE DERIVATIVES |
AU2011298167B2 (en) | 2010-07-23 | 2015-11-26 | Generics [Uk] Limited | Pure erlotinib |
AR082418A1 (en) | 2010-08-02 | 2012-12-05 | Novartis Ag | CRYSTAL FORMS OF 1- (4-METHYL-5- [2- (2,2,2-TRIFLUORO-1,1-DIMETHYL-Ethyl) -PIRIDIN-4-IL] -TIAZOL-2-IL) -AMIDE OF 2 -AMIDA OF THE ACID (S) -PIRROLIDIN-1,2-DICARBOXILICO |
CA2815154A1 (en) | 2010-08-06 | 2012-02-09 | U3 Pharma Gmbh | Use of her3 binding agents in prostate treatment |
CN101914068A (en) * | 2010-08-14 | 2010-12-15 | 浙江华海药业股份有限公司 | Novel crystal form of erlotinib alkali and preparation method thereof |
SG187886A1 (en) | 2010-08-31 | 2013-04-30 | Genentech Inc | Biomarkers and methods of treatment |
TW201217387A (en) | 2010-09-15 | 2012-05-01 | Hoffmann La Roche | Azabenzothiazole compounds, compositions and methods of use |
WO2012035078A1 (en) | 2010-09-16 | 2012-03-22 | Novartis Ag | 17α-HYDROXYLASE/C17,20-LYASE INHIBITORS |
CA2817785A1 (en) | 2010-11-19 | 2012-05-24 | Toby Blench | Pyrazolopyridines and pyrazolopyridines and their use as tyk2 inhibitors |
US20130236467A1 (en) | 2010-11-24 | 2013-09-12 | Jeremy Griggs | Multispecific antigen binding proteins targeting hgf |
CN102557977B (en) * | 2010-12-20 | 2014-07-30 | 浙江海正药业股份有限公司 | Synthesis intermediate of erlotinib and preparation method thereof |
WO2012085815A1 (en) | 2010-12-21 | 2012-06-28 | Novartis Ag | Bi-heteroaryl compounds as vps34 inhibitors |
EP2468883A1 (en) | 2010-12-22 | 2012-06-27 | Pangaea Biotech S.L. | Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer |
WO2012085176A1 (en) | 2010-12-23 | 2012-06-28 | F. Hoffmann-La Roche Ag | Tricyclic pyrazinone compounds, compositions and methods of use thereof as janus kinase inhibitors |
US9134297B2 (en) | 2011-01-11 | 2015-09-15 | Icahn School Of Medicine At Mount Sinai | Method and compositions for treating cancer and related methods |
KR101928116B1 (en) | 2011-01-31 | 2018-12-11 | 노파르티스 아게 | Novel heterocyclic derivatives |
US20130324526A1 (en) | 2011-02-10 | 2013-12-05 | Novartis Ag | [1,2,4] triazolo [4,3-b] pyridazine compounds as inhibitors of the c-met tyrosine kinase |
US20120214830A1 (en) | 2011-02-22 | 2012-08-23 | OSI Pharmaceuticals, LLC | Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma |
JP5808826B2 (en) | 2011-02-23 | 2015-11-10 | インテリカイン, エルエルシー | Heterocyclic compounds and uses thereof |
EP2492688A1 (en) | 2011-02-23 | 2012-08-29 | Pangaea Biotech, S.A. | Molecular biomarkers for predicting response to antitumor treatment in lung cancer |
EA023998B1 (en) | 2011-03-04 | 2016-08-31 | Глэксосмитклайн Интеллекчуал Проперти Дивелопмент Лимитед | Amino-quinolines as kinase inhibitors |
KR20200003933A (en) | 2011-03-04 | 2020-01-10 | 뉴젠 세러퓨틱스 인코포레이티드 | Alkyne substituted quinazoline compound and methods of use |
WO2012129145A1 (en) | 2011-03-18 | 2012-09-27 | OSI Pharmaceuticals, LLC | Nscle combination therapy |
CA2830516C (en) | 2011-03-23 | 2017-01-24 | Amgen Inc. | Fused tricyclic dual inhibitors of cdk 4/6 and flt3 |
ITPD20110091A1 (en) | 2011-03-24 | 2012-09-25 | Univ Padova | USEFUL INHIBITORS FOR RELATED PATHOLOGIES: PHARMACOFORIC MODELS, IDENTIFIED COMPOUNDS BY THESE MODELS, METHODS FOR THEIR PREPARATION, THEIR FORMULATION AND THEIR THERAPEUTIC USE. |
SG194045A1 (en) | 2011-04-01 | 2013-11-29 | Genentech Inc | Combinations of akt inhibitor compounds and abiraterone, and methods of use |
WO2012142164A1 (en) | 2011-04-12 | 2012-10-18 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii |
EP3536708A1 (en) | 2011-04-19 | 2019-09-11 | Pfizer Inc | Combinations of anti-4-1bb antibodies and adcc-inducing antibodies for the treatment of cancer |
US9896730B2 (en) | 2011-04-25 | 2018-02-20 | OSI Pharmaceuticals, LLC | Use of EMT gene signatures in cancer drug discovery, diagnostics, and treatment |
WO2012149413A1 (en) | 2011-04-28 | 2012-11-01 | Novartis Ag | 17α-HYDROXYLASE/C17,20-LYASE INHIBITORS |
US20140121373A1 (en) | 2011-05-03 | 2014-05-01 | Cadila Healthcare Limited | Process for preparing stable polymorphic form of erlotinib hydrochloride |
WO2012155339A1 (en) | 2011-05-17 | 2012-11-22 | 江苏康缘药业股份有限公司 | 4-phenylamino-6-butenamide-7-alkyloxy quinazoline derivatives, preparative method and use thereof |
CN102796109B (en) * | 2011-05-23 | 2015-10-07 | 复旦大学 | 4-Aminoquinazolines compounds and its production and use |
EP2718276A1 (en) | 2011-06-09 | 2014-04-16 | Novartis AG | Heterocyclic sulfonamide derivatives |
EP2721008B1 (en) | 2011-06-20 | 2015-04-29 | Novartis AG | Hydroxy substituted isoquinolinone derivatives as p53 (mdm2 or mdm4) inhibitors |
US8859586B2 (en) | 2011-06-20 | 2014-10-14 | Novartis Ag | Cyclohexyl isoquinolinone compounds |
SG195067A1 (en) | 2011-06-27 | 2013-12-30 | Novartis Ag | Solid forms and salts of tetrahydro-pyrido-pyrimidine derivatives |
US8575339B2 (en) * | 2011-07-05 | 2013-11-05 | Xueheng Cheng | Derivatives of erlotinib |
WO2013007768A1 (en) | 2011-07-13 | 2013-01-17 | F. Hoffmann-La Roche Ag | Tricyclic heterocyclic compounds, compositions and methods of use thereof as jak inhibitors |
WO2013007765A1 (en) | 2011-07-13 | 2013-01-17 | F. Hoffmann-La Roche Ag | Fused tricyclic compounds for use as inhibitors of janus kinases |
WO2013013188A1 (en) | 2011-07-21 | 2013-01-24 | Tolero Pharmaceuticals, Inc. | Heterocyclic protein kinase inhibitors |
JP5855253B2 (en) | 2011-08-12 | 2016-02-09 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Indazole compounds, compositions and methods of use |
WO2013025939A2 (en) | 2011-08-16 | 2013-02-21 | Indiana University Research And Technology Corporation | Compounds and methods for treating cancer by inhibiting the urokinase receptor |
KR20140057326A (en) | 2011-08-17 | 2014-05-12 | 제넨테크, 인크. | Neuregulin antibodies and uses thereof |
TWI547494B (en) | 2011-08-18 | 2016-09-01 | 葛蘭素史克智慧財產發展有限公司 | Amino quinazolines as kinase inhibitors |
RU2614254C2 (en) | 2011-08-31 | 2017-03-24 | Дженентек, Инк. | Diagnostic markers |
CA2848809A1 (en) | 2011-09-15 | 2013-03-21 | Novartis Ag | 6-substituted 3-(quinolin-6-ylthio)-[1,2,4]triazolo[4,3-a]pyradines as c-met tyrosine kinase |
RU2014113236A (en) | 2011-09-20 | 2015-10-27 | Ф. Хоффманн-Ля Рош Аг | IMIDAZOPYRIDINE COMPOUNDS, COMPOSITIONS AND METHODS OF APPLICATION |
EP2761025A1 (en) | 2011-09-30 | 2014-08-06 | Genentech, Inc. | Diagnostic methylation markers of epithelial or mesenchymal phenotype and response to egfr kinase inhibitor in tumours or tumour cells |
EP3275902A1 (en) | 2011-10-04 | 2018-01-31 | IGEM Therapeutics Limited | Ige anti-hmw-maa antibody |
CA2853256C (en) | 2011-10-28 | 2019-05-14 | Novartis Ag | Novel purine derivatives and their use in the treatment of disease |
US20140286959A1 (en) | 2011-11-08 | 2014-09-25 | Pfizer Inc. | Methods of Treating Inflammatory Disorders Using Anti-M-CSF Antibodies |
WO2013080141A1 (en) | 2011-11-29 | 2013-06-06 | Novartis Ag | Pyrazolopyrrolidine compounds |
KR20140098834A (en) | 2011-11-30 | 2014-08-08 | 제넨테크, 인크. | Erbb3 mutations in cancer |
US9408885B2 (en) | 2011-12-01 | 2016-08-09 | Vib Vzw | Combinations of therapeutic agents for treating melanoma |
US20150148377A1 (en) | 2011-12-22 | 2015-05-28 | Novartis Ag | Quinoline Derivatives |
IN2014CN04174A (en) | 2011-12-22 | 2015-09-04 | Novartis Ag | |
US20140357633A1 (en) | 2011-12-23 | 2014-12-04 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners |
BR112014015322A8 (en) | 2011-12-23 | 2017-06-13 | Novartis Ag | compounds and compositions for inhibiting bcl2 interaction with binding partners |
KR20140107573A (en) | 2011-12-23 | 2014-09-04 | 노파르티스 아게 | Compounds for inhibiting the interaction of bcl2 with binding partners |
BR112014015308A8 (en) | 2011-12-23 | 2017-06-13 | Novartis Ag | compounds for inhibiting bcl2 interaction with binding counterparts |
MX2014007725A (en) | 2011-12-23 | 2015-01-12 | Novartis Ag | Compounds for inhibiting the interaction of bcl2 with binding partners. |
US20130178520A1 (en) | 2011-12-23 | 2013-07-11 | Duke University | Methods of treatment using arylcyclopropylamine compounds |
UY34591A (en) | 2012-01-26 | 2013-09-02 | Novartis Ag | IMIDAZOPIRROLIDINONA COMPOUNDS |
AU2013214254B2 (en) | 2012-01-31 | 2016-04-21 | Novartis Ag | Method of treating cancer |
AR090263A1 (en) | 2012-03-08 | 2014-10-29 | Hoffmann La Roche | COMBINED ANTIBODY THERAPY AGAINST HUMAN CSF-1R AND USES OF THE SAME |
BR112014024017A8 (en) | 2012-03-27 | 2017-07-25 | Genentech Inc | METHODS FOR TREATMENT OF A TYPE OF CANCER, FOR TREATMENT OF CARCINOMA, FOR SELECTING A THERAPY AND FOR QUANTIFICATION AND HER3 INHIBITORS |
EP3964513A1 (en) | 2012-04-03 | 2022-03-09 | Novartis AG | Combination products with tyrosine kinase inhibitors and their use |
WO2013152252A1 (en) | 2012-04-06 | 2013-10-10 | OSI Pharmaceuticals, LLC | Combination anti-cancer therapy |
CN102659692B (en) | 2012-05-04 | 2014-04-09 | 郑州泰基鸿诺药物科技有限公司 | Double-linked Erlotinib and preparation method thereof |
SG11201406550QA (en) | 2012-05-16 | 2014-11-27 | Novartis Ag | Dosage regimen for a pi-3 kinase inhibitor |
JP6171003B2 (en) | 2012-05-24 | 2017-07-26 | ノバルティス アーゲー | Pyrrolopyrrolidinone compounds |
CN103420924B (en) * | 2012-05-25 | 2016-08-31 | 浙江九洲药业股份有限公司 | A kind of preparation method of Erlotinib hydrochloride crystal form A |
CN104582732A (en) | 2012-06-15 | 2015-04-29 | 布里格姆及妇女医院股份有限公司 | Compositions for treating cancer and methods for making the same |
WO2013190089A1 (en) | 2012-06-21 | 2013-12-27 | Pangaea Biotech, S.L. | Molecular biomarkers for predicting outcome in lung cancer |
CN102887835A (en) * | 2012-07-24 | 2013-01-23 | 连云港盛和生物科技有限公司 | Method for synthesizing 2-amino-4,5-bis-(2-methoxyethoxy)cyanophenyl |
CN102827086A (en) * | 2012-08-03 | 2012-12-19 | 浙江理工大学 | Preparation method for 4-chloro-6,7-bis(2-methoxyethoxy)quinazoline |
WO2014025395A1 (en) | 2012-08-06 | 2014-02-13 | Duke University | Compounds and methods for targeting hsp90 |
WO2014036022A1 (en) | 2012-08-29 | 2014-03-06 | Amgen Inc. | Quinazolinone compounds and derivatives thereof |
US9593083B2 (en) | 2012-09-04 | 2017-03-14 | Shilpa Medicare Limited | Crystalline erlotinib hydrochloride process |
AR092529A1 (en) | 2012-09-13 | 2015-04-22 | Glaxosmithkline Llc | AMINOQUINAZOLINE COMPOUND, PHARMACEUTICAL COMPOSITION THAT INCLUDES IT AND USE OF THIS COMPOSITE FOR THE PREPARATION OF A MEDICINAL PRODUCT |
JP6243918B2 (en) | 2012-10-16 | 2017-12-06 | トレロ ファーマシューティカルズ, インコーポレイテッド | PKM2 modulators and methods for their use |
US9950047B2 (en) | 2012-11-05 | 2018-04-24 | Dana-Farber Cancer Institute, Inc. | XBP1, CD138, and CS1 peptides, pharmaceutical compositions that include the peptides, and methods of using such peptides and compositions |
TW201422625A (en) | 2012-11-26 | 2014-06-16 | Novartis Ag | Solid form of dihydro-pyrido-oxazine derivative |
US9260426B2 (en) | 2012-12-14 | 2016-02-16 | Arrien Pharmaceuticals Llc | Substituted 1H-pyrrolo [2, 3-b] pyridine and 1H-pyrazolo [3, 4-b] pyridine derivatives as salt inducible kinase 2 (SIK2) inhibitors |
EP2943484B1 (en) | 2013-01-10 | 2017-10-25 | Glaxosmithkline Intellectual Property (No. 2) Limited | Fatty acid synthase inhibitors |
EP2948451B1 (en) | 2013-01-22 | 2017-07-12 | Novartis AG | Substituted purinone compounds |
EP2948453B1 (en) | 2013-01-22 | 2017-08-02 | Novartis AG | Pyrazolo[3,4-d]pyrimidinone compounds as inhibitors of the p53/mdm2 interaction |
RU2708032C2 (en) | 2013-02-20 | 2019-12-03 | Новартис Аг | CANCER TREATMENT USING CHIMERIC ANTIGEN-SPECIFIC RECEPTOR BASED ON HUMANISED ANTI-EGFRvIII ANTIBODY |
WO2014128612A1 (en) | 2013-02-20 | 2014-08-28 | Novartis Ag | Quinazolin-4-one derivatives |
JP6301374B2 (en) | 2013-02-21 | 2018-03-28 | グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited | Quinazolines as kinase inhibitors |
CA2900097A1 (en) | 2013-02-22 | 2014-08-28 | F. Hoffmann-La Roche Ag | Methods of treating cancer and preventing drug resistance |
JP6255038B2 (en) | 2013-02-26 | 2017-12-27 | トリアクト セラピューティクス,インク. | Cancer treatment |
KR20150123250A (en) | 2013-03-06 | 2015-11-03 | 제넨테크, 인크. | Methods of treating and preventing cancer drug resistance |
JP6660182B2 (en) | 2013-03-13 | 2020-03-11 | ジェネンテック, インコーポレイテッド | Pyrazolo compounds and uses thereof |
WO2014152358A2 (en) | 2013-03-14 | 2014-09-25 | Genentech, Inc. | Combinations of a mek inhibitor compound with an her3/egfr inhibitor compound and methods of use |
RU2015139054A (en) | 2013-03-14 | 2017-04-19 | Дженентек, Инк. | METHODS FOR TREATING CANCER AND PREVENTION OF DRUG RESISTANCE OF CANCER |
TR201911151T4 (en) | 2013-03-14 | 2019-08-21 | Tolero Pharmaceuticals Inc | Jak2 and alk2 inhibitors and their usage methods. |
WO2014151147A1 (en) | 2013-03-15 | 2014-09-25 | Intellikine, Llc | Combination of kinase inhibitors and uses thereof |
CA2905123A1 (en) | 2013-03-15 | 2014-09-18 | Genentech, Inc. | Methods of treating cancer and preventing cancer drug resistance |
WO2014147246A1 (en) | 2013-03-21 | 2014-09-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Method and pharmaceutical composition for use in the treatment of chronic liver diseases associated with a low hepcidin expression |
WO2014155268A2 (en) | 2013-03-25 | 2014-10-02 | Novartis Ag | Fgf-r tyrosine kinase activity inhibitors - use in diseases associated with lack of or reduced snf5 activity |
US9688662B2 (en) | 2013-04-04 | 2017-06-27 | Janssen Pharmaceutica Nv | N-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-5-yl)-4-quinazolinamine and N-(2,3-dihydro-1H-indol-5-yl)-4-quinazolinamine derivatives as perk inhibitors |
US11491154B2 (en) | 2013-04-08 | 2022-11-08 | Dennis M. Brown | Therapeutic benefit of suboptimally administered chemical compounds |
US9206188B2 (en) | 2013-04-18 | 2015-12-08 | Arrien Pharmaceuticals Llc | Substituted pyrrolo[2,3-b]pyridines as ITK and JAK inhibitors |
US20150018376A1 (en) | 2013-05-17 | 2015-01-15 | Novartis Ag | Pyrimidin-4-yl)oxy)-1h-indole-1-carboxamide derivatives and use thereof |
CN103333124B (en) * | 2013-05-28 | 2015-03-25 | 埃斯特维华义制药有限公司 | Preparation method of hydrochloric acid erlotinib crystal form F |
UY35675A (en) | 2013-07-24 | 2015-02-27 | Novartis Ag | SUBSTITUTED DERIVATIVES OF QUINAZOLIN-4-ONA |
JP2016527274A (en) * | 2013-08-02 | 2016-09-08 | イグナイタ インコーポレイテッド | Methods for treating various cancers using AXL / cMET inhibitors alone or in combination with other drugs |
WO2015022663A1 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Compounds and compositions as inhibitors of mek |
WO2015022664A1 (en) | 2013-08-14 | 2015-02-19 | Novartis Ag | Compounds and compositions as inhibitors of mek |
US9227969B2 (en) | 2013-08-14 | 2016-01-05 | Novartis Ag | Compounds and compositions as inhibitors of MEK |
TW201605896A (en) | 2013-08-30 | 2016-02-16 | 安美基股份有限公司 | GITR antigen binding proteins |
US9505767B2 (en) | 2013-09-05 | 2016-11-29 | Genentech, Inc. | Pyrazolo[1,5-A]pyrimidin-7(4H)-onehistone demethylase inhibitors |
EP3044593A4 (en) | 2013-09-09 | 2017-05-17 | Triact Therapeutics, Inc. | Cancer therapy |
KR20160060100A (en) | 2013-09-22 | 2016-05-27 | 칼리토르 사이언시즈, 엘엘씨 | Substituted aminopyrimidine compounds and methods of use |
WO2015049325A1 (en) | 2013-10-03 | 2015-04-09 | F. Hoffmann-La Roche Ag | Therapeutic inhibitors of cdk8 and uses thereof |
US20150104392A1 (en) | 2013-10-04 | 2015-04-16 | Aptose Biosciences Inc. | Compositions, biomarkers and their use in the treatment of cancer |
CN105744954B (en) | 2013-10-18 | 2021-03-05 | 豪夫迈·罗氏有限公司 | anti-RSPO 2 and/or anti-RSPO 3 antibodies and uses thereof |
TW201605450A (en) | 2013-12-03 | 2016-02-16 | 諾華公司 | Combination of Mdm2 inhibitor and BRAF inhibitor and their use |
KR20160095035A (en) | 2013-12-06 | 2016-08-10 | 노파르티스 아게 | Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor |
CN103709110B (en) * | 2013-12-13 | 2016-05-04 | 浙江普洛康裕制药有限公司 | A kind of preparation method of erlotinid hydrochloride key intermediate |
KR20160089531A (en) | 2013-12-17 | 2016-07-27 | 제넨테크, 인크. | Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies |
CN106102774A (en) | 2013-12-17 | 2016-11-09 | 豪夫迈·罗氏有限公司 | Comprise OX40 and combine agonist and PD 1 axle combines the combination treatment of antagonist |
EP3111222A1 (en) | 2014-02-26 | 2017-01-04 | Glaxosmithkline Intellectual Property (No. 2) Limited | Methods of treating cancer patients responding to ezh2 inhibitor gsk126 |
WO2015148714A1 (en) | 2014-03-25 | 2015-10-01 | Duke University | Heat shock protein 70 (hsp-70) receptor ligands |
WO2015145388A2 (en) | 2014-03-27 | 2015-10-01 | Novartis Ag | Methods of treating colorectal cancers harboring upstream wnt pathway mutations |
US9399637B2 (en) | 2014-03-28 | 2016-07-26 | Calitor Sciences, Llc | Substituted heteroaryl compounds and methods of use |
PE20161571A1 (en) | 2014-03-31 | 2017-02-07 | Genentech Inc | ANTI-OX40 ANTIBODIES AND METHODS OF USE |
EP3126386A1 (en) | 2014-03-31 | 2017-02-08 | F. Hoffmann-La Roche AG | Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists |
CA2944401A1 (en) | 2014-04-03 | 2015-10-08 | Invictus Oncology Pvt. Ltd. | Supramolecular combinatorial therapeutics |
CN103980207B (en) * | 2014-04-04 | 2016-03-09 | 亿腾药业(泰州)有限公司 | A kind of synthetic method of erlotinib hydrochloride B type crystal |
US20170027940A1 (en) | 2014-04-10 | 2017-02-02 | Stichting Het Nederlands Kanker Instituut | Method for treating cancer |
MX2016014531A (en) | 2014-05-07 | 2017-05-01 | Remedica Ltd | Polymorph purity, monitoring and associated compositions. |
KR101592258B1 (en) | 2014-06-20 | 2016-02-05 | 보령제약 주식회사 | formulation and method of preparing the same |
CN104193689B (en) * | 2014-07-23 | 2017-02-08 | 大连理工大学 | Method for synthesizing erlotinib hydrochloride |
WO2016011658A1 (en) | 2014-07-25 | 2016-01-28 | Novartis Ag | Combination therapy |
AU2015294889B2 (en) | 2014-07-31 | 2018-03-15 | Novartis Ag | Combination therapy |
JP6811706B2 (en) | 2014-07-31 | 2021-01-13 | ザ ホンコン ユニヴァーシティ オブ サイエンス アンド テクノロジー | Human monoclonal antibodies against EPHA4 and their use |
JP6814730B2 (en) | 2014-09-05 | 2021-01-20 | ジェネンテック, インコーポレイテッド | Therapeutic compounds and their use |
JP2017529358A (en) | 2014-09-19 | 2017-10-05 | ジェネンテック, インコーポレイテッド | Use of CBP / EP300 inhibitors and BET inhibitors for the treatment of cancer |
JP6783230B2 (en) | 2014-10-10 | 2020-11-11 | ジェネンテック, インコーポレイテッド | Pyrrolidone amide compounds as inhibitors of histone demethylase |
SG11201703448QA (en) | 2014-11-03 | 2017-05-30 | Genentech Inc | Assays for detecting t cell immune subsets and methods of use thereof |
MX2017005751A (en) | 2014-11-03 | 2018-04-10 | Genentech Inc | Method and biomarkers for predicting efficacy and evaluation of an ox40 agonist treatment. |
RU2017119428A (en) | 2014-11-06 | 2018-12-06 | Дженентек, Инк. | COMBINED THERAPY, INCLUDING THE USE OF OX40-CONNECTING AGONISTS AND TIGIT INHIBITORS |
MA40940A (en) | 2014-11-10 | 2017-09-19 | Constellation Pharmaceuticals Inc | SUBSTITUTED PYRROLOPYRIDINES USED AS BROMODOMA INHIBITORS |
JP6639497B2 (en) | 2014-11-10 | 2020-02-05 | ジェネンテック, インコーポレイテッド | Bromodomain inhibitors and uses thereof |
MA40943A (en) | 2014-11-10 | 2017-09-19 | Constellation Pharmaceuticals Inc | SUBSTITUTED PYRROLOPYRIDINES USED AS BROMODOMA INHIBITORS |
BR112017010198A2 (en) | 2014-11-17 | 2017-12-26 | Genentech Inc | combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists |
CN107531690B (en) | 2014-11-27 | 2020-11-06 | 基因泰克公司 | 4,5,6, 7-tetrahydro-1H-pyrazolo [4,3-c ] pyridin-3-amine compounds as CBP and/or EP300 inhibitors |
EP3233829B1 (en) | 2014-12-18 | 2019-08-14 | Pfizer Inc | Pyrimidine and triazine derivatives and their use as axl inhibitors |
JP2018508183A (en) | 2014-12-23 | 2018-03-29 | ジェネンテック, インコーポレイテッド | Compositions and methods for treating and diagnosing chemotherapy-resistant cancer |
CA2969830A1 (en) | 2014-12-24 | 2016-06-30 | Genentech, Inc. | Therapeutic, diagnostic and prognostic methods for cancer of the bladder |
CN107208138A (en) | 2014-12-30 | 2017-09-26 | 豪夫迈·罗氏有限公司 | For cancer prognosis and the method and composition for the treatment of |
JP6889661B2 (en) | 2015-01-09 | 2021-06-18 | ジェネンテック, インコーポレイテッド | 4,5-Dihydroimidazole derivative and its use as a histone dimethylase (KDM2B) inhibitor |
JP6855379B2 (en) | 2015-01-09 | 2021-04-07 | ジェネンテック, インコーポレイテッド | (Piperidin-3-yl) (naphthalene-2-yl) metanone derivatives and related compounds as inhibitors of histone demethylase KDM2B for the treatment of cancer |
CN107406429B (en) | 2015-01-09 | 2021-07-06 | 基因泰克公司 | Pyridazinone derivatives and their use in the treatment of cancer |
MA41414A (en) | 2015-01-28 | 2017-12-05 | Centre Nat Rech Scient | ICOS AGONIST BINDING PROTEINS |
JP6709792B2 (en) | 2015-01-29 | 2020-06-17 | ジェネンテック, インコーポレイテッド | Therapeutic compounds and uses thereof |
JP6636031B2 (en) | 2015-01-30 | 2020-01-29 | ジェネンテック, インコーポレイテッド | Therapeutic compounds and uses thereof |
MA41598A (en) | 2015-02-25 | 2018-01-02 | Constellation Pharmaceuticals Inc | PYRIDAZINE THERAPEUTIC COMPOUNDS AND THEIR USES |
AU2016246695A1 (en) | 2015-04-07 | 2017-10-26 | Genentech, Inc. | Antigen binding complex having agonistic activity and methods of use |
CA2982928A1 (en) | 2015-04-20 | 2016-10-27 | Tolero Pharmaceuticals, Inc. | Predicting response to alvocidib by mitochondrial profiling |
CN107709344B (en) | 2015-05-01 | 2022-07-15 | 共晶制药股份有限公司 | Nucleoside analogues for the treatment of flaviviridae and cancer |
LT3294770T (en) | 2015-05-12 | 2020-12-28 | F. Hoffmann-La Roche Ag | Therapeutic and diagnostic methods for cancer |
KR102608921B1 (en) | 2015-05-18 | 2023-12-01 | 스미토모 파마 온콜로지, 인크. | Albocidip prodrug with increased bioavailability |
ES2789500T5 (en) | 2015-05-29 | 2023-09-20 | Hoffmann La Roche | Therapeutic and diagnostic procedures for cancer |
MX2017015937A (en) | 2015-06-08 | 2018-12-11 | Genentech Inc | Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists. |
MX2017014740A (en) | 2015-06-08 | 2018-08-15 | Genentech Inc | Methods of treating cancer using anti-ox40 antibodies. |
CA2986263A1 (en) | 2015-06-17 | 2016-12-22 | Genentech, Inc. | Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes |
CN108289861B (en) | 2015-08-03 | 2021-11-02 | 大日本住友制药肿瘤公司 | Combination therapy for the treatment of cancer |
US20180230431A1 (en) | 2015-08-07 | 2018-08-16 | Glaxosmithkline Intellectual Property Development Limited | Combination Therapy |
CA2996233C (en) | 2015-08-26 | 2024-01-16 | Fundacion Del Sector Publico Estatal Centro Nacional De Investigaciones Oncologicas Carlos Iii (F.S.P. Cnio) | Condensed tricyclic compounds as protein kinase inhibitors |
JP2018527362A (en) | 2015-09-11 | 2018-09-20 | サンシャイン・レイク・ファーマ・カンパニー・リミテッドSunshine Lake Pharma Co.,Ltd. | Substituted heteroaryl compounds and methods of use |
TWI811892B (en) | 2015-09-25 | 2023-08-11 | 美商建南德克公司 | Anti-tigit antibodies and methods of use |
CA3002954A1 (en) | 2015-11-02 | 2017-05-11 | Novartis Ag | Dosage regimen for a phosphatidylinositol 3-kinase inhibitor |
EP4015537A1 (en) | 2015-12-01 | 2022-06-22 | GlaxoSmithKline Intellectual Property Development Limited | Combination treatments and uses and methods thereof |
AU2016369528B2 (en) | 2015-12-16 | 2021-04-22 | Genentech, Inc. | Process for the preparation of tricyclic PI3K inhibitor compounds and methods for using the same for the treatment of cancer |
AR107303A1 (en) | 2016-01-08 | 2018-04-18 | Hoffmann La Roche | METHODS OF TREATMENT OF POSITIVE CANCER FOR ACE USING ANTAGONISTS OF AXISION TO AXIS PD-1 AND ANTI-ACE / ANTI-CD3, USE, COMPOSITION, KIT |
WO2017151502A1 (en) | 2016-02-29 | 2017-09-08 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
SG11201807596YA (en) | 2016-03-08 | 2018-10-30 | Janssen Biotech Inc | Gitr antibodies, methods, and uses |
WO2017180864A1 (en) | 2016-04-14 | 2017-10-19 | Genentech, Inc. | Anti-rspo3 antibodies and methods of use |
AU2017248766A1 (en) | 2016-04-15 | 2018-11-01 | Genentech, Inc. | Methods for monitoring and treating cancer |
MX2018012471A (en) | 2016-04-15 | 2019-02-21 | Genentech Inc | Diagnostic and therapeutic methods for cancer. |
WO2017181111A2 (en) | 2016-04-15 | 2017-10-19 | Genentech, Inc. | Methods for monitoring and treating cancer |
US11261187B2 (en) | 2016-04-22 | 2022-03-01 | Duke University | Compounds and methods for targeting HSP90 |
CN109476641B (en) | 2016-05-24 | 2022-07-05 | 基因泰克公司 | Heterocyclic inhibitors of CBP/EP300 and their use in the treatment of cancer |
CN109476663B (en) | 2016-05-24 | 2021-11-09 | 基因泰克公司 | Pyrazolopyridine derivatives for the treatment of cancer |
US20200129519A1 (en) | 2016-06-08 | 2020-04-30 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
US11649289B2 (en) | 2016-08-04 | 2023-05-16 | Glaxosmithkline Intellectual Property Development Limited | Anti-ICOS and anti-PD-1 antibody combination therapy |
JP2019530434A (en) | 2016-08-05 | 2019-10-24 | ジェネンテック, インコーポレイテッド | Multivalent and multi-epitope antibodies with agonist activity and methods of use |
EP3497129A1 (en) | 2016-08-08 | 2019-06-19 | H. Hoffnabb-La Roche Ag | Therapeutic and diagnostic methods for cancer |
WO2018039203A1 (en) | 2016-08-23 | 2018-03-01 | Oncopep, Inc. | Peptide vaccines and durvalumab for treating multiple myeloma |
CA3034666A1 (en) | 2016-08-23 | 2018-03-01 | Oncopep, Inc. | Peptide vaccines and durvalumab for treating breast cancer |
JP2019536471A (en) | 2016-09-27 | 2019-12-19 | セロ・セラピューティクス・インコーポレイテッドCERO Therapeutics, Inc. | Chimeric engulfment receptor molecule |
WO2018060833A1 (en) | 2016-09-27 | 2018-04-05 | Novartis Ag | Dosage regimen for alpha-isoform selective phosphatidylinositol 3-kinase inhibitor alpelisib |
US10927083B2 (en) | 2016-09-29 | 2021-02-23 | Duke University | Substituted benzimidazoles as inhibitors of transforming growth factor-β kinase |
US10207998B2 (en) | 2016-09-29 | 2019-02-19 | Duke University | Substituted benzimidazole and substituted benzothiazole inhibitors of transforming growth factor-β kinase and methods of use thereof |
CA3038712A1 (en) | 2016-10-06 | 2018-04-12 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
EP3532091A2 (en) | 2016-10-29 | 2019-09-04 | H. Hoffnabb-La Roche Ag | Anti-mic antibidies and methods of use |
WO2018094275A1 (en) | 2016-11-18 | 2018-05-24 | Tolero Pharmaceuticals, Inc. | Alvocidib prodrugs and their use as protein kinase inhibitors |
WO2018119000A1 (en) | 2016-12-19 | 2018-06-28 | Tolero Pharmaceuticals, Inc. | Profiling peptides and methods for sensitivity profiling |
HUE056777T2 (en) | 2016-12-22 | 2022-03-28 | Amgen Inc | Benzisothiazole, isothiazolo[3,4-b]pyridine, quinazoline, phthalazine, pyrido[2,3-d]pyridazine and pyrido[2,3-d]pyrimidine derivatives as kras g12c inhibitors for treating lung, pancreatic or colorectal cancer |
AU2018228873A1 (en) | 2017-03-01 | 2019-08-29 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
KR20190136076A (en) | 2017-04-13 | 2019-12-09 | 에프. 호프만-라 로슈 아게 | Interleukin-2 immunoconjugates, CD40 agonists and optional PD-1 axis binding antagonists for use in cancer treatment methods |
JOP20190272A1 (en) | 2017-05-22 | 2019-11-21 | Amgen Inc | Kras g12c inhibitors and methods of using the same |
MX2020000604A (en) | 2017-07-21 | 2020-09-10 | Genentech Inc | Therapeutic and diagnostic methods for cancer. |
PL3661937T3 (en) | 2017-08-01 | 2021-12-20 | Gilead Sciences, Inc. | Crystalline forms of ethyl ((s)-((((2r,5r)-5-(6-amino-9h-purin-9-yl)-4-fluoro-2,5-dihydrofuran-2-yl)oxy)methyl)(phenoxy)phosphoryl)-l-alaninate (gs-9131) for treating viral infections |
CN111295394B (en) | 2017-08-11 | 2024-06-11 | 豪夫迈·罗氏有限公司 | Anti-CD 8 antibodies and uses thereof |
KR20200041387A (en) | 2017-09-08 | 2020-04-21 | 에프. 호프만-라 로슈 아게 | How to diagnose and treat cancer |
MA50077A (en) | 2017-09-08 | 2020-07-15 | Amgen Inc | KRAS G12C INHIBITORS AND THEIR PROCEDURES FOR USE |
US11497756B2 (en) | 2017-09-12 | 2022-11-15 | Sumitomo Pharma Oncology, Inc. | Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib |
AU2018341244A1 (en) | 2017-09-26 | 2020-03-05 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules and methods of use |
WO2019075367A1 (en) | 2017-10-13 | 2019-04-18 | Tolero Pharmaceuticals, Inc. | Pkm2 activators in combination with reactive oxygen species for treatment of cancer |
AU2018353984A1 (en) | 2017-10-24 | 2020-05-07 | Oncopep, Inc. | Peptide vaccines and pembrolizumab for treating breast cancer |
WO2019083960A1 (en) | 2017-10-24 | 2019-05-02 | Oncopep, Inc. | Peptide vaccines and hdac inhibitors for treating multiple myeloma |
US11369608B2 (en) | 2017-10-27 | 2022-06-28 | University Of Virginia Patent Foundation | Compounds and methods for regulating, limiting, or inhibiting AVIL expression |
WO2019090263A1 (en) | 2017-11-06 | 2019-05-09 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
US10683297B2 (en) | 2017-11-19 | 2020-06-16 | Calitor Sciences, Llc | Substituted heteroaryl compounds and methods of use |
US10751339B2 (en) | 2018-01-20 | 2020-08-25 | Sunshine Lake Pharma Co., Ltd. | Substituted aminopyrimidine compounds and methods of use |
WO2019147552A1 (en) | 2018-01-25 | 2019-08-01 | The Cleveland Clinic Foundation | Compounds for treating ilk-mediated diseases |
CN108358798A (en) * | 2018-02-12 | 2018-08-03 | 黑龙江鑫创生物科技开发有限公司 | A kind of method of micro passage reaction synthesis Tarceva intermediate |
WO2019165434A1 (en) | 2018-02-26 | 2019-08-29 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
CN112218887A (en) | 2018-03-28 | 2021-01-12 | 森罗治疗公司 | Cellular immunotherapy compositions and uses thereof |
CN112218886A (en) | 2018-03-28 | 2021-01-12 | 森罗治疗公司 | Expression vector of chimeric phagocytic receptor, genetically modified host cell and application thereof |
EP3774906A1 (en) | 2018-03-28 | 2021-02-17 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
CA3098574A1 (en) | 2018-05-04 | 2019-11-07 | Amgen Inc. | Kras g12c inhibitors and methods of using the same |
MX2020011582A (en) | 2018-05-04 | 2020-11-24 | Amgen Inc | Kras g12c inhibitors and methods of using the same. |
MA52564A (en) | 2018-05-10 | 2021-03-17 | Amgen Inc | KRAS G12C INHIBITORS FOR CANCER TREATMENT |
US20210363590A1 (en) | 2018-05-21 | 2021-11-25 | Nanostring Technologies, Inc. | Molecular gene signatures and methods of using same |
MA52765A (en) | 2018-06-01 | 2021-04-14 | Amgen Inc | KRAS G12C INHIBITORS AND THEIR PROCEDURES FOR USE |
AU2019284472B2 (en) | 2018-06-11 | 2024-05-30 | Amgen Inc. | KRAS G12C inhibitors for treating cancer |
CA3100390A1 (en) | 2018-06-12 | 2020-03-12 | Amgen Inc. | Kras g12c inhibitors encompassing piperazine ring and use thereof in the treatment of cancer |
TWI819011B (en) | 2018-06-23 | 2023-10-21 | 美商建南德克公司 | Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor |
KR20210034622A (en) | 2018-07-18 | 2021-03-30 | 제넨테크, 인크. | Lung cancer treatment method using PD-1 axis binding antagonist, anti-metabolite, and platinum agent |
EP3826988A4 (en) | 2018-07-24 | 2023-03-22 | Hygia Pharmaceuticals, LLC | Compounds, derivatives, and analogs for cancer |
CA3103995A1 (en) | 2018-07-26 | 2020-01-30 | Sumitomo Dainippon Pharma Oncology, Inc. | Methods for treating diseases associated with abnormal acvr1 expression and acvr1 inhibitors for use in the same |
TW202024023A (en) | 2018-09-03 | 2020-07-01 | 瑞士商赫孚孟拉羅股份公司 | Therapeutic compounds and methods of use |
JP2022501332A (en) | 2018-09-19 | 2022-01-06 | ジェネンテック, インコーポレイテッド | How to treat and diagnose bladder cancer |
AU2019342133A1 (en) | 2018-09-21 | 2021-04-22 | Genentech, Inc. | Diagnostic methods for triple-negative breast cancer |
US20210393632A1 (en) | 2018-10-04 | 2021-12-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Egfr inhibitors for treating keratodermas |
CN113196061A (en) | 2018-10-18 | 2021-07-30 | 豪夫迈·罗氏有限公司 | Methods of diagnosis and treatment of sarcoma-like renal cancer |
JP7516029B2 (en) | 2018-11-16 | 2024-07-16 | アムジエン・インコーポレーテツド | Improved synthesis of key intermediates for KRAS G12C inhibitor compounds |
JP7377679B2 (en) | 2018-11-19 | 2023-11-10 | アムジエン・インコーポレーテツド | Combination therapy comprising a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancer |
MX2021005700A (en) | 2018-11-19 | 2021-07-07 | Amgen Inc | Kras g12c inhibitors and methods of using the same. |
US11034710B2 (en) | 2018-12-04 | 2021-06-15 | Sumitomo Dainippon Pharma Oncology, Inc. | CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer |
EP3898626A1 (en) | 2018-12-19 | 2021-10-27 | Array Biopharma, Inc. | Substituted pyrazolo[1,5-a]pyridine compounds as inhibitors of fgfr tyrosine kinases |
WO2020131674A1 (en) | 2018-12-19 | 2020-06-25 | Array Biopharma Inc. | 7-((3,5-dimethoxyphenyl)amino)quinoxaline derivatives as fgfr inhibitors for treating cancer |
CA3123227A1 (en) | 2018-12-20 | 2020-06-25 | Amgen Inc. | Heteroaryl amides useful as kif18a inhibitors |
MX2021007156A (en) | 2018-12-20 | 2021-08-16 | Amgen Inc | Kif18a inhibitors. |
US20220002311A1 (en) | 2018-12-20 | 2022-01-06 | Amgen Inc. | Kif18a inhibitors |
EP3897855B1 (en) | 2018-12-20 | 2023-06-07 | Amgen Inc. | Kif18a inhibitors |
WO2020160375A1 (en) | 2019-02-01 | 2020-08-06 | Glaxosmithkline Intellectual Property Development Limited | Combination treatments for cancer comprising belantamab mafodotin and an anti ox40 antibody and uses and methods thereof |
CN113396230A (en) | 2019-02-08 | 2021-09-14 | 豪夫迈·罗氏有限公司 | Methods of diagnosis and treatment of cancer |
MX2021009371A (en) | 2019-02-12 | 2021-09-10 | Sumitomo Pharma Oncology Inc | Formulations comprising heterocyclic protein kinase inhibitors. |
WO2020165672A1 (en) | 2019-02-15 | 2020-08-20 | Shivalik Rasayan Limited | Process for preparation of highly pure fingolimod hydrochloride |
CN113677994A (en) | 2019-02-27 | 2021-11-19 | 外延轴治疗股份有限公司 | Methods and agents for assessing T cell function and predicting response to therapy |
CA3130695A1 (en) | 2019-02-27 | 2020-09-03 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-cd20 or anti-cd38 antibodies |
US20230148450A9 (en) | 2019-03-01 | 2023-05-11 | Revolution Medicines, Inc. | Bicyclic heteroaryl compounds and uses thereof |
JP2022522778A (en) | 2019-03-01 | 2022-04-20 | レボリューション メディシンズ インコーポレイテッド | Bicyclic heterocyclyl compounds and their use |
BR112021018295A2 (en) | 2019-03-15 | 2021-11-23 | Univ California | Compositions and methods for treating cancer |
US11793802B2 (en) | 2019-03-20 | 2023-10-24 | Sumitomo Pharma Oncology, Inc. | Treatment of acute myeloid leukemia (AML) with venetoclax failure |
MX2021011289A (en) | 2019-03-22 | 2021-11-03 | Sumitomo Pharma Oncology Inc | Compositions comprising pkm2 modulators and methods of treatment using the same. |
WO2020223233A1 (en) | 2019-04-30 | 2020-11-05 | Genentech, Inc. | Prognostic and therapeutic methods for colorectal cancer |
AU2020270376A1 (en) | 2019-05-03 | 2021-10-07 | Genentech, Inc. | Methods of treating cancer with an anti-PD-L1 antibody |
EP3738593A1 (en) | 2019-05-14 | 2020-11-18 | Amgen, Inc | Dosing of kras inhibitor for treatment of cancers |
US11236091B2 (en) | 2019-05-21 | 2022-02-01 | Amgen Inc. | Solid state forms |
KR20220026585A (en) | 2019-06-26 | 2022-03-04 | 글락소스미스클라인 인털렉츄얼 프로퍼티 디벨로프먼트 리미티드 | IL1RAP binding protein |
CN112300279A (en) | 2019-07-26 | 2021-02-02 | 上海复宏汉霖生物技术股份有限公司 | Methods and compositions directed to anti-CD 73 antibodies and variants |
JP2022542319A (en) | 2019-08-02 | 2022-09-30 | アムジエン・インコーポレーテツド | KIF18A inhibitor |
WO2021026098A1 (en) | 2019-08-02 | 2021-02-11 | Amgen Inc. | Kif18a inhibitors |
MX2022001302A (en) | 2019-08-02 | 2022-03-02 | Amgen Inc | Pyridine derivatives as kif18a inhibitors. |
CN114269731A (en) | 2019-08-02 | 2022-04-01 | 美国安进公司 | KIF18A inhibitors |
MX2022002738A (en) | 2019-09-04 | 2022-06-27 | Genentech Inc | Cd8 binding agents and uses thereof. |
WO2021043961A1 (en) | 2019-09-06 | 2021-03-11 | Glaxosmithkline Intellectual Property Development Limited | Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and chemotherapy |
WO2021046293A1 (en) | 2019-09-06 | 2021-03-11 | Glaxosmithkline Intellectual Property Development Limited | Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and tremelimumab |
MX2022003610A (en) | 2019-09-27 | 2022-04-20 | Genentech Inc | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies. |
WO2021067875A1 (en) | 2019-10-03 | 2021-04-08 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
MX2022004656A (en) | 2019-10-24 | 2022-05-25 | Amgen Inc | Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer. |
JP2023511472A (en) | 2019-10-29 | 2023-03-20 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Bifunctional compounds for the treatment of cancer |
WO2021091967A1 (en) | 2019-11-04 | 2021-05-14 | Revolution Medicines, Inc. | Ras inhibitors |
JP2022553859A (en) | 2019-11-04 | 2022-12-26 | レボリューション メディシンズ インコーポレイテッド | RAS inhibitor |
CA3159561A1 (en) | 2019-11-04 | 2021-05-14 | Revolution Medicines, Inc. | Ras inhibitors |
WO2021092171A1 (en) | 2019-11-06 | 2021-05-14 | Genentech, Inc. | Diagnostic and therapeutic methods for treatment of hematologic cancers |
US20210139517A1 (en) | 2019-11-08 | 2021-05-13 | Revolution Medicines, Inc. | Bicyclic heteroaryl compounds and uses thereof |
WO2021097110A1 (en) | 2019-11-13 | 2021-05-20 | Genentech, Inc. | Therapeutic compounds and methods of use |
US20230192681A1 (en) | 2019-11-14 | 2023-06-22 | Amgen Inc. | Improved synthesis of kras g12c inhibitor compound |
MX2022005726A (en) | 2019-11-14 | 2022-06-09 | Amgen Inc | Improved synthesis of kras g12c inhibitor compound. |
CN110894189B (en) * | 2019-11-14 | 2021-07-06 | 山东罗欣药业集团股份有限公司 | Preparation method of erlotinib hydrochloride |
CN114980976A (en) | 2019-11-27 | 2022-08-30 | 锐新医药公司 | Covalent RAS inhibitors and uses thereof |
TW202128767A (en) | 2019-12-13 | 2021-08-01 | 美商建南德克公司 | Anti-ly6g6d antibodies and methods of use |
AU2020408562A1 (en) | 2019-12-20 | 2022-06-23 | Erasca, Inc. | Tricyclic pyridones and pyrimidones |
AU2021206217A1 (en) | 2020-01-07 | 2022-09-01 | Revolution Medicines, Inc. | SHP2 inhibitor dosing and methods of treating cancer |
TW202142230A (en) | 2020-01-27 | 2021-11-16 | 美商建南德克公司 | Methods for treatment of cancer with an anti-tigit antagonist antibody |
WO2021194481A1 (en) | 2020-03-24 | 2021-09-30 | Genentech, Inc. | Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies |
CA3167689A1 (en) | 2020-01-28 | 2021-08-05 | Glaxosmithkline Intellectual Property Development Limited | Combination treatments and uses and methods thereof |
WO2021177980A1 (en) | 2020-03-06 | 2021-09-10 | Genentech, Inc. | Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist |
WO2021185844A1 (en) | 2020-03-16 | 2021-09-23 | Pvac Medical Technologies Ltd | Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof |
WO2021233534A1 (en) | 2020-05-20 | 2021-11-25 | Pvac Medical Technologies Ltd | Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof |
EP4127724A1 (en) | 2020-04-03 | 2023-02-08 | Genentech, Inc. | Therapeutic and diagnostic methods for cancer |
WO2021222167A1 (en) | 2020-04-28 | 2021-11-04 | Genentech, Inc. | Methods and compositions for non-small cell lung cancer immunotherapy |
CA3181820A1 (en) | 2020-06-16 | 2021-12-23 | Genentech, Inc. | Methods and compositions for treating triple-negative breast cancer |
TW202200616A (en) | 2020-06-18 | 2022-01-01 | 美商建南德克公司 | Treatment with anti-tigit antibodies and pd-1 axis binding antagonists |
BR112022025550A2 (en) | 2020-06-18 | 2023-03-07 | Revolution Medicines Inc | METHODS TO DELAY, PREVENT, AND TREAT ACQUIRED RESISTANCE TO RAS INHIBITORS |
US11787775B2 (en) | 2020-07-24 | 2023-10-17 | Genentech, Inc. | Therapeutic compounds and methods of use |
WO2022031749A1 (en) | 2020-08-03 | 2022-02-10 | Genentech, Inc. | Diagnostic and therapeutic methods for lymphoma |
WO2022029220A1 (en) | 2020-08-05 | 2022-02-10 | Ellipses Pharma Ltd | Treatment of cancer using a cyclodextrin-containing polymer-topoisomerase inhibitor conjugate and a parp inhibitor |
EP4196612A1 (en) | 2020-08-12 | 2023-06-21 | Genentech, Inc. | Diagnostic and therapeutic methods for cancer |
WO2022036287A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Anti-cd72 chimeric receptors and uses thereof |
WO2022036265A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Chimeric tim receptors and uses thereof |
WO2022036285A1 (en) | 2020-08-14 | 2022-02-17 | Cero Therapeutics, Inc. | Compositions and methods for treating cancer with chimeric tim receptors in combination with inhibitors of poly (adp-ribose) polymerase |
US11999964B2 (en) | 2020-08-28 | 2024-06-04 | California Institute Of Technology | Synthetic mammalian signaling circuits for robust cell population control |
MX2023002248A (en) | 2020-09-03 | 2023-05-16 | Revolution Medicines Inc | Use of sos1 inhibitors to treat malignancies with shp2 mutations. |
CA3194067A1 (en) | 2020-09-15 | 2022-03-24 | Revolution Medicines, Inc. | Ras inhibitors |
JP2023544450A (en) | 2020-09-23 | 2023-10-23 | エラスカ・インコーポレイテッド | Tricyclic pyridones and pyrimidone |
KR20230082632A (en) | 2020-10-05 | 2023-06-08 | 제넨테크, 인크. | Dosing for Treatment with Anti-FCRH5/Anti-CD3 Bispecific Antibodies |
TW202237638A (en) | 2020-12-09 | 2022-10-01 | 日商武田藥品工業股份有限公司 | Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof |
US20230107642A1 (en) | 2020-12-18 | 2023-04-06 | Erasca, Inc. | Tricyclic pyridones and pyrimidones |
TW202241885A (en) | 2020-12-22 | 2022-11-01 | 大陸商上海齊魯銳格醫藥研發有限公司 | Sos1 inhibitors and uses thereof |
AU2022221124A1 (en) | 2021-02-12 | 2023-08-03 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydroazepine derivatives for the treatment of cancer |
CN117203223A (en) | 2021-02-26 | 2023-12-08 | 凯洛尼亚疗法有限公司 | Lymphocyte targeting lentiviral vectors |
PE20240088A1 (en) | 2021-05-05 | 2024-01-16 | Revolution Medicines Inc | RAS INHIBITORS |
AR125787A1 (en) | 2021-05-05 | 2023-08-16 | Revolution Medicines Inc | RAS INHIBITORS |
WO2022235866A1 (en) | 2021-05-05 | 2022-11-10 | Revolution Medicines, Inc. | Covalent ras inhibitors and uses thereof |
KR20240026948A (en) | 2021-05-25 | 2024-02-29 | 에라스카, 아이엔씨. | Sulfur-containing heteroaromatic tricyclic KRAS inhibitor |
JP2024523861A (en) | 2021-06-15 | 2024-07-02 | ジェネンテック, インコーポレイテッド | EGFR INHIBITORS AND PERK ACTIVATORS AND THEIR USE IN COMBINATION THERAPY FOR TREATING CANCER - Patent application |
US20240293558A1 (en) | 2021-06-16 | 2024-09-05 | Erasca, Inc. | Kras inhibitor conjugates |
EP4376874A1 (en) | 2021-07-28 | 2024-06-05 | Cero Therapeutics, Inc. | Chimeric tim4 receptors and uses thereof |
TW202321261A (en) | 2021-08-10 | 2023-06-01 | 美商伊瑞斯卡公司 | Selective kras inhibitors |
AR127308A1 (en) | 2021-10-08 | 2024-01-10 | Revolution Medicines Inc | RAS INHIBITORS |
TW202340212A (en) | 2021-11-24 | 2023-10-16 | 美商建南德克公司 | Therapeutic compounds and methods of use |
WO2023097195A1 (en) | 2021-11-24 | 2023-06-01 | Genentech, Inc. | Therapeutic indazole compounds and methods of use in the treatment of cancer |
TW202340214A (en) | 2021-12-17 | 2023-10-16 | 美商健臻公司 | Pyrazolopyrazine compounds as shp2 inhibitors |
EP4227307A1 (en) | 2022-02-11 | 2023-08-16 | Genzyme Corporation | Pyrazolopyrazine compounds as shp2 inhibitors |
WO2023172940A1 (en) | 2022-03-08 | 2023-09-14 | Revolution Medicines, Inc. | Methods for treating immune refractory lung cancer |
AU2022450448A1 (en) | 2022-04-01 | 2024-10-10 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2023219613A1 (en) | 2022-05-11 | 2023-11-16 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2023240058A2 (en) | 2022-06-07 | 2023-12-14 | Genentech, Inc. | Prognostic and therapeutic methods for cancer |
WO2023240263A1 (en) | 2022-06-10 | 2023-12-14 | Revolution Medicines, Inc. | Macrocyclic ras inhibitors |
TW202417042A (en) | 2022-07-13 | 2024-05-01 | 美商建南德克公司 | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2024020432A1 (en) | 2022-07-19 | 2024-01-25 | Genentech, Inc. | Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies |
WO2024030441A1 (en) | 2022-08-02 | 2024-02-08 | National University Corporation Hokkaido University | Methods of improving cellular therapy with organelle complexes |
WO2024033458A1 (en) | 2022-08-11 | 2024-02-15 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydroazepine derivatives |
WO2024033389A1 (en) | 2022-08-11 | 2024-02-15 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydrothiazepine derivatives |
WO2024033457A1 (en) | 2022-08-11 | 2024-02-15 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydrothiazepine derivatives |
WO2024033388A1 (en) | 2022-08-11 | 2024-02-15 | F. Hoffmann-La Roche Ag | Bicyclic tetrahydrothiazepine derivatives |
WO2024081916A1 (en) | 2022-10-14 | 2024-04-18 | Black Diamond Therapeutics, Inc. | Methods of treating cancers using isoquinoline or 6-aza-quinoline derivatives |
WO2024085242A2 (en) | 2022-10-21 | 2024-04-25 | Kawasaki Institute Of Industrial Promotion | Non-fouling or super stealth vesicle |
TW202426505A (en) | 2022-10-25 | 2024-07-01 | 美商建南德克公司 | Therapeutic and diagnostic methods for cancer |
WO2024173842A1 (en) | 2023-02-17 | 2024-08-22 | Erasca, Inc. | Kras inhibitors |
WO2024206858A1 (en) | 2023-03-30 | 2024-10-03 | Revolution Medicines, Inc. | Compositions for inducing ras gtp hydrolysis and uses thereof |
WO2024211712A1 (en) | 2023-04-07 | 2024-10-10 | Revolution Medicines, Inc. | Condensed macrocyclic compounds as ras inhibitors |
WO2024211663A1 (en) | 2023-04-07 | 2024-10-10 | Revolution Medicines, Inc. | Condensed macrocyclic compounds as ras inhibitors |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU466233A1 (en) | 1973-06-08 | 1975-04-05 | Всесоюзный научно-исследовательский химико-фармацевтический институт им. С.Орджоникидзе | Method for producing 2-methyl-4-dialkylaminoalkylaminoquinazoline derivatives |
US4138590A (en) | 1977-01-13 | 1979-02-06 | American Home Products Corporation | Prostaglandin derivatives |
DE2936705A1 (en) | 1978-09-11 | 1980-03-20 | Sankyo Co | NEW 4-ANILINOQUINAZOLINE DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND MEDICINAL PRODUCTS CONTAINING THEM |
EP0477700A1 (en) | 1990-09-17 | 1992-04-01 | Asahi Kasei Kogyo Kabushiki Kaisha | 6'-C-alkyl- or alkynyl-neplanocin A, and its preparation process and use |
WO1992020642A1 (en) | 1991-05-10 | 1992-11-26 | Rhone-Poulenc Rorer International (Holdings) Inc. | Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase |
EP0520722A1 (en) | 1991-06-28 | 1992-12-30 | Zeneca Limited | Therapeutic preparations containing quinazoline derivatives |
WO1993004047A1 (en) | 1991-08-16 | 1993-03-04 | Merck & Co., Inc. | Quinazoline derivatives as inhibitors of hiv reverse transcriptase |
US5214144A (en) | 1991-10-07 | 1993-05-25 | Dowelanco | Process for the preparation of 4-haloquinazolines |
CA2086968A1 (en) | 1992-01-20 | 1993-07-21 | Andrew John Barker | Quinazoline derivatives |
US5256781A (en) | 1991-10-24 | 1993-10-26 | American Home Products Corporation | Substituted quinazolines as angiotensin II antagonists |
EP0602851A1 (en) | 1992-12-10 | 1994-06-22 | Zeneca Limited | Quinazoline derivatives |
EP0635498A1 (en) | 1993-07-19 | 1995-01-25 | Zeneca Limited | Quinazoline derivatives and their use as anti-cancer agents |
EP0635507A1 (en) | 1993-07-19 | 1995-01-25 | Zeneca Limited | Tricyclic derivatives and their use as anti-cancer agents |
WO1995015758A1 (en) | 1993-12-10 | 1995-06-15 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Aryl and heteroaryl quinazoline compounds which inhibit csf-1r receptor tyrosine kinase |
US5427766A (en) | 1993-11-15 | 1995-06-27 | The Dow Chemical Company | Radiolabeled steroids for use in radiochemical-guided surgery |
US5436233A (en) | 1992-07-15 | 1995-07-25 | Ono Pharmaceutical Co., Ltd. | 4-aminoquinazoline derivatives |
WO1996015118A1 (en) | 1994-11-12 | 1996-05-23 | Zeneca Limited | Aniline derivatives |
WO1996028430A1 (en) | 1995-03-14 | 1996-09-19 | Novartis Ag | Trisubstituted phenyl derivatives |
US5654307A (en) | 1994-01-25 | 1997-08-05 | Warner-Lambert Company | Bicyclic compounds capable of inhibiting tyrosine kinases of the epidermal growth factor receptor family |
WO1997030035A1 (en) | 1996-02-13 | 1997-08-21 | Zeneca Limited | Quinazoline derivatives as vegf inhibitors |
WO1997032856A1 (en) | 1996-03-05 | 1997-09-12 | Zeneca Limited | 4-anilinoquinazoline derivatives |
WO1998013354A1 (en) | 1996-09-25 | 1998-04-02 | Zeneca Limited | Quinazoline derivatives and pharmaceutical compositions containing them |
US5736534A (en) | 1994-02-23 | 1998-04-07 | Pfizer Inc. | 4-heterocyclyl-substituted quinazoline derivatives, processes for their preparation and their use as anti-cancer agents |
WO2004072049A1 (en) | 2003-02-17 | 2004-08-26 | F. Hoffmann-La Roche Ag | Polymorph of {6,7-bis(2-methoxy-ethoxy)-quinazolin-4-yl}-(3e) |
US6900221B1 (en) | 1999-11-11 | 2005-05-31 | Osi Pharmaceuticals, Inc. | Stable polymorph on N-(3-ethynylphenyl)-6, 7-bis (2methoxyethoxy)-4-quinazolinamine hydrochloride, methods of production, and pharmaceutical uses thereof |
-
1996
- 1996-05-28 US US08/653,786 patent/US5747498A/en not_active Ceased
-
2008
- 2008-02-27 US US12/038,530 patent/USRE41065E1/en not_active Expired - Lifetime
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU466233A1 (en) | 1973-06-08 | 1975-04-05 | Всесоюзный научно-исследовательский химико-фармацевтический институт им. С.Орджоникидзе | Method for producing 2-methyl-4-dialkylaminoalkylaminoquinazoline derivatives |
US4138590A (en) | 1977-01-13 | 1979-02-06 | American Home Products Corporation | Prostaglandin derivatives |
DE2936705A1 (en) | 1978-09-11 | 1980-03-20 | Sankyo Co | NEW 4-ANILINOQUINAZOLINE DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND MEDICINAL PRODUCTS CONTAINING THEM |
EP0477700A1 (en) | 1990-09-17 | 1992-04-01 | Asahi Kasei Kogyo Kabushiki Kaisha | 6'-C-alkyl- or alkynyl-neplanocin A, and its preparation process and use |
WO1992020642A1 (en) | 1991-05-10 | 1992-11-26 | Rhone-Poulenc Rorer International (Holdings) Inc. | Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase |
EP0520722A1 (en) | 1991-06-28 | 1992-12-30 | Zeneca Limited | Therapeutic preparations containing quinazoline derivatives |
EP0520722B1 (en) | 1991-06-28 | 1996-12-27 | Zeneca Limited | Therapeutic preparations containing quinazoline derivatives |
WO1993004047A1 (en) | 1991-08-16 | 1993-03-04 | Merck & Co., Inc. | Quinazoline derivatives as inhibitors of hiv reverse transcriptase |
US5214144A (en) | 1991-10-07 | 1993-05-25 | Dowelanco | Process for the preparation of 4-haloquinazolines |
US5256781A (en) | 1991-10-24 | 1993-10-26 | American Home Products Corporation | Substituted quinazolines as angiotensin II antagonists |
US5616582A (en) | 1992-01-20 | 1997-04-01 | Zeneca Limited | Quinazoline derivatives as anti-proliferative agents |
CA2086968A1 (en) | 1992-01-20 | 1993-07-21 | Andrew John Barker | Quinazoline derivatives |
EP0566226A1 (en) | 1992-01-20 | 1993-10-20 | Zeneca Limited | Quinazoline derivatives |
CA2086968C (en) | 1992-01-20 | 1998-06-23 | Andrew John Barker | Quinazoline derivatives |
US5457105A (en) | 1992-01-20 | 1995-10-10 | Zeneca Limited | Quinazoline derivatives useful for treatment of neoplastic disease |
US5439895A (en) | 1992-07-15 | 1995-08-08 | Ono Pharmaceutical Co., Ltd. | 4-aminoquinazoline derivatives |
US5436233A (en) | 1992-07-15 | 1995-07-25 | Ono Pharmaceutical Co., Ltd. | 4-aminoquinazoline derivatives |
EP0602851A1 (en) | 1992-12-10 | 1994-06-22 | Zeneca Limited | Quinazoline derivatives |
WO1995003283A1 (en) | 1993-07-19 | 1995-02-02 | Zeneca Limited | Quinazoline derivatives and their use as anti-cancer agents |
US5475001A (en) | 1993-07-19 | 1995-12-12 | Zeneca Limited | Quinazoline derivatives |
EP0635507A1 (en) | 1993-07-19 | 1995-01-25 | Zeneca Limited | Tricyclic derivatives and their use as anti-cancer agents |
EP0635498A1 (en) | 1993-07-19 | 1995-01-25 | Zeneca Limited | Quinazoline derivatives and their use as anti-cancer agents |
US5427766A (en) | 1993-11-15 | 1995-06-27 | The Dow Chemical Company | Radiolabeled steroids for use in radiochemical-guided surgery |
WO1995015758A1 (en) | 1993-12-10 | 1995-06-15 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Aryl and heteroaryl quinazoline compounds which inhibit csf-1r receptor tyrosine kinase |
US5654307A (en) | 1994-01-25 | 1997-08-05 | Warner-Lambert Company | Bicyclic compounds capable of inhibiting tyrosine kinases of the epidermal growth factor receptor family |
US5736534A (en) | 1994-02-23 | 1998-04-07 | Pfizer Inc. | 4-heterocyclyl-substituted quinazoline derivatives, processes for their preparation and their use as anti-cancer agents |
WO1996015118A1 (en) | 1994-11-12 | 1996-05-23 | Zeneca Limited | Aniline derivatives |
WO1996028430A1 (en) | 1995-03-14 | 1996-09-19 | Novartis Ag | Trisubstituted phenyl derivatives |
WO1997030035A1 (en) | 1996-02-13 | 1997-08-21 | Zeneca Limited | Quinazoline derivatives as vegf inhibitors |
WO1997032856A1 (en) | 1996-03-05 | 1997-09-12 | Zeneca Limited | 4-anilinoquinazoline derivatives |
WO1998013354A1 (en) | 1996-09-25 | 1998-04-02 | Zeneca Limited | Quinazoline derivatives and pharmaceutical compositions containing them |
US6900221B1 (en) | 1999-11-11 | 2005-05-31 | Osi Pharmaceuticals, Inc. | Stable polymorph on N-(3-ethynylphenyl)-6, 7-bis (2methoxyethoxy)-4-quinazolinamine hydrochloride, methods of production, and pharmaceutical uses thereof |
WO2004072049A1 (en) | 2003-02-17 | 2004-08-26 | F. Hoffmann-La Roche Ag | Polymorph of {6,7-bis(2-methoxy-ethoxy)-quinazolin-4-yl}-(3e) |
Non-Patent Citations (67)
Title |
---|
Alexander Levitzki and Aviv Gazit, "Tyrosine Kinase Inhibition: An Approach to Drug Development," Science, vol. 267, Mar. 24, 1995, 1782-1788. |
Armarego, W.L.F., "Fused Pyrimidines", Interscience Publishers, 1967, Part 1, Chapters 4, 5, pp. 69 thru 269. |
Banker, G.S. et al, "Modern Pharmaceutices, 3ed", Marcel Dekker, New York. 1996, pp. 451 and 596. * |
Barker et al., "Inhibition of EGF Receptor Tyrosine Kinase Activity by 4-Anilinoquinazolines", British Journal of Cancer, 69: 18 Abstract 6.6 (1994). |
Barker, A.J., "Quinazoline Tyrosine Kinase-Inhibiting Anticancer Agents", 1993, DialogWeb, Abstract, 2 pages. |
Batra, S.K. et al., "Epdiermal Growth Factor Ligand-independent, Unregulated, Cell-transforming Potential of a Naturally Occurring Human Mutant EGFRvlll Gene," Cell Growth & Differentiation, Oct. 1995, 6, 1251-1259. |
Before the Registrar of Patents and Designs in Jerusalem in re: Teva Pharmaceutical Industries Vs. OSI Pharmaceuticals, Inc., Opponent's Statement of Arguments and Appendices, Aug. 5, 2007. |
Bihl et all, "Proliferation of Human Non-Small Cell Lung Cancer Cell Lines: Role of Interleukin-6", Am. J. Respir. Cell Mol. Biol., 19(4):606-612 (1998). |
Botros, S. et al., "Synthesis of Certain Nitroquinazoline Structurally Related to Some Chemotherapeutic Agents", Egypt. J. Pharm. Sci., 1972, 13(1), 1-21. |
Buter, J. & Giaccone, G., "Medical Treatment of Non-Small-Cell Lung Cancer", Annals of Oncology, 16(2), ii229-ii232 (2005). |
Capuzzo, F. et al., "Clinical experience with Gefitinib: An Update", Critical Reviews in Oncology/Hematology, 58, 31-45, (2006). |
Cecil Textbook of Medicine, edited by Bennet, J.C., and Plum F., 20th edition, vol. 1, 1004-1010, 1996. * |
Chemical Abstracts, American Chemical Society, Abstract 98:107246, 1983, 98(13), 4 pages. |
Cohen et al., Current Opinion in Chemical Biology, 3, 459-465, 1999. * |
Decision on Pre-Grant Opposition in re. Matter of Indian Patent Application No. 537/Del/1996, in the name of Pfizer Products Inc, and OSI Pharmaceuticals Inc., Jul. 4, 2007. |
Dermer et al., Bio/Technology, 1994, 12:320. * |
Easty et al., "Ten Human Carcinoma Cell Lines Derived from Squamous Carcinomas of the Head and Neck", Br. J. Cancer, 43:772-785 (1981). |
Freshney et al., Culture of Animal Cells, A Manual of Basic Technique, Alan R. Liss, Inc., 1983, New York, p4. * |
Fry, D. W. et al., "A Specific Inhibitor of the Epidermal Growth Factor Receptor Tyrosine Kinase," Science, Aug. 19, 1994, 265, 1093-1095. |
Golub et al., Science, 286, 531-537, 1999. * |
Hansch, C. et al., "Aromatic constituent constants for structure-activity corellations," J. Med. Chem., 1973 16(11), 1207-1216. |
Hickish, T.F. et al., "Clinical benefit from palliative chemotheraphy in non-small-cell lung cancer extends to the elderly and those with poor prognostic factors," British Journal of Cancer, 1998, 78(1), 28-33. |
In the High Court of Delhi at New Delhi, C.C. No. 52 of 2008 in C.S. (O.S.) No. 89 of 2008, In Re. F. Hoffmann-La Roche Ltd. & Anr. v. Cipla Ltd., Evidence by way of Affidavit on Behalf of Professor Nick Thatcher, and Appendices A and B, Mar. 25, 2009. |
In the High Court of Delhi at New Delhi, C.C. No. 52 of 2008 in C.S. (O.S.) No. 89 of 2008, In Re. F. Hoffmann-La Roche Ltd. & Anr.v. Cipla Ltd. , Evidence by way of Affidavit on Behalf of Professor Roger John Griffin, and Appendices A and B, Mar. 26, 2009. |
In the High Court of Delhi at New Delhi, C.S. (O.S.) No. 89 of 2008 in re: F. Hoffman LA Roche Ltd. & Anr . . . Vs. CIPLA, Counterclaim of the Defendant Under 64 of the Patents Act for Revocation of Patent No. 196774 Titled "A novel [6,7 -bis (2-methoxyethoxy)quinazolin-4-yl]-(3-ethynylphenyl) amine hydrochloride, " Jan. 21, 2008. |
In the High Court of Delhi at New Delhi, C.S. (O.S.) No. 89 of 2008 in re: F. Hoffman LA Roche Ltd. & Anr Vs. CIPLA, Written Statement on Behalf of the Defendant to the Injunction Application, Jan. 21, 2008. |
In the High Court of Delhi at New Delhi, C.S. (O.S.) No. 89 of 2008, In Re. F. Hoffmann-La Roche Ltd. & Anr. v. Cipla Ltd., Index of Particulars dated Mar. 30, 2009. |
In the High Court of Delhi at New Delhi, C.S. (O.S.) No. 89 of 2008, In Re. F. Hoffmann-La Roche Ltd. &Anr. v. Cipla Ltd., Affidavit of Shivprasad Laud, Mar. 28, 2009. |
In the High Court of Delhi at New Delhi, FAO (OS) 188/2008, In Re.: F. Hoffmann-La Roche Ltd. & Anr. v. Cipla Ltd., Judgement dated Apr. 24, 2009, 57 pages. |
In the High Court of Delhi at New Delhi, I.A. 642/2008 in CS (OS) 89/2008. Decision dated Mar. 19, 2008 In Re.: F. Hoffman-La Roche Ltd., & Anr. vs. Cipla Limited. |
In the High Court of Delhi at New Delhi, in Re.: F. Hoffman LA Roche Ltd & Anr.Versus CIPLA Ltd., Written Submissions on Behalf of the Respondent, CIPLA Limited, and Annexures A-H, Aug. 27, 2008. |
In the High Court of Delhi at New Delhi, in Re.: F. Hoffman-La Roche Ltd. & Anr. v. Cipla Ltd., Affidavit of Undertaking, 31.04.08, Board Resolution of Mar. 23, 2008 , and Powers of Attorney, 11 pages. |
In the High Court of Delhi at New Delhi, in Re.: F. Hoffman-La Roche Ltd. and OSI Pharmaceuticals, Inc. v. CIPLA Ltd., Memo of Appeal Against the Order/Judgement dated Mar. 19, 2008, 42 pages, Apr. 11, 2008. |
In the High Court of Delhi at New Delhi, in Re.: F. Hoffman-La Roche Ltd. v. CIPLA Ltd., Affidavit on behalf of the Plaintiffs dated Jul. 26, 2008, and Declaration dated Jan. 31, 2008 by Dr. Hubert Witte, 3 pages. |
In the High Court of Delhi at New Delhi, in Re.: F. Hoffman-La Roche Ltd.& Anr. v. CIPLA Ltd., Points Not Argued by the Defendant, 2 pages, Feb. 13, 2008. |
In the High Court of Delhi at New Delhi, in Re.: F. Hoffman-La Roche Ltd.v. CIPLA Ltd. , Rejoinder Arguments on Behalf of the Plaintiffs to the Arguments of the Defendant at Interloculory Application, 13 pages, Jul. 26, 2008. |
In the High Court of Delhi at New Delhi, in Re.: F. Hoffman-La Roche Ltd.v. CIPLA Ltd. , Rejoinder to the Reply filed by the Respondent, 25 pages, May 22, 2008. |
In the High Court of Delhi at New Delhi, in Re.: F. Hoffman-La Roche Ltd.v. CIPLA Ltd. , Written Statement to the Counterclaim of the Defendant, 89 pages, Aug. 18, 2008. |
In the High Court of Delhi at New Delhi, Re: F. Hoffman La Roche Ltd.& Anr. vs. CIPLA Ltd. , Replication on Behalf of Defendant to the Written Statement of the Plaintiff to the Defendant's Counter Claim, Mar. 31, 2009. |
In the High Court of Delhi, C.S. (O.S.) No. 89 of 2008 in re:F. Hoffman LA Roche Ltd. & Anr Vs. CIPLA, Written Arguments on Behalf of the Defendants, Feb. 5, 2008. |
In the United States District Court for the District of Delaware, Civ. A. No. 09-185, In Re.: OSI Pharmaceuticals, Inc., Pfizer Inc., and Genentech, Inc. v. Teva Pharmaceuticals USA, Inc.: Complaint for patent infringement and related documents, Mar. 19, 2009, 92 pages. |
In the United States District Court for the District of Delaware, Civ. A. No. 09-186, In Re.: OSI Pharmsceuticals, Inc., Pfizer Inc., and Genentech, Inc. v. Mylan Pharmaceuticals, Inc.: Complaint for patent infringement and related documents, Mar. 19, 2009, 92 pages. |
In the United States Patent and Trademark Office, Application for Extension of Patent Term Under 35 U.S.C. 156, in re: U.S. Patent No. 5,747,498, dated Jan. 13, 2005, 22 pages. |
Jong Ho Park et al., "Postoperative Adjuvant Therapy for Stage II Non-Small-Cell Lung Cancer," Ann Thorac Surg, 1999, 68, 1821-1826. |
Kelloff, G.J. et al., "Epidermal Growth Factor Receptor Kinase Inhibitors as Potential Cancer Chemopreventives", Cancer Epidemiology, Biomarkers & Prevention, 5(8): 657-666 (1996). |
Klohs, W.D. et al., "Inhibitors of Tyrosine Kinhase", Current Opinion in Oncology, 9(6), 562-568 (1997). |
LeMahieu, R.A. et al., "(e)-3-(4-oxo-4H-quinazolin-3-yl)-2-propenoic acids, a New Series of Antiallergy Agents", J. Med. Chem., 1983, 26(3), 420-425. |
Mattson, K., "Docetaxel (Taxotere(R)) in the neo-adjuvant setting in non-small-cell lung cancer," Annals of Oncology, 1999, 10(Suppl. 5), S69-S72. |
Mattson, K., "Docetaxel (Taxotere®) in the neo-adjuvant setting in non-small-cell lung cancer," Annals of Oncology, 1999, 10(Suppl. 5), S69-S72. |
Moody, T.W., "Peptides and Growth Factors in Non-Small Cell Lung Cancer," Peptides, 1996, 17(3), 545-555. |
Notification letter dated Feb. 6, 2009, from Teva Pharmaceuticals USA, Inc. to OSI Pharmaceuticals, Inc. and Pfizer, Inc. re: Notification Pursuant to � 505(j)(2)(B)(ii) of the Federal Food, Drug and Cosmetic Act. |
Notification letter dated Feb. 6, 2009, from Teva Pharmaceuticals USA, Inc. to OSI Pharmaceuticals, Inc. and Pfizer, Inc. re: Notification Pursuant to § 505(j)(2)(B)(ii) of the Federal Food, Drug and Cosmetic Act. |
Opposition filed by Natco Pharma on Apr. 5, 2007, in respect of Indian Patent Application No. 537 DEL/96. |
Pollack, V.A. et al., "Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358, 774: Dynamics of receptor inhibition In Situ and antitumor effects in athymic mice," J. Pharmacol. Exp Ther., 1999, 291, 739-748. |
Pollack, V.A. et al., "Therapy of human carcinoma in athymic mice by inhibition of EGF receptor-mediated signal transduction with CP-358774: Dynamics of receptor inhibition and anti-tumor effects," Proc. American Association for Cancer Research, Mar. 1997, vol. 38, p. 633, Abstract No. 4249. |
Pollack, V.A. et al., "Therapy of human carcinomas in althymic mice by inhibition of EGF receptor-mediated signal transduction with CP-358774: Pharmacodynamics of receptor inhibition and anti-tumor effects", Proc. Am Assoc. Cancer Res., 38, 633 (1997). |
Powell et al., British Journal of Dermatology, 141: 802-810, 1999. * |
Proceedings of the American Association for Cancer Research, vol. 37, Mar. 1996, 390-391. |
Reply Statement in support by the Applicant for Indian Patent Application No. 537/DEL/96 made by Pfizer Products Inc. and OSI Pharmaceuticals Inc., with enclosures, Jun. 4, 2007. |
Structural Similarities with the Closest Prior Art-Annex B to CIPLA's written arguments dated Aug. 27, 2008. |
Sun, C. et al., "Studies on Drugs for Coronary Diseases. II. Synthesis of Compounds Related to Changrolin, a New Antiarrhythmic Agent", 1981, DialogWeb, 2 pages Abstract, 565-570 (publication believed to be abstracted also enclosed). |
The Merck Manual of Diagnosis and Therapy, 1999, Seventeenth Edition, Beers, M.H. et al., (eds.), Published by Merck Research Laboratories, Whitehouse Station, NJ., pp. 988-995. |
Thornber, C. W., "Isosterism and Molecular Modification in Drug Design," 1979, Chem. Soc. Rev., 8, 563-580. |
Traxler et al. Ex. Opin. Ther. Patents 7(6):571-588, 1997. * |
Twombly, R. "FDA Oncology Committee Debates Iressa's Status Following Negative Trial Results", J. Nat'l. Cancer Institute, 97(7), 473 (2005). |
Wiley Rein letter dated Feb. 23, 2009, and Detailed Legal and Factual Basis for Mylan's Paragraph IV Patent Certification regarding U.S. Patent Nos. 5,747,498, 6,900,221 and 7,087,61. |
Wolft Manfred E. "Burger's Medicinal Chemistry, 5ed, Part 1", John Wiley & Sons, 1995, pp. 975-977. * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090226443A1 (en) * | 2008-03-06 | 2009-09-10 | Genentech, Inc. | Combination therapy with c-met and egfr antagonists |
WO2011133520A1 (en) | 2010-04-19 | 2011-10-27 | Synta Pharmaceuticals Corp. | Cancer therapy using a combination of a hsp90 inhibitory compounds and a egfr inhibitor |
WO2012068483A1 (en) | 2010-11-18 | 2012-05-24 | Synta Pharmaceuticals Corp. | Preselection of subjects for therapeutic treatment based on hypoxic status |
WO2012068487A1 (en) | 2010-11-18 | 2012-05-24 | Synta Pharmaceuticals Corp. | Preselection of subjects for therapeutic treatment with oxygen sensitive agents based on hypoxic status |
US9295676B2 (en) | 2011-03-17 | 2016-03-29 | The Trustees Of The University Of Pennsylvania | Mutation mimicking compounds that bind to the kinase domain of EGFR |
WO2012125913A1 (en) | 2011-03-17 | 2012-09-20 | The Trustees Of The University Of Pennsylvania | Methods and use of bifunctional enzyme-building clamp-shaped molecules |
US9321759B2 (en) | 2011-03-17 | 2016-04-26 | The Trustees Of The University Of Pennsylvania | Methods and use of bifunctional enzyme-building clamp-shaped molecules |
US9546179B2 (en) | 2011-12-20 | 2017-01-17 | Wei Qian | Heterocycle amido alkyloxy substituted quinazoline derivative and use thereof |
WO2013091507A1 (en) | 2011-12-20 | 2013-06-27 | Qian Wei | Heterocycle amido alkyloxy substituted quinazoline derivative and use thereof |
WO2013170182A1 (en) | 2012-05-11 | 2013-11-14 | Synta Pharmaceuticals Corp. | Treating cancer with an hsp90 inhibitory compound |
WO2014118737A1 (en) | 2013-01-31 | 2014-08-07 | Ranbaxy Laboratories Limited | Erlotinib salts |
US11285212B2 (en) | 2013-03-01 | 2022-03-29 | California Institute Of Technology | Targeted nanoparticles |
US10240207B2 (en) | 2014-03-24 | 2019-03-26 | Genentech, Inc. | Cancer treatment with c-met antagonists and correlation of the latter with HGF expression |
US10717825B2 (en) | 2015-07-01 | 2020-07-21 | California Instite of Technology | Cationic mucic acid polymer-based delivery system |
US11041050B2 (en) | 2015-07-01 | 2021-06-22 | California Institute Of Technology | Cationic mucic acid polymer-based delivery systems |
US10710968B2 (en) | 2016-01-13 | 2020-07-14 | Hadasit Medical Research Services And Development Ltd. | Radiolabeled erlotinib analogs and uses thereof |
US11708335B2 (en) | 2017-12-18 | 2023-07-25 | Sterngreene, Inc. | Pyrimidine compounds useful as tyrosine kinase inhibitors |
WO2019178433A1 (en) | 2018-03-15 | 2019-09-19 | Abbvie Inc. | Abbv-621 in combination with anti-cancer agents for the treatment of pancreatic cancer |
US11998616B2 (en) | 2018-06-13 | 2024-06-04 | California Institute Of Technology | Nanoparticles for crossing the blood brain barrier and methods of treatment using the same |
Also Published As
Publication number | Publication date |
---|---|
US5747498A (en) | 1998-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41065E1 (en) | Alkynl and azido-substituted 4-anilinoquinazolines | |
EP0817775B1 (en) | Quinazoline derivatives | |
US6395733B1 (en) | Heterocyclic ring-fused pyrimidine derivatives | |
EP0831829B1 (en) | Heterocyclic ring-fused pyrimidine derivatives | |
US6225318B1 (en) | 4-aminoquinazolone derivatives | |
US6015814A (en) | Quinazoline derivative | |
NZ245662A (en) | Quinazoline derivatives, preparation and pharmaceutical compositions thereof | |
EP0837063A1 (en) | 4-Aminoquinazoline derivatives | |
US8080558B2 (en) | 4-(tetrazol-5-yl)-quinazoline derivatives as anti-cancer agent | |
AU778961B2 (en) | Intermediates for the preparation of 4-(substituted phenylamino)quinazoline derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OSI PHARMACEUTICALS, LLC, ILLINOIS Free format text: CHANGE OF NAME;ASSIGNOR:OSI PHARMACEUTICALS, INC.;REEL/FRAME:040608/0830 Effective date: 20110331 |