USRE37602E1 - Patient infusion system for use with MRI - Google Patents
Patient infusion system for use with MRI Download PDFInfo
- Publication number
- USRE37602E1 USRE37602E1 US09/714,907 US71490700A USRE37602E US RE37602 E1 USRE37602 E1 US RE37602E1 US 71490700 A US71490700 A US 71490700A US RE37602 E USRE37602 E US RE37602E
- Authority
- US
- United States
- Prior art keywords
- patient
- infusion
- patient infusion
- room
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/285—Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/007—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M5/1452—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
- A61M5/14546—Front-loading type injectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/281—Means for the use of in vitro contrast agents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/283—Intercom or optical viewing arrangements, structurally associated with NMR apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/42—Screening
- G01R33/421—Screening of main or gradient magnetic field
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S128/00—Surgery
- Y10S128/01—Motorized syringe
Definitions
- This invention relates generally to the field of Magnetic Resonance Imaging (MRI) systems for generating diagnostic images of a patient's internal organs and more particularly, this invention relates to improved MRI systems exhibiting decreased interference between the magnetic field used for producing diagnostic images and spurious magnetic fields created by ancillary equipment, such as the electric motors used for driving the pistons of the contrast media injectors. Additionally, the system employs an improved communication link between an externally located system controller and the injection head control unit which is located within the electromagnetic isolation barrier of the magnetic imaging suite.
- MRI Magnetic Resonance Imaging
- MRI systems require isolation from external sources of electromagnetic fields, if optimum image quality is to be obtained from MRI diagnostic procedures.
- Conventional MRI systems have typically employed some form of electromagnetic isolation chamber which is generally a room enclosed by copper sheeting or conductive mesh material that isolates the room from undesirable sources of electromagnetic radiation and the electromagnetic noise inherent in the atmosphere.
- these systems employ a controller for the contrast media injector portion of the system which is isolated from the media injector. Such isolation is effected to prevent undesirable electromagnetic radiation generated by the system controller from interfering with the signals used to create the magnetic resonance images.
- the external, isolated location of the system controller creates various problems associated with the installation and operation of these systems.
- One such problem is the need to provide a communications link between the externally located controller and the contrast media injectors, without introducing extraneous electromagnetic radiation. That is, there is a need to provide electrical power supply lines for operation of the contrast media injectors and the injector control circuitry while maintaining the integrity of the electromagnetic shield.
- Another problem associated with conventional magnetic resonance imaging systems is the interference which occurs between the high power magnetic field used for generating the magnetic resonance image and the magnetic fields created by the electric motors which control the operation of the contrast media injection heads.
- the magnetic field generated by the magnet of the magnetic resonance imaging system is extremely powerful and adversely affects the operation of the electric motors used in the injector head. Additionally, operation of the electric motors in close proximity to the magnetic field used to generate the magnetic resonance image also has an adverse impact on the quality of the resulting image.
- the injection head unit is located adjacent to the patient being examined and the electric motors associated with the injection syringes are directly connected to the syringe pistons.
- the syringes and the drive motors have been mounted on the injection head unit.
- the close proximity of the electric motors to the magnetic field used for generating the magnetic resonance image typically resulted in a decrease in motor performance and the ability to control the electric motors used in the injector heads, as well as an overall decrease in system performance.
- FIG. 1 is a block diagram outlining the functional design of the system.
- FIG. 2 is a diagram illustrating the system of the present invention.
- the invention comprises an improved magnetic resonance imaging system which decreases the amount of electromagnetic interference that has heretofore been found within a MRI isolation suite while increasing the portability and ease of system installation.
- the invention reduces deleterious interaction between the imaging magnetic field and the magnetic field generated by the electric motors which control and operate contrast media injectors.
- the system includes a master controller located externally of the shielded imaging room within which a contrast media injection head and a separate injection control unit are located.
- the system controller communicates with the head control unit via external and internal transceivers which form a communications link for traversing the electromagnetic isolation barrier of the imaging room.
- this communication link is made through a window in the isolation room barrier.
- These windows are typically in the form of a glass laminate containing a conductive wire mesh, or alternatively, a window that is coated with a thin sheet of conductive material such as gold to maintain the shielding characteristics of the isolation room.
- the communications link consists of electromagnetic transceivers which operate in a frequency range which permeates the window while maintaining the integrity of the isolation barrier. Infrared or electromagnetic energy in the visual range provide the best results.
- a fiberoptic communication link can be used to provide the communication link, since fiberoptics do not create electromagnetic radiation.
- the present invention also incorporates a contrast media injection unit located within the shielded room which comprises separate contrast media injector head and injection head control unit.
- the contrast media injection head, and specifically the syringe pistons are located in close proximity to the patient and consequently are located within the powerful magnetic field used to generate the magnetic resonance image.
- the head control unit which controls operation of the injector head is located from 10-15 feet away from the injector head control unit.
- the head control unit incorporates electric motors to control and to operate the pistons of syringes used for the injection of patients.
- a non-rigid operating drive connects the electric motors and control unit to the syringe pistons located on the injection head.
- the drive connection can be by way of flexible shafts.
- Each flexible drive shaft forms a mechanical link between an electric motor located on the head control unit and a piston of the syringes on the injector head.
- a hydraulic system could be used to control the piston of the injector head.
- the flexible drive shaft is manufactured from a non-ferrous metal such as hard brass.
- FIG. 1 illustrates an improved magnetic resonance imaging system according to the present invention and is shown generally at 10 .
- the MRI system includes a system controller 12 which incorporates a computer 14 and a battery charging unit 16 .
- the system controller 12 is located externally of the imaging room 17 , the imaging room being shielded from electromagnetic interference by a shield 18 . Isolation can be achieved by completely enclosing the room with copper sheet material or some other suitable, conductive layer such as wire mesh.
- Communication line 20 connects the system controller 12 with an external infrared/optical communications transceiver 22 .
- the shielded imaging room 17 also incorporates a patient viewing window 24 in the shield 18 which allows an observer to view the room without breaching the electromagnetic shield 18 .
- the window 24 can be formed by sandwiching a wire mesh material (not shown) between sheets of glass or coating the window with a thin coating of conductive material such as gold (not shown) to maintain the continuity of the electromagnetic shield 18 .
- An infrared/optical communications transceiver 26 is positioned internally of the imaging room 17 at the viewing window 24 opposite the external communications transceiver 22 such that the internal and external communications transceivers communicate with each other through the viewing window with no breach of the electromagnetic shield.
- a communications link 28 located within the shielded area connects the internal infrared/optical transceiver with a contrast media injection control unit 30 .
- the injection control unit 30 is powered advantageously by rechargeable battery 32 .
- the injection control unit 30 also incorporates control circuitry which controls electric motors 35 , 36 which are also located within the injection control unit.
- the injection control unit is contained within an electromagnetic shield 37 to prevent the undesired electromagnetic radiation generated by the electric motors from interfering with the magnetic field used to generate the magnetic resonance image.
- the injection control unit 30 is separated from the injection head unit 38 by as great a distance as possible. In the preferred embodiment, this is typically ten to fifteen feet.
- the injection head unit must be located in close proximity to the patient in order to decrease the distance that the contrast media fluid must travel from the contrast media injectors.
- the injection head unit 38 includes contrast media injection syringe and piston units 40 , 42 .
- the syringes 40 , 42 are connected to the electric motors in the injection control unit by flexible mechanical drive shafts 44 , 46 , respectively.
- the drive shafts are made from a nonferrous metal such as hard brass.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- General Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
This invention relates generally to the field of Magnetic Resonance Imaging (MRI) systems for generating diagnostic images of a patient's internal organs and more particularly, this invention relates to improved MRI systems with decreased interference between the magnetic field used for producing diagnostic images and the magnetic fields generated by the electric motors used for driving the pistons of the contrast media injectors. Additionally, the system employs an improved communication link between an externally located system controller and the injection head control unit located within the electromagnetic isolation barrier which defines the magnetic imaging room.
Description
1. Field of the Invention
This invention relates generally to the field of Magnetic Resonance Imaging (MRI) systems for generating diagnostic images of a patient's internal organs and more particularly, this invention relates to improved MRI systems exhibiting decreased interference between the magnetic field used for producing diagnostic images and spurious magnetic fields created by ancillary equipment, such as the electric motors used for driving the pistons of the contrast media injectors. Additionally, the system employs an improved communication link between an externally located system controller and the injection head control unit which is located within the electromagnetic isolation barrier of the magnetic imaging suite.
2. Description of the Related Art
It has become recognized that MRI systems require isolation from external sources of electromagnetic fields, if optimum image quality is to be obtained from MRI diagnostic procedures. Conventional MRI systems have typically employed some form of electromagnetic isolation chamber which is generally a room enclosed by copper sheeting or conductive mesh material that isolates the room from undesirable sources of electromagnetic radiation and the electromagnetic noise inherent in the atmosphere.
In order to realize the full benefit of the shielded room, these systems employ a controller for the contrast media injector portion of the system which is isolated from the media injector. Such isolation is effected to prevent undesirable electromagnetic radiation generated by the system controller from interfering with the signals used to create the magnetic resonance images.
The external, isolated location of the system controller creates various problems associated with the installation and operation of these systems. One such problem is the need to provide a communications link between the externally located controller and the contrast media injectors, without introducing extraneous electromagnetic radiation. That is, there is a need to provide electrical power supply lines for operation of the contrast media injectors and the injector control circuitry while maintaining the integrity of the electromagnetic shield.
Previous attempts to solve these problems included drilling holes in the wall of the electromagnetic shield for inserting the necessary lines or, alternatively, laying the lines under a shielded floor of the imaging room. These alternatives have proven to be less than optimum, since spurious radiation arose from the presence of the various supply cables within the shielded imaging suite. Additionally, MRI systems which employed these solutions required substantially site dedication and were therefore not very portable.
Another problem associated with conventional magnetic resonance imaging systems is the interference which occurs between the high power magnetic field used for generating the magnetic resonance image and the magnetic fields created by the electric motors which control the operation of the contrast media injection heads. The magnetic field generated by the magnet of the magnetic resonance imaging system is extremely powerful and adversely affects the operation of the electric motors used in the injector head. Additionally, operation of the electric motors in close proximity to the magnetic field used to generate the magnetic resonance image also has an adverse impact on the quality of the resulting image.
In conventional MRI systems, the injection head unit is located adjacent to the patient being examined and the electric motors associated with the injection syringes are directly connected to the syringe pistons. Characteristically, the syringes and the drive motors have been mounted on the injection head unit. The close proximity of the electric motors to the magnetic field used for generating the magnetic resonance image typically resulted in a decrease in motor performance and the ability to control the electric motors used in the injector heads, as well as an overall decrease in system performance.
Accordingly, it is an object of the present invention to provide an improved magnetic resonance imaging contrast media delivery system having decreased interference between the magnetic field used to obtain the magnetic resonance image and the magnetic fields created by ancillary equipment.
It is a further object of this invention to provide an MRI system which minimizes the interference between fields created by the electric motors used to drive the contrast media injection plungers and the magnetic field used to generate the magnetic resonance image.
It is another object of the present invention to provide an MRI contrast media injection system having an improved communication link between the system controller and the injection control unit.
Numerous other objects and advantages of the present invention will be apparent from the following summary, drawings and detailed description of the invention and its preferred embodiment; in which:
FIG. 1 is a block diagram outlining the functional design of the system; and,
FIG. 2 is a diagram illustrating the system of the present invention.
The invention comprises an improved magnetic resonance imaging system which decreases the amount of electromagnetic interference that has heretofore been found within a MRI isolation suite while increasing the portability and ease of system installation. The invention reduces deleterious interaction between the imaging magnetic field and the magnetic field generated by the electric motors which control and operate contrast media injectors.
The system includes a master controller located externally of the shielded imaging room within which a contrast media injection head and a separate injection control unit are located. The system controller communicates with the head control unit via external and internal transceivers which form a communications link for traversing the electromagnetic isolation barrier of the imaging room.
In the preferred embodiment, this communication link is made through a window in the isolation room barrier. These windows are typically in the form of a glass laminate containing a conductive wire mesh, or alternatively, a window that is coated with a thin sheet of conductive material such as gold to maintain the shielding characteristics of the isolation room. The communications link consists of electromagnetic transceivers which operate in a frequency range which permeates the window while maintaining the integrity of the isolation barrier. Infrared or electromagnetic energy in the visual range provide the best results. Alternatively, a fiberoptic communication link can be used to provide the communication link, since fiberoptics do not create electromagnetic radiation.
The present invention also incorporates a contrast media injection unit located within the shielded room which comprises separate contrast media injector head and injection head control unit. The contrast media injection head, and specifically the syringe pistons are located in close proximity to the patient and consequently are located within the powerful magnetic field used to generate the magnetic resonance image. The head control unit which controls operation of the injector head is located from 10-15 feet away from the injector head control unit. The head control unit incorporates electric motors to control and to operate the pistons of syringes used for the injection of patients. A non-rigid operating drive connects the electric motors and control unit to the syringe pistons located on the injection head. In a preferred form, the drive connection can be by way of flexible shafts. Each flexible drive shaft forms a mechanical link between an electric motor located on the head control unit and a piston of the syringes on the injector head. Alternatively, a hydraulic system could be used to control the piston of the injector head. In the preferred embodiment, the flexible drive shaft is manufactured from a non-ferrous metal such as hard brass. The distancing of the head control unit and drive motors from the injector head decreases the adverse effects that the imaging magnetic field has on the electric motors of the injectors and conversely, the adverse affects of spurious electromagnetic radiation arising from operating of the electric motors used to control and operate the contrast media injectors is also reduced significantly.
FIG. 1 illustrates an improved magnetic resonance imaging system according to the present invention and is shown generally at 10. The MRI system includes a system controller 12 which incorporates a computer 14 and a battery charging unit 16. The system controller 12 is located externally of the imaging room 17, the imaging room being shielded from electromagnetic interference by a shield 18. Isolation can be achieved by completely enclosing the room with copper sheet material or some other suitable, conductive layer such as wire mesh. Communication line 20, connects the system controller 12 with an external infrared/optical communications transceiver 22. The shielded imaging room 17 also incorporates a patient viewing window 24 in the shield 18 which allows an observer to view the room without breaching the electromagnetic shield 18. The window 24 can be formed by sandwiching a wire mesh material (not shown) between sheets of glass or coating the window with a thin coating of conductive material such as gold (not shown) to maintain the continuity of the electromagnetic shield 18.
An infrared/optical communications transceiver 26 is positioned internally of the imaging room 17 at the viewing window 24 opposite the external communications transceiver 22 such that the internal and external communications transceivers communicate with each other through the viewing window with no breach of the electromagnetic shield. A communications link 28 located within the shielded area connects the internal infrared/optical transceiver with a contrast media injection control unit 30. The injection control unit 30 is powered advantageously by rechargeable battery 32. The injection control unit 30 also incorporates control circuitry which controls electric motors 35, 36 which are also located within the injection control unit. The injection control unit is contained within an electromagnetic shield 37 to prevent the undesired electromagnetic radiation generated by the electric motors from interfering with the magnetic field used to generate the magnetic resonance image.
The injection control unit 30 is separated from the injection head unit 38 by as great a distance as possible. In the preferred embodiment, this is typically ten to fifteen feet. The injection head unit must be located in close proximity to the patient in order to decrease the distance that the contrast media fluid must travel from the contrast media injectors. The injection head unit 38 includes contrast media injection syringe and piston units 40, 42. The syringes 40, 42 are connected to the electric motors in the injection control unit by flexible mechanical drive shafts 44, 46, respectively. The drive shafts are made from a nonferrous metal such as hard brass.
The separation of the electric motors from the injection head, as well as the additional electromagnetic shielding, results in improved system performance and overall resulting image quality. Additionally, the use of an infrared/optical communications link results in a system which is both portable and easy to use.
Claims (44)
1. A patient infusion control apparatus for use in a magnetic resonance imaging apparatus to generate images of a patient, the patient infusion control apparatus comprising:
a) means for injecting fluid into the patient undergoing a MRI procedure;
b) an electric drive motor and motor control circuitry positioned remotely from the means for injecting to be substantially non-reactive with an electromagnetic field of the imaging apparatus; and,
c) a non-rigid drive connection between the electric drive motor and the means for injecting comprising a flexible drive shaft.
2. The patient infusion control apparatus of claim 1 wherein the electric drive motor and motor control circuitry are enclosed within electromagnetic shielding.
3. The patient infusion control apparatus of claim 1 , wherein the patient injection means is adapted to be located in close proximity to the patient.
4. The patient infusion control apparatus of claim 1 , wherein said flexible drive shaft is comprised of hard brass.
5. The patient infusion control apparatus of claim 1 , wherein the motor is positioned at least ten to fifteen feet from the patient injection means.
6. The patient infusion control apparatus of claim 1 , wherein the electric drive motor and the motor control circuitry are enclosed in an electromagnetic shield.
7. The patient infusion control apparatus of claim 1 , further comprising a rechargeable battery wherein the electric drive motor receives power from the rechargeable battery.
8. A patient infusion system for use with a magnetic resonance imaging system, the patient infusion system comprising:
a) a room shielded from electromagnetic interference;
b) a system controller located externally of the shielded room;
c) a patient infusion apparatus including infusion apparatus control means for controlling an infusion operation, the patient infusion apparatus located within the shielded room; and,
d) a fiber optic communications control link between the system controller and the infusion apparatus control means.
9. A patient infusion system for use with a magnetic resonance imaging system, the patient infusion system comprising:
a) a room shielded from electromagnetic interference, which includes a viewing window;
b) a system controller external to the shielded room;
c) a patient infusion apparatus within the shielded room and including infusion apparatus control means for controlling an infusion operation; and,
d) a communicating control link between the system controller and the infusion apparatus control means, the control link adapted to be substantially non-reactive with the magnetic field of the imaging system.
10. The patient infusion system of claim 9 , wherein the communications link includes means for transmitting and receiving electromagnetic radiation through the viewing window.
11. The patient infusion system of claim 9 , wherein the communications link includes means for transmitting and receiving infrared electromagnetic energy.
12. The patient infusion system of claim 9 , wherein the communications link includes means for transmitting and receiving electromagnetic energy in the visual range.
13. A patient infusion system for use with a magnetic resonance imaging system to generate images of a patient, the patient infusion system comprising:
a) a room shielded from electromagnetic interference by an electromagnetic shield including a viewing window;
b) a system controller located outside the room;
c) a patient infusion apparatus located inside the room including infusion apparatus control means for controlling an infusion operation;
d) a communications control link between the system controller and the infusion apparatus control means, the control link adapted to be substantially non-reactive with the magnetic field of the imaging system; and,
e) an electric drive motor and motor control circuitry separated from the patient infusion apparatus and a non-rigid drive connection between the electric drive motor and the patient infusion apparatus whereby wherein the motor is positioned to be substantially non-reactive with an electromagnetic the magnetic field of the imaging system.
14. The patient infusion system of claim 13 , wherein the communications link comprises an external transceiver located outside the room and an internal transceiver located inside the room, both said transceivers communicating electromagnetic energy through the viewing window in the room.
15. The patient infusion system of claim 14 , wherein the electromagnetic energy communicated between said transceivers is in the visible light spectrum.
16. The patient infusion system of claim 14 , wherein said electromagnetic energy communicated between said transceivers is in the infrared spectrum.
17. The patient infusion system of claim 13 , further comprising a rechargeable battery located in the room and connected to the electric drive motor for providing power to the electric drive motor.
18. The patient infusion system of claim 13 , wherein the electric drive motor and motor control circuitry are enclosed within the electromagnetic shield.
19. The patient infusion system of claim 13 , wherein the infusion apparatus control means is adapted to be located at least ten to fifteen feet from the patient.
20. The patient infusion system of claim 13 , wherein the non-rigid drive connection is comprised of hard brass.
21. The patient infusion system of claim 13 , wherein the patient infusion apparatus is adapted to be located in close proximity to the patient.
22. A method of patient infusion for use with a magnetic resonance imaging system, the method comprising the steps of:
a) providing patient infusion apparatus having a patient infusion apparatus controller and means operable to inject fluid into a patient;
b) positioning the patient infusion apparatus controller away from the patient infusion apparatus to prevent interference in the image, the infusion apparatus controller including at least one electric motor and motor control circuitry; and
c) operably connecting the electric motor for controlling the patient infusion apparatus to the patient infusion apparatus with a non-rigid drive connection, the electric motor operating the patient infusion apparatus to infuse media into a patient. The patient infusion system of claim 9 wherein the communications link comprises a fiber optic line.
23. A method of patient infusion for use with a magnetic resonance imaging system, the method comprising the steps of:
a) providing a room shielded from electromagnetic interference including a viewing window;
b) providing a system controller located outside the room;
c) providing a patient infusion apparatus including infusion apparatus control means for controlling an infusion operation, the patient infusion apparatus located inside the room; and
d) transmitting control signals from the system controller to the infusion apparatus control means through the viewing window.
24. The method of claim 23 wherein the control signals are transmitted via electromagnetic transceivers.
25. A patient infusion system for use with a magnetic resonance imaging system, the patient infusion system comprising:
an infusion apparatus positioned within a room shielded from electromagnetic interference, the infusion apparatus comprising an injector adapted to accommodate at least two syringes mounted thereon for injecting fluid into a patient during a magnetic resonance imaging procedure, the at least two syringes operably engaged with at least one drive mechanism of the injector; and
a system controller positioned external to the shielded room and in communication with the infusion apparatus for controlling the operation thereof.
26. The patient infusion system of claim 25 wherein the infusion apparatus further comprises an injector control unit positioned within the shielded room.
27. The patient infusion system of claim 26 wherein the injector control unit comprises a battery for powering the injector.
28. The patient infusion system of claim 26 wherein the injector control unit is remotely positioned from the injector.
29. The patient infusion system of claim 28 wherein the injector and the injector control unit are connected by a non-rigid drive connection.
30. The patient infusion system of claim 25 wherein the infusion apparatus and the system controller communicate with each other by means of a communication link disposed therebetween.
31. The patient infusion system of claim 30 wherein the communication link comprises a fiber optic line.
32. The patient infusion system of claim 30 wherein the communication link comprises means for transmitting and receiving electromagnetic radiation through a window in the shielded room.
33. A patient infusion system for use with a magnetic resonance imaging system, the patient infusion system comprising:
an infusion apparatus positioned within a room shielded from electromagnetic interference, the infusion apparatus comprising an injector for injecting fluid into a patient during a magnetic resonance imaging procedure;
a system controller positioned external to the shielded room; and
a communication control link between the infusion apparatus and the system controller for controlling the operation of the infusion system, the control link adapted to be substantially non-reactive with the magnetic field of the imaging system.
34. The patient infusion system of claim 33 , further comprising at least one battery for powering the infusion apparatus.
35. The patient infusion system of claim 34 wherein the system controller comprises a battery charger for recharging the at least one battery.
36. The patient infusion system of claim 33 wherein the injector is adapted to accommodate at least two syringes mounted thereon.
37. A method of infusing a patient with fluid during a magnetic resonance imaging procedure, the method comprising the following steps:
providing an injector adapted to accommodate at least two syringes mounted thereon for injecting fluid into a patient during a magnetic resonance imaging procedure, the at least two syringes operably engaged with at least one drive mechanism of the injector, the injector positioned adjacent to the patient within a room shielded from electromagnetic interference;
injecting fluid contained within the at least two syringes into the patient; and
generating magnetic resonance images of the patient.
38. A method of patient infusion for use with a magnetic resonance imaging system, the method comprising the following steps:
providing a room shielded from electromagnetic interference;
providing a system controller positioned external to the shielded room;
providing an infusion apparatus positioned within the shielded room; and
transmitting control signals via a communication link between the system controller and the infusion apparatus, the control signals adapted to be substantially non-reactive with the magnetic field of the imaging system.
39. The method of claim 38 wherein the communication link comprises a fiber optic line.
40. The method of claim 38 wherein the communication link comprises electromagnetic transceivers that transmit the control signals through a window in the shielded room.
41. A patient infusion system for use with a magnetic resonance imaging system, the patient infusion system comprising:
a patient infusion apparatus within a room shielded from electromagnetic interference including a viewing window;
a system controller external to the shielded room; and
a communicating control link between the system controller and the infusion apparatus, the control link comprising means for transmitting and receiving electromagnetic energy through the viewing window.
42. The system of claim 41 wherein the electromagnetic energy is in the visible light spectrum.
43. The system of claim 41 wherein the electromagnetic energy is in the infrared spectrum.
44. The system of claim 41 wherein the electromagnetic energy comprises electromagnetic radiation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/714,907 USRE37602E1 (en) | 1993-11-26 | 2000-11-16 | Patient infusion system for use with MRI |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/158,055 US5494036A (en) | 1993-11-26 | 1993-11-26 | Patient infusion system for use with MRI |
US09/027,852 USRE36648E (en) | 1993-11-26 | 1998-02-23 | Patient infusion system for use with MRI |
US09/714,907 USRE37602E1 (en) | 1993-11-26 | 2000-11-16 | Patient infusion system for use with MRI |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/027,852 Reissue USRE36648E (en) | 1993-11-26 | 1998-02-23 | Patient infusion system for use with MRI |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37602E1 true USRE37602E1 (en) | 2002-03-26 |
Family
ID=22566519
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/158,055 Ceased US5494036A (en) | 1993-11-26 | 1993-11-26 | Patient infusion system for use with MRI |
US09/027,852 Expired - Lifetime USRE36648E (en) | 1993-11-26 | 1998-02-23 | Patient infusion system for use with MRI |
US09/714,907 Expired - Lifetime USRE37602E1 (en) | 1993-11-26 | 2000-11-16 | Patient infusion system for use with MRI |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/158,055 Ceased US5494036A (en) | 1993-11-26 | 1993-11-26 | Patient infusion system for use with MRI |
US09/027,852 Expired - Lifetime USRE36648E (en) | 1993-11-26 | 1998-02-23 | Patient infusion system for use with MRI |
Country Status (4)
Country | Link |
---|---|
US (3) | US5494036A (en) |
EP (3) | EP0864295A3 (en) |
JP (1) | JP2752909B2 (en) |
DE (1) | DE69417155T3 (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020115933A1 (en) * | 2001-02-14 | 2002-08-22 | Douglas Duchon | Fluid injector system |
US20020117668A1 (en) * | 1999-11-30 | 2002-08-29 | Jong-Sung Kim | X-ray image sensor and method for fabricating the same |
US20020143294A1 (en) * | 2001-02-14 | 2002-10-03 | Duchon Douglas J. | Catheter fluid control system |
US20020145122A1 (en) * | 2001-02-15 | 2002-10-10 | Systems And Methods For Detection And | Systems and methods for detection and measurement of elements in a medium |
US20020183616A1 (en) * | 2001-05-30 | 2002-12-05 | Acist Medical System, Inc. | Medical injection system |
US20020198496A1 (en) * | 1995-04-20 | 2002-12-26 | Duchon Douglas J. | System and method for multiple injection procedures on heart vessels |
US20030007891A1 (en) * | 1999-08-20 | 2003-01-09 | Wilson Robert F. | Apparatus and method of detecting fluid |
US20030028145A1 (en) * | 1995-04-20 | 2003-02-06 | Duchon Douglas J. | Angiographic injector system with multiple processor redundancy |
US20030050555A1 (en) * | 2001-04-30 | 2003-03-13 | Critchlow Richard G. | MR injector system with increased mobility and electromagnetic interference mitigation |
US20030122095A1 (en) * | 2001-12-07 | 2003-07-03 | Wilson Robert F. | Low pressure measurement devices in high pressure environments |
US20040030233A1 (en) * | 2000-06-02 | 2004-02-12 | Frazier Michael G. | Communication systems for use with magnetic resonance imaging systems |
US20040092885A1 (en) * | 2000-04-04 | 2004-05-13 | Douglas Duchon | Fluid management and component detection system |
US20040215490A1 (en) * | 1999-04-01 | 2004-10-28 | Duchon Douglas J | Integrated medical information management and medical device control system and method |
US20040215144A1 (en) * | 1995-04-20 | 2004-10-28 | Doug Duchon | System for detecting air |
US20050015056A1 (en) * | 2000-07-20 | 2005-01-20 | Douglas Duchon | Syringe plunger locking mechanism |
US7047994B2 (en) | 2002-05-03 | 2006-05-23 | Acist Medical Systems, Inc. | Stopcocks and methods of manufacture thereof |
US20060184124A1 (en) * | 2005-01-21 | 2006-08-17 | Cowan Kevin P | Injectors, injector systems and methods for injecting fluids |
US7101352B2 (en) | 2000-05-24 | 2006-09-05 | Acist Medical Systems, Inc. | Pressure sleeve assembly |
US7128729B2 (en) | 1995-04-20 | 2006-10-31 | Acist Medical Systems, Inc. | Angiographic injector system and method of use |
US7632245B1 (en) * | 2003-08-18 | 2009-12-15 | Medrad, Inc. | Devices, systems and methods for delivery of a fluid into a patient during a magnetic resonance procedure |
US20090312740A1 (en) * | 2005-12-27 | 2009-12-17 | Acist Medical Systems, Inc. | Balloon Inflation Device |
US7686800B2 (en) | 2000-01-07 | 2010-03-30 | Acist Medical Systems, Inc. | Anti-recoil catheter |
US7753885B2 (en) | 1995-04-20 | 2010-07-13 | Acist Medical Systems, Inc. | Angiographic injector and injection method |
US20100204574A1 (en) * | 1995-04-20 | 2010-08-12 | Duchon Douglas J | System and method for multiple injection procedures on heart vessels |
US8139948B2 (en) | 2006-06-12 | 2012-03-20 | Acist Medical Systems, Inc. | Process and system for providing electrical energy to a shielded medical imaging suite |
US20120226157A1 (en) * | 2002-05-30 | 2012-09-06 | Medrad, Inc. | Method of injecting fluids from a dual syringe injector system |
US8423125B2 (en) | 2004-11-09 | 2013-04-16 | Spectrum Dynamics Llc | Radioimaging |
US8445851B2 (en) | 2004-11-09 | 2013-05-21 | Spectrum Dynamics Llc | Radioimaging |
US8489176B1 (en) | 2000-08-21 | 2013-07-16 | Spectrum Dynamics Llc | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US8492725B2 (en) | 2009-07-29 | 2013-07-23 | Biosensors International Group Ltd. | Method and system of optimized volumetric imaging |
US8521253B2 (en) | 2007-10-29 | 2013-08-27 | Spectrum Dynamics Llc | Prostate imaging |
US8565860B2 (en) | 2000-08-21 | 2013-10-22 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system |
US8571881B2 (en) | 2004-11-09 | 2013-10-29 | Spectrum Dynamics, Llc | Radiopharmaceutical dispensing, administration, and imaging |
US8606349B2 (en) | 2004-11-09 | 2013-12-10 | Biosensors International Group, Ltd. | Radioimaging using low dose isotope |
US8610075B2 (en) | 2006-11-13 | 2013-12-17 | Biosensors International Group Ltd. | Radioimaging applications of and novel formulations of teboroxime |
US8615405B2 (en) | 2004-11-09 | 2013-12-24 | Biosensors International Group, Ltd. | Imaging system customization using data from radiopharmaceutical-associated data carrier |
US8620046B2 (en) | 2000-08-21 | 2013-12-31 | Biosensors International Group, Ltd. | Radioactive-emission-measurement optimization to specific body structures |
US8644910B2 (en) | 2005-07-19 | 2014-02-04 | Biosensors International Group, Ltd. | Imaging protocols |
US8676292B2 (en) | 2004-01-13 | 2014-03-18 | Biosensors International Group, Ltd. | Multi-dimensional image reconstruction |
US8837793B2 (en) | 2005-07-19 | 2014-09-16 | Biosensors International Group, Ltd. | Reconstruction stabilizer and active vision |
US8894974B2 (en) | 2006-05-11 | 2014-11-25 | Spectrum Dynamics Llc | Radiopharmaceuticals for diagnosis and therapy |
US8909325B2 (en) | 2000-08-21 | 2014-12-09 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US9040016B2 (en) | 2004-01-13 | 2015-05-26 | Biosensors International Group, Ltd. | Diagnostic kit and methods for radioimaging myocardial perfusion |
US9101713B2 (en) | 2013-03-12 | 2015-08-11 | Bayer Medical Care Inc. | Constant force syringe |
US9275451B2 (en) | 2006-12-20 | 2016-03-01 | Biosensors International Group, Ltd. | Method, a system, and an apparatus for using and processing multidimensional data |
US9316743B2 (en) | 2004-11-09 | 2016-04-19 | Biosensors International Group, Ltd. | System and method for radioactive emission measurement |
US9470801B2 (en) | 2004-01-13 | 2016-10-18 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
US9486573B2 (en) | 2013-03-14 | 2016-11-08 | Bayer Healthcare Llc | Fluid delivery system and method of fluid delivery to a patient |
US9649436B2 (en) | 2011-09-21 | 2017-05-16 | Bayer Healthcare Llc | Assembly method for a fluid pump device for a continuous multi-fluid delivery system |
US9943274B2 (en) | 2004-11-09 | 2018-04-17 | Spectrum Dynamics Medical Limited | Radioimaging using low dose isotope |
US10507319B2 (en) | 2015-01-09 | 2019-12-17 | Bayer Healthcare Llc | Multiple fluid delivery system with multi-use disposable set and features thereof |
US10537675B2 (en) | 2013-07-17 | 2020-01-21 | Bayer Healthcare Llc | Cartridge-based in-bore infuser |
US10964075B2 (en) | 2004-01-13 | 2021-03-30 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
US11374646B2 (en) | 2017-05-09 | 2022-06-28 | Innovere Medical Inc. | Systems and devices for wireless communication through an electromagnetically shielded window |
Families Citing this family (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5417213A (en) * | 1993-06-07 | 1995-05-23 | Prince; Martin R. | Magnetic resonance arteriography with dynamic intravenous contrast agents |
US5590654A (en) | 1993-06-07 | 1997-01-07 | Prince; Martin R. | Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent |
US5579767A (en) | 1993-06-07 | 1996-12-03 | Prince; Martin R. | Method for imaging abdominal aorta and aortic aneurysms |
EP0650739B1 (en) | 1993-10-28 | 2003-02-26 | Medrad, Inc. | Total system for contrast delivery |
DE69432582T2 (en) | 1993-10-28 | 2003-11-27 | Medrad, Inc. | System for the administration of liquids in several patients |
US5840026A (en) * | 1994-09-21 | 1998-11-24 | Medrad, Inc. | Patient specific dosing contrast delivery systems and methods |
US5814015A (en) * | 1995-02-24 | 1998-09-29 | Harvard Clinical Technology, Inc. | Infusion pump for at least one syringe |
US5800396A (en) * | 1995-11-15 | 1998-09-01 | Alcon Laboratories, Inc. | Surgical cassette adapter |
AU2551097A (en) * | 1996-03-29 | 1997-10-22 | Robert J. Ashcraft Jr. | Front-loading syringe adapter for front-loading medical injector |
DE19621393A1 (en) * | 1996-05-28 | 1997-12-04 | Claus H Dr Ing Backes | Injection device for magnetic resonance imaging |
US5919135A (en) * | 1997-02-28 | 1999-07-06 | Lemelson; Jerome | System and method for treating cellular disorders in a living being |
WO1999002210A1 (en) * | 1997-07-11 | 1999-01-21 | Novo Nordisk A/S | An apparatus for the registration of the setting of a medical device |
DE19736928C1 (en) * | 1997-08-25 | 1999-04-08 | Siemens Ag | Cordless mouse suitable for use in a surgery or operating theater |
US5924987A (en) * | 1997-10-06 | 1999-07-20 | Meaney; James F. M. | Method and apparatus for magnetic resonance arteriography using contrast agents |
DE19856803C1 (en) * | 1998-12-09 | 2000-06-29 | Siemens Ag | Drive for positioning actuators in strong magnetic fields, especially magnetic resonance systems, has fluid stepper motors directly in field region driven via networked magnetic valves |
USD428491S (en) * | 1999-06-29 | 2000-07-18 | Medrad, Inc. | Combined handle and display for a medical injector |
USD426891S (en) * | 1999-06-29 | 2000-06-20 | Medrad, Inc. | Injector head for a medical injector |
US6339718B1 (en) * | 1999-07-30 | 2002-01-15 | Medrad, Inc. | Programmable injector control |
WO2001008727A1 (en) | 1999-07-30 | 2001-02-08 | Medrad, Inc. | Injector systems and syringe adapters for use therewith |
AU1792401A (en) | 1999-11-24 | 2001-06-04 | Medrad, Inc. | Injectors, injector systems and injector control |
US6673033B1 (en) * | 1999-11-24 | 2004-01-06 | Medrad, Inc. | Injectors, injector systems and injector control |
US6471674B1 (en) | 2000-04-21 | 2002-10-29 | Medrad, Inc. | Fluid delivery systems, injector systems and methods of fluid delivery |
DE10030620A1 (en) * | 2000-06-28 | 2002-01-17 | Karlsruhe Forschzent | Device for injecting medical preparations under CT / MRI control |
US6936030B1 (en) * | 2000-11-08 | 2005-08-30 | Medrad, Inc. | Injector systems incorporating a base unit attached to a surface |
IL141137A0 (en) * | 2001-01-28 | 2002-02-10 | Caesaria Med Electronics Ltd | Liquid pump |
IL142446A (en) * | 2001-04-04 | 2009-07-20 | Caesarea Medical Electronics Ltd | Flow set and a method to identify said flow set by a liquid pump |
US7278962B2 (en) | 2001-04-12 | 2007-10-09 | Lmt Lammers Medical Technology Gmbh | Incubator for newborn and premature patients |
DE50100797D1 (en) * | 2001-04-12 | 2003-11-20 | Loenneker Lammers Torsten | Magnetic resonance imaging incubator |
US7512434B2 (en) * | 2001-05-08 | 2009-03-31 | Liebel-Flarsheim Company | Remotely powered injector |
WO2003006101A2 (en) * | 2001-07-10 | 2003-01-23 | Medrad, Inc. | Devices, systems and method for infusion of fluids |
JP3809114B2 (en) * | 2001-11-05 | 2006-08-16 | スーガン株式会社 | Channel switching device and contrast medium injection tube used in the device |
CN100409023C (en) * | 2001-12-21 | 2008-08-06 | 皇家飞利浦电子股份有限公司 | Electronic device for use in electromagnetic fields of an MRI apparatus |
AU2002366909A1 (en) * | 2001-12-21 | 2003-07-09 | Koninklijke Philips Electronics N.V. | Mri apparatus with low-frequency cable integrated into the patient carrier |
US7109974B2 (en) * | 2002-03-05 | 2006-09-19 | Matsushita Electric Industrial Co., Ltd. | Remote control system including an on-screen display (OSD) |
US20040030247A1 (en) * | 2002-03-13 | 2004-02-12 | Mark Trocki | Apparatus, systems and methods for facilitating multiple imaging procedures for a patient |
US7553295B2 (en) | 2002-06-17 | 2009-06-30 | Iradimed Corporation | Liquid infusion apparatus |
US7404809B2 (en) | 2004-10-12 | 2008-07-29 | Iradimed Corporation | Non-magnetic medical infusion device |
US7267661B2 (en) * | 2002-06-17 | 2007-09-11 | Iradimed Corporation | Non-magnetic medical infusion device |
WO2004000392A1 (en) * | 2002-06-25 | 2003-12-31 | Medrad, Inc. | Devices, systems and methods for injecting multiple fluids into a patient |
US7224143B2 (en) * | 2002-11-27 | 2007-05-29 | Medrad, Inc. | Continuous battery charger system |
JP4352120B2 (en) * | 2003-03-18 | 2009-10-28 | 独立行政法人理化学研究所 | Nuclear magnetic resonance apparatus |
JP2006522658A (en) * | 2003-04-08 | 2006-10-05 | メドラッド インコーポレーテッド | Fluid transport system, fluid transport device, and method for transporting hazardous fluid |
US20050107681A1 (en) * | 2003-07-23 | 2005-05-19 | Griffiths David M. | Wireless patient monitoring device for magnetic resonance imaging |
US7315109B1 (en) * | 2003-08-15 | 2008-01-01 | Medrad, Inc. | Actuators and fluid delivery systems using such actuators |
US9627097B2 (en) * | 2004-03-02 | 2017-04-18 | General Electric Company | Systems, methods and apparatus for infusion of radiopharmaceuticals |
US7222539B2 (en) * | 2004-06-04 | 2007-05-29 | Radi Medical Systems Ab | Sensor and guide wire assembly |
WO2006000415A1 (en) * | 2004-06-24 | 2006-01-05 | E-Z-Em, Inc. | Hydraulic injection system and injection method |
US7507221B2 (en) * | 2004-10-13 | 2009-03-24 | Mallinckrodt Inc. | Powerhead of a power injection system |
DE602005018518D1 (en) | 2004-10-21 | 2010-02-04 | Novo Nordisk As | INJECTION DEVICE WITH A PROCESSOR FOR COLLECTING OUTPUT INFORMATION |
US8221356B2 (en) | 2004-10-21 | 2012-07-17 | Novo Nordisk A/S | Medication delivery system with a detector for providing a signal indicative of an amount of a set and/or ejected dose of drug |
EP1812101A4 (en) * | 2004-11-16 | 2014-04-23 | Medrad Inc | Modeling of pharmaceutical propagation |
JP2006141498A (en) * | 2004-11-17 | 2006-06-08 | Medrad Inc | Method of injecting contrast agent and lesion plotting system |
JP2006141497A (en) * | 2004-11-17 | 2006-06-08 | Medrad Inc | Lesion plotting method and lesion plotting system |
HUE038724T2 (en) | 2004-11-24 | 2018-11-28 | Bayer Healthcare Llc | Devices and systems for fluid delivery |
US7775966B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | Non-invasive pressure measurement in a fluid adjustable restrictive device |
US8066629B2 (en) | 2005-02-24 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Apparatus for adjustment and sensing of gastric band pressure |
US7775215B2 (en) | 2005-02-24 | 2010-08-17 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device positioning and obtaining pressure data |
US8016744B2 (en) | 2005-02-24 | 2011-09-13 | Ethicon Endo-Surgery, Inc. | External pressure-based gastric band adjustment system and method |
US7658196B2 (en) | 2005-02-24 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | System and method for determining implanted device orientation |
US7927270B2 (en) | 2005-02-24 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | External mechanical pressure sensor for gastric band pressure measurements |
US7699770B2 (en) | 2005-02-24 | 2010-04-20 | Ethicon Endo-Surgery, Inc. | Device for non-invasive measurement of fluid pressure in an adjustable restriction device |
DE102006006952A1 (en) * | 2006-02-14 | 2007-08-23 | E-Z-Em, Inc. | MRI system |
RU2459247C2 (en) * | 2006-03-20 | 2012-08-20 | Ново Нордиск А/С | Electronic module for mechanical device for administering medical drugs |
US8152710B2 (en) | 2006-04-06 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Physiological parameter analysis for an implantable restriction device and a data logger |
US8870742B2 (en) | 2006-04-06 | 2014-10-28 | Ethicon Endo-Surgery, Inc. | GUI for an implantable restriction device and a data logger |
US7674244B2 (en) | 2006-05-23 | 2010-03-09 | Medrad, Inc. | Devices, systems and methods for detecting increase fluid levels in tissue |
US7475701B2 (en) * | 2006-05-24 | 2009-01-13 | Medrad, Inc. | Valve systems and injector system including such valve systems |
CN101534713A (en) * | 2006-07-17 | 2009-09-16 | 梅德拉股份有限公司 | Integrated medical imaging systems |
US20080061474A1 (en) * | 2006-09-11 | 2008-03-13 | Graham Packaging Company, Lp | Thermally stabilized adhesion promoting material for use in multilayer articles |
ES2376367T3 (en) * | 2006-10-11 | 2012-03-13 | Mallinckrodt Llc | INJECTOR WITH LOW POWER INPUT. |
CN101164637B (en) * | 2006-10-16 | 2011-05-18 | 重庆融海超声医学工程研究中心有限公司 | Ultrasonic therapeutic system capable of reducing electromagnetic interference to imaging equipment |
US8382704B2 (en) | 2006-12-29 | 2013-02-26 | Medrad, Inc. | Systems and methods of delivering a dilated slurry to a patient |
EP2097835B1 (en) | 2006-12-29 | 2018-05-30 | Bayer Healthcare LLC | Patient-based parameter generation systems for medical injection procedures |
WO2008082937A2 (en) * | 2006-12-29 | 2008-07-10 | Medrad, Inc. | Modeling of pharmaceutical propagation |
US9056164B2 (en) * | 2007-01-01 | 2015-06-16 | Bayer Medical Care Inc. | Radiopharmaceutical administration methods, fluid delivery systems and components thereof |
US20080172006A1 (en) * | 2007-01-15 | 2008-07-17 | Medrad, Inc. | Patency Check Compatible Check Valve And Fluid Delivery System Including The Patency Check Compatible Check Valve |
US8105282B2 (en) | 2007-07-13 | 2012-01-31 | Iradimed Corporation | System and method for communication with an infusion device |
WO2009012023A1 (en) * | 2007-07-17 | 2009-01-22 | Medrad, Inc. | Devices, systems and methods for determination of parameters for a procedure, for estimation of cardiopulmonary function and for fluid delivery |
WO2009026060A2 (en) * | 2007-08-20 | 2009-02-26 | Mallinckrodt Inc. | Fluid driven medical injectors |
US8187163B2 (en) | 2007-12-10 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Methods for implanting a gastric restriction device |
JP5295556B2 (en) * | 2007-12-12 | 2013-09-18 | 株式会社根本杏林堂 | Imaging room communication system and chemical injection device |
US8100870B2 (en) | 2007-12-14 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Adjustable height gastric restriction devices and methods |
US8142452B2 (en) | 2007-12-27 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8377079B2 (en) | 2007-12-27 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Constant force mechanisms for regulating restriction devices |
US8192350B2 (en) | 2008-01-28 | 2012-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for measuring impedance in a gastric restriction system |
US8337389B2 (en) | 2008-01-28 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Methods and devices for diagnosing performance of a gastric restriction system |
US8591395B2 (en) | 2008-01-28 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Gastric restriction device data handling devices and methods |
US8221439B2 (en) | 2008-02-07 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using kinetic motion |
US7844342B2 (en) | 2008-02-07 | 2010-11-30 | Ethicon Endo-Surgery, Inc. | Powering implantable restriction systems using light |
US8114345B2 (en) | 2008-02-08 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | System and method of sterilizing an implantable medical device |
US8057492B2 (en) | 2008-02-12 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Automatically adjusting band system with MEMS pump |
US8591532B2 (en) | 2008-02-12 | 2013-11-26 | Ethicon Endo-Sugery, Inc. | Automatically adjusting band system |
US8034065B2 (en) | 2008-02-26 | 2011-10-11 | Ethicon Endo-Surgery, Inc. | Controlling pressure in adjustable restriction devices |
US8608484B2 (en) | 2008-03-04 | 2013-12-17 | Medrad, Inc. | Dynamic anthropomorphic cardiovascular phantom |
US8233995B2 (en) | 2008-03-06 | 2012-07-31 | Ethicon Endo-Surgery, Inc. | System and method of aligning an implantable antenna |
US8187162B2 (en) | 2008-03-06 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Reorientation port |
US8315449B2 (en) | 2008-06-24 | 2012-11-20 | Medrad, Inc. | Identification of regions of interest and extraction of time value curves in imaging procedures |
US9421330B2 (en) * | 2008-11-03 | 2016-08-23 | Bayer Healthcare Llc | Mitigation of contrast-induced nephropathy |
US20110077718A1 (en) * | 2009-09-30 | 2011-03-31 | Broadcom Corporation | Electromagnetic power booster for bio-medical units |
JP6174486B2 (en) | 2010-06-04 | 2017-08-02 | バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC | System and method for planning and monitoring of multidose radiopharmaceutical use in radiopharmaceutical injectors |
CN103221071B (en) | 2010-06-24 | 2016-09-21 | 拜耳医药保健有限公司 | The modeling of medicine transmission and the parameter of infusion protocol produce |
WO2013061222A1 (en) * | 2011-10-25 | 2013-05-02 | Koninklijke Philips Electronics N.V. | Magnetic field data modem |
JP6104889B2 (en) * | 2012-04-10 | 2017-03-29 | 株式会社根本杏林堂 | Medical imaging system |
DK3489667T3 (en) | 2012-05-14 | 2021-08-02 | Bayer Healthcare Llc | SYSTEMS AND METHODS FOR DETERMINING PROTOCOLS FOR PHARMACEUTICAL LIQUID INJECTION BASED ON X-RAY TUBE TENSION |
JP6108953B2 (en) | 2012-06-15 | 2017-04-05 | キヤノン株式会社 | Medical device |
WO2014121402A1 (en) | 2013-02-07 | 2014-08-14 | Sunnybrook Research Institute | Systems, devices and methods for transmitting electrical signals through a faraday cage |
US9555379B2 (en) | 2013-03-13 | 2017-01-31 | Bayer Healthcare Llc | Fluid path set with turbulent mixing chamber, backflow compensator |
WO2014201358A2 (en) | 2013-06-14 | 2014-12-18 | Bayer Medical Care Inc. | Portable fluid delivery system |
RU2677925C1 (en) * | 2013-12-12 | 2019-01-22 | Конинклейке Филипс Н.В. | Method to enable standard alternating current/direct current power adapters to operate in high magnetic fields |
WO2015106107A1 (en) | 2014-01-10 | 2015-07-16 | Bayer Medical Care Inc. | Single-use disposable set connector |
CN105194761A (en) * | 2015-09-08 | 2015-12-30 | 广州瀚诚电子产品有限公司 | Infusion monitoring and controlling system and method |
EP3384552B1 (en) | 2015-12-03 | 2023-07-05 | Innovere Medical Inc. | Systems, devices and methods for wireless transmission of signals through a faraday cage |
US10898638B2 (en) | 2016-03-03 | 2021-01-26 | Bayer Healthcare Llc | System and method for improved fluid delivery in multi-fluid injector systems |
US9757071B1 (en) | 2016-04-29 | 2017-09-12 | Bayer Healthcare Llc | System and method for suppressing noise from electrocardiographic (ECG) signals |
TWI651107B (en) | 2016-06-15 | 2019-02-21 | 拜耳保健公司 | Multi-use disposable system and syringe therefor |
WO2018140341A1 (en) | 2017-01-24 | 2018-08-02 | Bayer Healthcare Llc | Injector systems and syringe adapters for use therewith |
AU2018323442B2 (en) | 2017-08-31 | 2024-06-27 | Bayer Healthcare Llc | Fluid path impedance assessment for improving fluid delivery performance |
US11786652B2 (en) | 2017-08-31 | 2023-10-17 | Bayer Healthcare Llc | System and method for drive member position and fluid injector system mechanical calibration |
JP7317724B2 (en) | 2017-08-31 | 2023-07-31 | バイエル・ヘルスケア・エルエルシー | Liquid injector system volume compensation system and method |
WO2019046260A1 (en) | 2017-08-31 | 2019-03-07 | Bayer Healthcare Llc | Method for dynamic pressure control in a fluid injector system |
EP3675931B1 (en) | 2017-08-31 | 2021-08-11 | Bayer Healthcare LLC | Injector pressure calibration system and method |
BR112020012459A2 (en) | 2017-12-20 | 2020-11-24 | Bracco Injeneering Sa | adjustable clock frequency in an injection head assembly for a sibling system |
US11268506B2 (en) | 2017-12-22 | 2022-03-08 | Iradimed Corporation | Fluid pumps for use in MRI environment |
CN109009112A (en) * | 2018-07-16 | 2018-12-18 | 深圳麦科田生物医疗技术有限公司 | A kind of magnetic resonance compatible transfusion system based on faraday cup |
US12119872B2 (en) * | 2023-03-17 | 2024-10-15 | Lucidity Medical, LLC | LiFi system for MRI |
Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3523523A (en) | 1966-06-30 | 1970-08-11 | Contraves Ag | Power driven medical injector syringe with electromagnetic coupling means |
US3812843A (en) | 1973-03-12 | 1974-05-28 | Lear Siegler Inc | Method and apparatus for injecting contrast media into the vascular system |
US3880138A (en) | 1973-03-12 | 1975-04-29 | Lear Siegler Inc | Method for injecting contrast media into the vascular system |
US3888239A (en) | 1974-06-21 | 1975-06-10 | Morton K Rubinstein | Fluid injection system |
US4006736A (en) | 1974-11-27 | 1977-02-08 | Medrad, Inc. | Angiographic injector |
US4044757A (en) | 1976-01-14 | 1977-08-30 | The Kendall Company | Cholangiography device and method |
EP0010550A1 (en) | 1978-09-27 | 1980-05-14 | Carl Schenck Ag | Transport container mounted on castors |
EP0105550A1 (en) | 1982-09-20 | 1984-04-18 | Koninklijke Philips Electronics N.V. | Nuclear magnetic resonance tomography apparatus including a Faraday cage |
US4502488A (en) | 1983-01-13 | 1985-03-05 | Allied Corporation | Injection system |
US4585009A (en) | 1983-02-28 | 1986-04-29 | E. R. Squibb & Sons, Inc. | Strontium-rubidium infusion pump with in-line dosimetry |
JPS61155846A (en) | 1984-12-28 | 1986-07-15 | Toshiba Corp | Magnetic resonance imaging device |
US4613328A (en) | 1984-10-22 | 1986-09-23 | Cecil Boyd | Bio-medical injector apparatus |
US4619653A (en) | 1979-04-27 | 1986-10-28 | The Johns Hopkins University | Apparatus for detecting at least one predetermined condition and providing an informational signal in response thereto in a medication infusion system |
US4651099A (en) | 1984-12-17 | 1987-03-17 | Nmr Associates, Ltd. 1983-I | Scan room for magnetic resonance imager |
US4677980A (en) | 1984-06-06 | 1987-07-07 | Medrad, Inc. | Angiographic injector and angiographic syringe for use therewith |
US4695271A (en) | 1986-02-03 | 1987-09-22 | Liebel-Flarsheim Company | Angiographic injector |
US4694837A (en) | 1985-08-09 | 1987-09-22 | Picker International, Inc. | Cardiac and respiratory gated magnetic resonance imaging |
US4737712A (en) | 1986-12-31 | 1988-04-12 | General Electric Company | Isolated power transfer and patient monitoring system with interference rejection useful with NMR apparatus |
US4840620A (en) | 1986-04-07 | 1989-06-20 | Terumo Corporation | Portable pump for infusing medicine into a living body |
JPH01165010A (en) | 1987-12-21 | 1989-06-29 | Mitsubishi Electric Corp | Composite type magnetic head |
US4854324A (en) | 1984-01-31 | 1989-08-08 | Medrad, Inc. | Processor-controlled angiographic injector device |
JPH01223943A (en) | 1988-03-01 | 1989-09-07 | Fuji Electric Co Ltd | Receiving device of nuclear magnetic resonance tomographic imaging apparatus |
US4885538A (en) | 1988-08-19 | 1989-12-05 | The Regents Of The University Of California | Low data rate low noise serial digital communication link for magnetic resonance imaging systems |
JPH01303139A (en) | 1988-06-01 | 1989-12-07 | Toshiba Corp | Magnetic resonance imaging device |
US4893082A (en) | 1989-02-13 | 1990-01-09 | Letcher Iii John H | Noise suppression in magnetic resonance imaging |
US4901141A (en) | 1988-12-05 | 1990-02-13 | Olympus Corporation | Fiberoptic display for a video image |
US4981137A (en) | 1988-04-28 | 1991-01-01 | Hitachi, Ltd. | Magnetic resonance imaging apparatus |
US5027824A (en) | 1989-12-01 | 1991-07-02 | Edmond Dougherty | Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances |
US5030201A (en) | 1989-11-24 | 1991-07-09 | Aubrey Palestrant | Expandable atherectomy catheter device |
US5038785A (en) | 1985-08-09 | 1991-08-13 | Picker International, Inc. | Cardiac and respiratory monitor with magnetic gradient noise elimination |
EP0495287A2 (en) | 1991-01-16 | 1992-07-22 | Praxair Technology, Inc. | Magnetic resonance imaging |
US5134373A (en) | 1988-03-31 | 1992-07-28 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus employing optical viewing screen |
EP0518100A1 (en) | 1991-06-14 | 1992-12-16 | Spectrospin Ag | Servo drive |
JPH0584296A (en) | 1991-05-14 | 1993-04-06 | Nemoto Kiyourindou:Kk | Injection apparatus for medical use |
US5236417A (en) | 1992-09-22 | 1993-08-17 | Utah Pioneer Medical, Inc. | Cholangiography catheter apparatus and method |
US5244461A (en) | 1989-03-10 | 1993-09-14 | Graseby Medical Limited | Infusion pump with occlusion sensitive shutoff |
US5269762A (en) | 1992-04-21 | 1993-12-14 | Sterling Winthrop, Inc. | Portable hand-held power assister device |
US5300031A (en) | 1991-06-07 | 1994-04-05 | Liebel-Flarsheim Company | Apparatus for injecting fluid into animals and disposable front loadable syringe therefor |
US5323776A (en) | 1992-10-15 | 1994-06-28 | Picker International, Inc. | MRI compatible pulse oximetry system |
US5342298A (en) | 1992-07-31 | 1994-08-30 | Advanced Cardiovascular Systems, Inc. | Automated fluid pressure control system |
US5352979A (en) | 1992-08-07 | 1994-10-04 | Conturo Thomas E | Magnetic resonance imaging with contrast enhanced phase angle reconstruction |
US5354273A (en) | 1992-12-14 | 1994-10-11 | Mallinckrodt Medical, Inc. | Delivery apparatus with pressure controlled delivery |
US5357959A (en) | 1993-04-16 | 1994-10-25 | Praxair Technology, Inc. | Altered dipole moment magnetic resonance imaging method |
US5411485A (en) | 1993-04-19 | 1995-05-02 | Hyprotek | Catheter access system and method |
US5417213A (en) | 1993-06-07 | 1995-05-23 | Prince; Martin R. | Magnetic resonance arteriography with dynamic intravenous contrast agents |
JPH07178169A (en) | 1993-12-24 | 1995-07-18 | Nemoto Kyorindo:Kk | Mri injecting device |
US5464014A (en) | 1991-10-03 | 1995-11-07 | Sugan Company Limited | Display device for bioelectrical and biophysical phenomena |
US5472403A (en) | 1993-05-11 | 1995-12-05 | The Regents Of The University Of California | Device for automatic injection of radionuclide |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01165010U (en) * | 1988-05-09 | 1989-11-17 | ||
JP4002657B2 (en) * | 1998-02-04 | 2007-11-07 | 日本合成化学工業株式会社 | Resist pattern forming method |
-
1993
- 1993-11-26 US US08/158,055 patent/US5494036A/en not_active Ceased
-
1994
- 1994-10-14 JP JP6249255A patent/JP2752909B2/en not_active Expired - Fee Related
- 1994-10-25 EP EP98107728A patent/EP0864295A3/en not_active Withdrawn
- 1994-10-25 EP EP94116843A patent/EP0655220B2/en not_active Expired - Lifetime
- 1994-10-25 DE DE69417155T patent/DE69417155T3/en not_active Expired - Lifetime
- 1994-10-25 EP EP99118068A patent/EP0968733A3/en not_active Ceased
-
1998
- 1998-02-23 US US09/027,852 patent/USRE36648E/en not_active Expired - Lifetime
-
2000
- 2000-11-16 US US09/714,907 patent/USRE37602E1/en not_active Expired - Lifetime
Patent Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3523523A (en) | 1966-06-30 | 1970-08-11 | Contraves Ag | Power driven medical injector syringe with electromagnetic coupling means |
US3812843A (en) | 1973-03-12 | 1974-05-28 | Lear Siegler Inc | Method and apparatus for injecting contrast media into the vascular system |
US3880138A (en) | 1973-03-12 | 1975-04-29 | Lear Siegler Inc | Method for injecting contrast media into the vascular system |
US3888239A (en) | 1974-06-21 | 1975-06-10 | Morton K Rubinstein | Fluid injection system |
US4006736A (en) | 1974-11-27 | 1977-02-08 | Medrad, Inc. | Angiographic injector |
US4044757A (en) | 1976-01-14 | 1977-08-30 | The Kendall Company | Cholangiography device and method |
EP0010550A1 (en) | 1978-09-27 | 1980-05-14 | Carl Schenck Ag | Transport container mounted on castors |
US4619653A (en) | 1979-04-27 | 1986-10-28 | The Johns Hopkins University | Apparatus for detecting at least one predetermined condition and providing an informational signal in response thereto in a medication infusion system |
EP0105550A1 (en) | 1982-09-20 | 1984-04-18 | Koninklijke Philips Electronics N.V. | Nuclear magnetic resonance tomography apparatus including a Faraday cage |
US4502488A (en) | 1983-01-13 | 1985-03-05 | Allied Corporation | Injection system |
US4585009A (en) | 1983-02-28 | 1986-04-29 | E. R. Squibb & Sons, Inc. | Strontium-rubidium infusion pump with in-line dosimetry |
US4854324A (en) | 1984-01-31 | 1989-08-08 | Medrad, Inc. | Processor-controlled angiographic injector device |
US4677980A (en) | 1984-06-06 | 1987-07-07 | Medrad, Inc. | Angiographic injector and angiographic syringe for use therewith |
US4613328A (en) | 1984-10-22 | 1986-09-23 | Cecil Boyd | Bio-medical injector apparatus |
US4651099A (en) | 1984-12-17 | 1987-03-17 | Nmr Associates, Ltd. 1983-I | Scan room for magnetic resonance imager |
JPS61155846A (en) | 1984-12-28 | 1986-07-15 | Toshiba Corp | Magnetic resonance imaging device |
US5038785A (en) | 1985-08-09 | 1991-08-13 | Picker International, Inc. | Cardiac and respiratory monitor with magnetic gradient noise elimination |
US4694837A (en) | 1985-08-09 | 1987-09-22 | Picker International, Inc. | Cardiac and respiratory gated magnetic resonance imaging |
US4695271A (en) | 1986-02-03 | 1987-09-22 | Liebel-Flarsheim Company | Angiographic injector |
US4840620A (en) | 1986-04-07 | 1989-06-20 | Terumo Corporation | Portable pump for infusing medicine into a living body |
US4737712A (en) | 1986-12-31 | 1988-04-12 | General Electric Company | Isolated power transfer and patient monitoring system with interference rejection useful with NMR apparatus |
JPH01165010A (en) | 1987-12-21 | 1989-06-29 | Mitsubishi Electric Corp | Composite type magnetic head |
JPH01223943A (en) | 1988-03-01 | 1989-09-07 | Fuji Electric Co Ltd | Receiving device of nuclear magnetic resonance tomographic imaging apparatus |
US5134373A (en) | 1988-03-31 | 1992-07-28 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus employing optical viewing screen |
US4981137A (en) | 1988-04-28 | 1991-01-01 | Hitachi, Ltd. | Magnetic resonance imaging apparatus |
JPH01303139A (en) | 1988-06-01 | 1989-12-07 | Toshiba Corp | Magnetic resonance imaging device |
US4885538A (en) | 1988-08-19 | 1989-12-05 | The Regents Of The University Of California | Low data rate low noise serial digital communication link for magnetic resonance imaging systems |
US4901141A (en) | 1988-12-05 | 1990-02-13 | Olympus Corporation | Fiberoptic display for a video image |
US4893082A (en) | 1989-02-13 | 1990-01-09 | Letcher Iii John H | Noise suppression in magnetic resonance imaging |
US5244461A (en) | 1989-03-10 | 1993-09-14 | Graseby Medical Limited | Infusion pump with occlusion sensitive shutoff |
US5030201A (en) | 1989-11-24 | 1991-07-09 | Aubrey Palestrant | Expandable atherectomy catheter device |
US5027824A (en) | 1989-12-01 | 1991-07-02 | Edmond Dougherty | Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances |
EP0495287A2 (en) | 1991-01-16 | 1992-07-22 | Praxair Technology, Inc. | Magnetic resonance imaging |
JPH0584296A (en) | 1991-05-14 | 1993-04-06 | Nemoto Kiyourindou:Kk | Injection apparatus for medical use |
US5300031A (en) | 1991-06-07 | 1994-04-05 | Liebel-Flarsheim Company | Apparatus for injecting fluid into animals and disposable front loadable syringe therefor |
EP0518100A1 (en) | 1991-06-14 | 1992-12-16 | Spectrospin Ag | Servo drive |
US5464014A (en) | 1991-10-03 | 1995-11-07 | Sugan Company Limited | Display device for bioelectrical and biophysical phenomena |
US5269762A (en) | 1992-04-21 | 1993-12-14 | Sterling Winthrop, Inc. | Portable hand-held power assister device |
US5342298A (en) | 1992-07-31 | 1994-08-30 | Advanced Cardiovascular Systems, Inc. | Automated fluid pressure control system |
US5352979A (en) | 1992-08-07 | 1994-10-04 | Conturo Thomas E | Magnetic resonance imaging with contrast enhanced phase angle reconstruction |
US5236417A (en) | 1992-09-22 | 1993-08-17 | Utah Pioneer Medical, Inc. | Cholangiography catheter apparatus and method |
US5323776A (en) | 1992-10-15 | 1994-06-28 | Picker International, Inc. | MRI compatible pulse oximetry system |
US5354273A (en) | 1992-12-14 | 1994-10-11 | Mallinckrodt Medical, Inc. | Delivery apparatus with pressure controlled delivery |
US5357959A (en) | 1993-04-16 | 1994-10-25 | Praxair Technology, Inc. | Altered dipole moment magnetic resonance imaging method |
US5411485A (en) | 1993-04-19 | 1995-05-02 | Hyprotek | Catheter access system and method |
US5472403A (en) | 1993-05-11 | 1995-12-05 | The Regents Of The University Of California | Device for automatic injection of radionuclide |
US5417213A (en) | 1993-06-07 | 1995-05-23 | Prince; Martin R. | Magnetic resonance arteriography with dynamic intravenous contrast agents |
JPH07178169A (en) | 1993-12-24 | 1995-07-18 | Nemoto Kyorindo:Kk | Mri injecting device |
Non-Patent Citations (34)
Title |
---|
"Magnetic Resonance Injector Operation Manual," Medrad, Inc. (Nov. 17, 1987). |
"Magnetic Resonance Workbook," Raven Press Ltd., 1185 Avenue of the Americas, New York, New York 10036 (1990). |
"Market Scan," Diagnostic Imaging, p. 61 (Sep. 1988). |
Brandt-Zawadski, Michael et al., "Magnetic Resonance Imaging of the Central Nervous System," Raven Press, Ltd., 1185 Avenue of the Americas, New york, New York 10036 (1987). |
Bronskill, Michael J. et al., "Site-Planning for Magnetic Resonance Imaging Systems," AAPM Report No. 20, published for the American Association of Physicists in Medicine by the American Institute of Physics, Library of Congress Catalog Card No. 87-70832 (Dec., 1986). |
G. Neil Holland, M. Phil., "The Design of a Digital RF Transmitter/Receiver (DTR) for Magnetic Resonance Imaging," Picker International, Inc., dated 1990. |
GE Medical Systems brochure, "Signa Profile," dated 1994. |
GE Medical Systems Technical Publication entitled "Signa(R) Site Planning," Direction 15002, Revision 14 (dated 1990). |
GE Medical Systems Technical Publication entitled "Signa® Site Planning," Direction 15002, Revision 14 (dated 1990). |
Hargraves, Allison, "Medrad Targets Market for MRI," Allison Hargraves, Pittsburgh Times, V7, n18, p. 1(2), Dec. 21, 1987. |
Karlik, S. J. et al., "Patent Anesthesia and Monitoring at a 1.5-T MRI Installation," Magnetic Resonance in Medicine 7, pp. 210-221 (1988). |
Kaufman et al., "Nuclear Magnetic Resonance Imaging in Medicine," Ikagu-Shoin Medical Publishers, Inc., 50 Rockefeller Plaza, New York, New York 10020 (1981). |
Liao, Samuel Y. "Light Transmittance and RF Shielding Effectiveness of a Gold Film on a Glass Substrate," IEEE Transactions on Electromagnetic Compatability, pp. 211-216 (Nov. 1975). |
Liebel-Flarsheim Company brochure, "Angiomat CT-Digital Injection System for Enhanced CT Scans," dated 1988. |
Liebel-Flarsheim Company brochure, "Angiomat CT—Digital Injection System for Enhanced CT Scans," dated 1988. |
Mardiguian, Michel, "Controlling Radiated Emissions by Design," Chapman & Hall, 115 Fifth Avenue, New York, New York, pp. 237-255 (1992). |
Medex publication entitled, "AS2000 Injector," facsimile transmission date of Jan. 25, 1989. |
Medrad, Inc. brochure, "In perfect synch for better images-The Medrad Mark V Console with Control Room Monitor," Control No. 85106-00-BA-02 Nov. 1988. |
Medrad, Inc. brochure, "In perfect synch for better images—The Medrad Mark V Console with Control Room Monitor," Control No. 85106-00-BA-02 Nov. 1988. |
Medrad, Inc. brochure, "The first and only true injection system-Medrad Mark V. System," Control No. 85106-00-BA-01 Rev. A Dec. 1988. |
Medrad, Inc. brochure, "The first and only true injection system—Medrad Mark V. System," Control No. 85106-00-BA-01 Rev. A Dec. 1988. |
Medrad, Inc., "MCT and MCT Plus Injection System-Operation Manual-KMP 810P," dated 1991. |
Medrad, Inc., "MCT and MCT Plus Injection System—Operation Manual—KMP 810P," dated 1991. |
Medrad, Inc., "Medrad Mark V Plus Injector Operation Manual," KMP 805 Rev. P, dated 1990. |
Morrison, Ralph et al., "Grounding and Shielding in Facilities," John Wiley & Sons, Inc., pp. 168-207 (1990). |
Nadel, Scott N. et al., "Detection of Acute Avascular Necrosis of the Femoral Head in Dogs: Dynamic Contrast-Enhanced MR Imaging vs Spin-Echo and Stir Sequences," AJR: 159, pp. 1255-1261 (Dec. 1992). |
Ott, Henry W., "Noise Reduction Techniques in Electronic Systems," AT&T Bell Laboratories, published by John Wiley & Sons, Inc., pp. 159-202 (1988). |
Pope, Katherine S., "An Infusion Pump That Works in MRI," Anesth Analg 1993:77: p. 645, Letters to the Editor. |
Ross, Ronald J. et al., "Site Location and Requirements for the Installation of a Nuclear Magnetic Resonance Scanning Unit," Magnetic Resonance Imaging: vol. 1, No. 1, pp. 29-33 (accepted Feb., 1982). |
Runge, Val M. et al., "Assessment of Cerebral Perfusion by First-Pass, Dynamic, Contrast-Enhanced, Steady-State Free-Precession MR Imaging," AJR:160, Dec. 1993. |
Saini, Sanjay et al., "Technical Report: In Vitro Evaluation of a Mechanical Injector for Infusion of Magnetic Resonance Contrast Media," Investigative Radiology, vol. 26/No. 8, pp. 748-751 (Aug. 1991). |
Shellock, Frank G. et al., "Monitoring Heart Rate and Oxygen Saturation with a Fiber-optic Pulse Oximeter During MR Imaging," American Journal of Roentgenology, pp. 663-664 (Mar., 1992). |
Shellock, Frank, "Monitoring During MRI," Medical Electronics, pp. 93-97 (Sep., 1986). |
Wolff, Steven D. et al., "Magnetization Transfer Contrast: MR Imaging of the Knee", Radiology: Jun., 1991, pp. 623-628. |
Cited By (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7662124B2 (en) | 1995-04-20 | 2010-02-16 | Acist Medical Systems, Inc. | System and method for multiple injection procedures on heart vessels |
US20070055202A1 (en) * | 1995-04-20 | 2007-03-08 | Acist Medical Systems, Inc. | System for detecting air |
US20100249587A1 (en) * | 1995-04-20 | 2010-09-30 | Acist Medical Systems, Inc. | Angiographic injector and injection method |
US20100204574A1 (en) * | 1995-04-20 | 2010-08-12 | Duchon Douglas J | System and method for multiple injection procedures on heart vessels |
US7753885B2 (en) | 1995-04-20 | 2010-07-13 | Acist Medical Systems, Inc. | Angiographic injector and injection method |
US20020198496A1 (en) * | 1995-04-20 | 2002-12-26 | Duchon Douglas J. | System and method for multiple injection procedures on heart vessels |
US20050267363A1 (en) * | 1995-04-20 | 2005-12-01 | Doug Duchon | Dual port syringe |
US7128729B2 (en) | 1995-04-20 | 2006-10-31 | Acist Medical Systems, Inc. | Angiographic injector system and method of use |
US7153288B2 (en) | 1995-04-20 | 2006-12-26 | Acist Medical Systems, Inc. | System for detecting air |
US7959605B2 (en) | 1995-04-20 | 2011-06-14 | Acist Medical Systems, Inc. | Angiographic injector and injection method |
US20030028145A1 (en) * | 1995-04-20 | 2003-02-06 | Duchon Douglas J. | Angiographic injector system with multiple processor redundancy |
US8082018B2 (en) | 1995-04-20 | 2011-12-20 | Acist Medical Systems, Inc. | System and method for multiple injection procedures on heart vessels |
US7357785B2 (en) | 1995-04-20 | 2008-04-15 | Acist Medical Systems, Inc. | System for detecting air |
US6945959B2 (en) | 1995-04-20 | 2005-09-20 | Acist Medical Systems, Inc. | System for detecting air |
US20040215144A1 (en) * | 1995-04-20 | 2004-10-28 | Doug Duchon | System for detecting air |
US7267666B1 (en) | 1995-04-20 | 2007-09-11 | Acist Medical Systems, Inc. | Angiographic injector system with multiple processor redundancy |
US20040215490A1 (en) * | 1999-04-01 | 2004-10-28 | Duchon Douglas J | Integrated medical information management and medical device control system and method |
US20030007891A1 (en) * | 1999-08-20 | 2003-01-09 | Wilson Robert F. | Apparatus and method of detecting fluid |
US20020117668A1 (en) * | 1999-11-30 | 2002-08-29 | Jong-Sung Kim | X-ray image sensor and method for fabricating the same |
US7686800B2 (en) | 2000-01-07 | 2010-03-30 | Acist Medical Systems, Inc. | Anti-recoil catheter |
US20040092885A1 (en) * | 2000-04-04 | 2004-05-13 | Douglas Duchon | Fluid management and component detection system |
US7169135B2 (en) | 2000-04-04 | 2007-01-30 | Acist Medical Systems, Inc. | Fluid management and component detection system |
US7101352B2 (en) | 2000-05-24 | 2006-09-05 | Acist Medical Systems, Inc. | Pressure sleeve assembly |
US6704592B1 (en) | 2000-06-02 | 2004-03-09 | Medrad, Inc. | Communication systems for use with magnetic resonance imaging systems |
US20040030233A1 (en) * | 2000-06-02 | 2004-02-12 | Frazier Michael G. | Communication systems for use with magnetic resonance imaging systems |
US7221159B2 (en) | 2000-06-02 | 2007-05-22 | Medrad, Inc. | Communication systems for use with magnetic resonance imaging systems |
US7283860B2 (en) | 2000-06-02 | 2007-10-16 | Medrad, Inc. | Communication systems for use with magnetic resonance imaging systems |
US7566326B2 (en) | 2000-07-20 | 2009-07-28 | Acist Medical Systems, Inc. | Syringe plunger locking mechanism |
US20050015056A1 (en) * | 2000-07-20 | 2005-01-20 | Douglas Duchon | Syringe plunger locking mechanism |
US8565860B2 (en) | 2000-08-21 | 2013-10-22 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system |
US8489176B1 (en) | 2000-08-21 | 2013-07-16 | Spectrum Dynamics Llc | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US9370333B2 (en) | 2000-08-21 | 2016-06-21 | Biosensors International Group, Ltd. | Radioactive-emission-measurement optimization to specific body structures |
US8620046B2 (en) | 2000-08-21 | 2013-12-31 | Biosensors International Group, Ltd. | Radioactive-emission-measurement optimization to specific body structures |
US8909325B2 (en) | 2000-08-21 | 2014-12-09 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
US8262610B2 (en) * | 2001-02-14 | 2012-09-11 | Acist Medical Systems, Inc. | Catheter fluid control system |
US20080183131A1 (en) * | 2001-02-14 | 2008-07-31 | Acist Medical Systems, Inc. | Catheter Fluid Control System |
US20020143294A1 (en) * | 2001-02-14 | 2002-10-03 | Duchon Douglas J. | Catheter fluid control system |
US7566320B2 (en) | 2001-02-14 | 2009-07-28 | Acist Medical Systems, Inc. | Fluid injector system |
US20100004533A1 (en) * | 2001-02-14 | 2010-01-07 | Acist Medical Systems, Inc. | Fluid injector system |
US8079999B2 (en) | 2001-02-14 | 2011-12-20 | Acist Medical Systems, Inc. | Fluid injector system |
US20020115933A1 (en) * | 2001-02-14 | 2002-08-22 | Douglas Duchon | Fluid injector system |
US20020145122A1 (en) * | 2001-02-15 | 2002-10-10 | Systems And Methods For Detection And | Systems and methods for detection and measurement of elements in a medium |
US6969865B2 (en) | 2001-02-15 | 2005-11-29 | Acist Medical Systems, Inc. | Systems and methods for detection and measurement of elements in a medium |
US20030050555A1 (en) * | 2001-04-30 | 2003-03-13 | Critchlow Richard G. | MR injector system with increased mobility and electromagnetic interference mitigation |
US9901671B2 (en) | 2001-05-30 | 2018-02-27 | Acist Medical Systems, Inc. | Medical injection system |
US20020183616A1 (en) * | 2001-05-30 | 2002-12-05 | Acist Medical System, Inc. | Medical injection system |
US20090076383A1 (en) * | 2001-05-30 | 2009-03-19 | Acist Medical Systems, Inc. | Medical injection system |
US7308300B2 (en) | 2001-05-30 | 2007-12-11 | Acist Medical Systems, Inc. | Medical injection system |
US7905246B2 (en) | 2001-12-07 | 2011-03-15 | Acist Medical Systems, Inc. | Low pressure measurement devices in high pressure environments |
US20030122095A1 (en) * | 2001-12-07 | 2003-07-03 | Wilson Robert F. | Low pressure measurement devices in high pressure environments |
US20110114197A1 (en) * | 2001-12-07 | 2011-05-19 | Acist Medical Systems, Inc. | Low pressure measurement devices in high pressure environments |
US20100019178A1 (en) * | 2001-12-07 | 2010-01-28 | Acist Medical Systems, Inc. | Low pressure measurement devices in high pressure environments |
US8590555B2 (en) | 2001-12-07 | 2013-11-26 | Acist Medical Systems, Inc. | Low pressure measurement devices in high pressure environments |
US20060180202A1 (en) * | 2001-12-07 | 2006-08-17 | Acist Medical Systems, Inc. | Low pressure measurement devices in high pressure environments |
US7389788B2 (en) | 2001-12-07 | 2008-06-24 | Acist Medical Systems, Inc. | Low pressure measurement devices in high pressure environments |
US7617837B2 (en) | 2001-12-07 | 2009-11-17 | Acist Medical Systems, Inc. | Low pressure measurement devices in high pressure environments |
US7047994B2 (en) | 2002-05-03 | 2006-05-23 | Acist Medical Systems, Inc. | Stopcocks and methods of manufacture thereof |
US20120226157A1 (en) * | 2002-05-30 | 2012-09-06 | Medrad, Inc. | Method of injecting fluids from a dual syringe injector system |
US8574200B2 (en) * | 2002-05-30 | 2013-11-05 | Medrad, Inc. | Dual syringe injector system |
US7632245B1 (en) * | 2003-08-18 | 2009-12-15 | Medrad, Inc. | Devices, systems and methods for delivery of a fluid into a patient during a magnetic resonance procedure |
US9040016B2 (en) | 2004-01-13 | 2015-05-26 | Biosensors International Group, Ltd. | Diagnostic kit and methods for radioimaging myocardial perfusion |
US10964075B2 (en) | 2004-01-13 | 2021-03-30 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
US8676292B2 (en) | 2004-01-13 | 2014-03-18 | Biosensors International Group, Ltd. | Multi-dimensional image reconstruction |
US9470801B2 (en) | 2004-01-13 | 2016-10-18 | Spectrum Dynamics Llc | Gating with anatomically varying durations |
US9943278B2 (en) | 2004-06-01 | 2018-04-17 | Spectrum Dynamics Medical Limited | Radioactive-emission-measurement optimization to specific body structures |
US8606349B2 (en) | 2004-11-09 | 2013-12-10 | Biosensors International Group, Ltd. | Radioimaging using low dose isotope |
US9943274B2 (en) | 2004-11-09 | 2018-04-17 | Spectrum Dynamics Medical Limited | Radioimaging using low dose isotope |
US8586932B2 (en) | 2004-11-09 | 2013-11-19 | Spectrum Dynamics Llc | System and method for radioactive emission measurement |
US8615405B2 (en) | 2004-11-09 | 2013-12-24 | Biosensors International Group, Ltd. | Imaging system customization using data from radiopharmaceutical-associated data carrier |
US10136865B2 (en) | 2004-11-09 | 2018-11-27 | Spectrum Dynamics Medical Limited | Radioimaging using low dose isotope |
US8620679B2 (en) | 2004-11-09 | 2013-12-31 | Biosensors International Group, Ltd. | Radiopharmaceutical dispensing, administration, and imaging |
US9316743B2 (en) | 2004-11-09 | 2016-04-19 | Biosensors International Group, Ltd. | System and method for radioactive emission measurement |
US8423125B2 (en) | 2004-11-09 | 2013-04-16 | Spectrum Dynamics Llc | Radioimaging |
US8571881B2 (en) | 2004-11-09 | 2013-10-29 | Spectrum Dynamics, Llc | Radiopharmaceutical dispensing, administration, and imaging |
US8445851B2 (en) | 2004-11-09 | 2013-05-21 | Spectrum Dynamics Llc | Radioimaging |
US8748826B2 (en) | 2004-11-17 | 2014-06-10 | Biosensor International Group, Ltd. | Radioimaging methods using teboroxime and thallium |
US7670315B2 (en) | 2005-01-21 | 2010-03-02 | Medrad, Inc. | Injectors, injector systems and methods for injecting fluids |
US20060184124A1 (en) * | 2005-01-21 | 2006-08-17 | Cowan Kevin P | Injectors, injector systems and methods for injecting fluids |
US8837793B2 (en) | 2005-07-19 | 2014-09-16 | Biosensors International Group, Ltd. | Reconstruction stabilizer and active vision |
US8644910B2 (en) | 2005-07-19 | 2014-02-04 | Biosensors International Group, Ltd. | Imaging protocols |
US8758294B2 (en) | 2005-12-27 | 2014-06-24 | Acist Medical Systems, Inc. | Balloon inflation device |
US20090312740A1 (en) * | 2005-12-27 | 2009-12-17 | Acist Medical Systems, Inc. | Balloon Inflation Device |
US8894974B2 (en) | 2006-05-11 | 2014-11-25 | Spectrum Dynamics Llc | Radiopharmaceuticals for diagnosis and therapy |
US8139948B2 (en) | 2006-06-12 | 2012-03-20 | Acist Medical Systems, Inc. | Process and system for providing electrical energy to a shielded medical imaging suite |
US8610075B2 (en) | 2006-11-13 | 2013-12-17 | Biosensors International Group Ltd. | Radioimaging applications of and novel formulations of teboroxime |
US9275451B2 (en) | 2006-12-20 | 2016-03-01 | Biosensors International Group, Ltd. | Method, a system, and an apparatus for using and processing multidimensional data |
US8521253B2 (en) | 2007-10-29 | 2013-08-27 | Spectrum Dynamics Llc | Prostate imaging |
US8748827B2 (en) | 2009-07-29 | 2014-06-10 | Biosensors International Group, Ltd. | Method and system of optimized volumetric imaging |
US8492725B2 (en) | 2009-07-29 | 2013-07-23 | Biosensors International Group Ltd. | Method and system of optimized volumetric imaging |
US9700672B2 (en) | 2011-09-21 | 2017-07-11 | Bayer Healthcare Llc | Continuous multi-fluid pump device, drive and actuating system and method |
US9649436B2 (en) | 2011-09-21 | 2017-05-16 | Bayer Healthcare Llc | Assembly method for a fluid pump device for a continuous multi-fluid delivery system |
US9101713B2 (en) | 2013-03-12 | 2015-08-11 | Bayer Medical Care Inc. | Constant force syringe |
US9486573B2 (en) | 2013-03-14 | 2016-11-08 | Bayer Healthcare Llc | Fluid delivery system and method of fluid delivery to a patient |
US10543312B2 (en) | 2013-03-14 | 2020-01-28 | Bayer Healthcare Llc | Fluid delivery system and method of fluid delivery to a patient |
US10537675B2 (en) | 2013-07-17 | 2020-01-21 | Bayer Healthcare Llc | Cartridge-based in-bore infuser |
US11602591B2 (en) | 2013-07-17 | 2023-03-14 | Bayer Healthcare Llc | Cartridge-based in-bore infuser |
US10507319B2 (en) | 2015-01-09 | 2019-12-17 | Bayer Healthcare Llc | Multiple fluid delivery system with multi-use disposable set and features thereof |
US11491318B2 (en) | 2015-01-09 | 2022-11-08 | Bayer Healthcare Llc | Multiple fluid delivery system with multi-use disposable set and features thereof |
US11374646B2 (en) | 2017-05-09 | 2022-06-28 | Innovere Medical Inc. | Systems and devices for wireless communication through an electromagnetically shielded window |
Also Published As
Publication number | Publication date |
---|---|
EP0655220A1 (en) | 1995-05-31 |
USRE36648E (en) | 2000-04-11 |
DE69417155T3 (en) | 2006-11-09 |
EP0655220B2 (en) | 2005-09-14 |
EP0968733A2 (en) | 2000-01-05 |
EP0968733A3 (en) | 2000-10-04 |
US5494036A (en) | 1996-02-27 |
DE69417155T2 (en) | 1999-08-12 |
EP0864295A3 (en) | 1999-03-10 |
JPH07204176A (en) | 1995-08-08 |
EP0864295A2 (en) | 1998-09-16 |
JP2752909B2 (en) | 1998-05-18 |
DE69417155D1 (en) | 1999-04-22 |
EP0655220B1 (en) | 1999-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37602E1 (en) | Patient infusion system for use with MRI | |
US7283860B2 (en) | Communication systems for use with magnetic resonance imaging systems | |
US5432544A (en) | Magnet room display of MRI and ultrasound images | |
US6936030B1 (en) | Injector systems incorporating a base unit attached to a surface | |
US7991451B2 (en) | Method of operation for a magnetic resonance imaging suite | |
US6400155B2 (en) | In-room MRI display terminal remote control system | |
US7753882B2 (en) | Non-magnetic medical infusion device | |
RU2424014C2 (en) | Ultrasound therapeutic system | |
US20060079758A1 (en) | Non-magnetic medical infusion device | |
JP5295556B2 (en) | Imaging room communication system and chemical injection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: BAYER MEDICAL CARE INC., PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:MEDRAD, INC.;REEL/FRAME:032250/0165 Effective date: 20131107 |