USRE36469E - Packaging for semiconductor logic devices - Google Patents

Packaging for semiconductor logic devices Download PDF

Info

Publication number
USRE36469E
USRE36469E US08534177 US53417795A USRE36469E US RE36469 E USRE36469 E US RE36469E US 08534177 US08534177 US 08534177 US 53417795 A US53417795 A US 53417795A US RE36469 E USRE36469 E US RE36469E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
die
wafer section
memory module
memory
leads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08534177
Inventor
Alan G. Wood
Tim J. Corbett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0475Sockets for IC's or transistors for TAB IC's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. varying supply voltage
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • H01L23/057Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body the leads being parallel to the base
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

A logic module design is disclosed which incorporates an unencapsulated wafer section or sections. The disclosed module is an improvement over previous designs in that it is less expensive and easier to manufacture due to the reduced number of components and the complexity of the components, is faster and consumes less power because of its shorter trace lengths and smaller size, and is more reliable as a result of its greatly reduced number of interconnects.

Description

.Iadd.This is a continuation-in-part application of U.S. application Ser. No. 07/311,728 filed Feb. 15, 1989, issued Feb. 12, 1991 as U.S. Pat. No. 4,992,850; which is a continuing application of U.S. application Ser. No. 07/252,606, filed Sep. 30, 1988, issued Feb. 6, 1990 as U.S. Pat No. 4,899,107..Iaddend.

FIELD OF THE INVENTION

This invention relates to logic modules for computers. More specifically, it describes an improved design for packaging memory die or other logic die for a computer or other electronic device. Package types comprising the invention could include a single in-line memory module (SIMM), a small outline "J" lead (SOJ) package, a "gull wing" package, a thin small outline package (TSOP), single in-line package (SIP), or a fine pitch package memory.

BACKGROUND OF THE INVENTION

Memory for computers has evolved continually, both in form and density, since computers have become a consumer electronic product. The personal computer market started about the time that the 16 kilobit (K) dynamic random access memory (DRAM) was the largest selling memory chip. Computers at that time were sold usually with 32 16K chips for 64 kilobytes (KLB) of memory, which was soldered to the computer's motherboard. There was not usually much of a path for adding more memory to the motherboard. There were no provisions for taking out the soldered memory when the next generation chip, the 64K, was developed, as the prevailing thought in the industry was that the average computer user would not require more than 64 KB of memory.

As the 64K DRAM became the chip of choice for computer manufacturers, it was common to add several 64K DRAMs. Computers often were populated with 16 DRAMs for 128 KB of memory, or 32 DRAMs for 256 KB of memory. This memory was also soldered in, and there was no way to add more memory to the motherboard of the computer, as, again, few thought that computer users would need more than 256 KB of memory. When it became necessary to have more memory, computer users were forced to purchase memory expansion boards which fit into a slot in the computer. These expansion boards were expensive since, in addition to purchasing the memory, users had to pay for other logic components, connectors, sockets, and a printed circuit board (PCB) so the slot memory would function. This slot memory was not only more expensive than motherboard memory, it was slower because it used a bank switching method of memory access rather than being accessed directly by the central processing unit (CPU), as memory on the motherboard is accessed. In addition, the board memory often used the same port addresses as other add-ons such as modem cards and graphics cards. This resulted in multiple types of boards answering calls to the port by the computer, thereby rendering the two boards incompatible and causing the computer to operate unreliably.

The problems caused by soldering memory to the motherboard lead to the development of more flexible ways to add memory to computers so that the needs of different types of computer users could be met. The SIMM was developed to fulfill this need. SIMMs are not soldered to the computer's motherboard, but are inserted into a slot on the motherboard. A single SIMM can hold several DRAMs and often comes with 256 KB of memory. Several slots are usually available on the motherboard so computer users can buy additional memory as they need it. To further enhance the flexibility, some computers have provisions for replacing 256 KB SIMMs with one megabyte (MB) SIMMs, even though when the SIMMs first came out, 1 MB SIMMs were not available.

In addition to its ease of installation, the SIMM also provides a means for packing a large amount of memory into a relatively small area of the computer, since the RAMs on a SIMM are inserted vertically into the computer. RAM manufacturers also profit from the SIMM style of packaging, since it adds more value to the RAMs than it costs to produce. Due to its flexibility and ease of installation, the SIMM has become the standard for personal computer memory in the industry. This form of packaging memory has gone from a means for packaging DRAMs, to also include read-only memory (ROM) and static random access memory (SRAM). While the SIMM has many advantages for the computer user, it requires several manufacturing process operations. A typical 1 MB SIMM has nine 1-megabit (Meg) DRAMs and nine decoupling capacitors, which serve to make the power to the DRAMs more uniform. With 20 pins per DRAM, and two pins to each of the capacitors, there are 198 solder points required to connect the components to the PCB. There are also approximately 20 die to wire connections (typically aluminum to gold wire bonds) and 20 wire to leadframe connections (typically gold wire to gold- or silver-plated lead frame) required for each 1 Meg DRAM to connect the silicon die to the leads of the DRAM package, thereby making a minimum of 558 solder and wire bond connections on a typical 1 MB SIMM comprising nine 1 Meg DRAMs. Additionally, there are some double bonds required for VCC and VSS, as well as connections for grounding the substrate.

With the number of solder and wire bond connections on the typical SIMM, it becomes imperative to have an extremely low connection failure rate. Given the number of connections on the average SIMM, a solder joint/wire bond failure rate of just 0.001 percent means that over 50 percent of SIMMs would fail due to a poor solder joint. Making a reliable connection between two surfaces by soldering varies with many factors. Temperature of the solder, temperature of the surfaces to be joined, residue or oxidation on the surfaces that are to be joined (intermetallic compounds or IMC), contaminated solder, and other factors all affect the success of joining two surfaces by soldering.

Solder joints can be inadvertently broken before the SIMM is shipped, for example due to assembly stresses. While those failures occurring during assembly will most often be caught during a functional test before the product is shipped, they cause expensive rework and scrap. Even if a product passes the most rigorous functional testing, it can fail in the field because of a poor solder connection. Shipping itself stresses the part, and the stress that a customer induces on the SIMM while installing it in the computer can cause a poor but functional solder joint to fail. Sometimes a part will operate at room temperature, but will fail at the elevated temperatures found inside the cabinet of a computer. This failure is sometimes due to a wire bond which makes adequate contact at room temperature, but, at elevated temperatures, lifts up off the contact due to a difference of thermal expansion between the two adjoining surfaces.

The electrical characteristics of a SIMM can also be a concern. The nine 20-pin DRAMs and the nine decoupling capacitors on a typical 1 MB SIMM require many traces, the actual number depending on the PCB layout. In any case, the large number of traces on a standard sized PCB requires minimal spacing between the traces. As the output drivers within the DRAMs create intermittent current flow on associated conductive traces, the traces behave as inducters, creating voltage surges which have the potential for creating logic errors. With the addition of radio frequency and electromagnetic interferences occurring within the cabinet of the average personal computer, the myriad of potentially logic-damaging transient voltages is compounded. The relatively long traces that connect the DRAM with the edge connector pins on the PCB also slow the memory access times significantly.

A SIMM has an edge connector on the PCB which has several contact pads that are inserted into a socket in a computer, thereby allowing the transfer of data between the module and the computer. This type of connection is just one of many commonly used on memory and logic modules. Single in-line package (SIP) memory modules are similar to SIMMs, but they have metal leads soldered to the edge connectors on the PCB. The leads are either soldered to the computer's motherboard, or inserted into a socket on the motherboard.

SUMMARY OF THE INVENTION

An object of this invention is to provide a logic module design which is smaller than previous modules, thereby requiring less space in devices into which it is installed.

Another object of this invention is to provide a logic module which is more reliable than present designs of modules by requiring fewer solder and wire bond connections.

A third object of this invention is to provide a logic module which is easier to assemble by virtue of its decreased number of components. This reduced number of components and ease of assembly also serves to decrease the costs involved with producing the module while providing an equal amount of memory or other logic.

Finally, it is another object of this invention to provide a logic module with better operating performance than previous logic module designs. This is accomplished by reducing the length of traces the signal must travel though thereby reducing the propagation delay of the signal.

These objects of the present invention are attained by manufacturing a die with means for allowing input/output (I/O) pads to the electronic device into which the module will be installed as part of the die itself. This extra circuitry would effectively perform the electrical function of a PCB (printed circuit board), thereby allowing connection from the I/O pads to the electronic device into which the invention is installed. This extra circuitry is accomplished either by laying down metal layers on top of the die as additional steps in the fabrication process of the die, or by using a flex circuit with tape automated bonding (TAB) techniques on a regular production die. This would provide a dense module which is extremely small compared to previous designs.

In the instance of a memory array, several unsingulated production die can be electrically connected, allowing for a module which performs as a SIMM, but would be much smaller in size and would be manufactured without a PCB. Also, several singulated die could be used, but would require a structure, a "die mount," to support the die which would not be required on an inventive embodiment comprising a single wafer section.

Various elements of possible embodiments are described below.

A die mount is an optional element. The die mount would be used in embodiments incorporating multiple wafer sections, but could also be used in single wafer section designs. The die mount serves to support the die and to draw heat away from the operating die. This mount can be constructed of a metal such as aluminum, or a thermally conductive nonmetal material. The material comprising the die mount is chosen for its ability to provide a solid mount, to act as a heat sink to draw the heat away from the die, and its manufacturability. The shape of the die mount is designed for added surface area to enhance its effectiveness as a heat sink for the die. Maximizing the surface area of the mount should therefore be a consideration during the design of the mount. The die mount can be inexpensively manufactured since most shapes appropriate for the mount lend themselves well to an extruded manufacturing process.

The die used in the invention can take several forms:

1) The invention can comprise a single integrated die containing all logic required for the module and fabricated specifically for use as an element of the invention (i.e. an integrated die). Some previous memory module designs incorporate up to nine die, with each die individually packaged in DRAM form and soldered to a PCB. An integrated die for use as a memory module would have memory storage cells, supporting circuitry, and I/O pads for connection to the electronic device into which the invention will be installed. The I/O pads can be manufactured into the die in the form of additional metal layers on the top of the die, or as a flex circuit coupled with die attach locations (bond pads) on the die, said flex circuit having multiple metal layers comprising traces and forming I/O pads for the electronic device. The metal layers or flex circuit would provide the same electrical functionality as a PCB in a typical memory module design.

In embodiments comprising additional metal layers fabricated on top of the die and forming I/O pads, there would be only one or two connection points with the electronic device into which the invention is installed (depending on whether the module is soldered or socketed onto the electronic device), which is an improvement over previous designs. Previous designs of memory modules have several connections in the form of traces between the die and the I/O lead. There are connections between the die pad and the component lead, between the component package lead and a solder pad on the module PCB, and between the edge connector pin on the PCB and the electronic device. The present invention reduces these and incorporates some of them on the silicon, thereby making the steps much more automated.

2) The die can also comprise a single piece of substrate using a number of die which are not fabricated specifically for the inventive module. In an inventive module designed as memory, for instance, a single wafer section could comprise two or more adjacent RAM die which have not been singulated (i.e. have not been separated from each other) by a die saw. These die are thereby considered unsingulated. The unsingulated die would be handled as a single component, thereby reducing the complexity of the assembly process. Using a plurality of die insures maximum use of existing design and process equipment as is known to the manufacturer and is well established in the industry.

A disadvantage to this type of die would be that it requires a test to find two or more adjacent functional die on the wafer. However, depending on the allowable size of the module, it is possible to have a combination of nonfunctional and functional die, but not use the nonfunctional die. In another case, a natural redundancy exists by using logic devices with multiple data outs DQ's) as, for example, three ×4 DRAMs and employing the best 9 out of 12 DQ's. An inventive module using ×4 DRAMs could use 9 out of 12 DQ's across three 1 Mbit×4 DRAMs (actually three 4 Mbit DRAMs, each DRAM having four DQ's), and thereby supply the same amount of memory as would be found on a module employing nine 1 Mbit×1 DRAMs. Selection of the desired functional die or functional DQ's could be made at any level required (probe and/or final test) via fusible interconnects or other features allowing selection or deselection techniques.

3) The invention could also incorporate more than one die attached to a die mount. A module designed as memory could contain two or more regular production RAM die which have been singulated, more than one integrated die added to increase the memory density on the module, or a combination of singulated die and integrated die.

Using a number of regular production die is an advantage over using a specially designed integrated die in that it is not necessary for a company already manufacturing semiconductors to design a new die. Also, using a number of singulated die is an advantage over using a number of unsingulated die in that it is not necessary to test for adjacent functioning die on the wafer. Using singulated die, however, increases the number of components necessary to assemble the module and adds complexity to the alignment of the die in TAB.

When using multiple die, it is again possible to increase the number of functional units by using die with more than one DQ, for instance by using a ×4 DRAM. If one array fails at test, it would be possible to use another array on the die, thereby greatly reducing scrap. This would, of course, require replacement of the TAB film connecting the nonfunctional quadrant to the leads with a TAB film to connect the leads with the functional quadrant, but if the nonfunctional quadrants are found before the die are packaged they would not have to be scrapped. Methods of testing die before they are packaged are described in U.S. Pat. No. 4,899,107 which is incorporated herein by reference.

In fabricating the inventive module comprising multiple die and a support member having a groove thereon, the support member receives multiple wafer sections. The wafer sections are attached to the die mount in much the same way as a die is attached to a lead frame in a conventional manufacturing process of a logic device. Adhesive means or tape means are two such attachment methods. Note that the groove in the support member correctly aligns the die and maximizes the surface area of the mount to improve its effectiveness as a heat sink and is not necessary to ensure the functionality of the invention. It is also possible to attach a single wafer section to a die mount, and may be desireable under certain circumstances. For example, a manufacturer assembling two types of inventive modules, some with singulated die and some with unsingulated die or an integrated die, may want to use a die mount on all products to maintain a consistent form factor. Also, depending on the current used by a particular die, excessive heat could be generated by the die and therefore require a mount in order to dissipate the heat.

I/O pads are formed from a flex circuit or from metal layers laid down on top of the die during the die fabrication process. Said I/O leads are coupled with conductive means on the electronic device, thereby allowing the transfer of information between the die and the electronic device. The coupling means on a memory module should be such that the electronic device can address the memory module in byte data widths (×8, ×16, etc.), or in widths specified for the proper operation of the electronic device, with pinouts complying with JEDEC standards, or with specifications required by the electronic device. Inventive modules used for purposes other than memory would also comply with JEDEC standards, or with specifications required by the electronic device.

When a die mount is used with a die in which leads are formed from a flex circuit, the I/O pads on the tape are fixed to the edge of the die mount to allow an edge connector to couple with the electronic device. The I/O pads on the edge connector of the die mount are then connected to the electronic device. This connection can be made through a socket, by connecting leads to the die mount and soldering or socketing the leads, or by other workable means.

In the embodiment in which metal layers are laid down on top of the die as additional steps in the fabrication process, the I/O leads are formed by the terminating ends of the metal layers to form an edge connector to couple with the electronic device. The I/O pads on the edge connector of the die are then connected to the electronic device. This connection can be made through TAB, through a socket, by connecting leads to the die and soldering or socketing the leads, or by other workable means.

The flex circuits of TAB have come into increasing use over the past few years to provide an electrical pathway between two points. The polyimide which separates the internal traces is an insulator rated for very high temperatures and is quite inert and stable. These characteristics make it an excellent material in which to embed copper traces. The tape can encase a number of traces between flexible nonconductive layers of polyimide and can provide an electrical function similar to a PCB. The tape is designed and manufactured specifically for its intended application in a form specified by product designers, following much the same design-to-manufacturer path that a PCB would follow. Also similar to a PCB, the tape can be assembled in multiple layers to accommodate space restrictions.

TAB has an advantage over conventional wire bond techniques in that one multilayer polyimide tape design would enable all connections to be performed during one simultaneous process step. The module manufacturer would purchase the multilayer copper traces as a one-piece assembly, which could have a chip capacitor already installed, if necessary. TAB is also more reliable than traditional wire bond techniques due to its strength. Finally, the pads on a die could be "bumped" with a noble metal, thereby making the pads less susceptible to corrosion than conventional wire bonds and facilitating their coupling with contacts on the flex circuit. It is also possible to connect the contacts on the flex circuit using wirebonding or by using a conductive adhesive paste such as that available from Johnson Matthey of San Diego, Calif.

Instead of a flex circuit, the electrical pathway from the die bond pads to the I/O pads which attach to the electronic device can be fabricated from metal layers laid down an top of the die. The number of layers of metal, as with the number of layers in the flex circuit design, depends on the complexity of the module's function. Most PCBs, as used with SIMMs, are two or four layers, and the number of layers required for the invention should correspond.

After the I/O pads are formed, from either the flex circuit or metal mask layers on the surface of the die, the I/O pads must be connected by some means to the electronic device. Leads can be attached to the I/O pads by means described later, or a flex circuit can be used to attach the I/O pads from the die to the electronic device, both of which are described later in this document.

It is known that typical room lighting can disturb a charge in a memory cell of a DRAM. Normally a DRAM is encapsulated in plastic or ceramic that prevents light from reaching the die thus protecting it from potentially damaging environmental moisture and contact with foreign objects. The invention can also be encapsulated, but encapsulation is not necessary. If, however, the die on the invention is not encapsulated, it may be necessary to coat the surface of the die to shield the cells and other circuitry. Nitride layers such as silicon nitride and silicon dioxide are routinely used in the semiconductor industry, and would protect the die from moisture and mobile ions. It is alternately possible to provide a layer of oxide over the nitride in order to provide optical protection and foreign body protection. Methods of applying scratch protection and light block include drop dispense and conformal coatings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a cross sectional side view of one embodiment of the invention incorporating a flex circuit which tapers into an input/output (I/O) pad. An optional lead is shown which can be attached to the I/O pad formed from the flex circuit. The lead would be soldered to vias on the electronic device in throughhole technology or plugged into a socket on the electronic device;

FIG. 2 shows a cross sectional side view of a second embodiment of the invention incorporating gull wing leads which would be soldered to solder pads on the electronic device in surface mount technology;

FIG. 3 shows an embodiment of the invention incorporating a die mount and a flex circuit which tapers to expose the traces of the flex tape, thereby providing means for coupling with an I/O lead;

FIG. 4 shows an embodiment similar to that of FIG. 3 with a different means for connecting an I/O lead;

FIG. 5 shows an isometric view of the embodiment of FIG. 4;

FIG. 6 shows an embodiment of the invention incorporating a die which uses layers of conductive material separated by layers of nonconductive material to function as a printed circuit board (PCB) of previous modules;

FIG. 7 shows an embodiment of the invention incorporating gull wing leads;

FIG. 8 shows an embodiment of the invention incorporating a die mount;

FIG. 9 shows an embodiment of the invention incorporating a die mount and a single in-line package (SIP) lead;

FIG. 10 shows an embodiment of the invention incorporating a die mount and surface mount zigzag in-line package (ZIP) leads;

FIG. 11 shows an embodiment of the invention with modified SIP leads; and

FIG. 12 shows a method of connecting decoupling capacitors to one embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIGS. 1-5 and 12 show embodiments of the invention incorporating a die 10 manufactured for use in a conventional package, but packaged as an element of the invention. These embodiments use a tape automated bonding (TAB) flex circuit to act as a functional equivalent of a printed circuit board (PCB) used with previous module designs. FIGS. 6-11 show embodiments of the invention incorporating a die 10 which has had additional conductive layers 16 fabricated on the surface of the die during the die manufacturing process. These additional layers 16 function as the PCB of previous module designs.

Note that in the figures below, the relative sizes of each of the elements may not be shown in their actual proportions. For example, the die pads 18 are very small as compared with the overall size of the die 10, but are shown as being quite large in order to provide sufficient detail within the figures. Similarly, the flex circuit 12 is actually somewhat thinner than the die 10, but is shown as being only slightly thinner in order to provide sufficient detail.

FIG. 1 shows one embodiment of the invention. The bond pads 18 on the surface of a die 10 are bumped with a conductive substance 20, usually a noble metal, to facilitate bonding with a flex circuit 12. The flex circuit 12 contains internal layers of a conductive material 22 such as copper separated with layers of a nonconductive material 24 such as polyimide. The traces 22 and nonconductive layers 24 therefore make up the flex circuit 12. The required number of internal layers of conductive material 22 of the flex circuit 12 is dependent on the complexity of the die 10. For a memory application, two or four layers should be sufficient, as a PCB for a memory SIMM generally comprises two or four layers, and the flex circuit 12 is the functional equivalent of the PCB of a SIMM. The flex circuit 12 of FIG. 1 shows four layers of traces 22.

The trace layers 22 of the flex circuit 12 form a single planar layer 26 on one end of the flex circuit 12 with each layer 22 remaining electrically isolated. The planar ends 26 of the trace layers 22 are exposed to allow connection with the electronic device (not shown) into which the inventive module will be installed. These exposed ends 26 therefore form the input/output (I/O) pads of the module. In one embodiment of the invention, the I/O pads 26 of the flex circuit 12 are connected directly to the electronic device by way of a socket or by TAB. FIG. 1, however, shows a SIP lead 28 attached to the I/O pads 26, the number of leads 28 corresponding to the number of exposed I/O pads 26 and determined by the requirements of the electronic device. If it is possible that shorting might occur on the edge of the die 10, the lead 28 must be electrically isolated from the die 10 with a layer of nonconductive material 30, such as polyimide. The leads 28 are electrically attached to the I/O pads 26 and therefore the die 10. This can be accomplished by bumping a solder or noble metal on the surface of the I/O pads 26, contacting the leads, and reflowing the solder in a hot air convection furnace, an infrared reflow furnace, with a laser, or by other workable means.

FIG. 2 shows an embodiment of the invention incorporating a gull wing package. The die pads !8 on a die 10 are bumped with a conductive material 20, usually a noble metal, to facilitate bonding with a flex circuit 12. The flex circuit 12 tapers on either side of the die 10, with the traces 22 within the flex circuit 12 forming an exposed planar layer 26 on either end. The exposed traces 26 thereby form the I/O pads 26. Leads 28 are attached to the I/O pads 26 in such a manner as to form a gull wing package. If shorting along the edge of the die 10 can occur from contact with the leads 28, provisions must be made to prevent such shorting by means such as an insulating layer 30 from a material such as polyimide. From FIG. 2, a method for manufacturing a package with leads 28 on all four sides can be easily determined by one of skill in the art.

FIG. 3 shows an embodiment of the invention comprising a die mount 40. The die mount 40 serves to provide support for the die 10, to act as a heat sink for the die 10, and to allow more than one die 10 to comprise the invention. One (or more) die 10 is received in a groove in the die mount 40 which allows for accurate alignment of the die 10. The die 10 is attached to the die mount 40 by means known in the art, such as by adhesive means or by tape means. Die pads 18 on the die 10 are bumped with a conductive material 20, usually a noble metal, to facilitate coupling with a flex circuit 12. The flex circuit 12 tapers at one end, and the traces 22 within the flex circuit 12 form a planer layer with each layer 22 electrically isolated. The traces 22 are exposed on one end 26 and thereby form I/O pads 26. The I/O pads 26 can be coupled directly with the electronic device (not shown), by means previously described, or leads 28 can be connected to the I/O pads 26. If leads 28 are not used, the inventive module can be received in a socket on the electronic device which couples the I/O pads 26 with the electronic device, or the I/O pads 26 can be coupled with pads on the electronic device by means such as a flex circuit. If leads 28 are used, the leads 28 can be received in a socket on the electronic device, or soldered to vias on the electronic device. If the die mount 40 is manufactured from a conductive material such as aluminum, an insulating layer 30 manufactured from a material such as polyimide must separate the conductive leads 28 from the conductive mount 40.

FIG. 4 shows an embodiment of the invention comprising a die mount 40 similar to that shown in FIG. 3, but with different means for attaching leads 28 to the flex circuit 12. The die 10 is received in a groove in the die mount 40 which allows for accurate alignment of the die 10. The die 10 is attached to the die mount 40 by means known in the art, such as by adhesive means or by tape means. Die pads 18 on the die 10 are bumped with a conductive material 20, usually a noble metal, to facilitate coupling with a flex circuit 12. Pads 42 on the flex circuit 12 are coupled with inner traces 22 and form I/O pads 42. The I/O pads 42 can be coupled directly with the electronic device, or leads 28 can be connected to the I/O pads 42 as shown. If leads 28 are not used, the inventive module can be received in a socket on the electronic device, or the I/O pads 42 can be coupled with pads on the electronic device by means such as a flex circuit. If leads 28 are used, the leads 28 can be received in a socket on the electronic device, or soldered to vias on the electronic device. If the die mount 40 is conductive, an insulating material 30 must separate the conductive leads 28 from the conductive mount 40.

FIG. 5 shows an isometric view of the embodiment of FIG. 4, with multiple die. The invention herein comprises: wafer sections (die) 10 with logic cells (not shown), supporting circuitry (not shown), and bond pads 18; a die mount 40 which supports the wafer sections 10; leads 28, with each lead electrically coupled to a bond pad 18 via a flex circuit 12, with the flex circuit 12 located on top of the die 10. (Note that the die pads 18, which are found on either end of the die 10, are covered on one end in FIG. 9 by the leads 28.) If the die mount 40 is made of a conductive material, it will be necessary to insulate the leads 28 from the die mount 40 with a layer of insulating material 30, such as polyimide. If the die mount 40 is made of a nonconductive material, this layer of insulating material 30 would not be necessary.

The die 10 of the invention will contain a number of bond pads 18 with each pad 18 electrically coupled to an I/O lead 28 attached to the die mount 40. While an 1 MB SIMM has approximately 558 solder/wire bond connections, a SIMM of the same memory density incorporating the invention would have about 30.

The inventive module design is much easier to assemble than previous designs due, in part, to its reduced number of components. Previous designs of memory modules, for example, require up to nine RAMs to be soldered to a PCB. The die are attached to a lead frame, and a wire is attached from each of the bond pads on the RAM to the leads on the lead frame. The die and lead frame are then encapsulated in a plastic or ceramic package. A PCB must be designed and manufactured, then a number of RAMs are soldered to it.

By contrast, on the disclosed invention the one (or more) die is attached to a die mount. Bond pads on the die are electrically coupled to the leads by means such as wire bonding or TAB. The one (or more) die is attached to a die mount. An embodiment of the invention incorporating an integrated die requires, for a 30 lead memory module, 60 interconnects instead of over 550 for a memory module manufactured with previous designs. There is no conventional plastic encapsulation required for the invention, and no PCB since the layout of the TAB replaces the traces which would normally be found on a PCB. In addition, the reduction in assembly steps reduces the assembly stress placed upon the memory module components, thereby increasing reliability.

FIG. 6 shows an embodiment of the invention comprising a die 10 which has layers 16 of conductive and insulative layers added. The die 10 and bond pads 18 can use the same masks used by a die manufactured for use as a commodity semiconductor, or can be manufactured as a custom device. In either case, layers 16 of conductive and nonconductive material are laid down on top of the die 10 and bond pads 18; the number of layers depend on the design. For example, a die manufactured as memory might have two or four additional layers of conductive traces, as the PCB of a memory module usually has two or four layers of trace material, and the additional layers on the inventive module function essentially as a PCB. These additional layers 16, therefore, perform the function of the flex circuit of the embodiments having the flex circuit. In FIG. 6, two layers of conductive material 44, 46 sandwiched between three layers of insulating material 48, 50, 52 are shown. A first insulative interdielectric layer 48, a second insulative interdielectric layer 50, and a third insulative interdielectric layer 52 are formed from a material such as polyimide. A first conductive layer 44 and a second conductive layer 46 are manufactured from a material such as aluminum. The interdielectric layers 48, 50, 52 and conductive layers 44, 46 function as the PCB of a typical semiconductor module. The layout of the layers 16 depends on the functional requirements of each specific design. One end 54 of the conductive traces 44, 46 are exposed thereby forming an I/O pad 54. The I/O pad 54 can be coupled with a lead 28, which can be soldered to the electronic device or inserted into a socket on the electronic device, or the I/O pad 28 can be directly connected to the electronic device by TAB means or by other workable means.

FIG. 6 shows an inventive module manufactured with SIP leads 28. The leads 28 are electrically coupled with the I/O pads 54. This can be accomplished by bumping a solder or noble metal (not shown) on the surface of the I/O pads 54, contacting the leads 28, and reflowing the solder not shown in a hot air convection furnace, an infrared reflow furnace, with a laser, or by other workable means. If shorting of the die 10 by the leads 28 is possible, an insulative layer 30 of material must separate the conductive lead 28 from the die 10. The leads 28 are then inserted into a socket on the electronic device, or soldered to vias on the electronic device.

FIG. 7 shows an inventive module manufactured in a gull wing package. I/O pads 56 are coupled with leads 28 to form a gull wing package. If necessary, an insulative layer 30 separates the conductive leads 28 from the die 10 to prevent the die 10 from shorting.

FIG. 8 shows a die 10 with interdielectric layers 48, 50, 52, and conductive layers 44, 46 attached to a die mount 40. The die mount 40 provides support for the die 10 and acts as a heat sink to remove heat from the die 10. The die 10 is attached to the die mount 40 by adhesive means, by tape means, or by other workable means. A conductive trace 56 extends the I/O pad 54 to the edge of the die mount 40, while an insulator 58 prevents the I/O pad 54 from shorting to a conductive die mount 40. The conductive trace 56 and the insulator 58 form a flex circuit. The electronic device is coupled with the conductive trace 56 by TAB means, by wirebonding means, or by insertion of the module in a socket on the electronic device.

FIG. 9 shows the connection of the I/O pad 54 on the die 10 with a lead 28. The lead 28 is then coupled with the electronic device by insertion into a socket, or by soldering to a via. If the die mount 40 is fabricated from a conductive material, the leads 28 must be separated from the die mount 40 by an insulating layer of material 30 such as polyimide.

FIG. 10 shows an embodiment similar to FIG. 9, but with surface mount style leads which mount the die in a direction which is perpendicular to the plane of the PCB onto which it is attached. This puts the die 10 in a position similar to that found on a ZIP through-hole package.

FIG. 11 shows an embodiment of the invention incorporating modified SIP leads.

FIG. 12 shows a cross sectional view of the inventive module incorporating a TAB flex circuit 12 and a decoupling capacitor 60 mounted to bonding surfaces 62 on the flex circuit. If the electrical characteristics of a particular inventive module are such that decoupling capacitors 60 are required to buffer the power coming into the module, provisions must be made for adding the capacitors 60. The capacitors 60 can be mounted after the flex circuit 12 is attached to the die 10, but would be most efficiently accomplished as a step during the manufacture of the flex circuit 12. The die 10 is attached to the die mount 40 via adhesive or other means known in the art. The die pads 18 are bumped with a conductive material 20, usually a noble metal, to facilitate bonding with the flex circuit 12. The flex circuit 12 can have several layers of internal traces 22 depending on the design, there being four shown in the flex circuit 12 of FIG. 12. Each trace 22 within the flex circuit 12 is bonded with the appropriate lead 28. If the die mount 40 is constructed of a conductive material, an insulating layer 30 is necessary to isolate each lead 28 from the die mount 40.

What has been described are specific configurations of the invention, as applied to particular types of modules. Clearly, additional variations can be made to the original design for adapting the invention to other modules and other package types. Therefore, the invention should be read as limited only by the appended claims.

Claims (13)

We claim:
1. A memory module for receiving information from, and transferring information to, an electronic device in a plurality of parallel processes, the plurality of parallel processes being addressed as a byte of said information, comprising:
a. a wafer section having a substantially planar surface, die attach locations, plural memory arrays, and plural data out signals, with one data out signal corresponding to each memory array;
b. a plurality of conductive leads, said leads being self-supporting for connection of said wafer section to an external device without the benefit of supporting encapsulation material, said leads further being electrically coupled with said wafer section die attach locations thereby providing an electrical pathway allowing the transfer of said logic information between said wafer section and the electronic device, said pathway providing channels between said wafer section and the electronic device, said wafer section thereby addressable in byte data segments; and
c. said plurality of conductive leads and said wafer section forming a module which has a substantially flat profile, which extends planarly in a direction generally defined by said planar surface of said wafer section.
2. The memory module of claim 1, further comprising an optically opaque layer superimposed over said wafer section.
3. The memory module of claim 1, wherein one of said data out signals has been deselected, and said corresponding memory array is inactive.
4. The memory module of claim 1, wherein said wafer section further comprises more than one unsingulated semiconductor die.
5. The memory module of claim 1, wherein said die attach locations are electrically coupled with said conductive leads by flex circuit means, wherein said flex circuit comprises plural internal conductive traces substantially encased in an insulative material.
6. The memory module of claim 5, wherein said traces are coupled with said die attach locations by solder means.
7. The memory module of claim 5, wherein said solder comprises gold.
8. The memory module of claim 1, wherein conductive and nonconductive layers are fabricated on the surface of said wafer section subsequent to the fabrication of said die attach locations, said die attach locations being electrically coupled with one or more of said conductive layers and said conductive leads are electrically coupled with one or more of said conductive layers.
9. The memory module of claim 1, wherein said wafer section is free from any substantially supporting encapsulation material.
10. The memory module of claim 1, wherein said wafer section is substantially encased in supporting encapsulation material.
11. The memory module of claim 1, further comprising a support member wherein said wafer section is received upon said support member.
12. The memory module of claim 11, further comprising more than one wafer section.
13. The memory module of claim 11, wherein the composition of said support member comprises aluminum.
US08534177 1988-09-30 1995-09-26 Packaging for semiconductor logic devices Expired - Lifetime USRE36469E (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07252606 US4899107A (en) 1988-09-30 1988-09-30 Discrete die burn-in for nonpackaged die
US07311728 US4992850A (en) 1989-02-15 1989-02-15 Directly bonded simm module
US07644146 US5138434A (en) 1991-01-22 1991-01-22 Packaging for semiconductor logic devices
US08534177 USRE36469E (en) 1988-09-30 1995-09-26 Packaging for semiconductor logic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08534177 USRE36469E (en) 1988-09-30 1995-09-26 Packaging for semiconductor logic devices

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US07311728 Continuation-In-Part US4992850A (en) 1989-02-15 1989-02-15 Directly bonded simm module
US07644146 Reissue US5138434A (en) 1991-01-22 1991-01-22 Packaging for semiconductor logic devices

Publications (1)

Publication Number Publication Date
USRE36469E true USRE36469E (en) 1999-12-28

Family

ID=27400577

Family Applications (1)

Application Number Title Priority Date Filing Date
US08534177 Expired - Lifetime USRE36469E (en) 1988-09-30 1995-09-26 Packaging for semiconductor logic devices

Country Status (1)

Country Link
US (1) USRE36469E (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329712B1 (en) * 1998-03-25 2001-12-11 Micron Technology, Inc. High density flip chip memory arrays
US6404048B2 (en) * 1998-09-03 2002-06-11 Micron Technology, Inc. Heat dissipating microelectronic package
US6424034B1 (en) * 1998-08-31 2002-07-23 Micron Technology, Inc. High performance packaging for microprocessors and DRAM chips which minimizes timing skews
US6459318B1 (en) * 2001-03-22 2002-10-01 Hewlett-Packard Company Programmable delay clock gaters
US6531782B1 (en) 2001-06-19 2003-03-11 Cypress Semiconductor Corp. Method of placing die to minimize die-to-die routing complexity on a substrate
US6558600B1 (en) 2000-05-04 2003-05-06 Micron Technology, Inc. Method for packaging microelectronic substrates
US6564979B2 (en) 2001-07-18 2003-05-20 Micron Technology, Inc. Method and apparatus for dispensing adhesive on microelectronic substrate supports
US6576494B1 (en) 2000-06-28 2003-06-10 Micron Technology, Inc. Recessed encapsulated microelectronic devices and methods for formation
US6622380B1 (en) 2002-02-12 2003-09-23 Micron Technology, Inc. Methods for manufacturing microelectronic devices and methods for mounting microelectronic packages to circuit boards
US6638595B2 (en) 2000-06-28 2003-10-28 Micron Technology, Inc. Method and apparatus for reduced flash encapsulation of microelectronic devices
US6653173B2 (en) 2000-06-16 2003-11-25 Micron Technology, Inc. Method and apparatus for packaging a microelectronic die
US6656769B2 (en) 2000-05-08 2003-12-02 Micron Technology, Inc. Method and apparatus for distributing mold material in a mold for packaging microelectronic devices
US20040026773A1 (en) * 2002-08-08 2004-02-12 Koon Eng Meow Packaged microelectronic components
US20040031621A1 (en) * 2002-08-19 2004-02-19 Heng Puah Kia Packaged microelectronic component assemblies
US20040038447A1 (en) * 2002-08-21 2004-02-26 Corisis David J Packaged microelectronic devices and methods for assembling microelectronic devices
US20040036157A1 (en) * 2002-08-23 2004-02-26 Salman Akram Semiconductor component with on board capacitor and method of fabrication
US20040100772A1 (en) * 2002-11-22 2004-05-27 Chye Lim Thiam Packaged microelectronic component assemblies
US20040177984A1 (en) * 2003-03-11 2004-09-16 Groothuis Steven K. Microelectronic component assemblies having lead frames adapted to reduce package bow
US6796028B2 (en) 2000-08-23 2004-09-28 Micron Technology, Inc. Method of Interconnecting substrates for electrical coupling of microelectronic components
US20040238909A1 (en) * 2003-05-30 2004-12-02 Boon Suan Jeung Packaged microelectronic devices and methods of packaging microelectronic devices
US6838760B1 (en) 2000-08-28 2005-01-04 Micron Technology, Inc. Packaged microelectronic devices with interconnecting units
US20050019988A1 (en) * 2002-04-04 2005-01-27 Tongbi Jiang Method and apparatus for attaching microelectronic substrates and support members
US20050026415A1 (en) * 2002-01-16 2005-02-03 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US20050045378A1 (en) * 2003-08-29 2005-03-03 Heng Mung Suan Stacked microfeature devices and associated methods
US6870276B1 (en) 2001-12-26 2005-03-22 Micron Technology, Inc. Apparatus for supporting microelectronic substrates
US6876066B2 (en) 2001-08-29 2005-04-05 Micron Technology, Inc. Packaged microelectronic devices and methods of forming same
US6879050B2 (en) 2003-02-11 2005-04-12 Micron Technology, Inc. Packaged microelectronic devices and methods for packaging microelectronic devices
US20050121770A1 (en) * 2003-12-05 2005-06-09 Baek Seung D. Wafer-level electronic modules with integral connector contacts and methods of fabricating the same
US6906409B2 (en) 1998-02-27 2005-06-14 Micron Technology, Inc. Multichip semiconductor package
US20050156294A1 (en) * 2003-01-06 2005-07-21 Micron Technology, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US6921860B2 (en) 2003-03-18 2005-07-26 Micron Technology, Inc. Microelectronic component assemblies having exposed contacts
US20050250251A1 (en) * 2000-08-23 2005-11-10 Corisis David J Method and apparatus for decoupling conductive portions of a microelectronic device package
US6979595B1 (en) 2000-08-24 2005-12-27 Micron Technology, Inc. Packaged microelectronic devices with pressure release elements and methods for manufacturing and using such packaged microelectronic devices
US20060017177A1 (en) * 2004-07-23 2006-01-26 Seng Eric T S Microelectronic component assemblies with recessed wire bonds and methods of making same
US20060040428A1 (en) * 2004-08-19 2006-02-23 Johnson Mark S Conductive structures for microfeature devices and methods for fabricating microfeature devices
US20060040422A1 (en) * 2002-08-08 2006-02-23 Micron Technology, Inc. Microelectronic devices and methods for manufacturing and operating packaged microelectronic device
US20060043611A1 (en) * 2004-09-01 2006-03-02 Kinsman Larry D Reduced-dimension microelectronic component assemblies with wire bonds and methods of making same
US20060046346A1 (en) * 2004-09-01 2006-03-02 Benson Peter A Methods for packaging microfeature devices and microfeature devices formed by such methods
US7037756B1 (en) 2001-08-30 2006-05-02 Micron Technology, Inc. Stacked microelectronic devices and methods of fabricating same
US7057281B2 (en) 2003-03-04 2006-06-06 Micron Technology Inc. Microelectronic component assemblies employing lead frames having reduced-thickness inner lengths
US20070031998A1 (en) * 2000-08-16 2007-02-08 Micron Technology, Inc. Method and apparatus for removing encapsulating material from a packaged microelectronic device
US7218001B2 (en) 2003-10-31 2007-05-15 Micron Technology, Inc. Reduced footprint packaged microelectronic components and methods for manufacturing such microelectronic components
US20070155048A1 (en) * 2005-12-29 2007-07-05 Micron Technology, Inc. Methods for packaging microelectronic devices and microelectronic devices formed using such methods
US7259451B2 (en) 2003-08-29 2007-08-21 Micron Technology, Inc. Invertible microfeature device packages
US20080006940A1 (en) * 2006-07-05 2008-01-10 Micron Technology, Inc. Lead frames, microelectronic devices with lead frames, and methods for manufacturing lead frames and microelectronic devices with lead frames
US20080012110A1 (en) * 2006-07-17 2008-01-17 Micron Technology, Inc. Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods
US20080224329A1 (en) * 2007-03-13 2008-09-18 Micron Technology, Inc. Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
US20090026593A1 (en) * 2007-07-24 2009-01-29 Micron Technology, Inc. Thin semiconductor die packages and associated systems and methods
US20090026592A1 (en) * 2007-07-24 2009-01-29 Micron Technology, Inc. Semiconductor dies with recesses, associated leadframes, and associated systems and methods
US7518237B2 (en) 2005-02-08 2009-04-14 Micron Technology, Inc. Microfeature systems including adhered microfeature workpieces and support members
US7622377B2 (en) 2005-09-01 2009-11-24 Micron Technology, Inc. Microfeature workpiece substrates having through-substrate vias, and associated methods of formation
US7671459B2 (en) 2006-02-08 2010-03-02 Micron Technologies, Inc. Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
US7745944B2 (en) 2005-08-31 2010-06-29 Micron Technology, Inc. Microelectronic devices having intermediate contacts for connection to interposer substrates, and associated methods of packaging microelectronic devices with intermediate contacts
US7833456B2 (en) 2007-02-23 2010-11-16 Micron Technology, Inc. Systems and methods for compressing an encapsulant adjacent a semiconductor workpiece
US7843050B2 (en) 2007-07-24 2010-11-30 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US7910385B2 (en) 2006-05-12 2011-03-22 Micron Technology, Inc. Method of fabricating microelectronic devices
US7947529B2 (en) 2007-08-16 2011-05-24 Micron Technology, Inc. Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods
US8202754B2 (en) 2006-03-29 2012-06-19 Micron Technology, Inc. Packaged microelectronic devices recessed in support member cavities, and associated methods
US20140315435A1 (en) * 2012-06-29 2014-10-23 Hewlett-Packard Development Company, L.P. Multi-chip socket
US20150071300A1 (en) * 2013-09-06 2015-03-12 Cisco Technology, Inc. System and method for efficient upstream transmission using suppression
US9313131B2 (en) 2013-09-06 2016-04-12 Stmicroelectronics, Inc. Hardware implemented ethernet multiple tuple filter system and method
US10074599B2 (en) 2007-07-24 2018-09-11 Micron Technology, Inc. Semiconductor dies with recesses, associated leadframes, and associated systems and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855809A (en) * 1987-11-24 1989-08-08 Texas Instruments Incorporated Orthogonal chip mount system module and method
US4899107A (en) * 1988-09-30 1990-02-06 Micron Technology, Inc. Discrete die burn-in for nonpackaged die
US4922378A (en) * 1986-08-01 1990-05-01 Texas Instruments Incorporated Baseboard for orthogonal chip mount
US4949163A (en) * 1987-04-15 1990-08-14 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device particularly for high speed logic operations
US4967262A (en) * 1989-11-06 1990-10-30 Micron Technology, Inc. Gull-wing zig-zag inline lead package having end-of-package anchoring pins
US4975763A (en) * 1988-03-14 1990-12-04 Texas Instruments Incorporated Edge-mounted, surface-mount package for semiconductor integrated circuit devices
US5020999A (en) * 1990-07-19 1991-06-04 International Business Machines Corporation Personal computer with connector assembly having integral retainer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4922378A (en) * 1986-08-01 1990-05-01 Texas Instruments Incorporated Baseboard for orthogonal chip mount
US4949163A (en) * 1987-04-15 1990-08-14 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device particularly for high speed logic operations
US4855809A (en) * 1987-11-24 1989-08-08 Texas Instruments Incorporated Orthogonal chip mount system module and method
US4975763A (en) * 1988-03-14 1990-12-04 Texas Instruments Incorporated Edge-mounted, surface-mount package for semiconductor integrated circuit devices
US4899107A (en) * 1988-09-30 1990-02-06 Micron Technology, Inc. Discrete die burn-in for nonpackaged die
US4967262A (en) * 1989-11-06 1990-10-30 Micron Technology, Inc. Gull-wing zig-zag inline lead package having end-of-package anchoring pins
US5020999A (en) * 1990-07-19 1991-06-04 International Business Machines Corporation Personal computer with connector assembly having integral retainer

Cited By (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212143A1 (en) * 1998-02-27 2005-09-29 Micron Technology, Inc. Multichip semiconductor package
US6906409B2 (en) 1998-02-27 2005-06-14 Micron Technology, Inc. Multichip semiconductor package
US6329712B1 (en) * 1998-03-25 2001-12-11 Micron Technology, Inc. High density flip chip memory arrays
US6538334B2 (en) 1998-03-25 2003-03-25 Micron Technology, Inc. High density flip chip memory arrays
US6548392B2 (en) 1998-03-25 2003-04-15 Micron Technology, Inc. Methods of a high density flip chip memory arrays
US6424034B1 (en) * 1998-08-31 2002-07-23 Micron Technology, Inc. High performance packaging for microprocessors and DRAM chips which minimizes timing skews
US6404048B2 (en) * 1998-09-03 2002-06-11 Micron Technology, Inc. Heat dissipating microelectronic package
US6558600B1 (en) 2000-05-04 2003-05-06 Micron Technology, Inc. Method for packaging microelectronic substrates
US20030209831A1 (en) * 2000-05-04 2003-11-13 Williams Vernon M. Method and apparatus for packaging microelectronic substrates
US6656769B2 (en) 2000-05-08 2003-12-02 Micron Technology, Inc. Method and apparatus for distributing mold material in a mold for packaging microelectronic devices
US6677675B2 (en) 2000-06-16 2004-01-13 Micron Technology, Inc. Microelectronic devices and microelectronic die packages
US6683388B2 (en) 2000-06-16 2004-01-27 Micron Technology, Inc. Method and apparatus for packaging a microelectronic die
US6653173B2 (en) 2000-06-16 2003-11-25 Micron Technology, Inc. Method and apparatus for packaging a microelectronic die
US6664139B2 (en) 2000-06-16 2003-12-16 Micron Technology, Inc. Method and apparatus for packaging a microelectronic die
US6644949B2 (en) 2000-06-28 2003-11-11 Micron Technology, Inc. Apparatus for reduced flash encapsulation of microelectronic devices
US6638595B2 (en) 2000-06-28 2003-10-28 Micron Technology, Inc. Method and apparatus for reduced flash encapsulation of microelectronic devices
US6819003B2 (en) 2000-06-28 2004-11-16 Micron Technology Inc. Recessed encapsulated microelectronic devices and methods for formation
US6576494B1 (en) 2000-06-28 2003-06-10 Micron Technology, Inc. Recessed encapsulated microelectronic devices and methods for formation
US6841423B2 (en) 2000-06-28 2005-01-11 Micron Technology, Inc. Methods for formation of recessed encapsulated microelectronic devices
US20070031998A1 (en) * 2000-08-16 2007-02-08 Micron Technology, Inc. Method and apparatus for removing encapsulating material from a packaged microelectronic device
US7405487B2 (en) 2000-08-16 2008-07-29 Micron Technology, Inc. Method and apparatus for removing encapsulating material from a packaged microelectronic device
US7273769B1 (en) 2000-08-16 2007-09-25 Micron Technology, Inc. Method and apparatus for removing encapsulating material from a packaged microelectronic device
US6983551B2 (en) 2000-08-23 2006-01-10 Micron Technology, Inc. Interconnecting substrates for electrical coupling of microelectronic components
US6982386B2 (en) 2000-08-23 2006-01-03 Micron Technology, Inc. Interconnecting substrates for electrical coupling of microelectronic components
US20050250251A1 (en) * 2000-08-23 2005-11-10 Corisis David J Method and apparatus for decoupling conductive portions of a microelectronic device package
US6796028B2 (en) 2000-08-23 2004-09-28 Micron Technology, Inc. Method of Interconnecting substrates for electrical coupling of microelectronic components
US7183138B2 (en) 2000-08-23 2007-02-27 Micron Technology, Inc. Method and apparatus for decoupling conductive portions of a microelectronic device package
US7378723B2 (en) 2000-08-23 2008-05-27 Micron Technology, Inc. Method and apparatus for decoupling conductive portions of a microelectronic device package
US20070052087A1 (en) * 2000-08-23 2007-03-08 Micron Technology, Inc. Method and apparatus for decoupling conductive portions of a microelectronic device package
US6979595B1 (en) 2000-08-24 2005-12-27 Micron Technology, Inc. Packaged microelectronic devices with pressure release elements and methods for manufacturing and using such packaged microelectronic devices
US7332376B2 (en) 2000-08-28 2008-02-19 Micron Technology, Inc. Method of encapsulating packaged microelectronic devices with a barrier
US6838760B1 (en) 2000-08-28 2005-01-04 Micron Technology, Inc. Packaged microelectronic devices with interconnecting units
US7101737B2 (en) 2000-08-28 2006-09-05 Micron Technology, Inc. Method of encapsulating interconnecting units in packaged microelectronic devices
US6459318B1 (en) * 2001-03-22 2002-10-01 Hewlett-Packard Company Programmable delay clock gaters
US6531782B1 (en) 2001-06-19 2003-03-11 Cypress Semiconductor Corp. Method of placing die to minimize die-to-die routing complexity on a substrate
US6564979B2 (en) 2001-07-18 2003-05-20 Micron Technology, Inc. Method and apparatus for dispensing adhesive on microelectronic substrate supports
US6876066B2 (en) 2001-08-29 2005-04-05 Micron Technology, Inc. Packaged microelectronic devices and methods of forming same
US6943450B2 (en) 2001-08-29 2005-09-13 Micron Technology, Inc. Packaged microelectronic devices and methods of forming same
US7037756B1 (en) 2001-08-30 2006-05-02 Micron Technology, Inc. Stacked microelectronic devices and methods of fabricating same
US6936916B2 (en) 2001-12-26 2005-08-30 Micron Technology, Inc. Microelectronic assemblies and electronic devices including connection structures with multiple elongated members
US20050242437A1 (en) * 2001-12-26 2005-11-03 Micron Technology, Inc. Method and apparatus for supporting microelectronic substrates
US6870276B1 (en) 2001-12-26 2005-03-22 Micron Technology, Inc. Apparatus for supporting microelectronic substrates
US6995026B2 (en) 2001-12-26 2006-02-07 Micron Technology, Inc. Methods for coupling a flowable conductive material to microelectronic substrates
US20050026395A1 (en) * 2002-01-16 2005-02-03 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US6896760B1 (en) 2002-01-16 2005-05-24 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US7037751B2 (en) 2002-01-16 2006-05-02 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US7022418B2 (en) 2002-01-16 2006-04-04 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US20050026415A1 (en) * 2002-01-16 2005-02-03 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US20060159947A1 (en) * 2002-01-16 2006-07-20 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US20060172510A1 (en) * 2002-01-16 2006-08-03 Micron Technology, Inc. Fabrication of stacked microelectronic devices
US7122905B2 (en) 2002-02-12 2006-10-17 Micron Technology, Inc. Microelectronic devices and methods for mounting microelectronic packages to circuit boards
US6622380B1 (en) 2002-02-12 2003-09-23 Micron Technology, Inc. Methods for manufacturing microelectronic devices and methods for mounting microelectronic packages to circuit boards
US7091064B2 (en) 2002-04-04 2006-08-15 Micron Technology, Inc. Method and apparatus for attaching microelectronic substrates and support members
US7615871B2 (en) 2002-04-04 2009-11-10 Micron Technology, Inc. Method and apparatus for attaching microelectronic substrates and support members
US7109588B2 (en) 2002-04-04 2006-09-19 Micron Technology, Inc. Method and apparatus for attaching microelectronic substrates and support members
US20050019988A1 (en) * 2002-04-04 2005-01-27 Tongbi Jiang Method and apparatus for attaching microelectronic substrates and support members
US6836009B2 (en) 2002-08-08 2004-12-28 Micron Technology, Inc. Packaged microelectronic components
US20060040422A1 (en) * 2002-08-08 2006-02-23 Micron Technology, Inc. Microelectronic devices and methods for manufacturing and operating packaged microelectronic device
US9418872B2 (en) 2002-08-08 2016-08-16 Micron Technology, Inc. Packaged microelectronic components
US7195957B2 (en) 2002-08-08 2007-03-27 Micron Technology, Inc. Packaged microelectronic components
US20040026773A1 (en) * 2002-08-08 2004-02-12 Koon Eng Meow Packaged microelectronic components
US7067905B2 (en) 2002-08-08 2006-06-27 Micron Technology, Inc. Packaged microelectronic devices including first and second casings
US7306974B2 (en) 2002-08-08 2007-12-11 Micron Technology, Inc. Microelectronic devices and methods for manufacturing and operating packaged microelectronic device assemblies
US8637973B2 (en) 2002-08-08 2014-01-28 Micron Technology, Inc. Packaged microelectronic components with terminals exposed through encapsulant
US6933170B2 (en) 2002-08-19 2005-08-23 Micron Technology, Inc. Packaged microelectronic component assemblies
US6781066B2 (en) 2002-08-19 2004-08-24 Micron Technology, Inc. Packaged microelectronic component assemblies
US20040031621A1 (en) * 2002-08-19 2004-02-19 Heng Puah Kia Packaged microelectronic component assemblies
US6740546B2 (en) 2002-08-21 2004-05-25 Micron Technology, Inc. Packaged microelectronic devices and methods for assembling microelectronic devices
US6924550B2 (en) 2002-08-21 2005-08-02 Micron Technology, Inc. Packaged microelectronic devices and methods for assembling microelectronic devices
US20040188820A1 (en) * 2002-08-21 2004-09-30 Corisis David J Packaged microelectronic devices and methods for assembling microelectronic devices
US20040038447A1 (en) * 2002-08-21 2004-02-26 Corisis David J Packaged microelectronic devices and methods for assembling microelectronic devices
US20040036157A1 (en) * 2002-08-23 2004-02-26 Salman Akram Semiconductor component with on board capacitor and method of fabrication
US7041537B2 (en) 2002-08-23 2006-05-09 Micron Technology, Inc. Method for fabricating semiconductor component with on board capacitor
US20040115865A1 (en) * 2002-08-23 2004-06-17 Salman Akram Method for fabricating semiconductor component with on board capacitor
US6891248B2 (en) 2002-08-23 2005-05-10 Micron Technology, Inc. Semiconductor component with on board capacitor
US7002248B2 (en) 2002-08-23 2006-02-21 Micron Technology, Inc. Semiconductor components having multiple on board capacitors
US6951982B2 (en) 2002-11-22 2005-10-04 Micron Technology, Inc. Packaged microelectronic component assemblies
US20040100772A1 (en) * 2002-11-22 2004-05-27 Chye Lim Thiam Packaged microelectronic component assemblies
US7298025B2 (en) 2003-01-06 2007-11-20 Micron Technology, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US20080067644A1 (en) * 2003-01-06 2008-03-20 Micron Technology, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US7652365B2 (en) 2003-01-06 2010-01-26 Micron Technologies, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US7923824B2 (en) 2003-01-06 2011-04-12 Micron Technology, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US7132734B2 (en) 2003-01-06 2006-11-07 Micron Technology, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US20050156294A1 (en) * 2003-01-06 2005-07-21 Micron Technology, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US7247520B2 (en) 2003-01-06 2007-07-24 Micron Technology, Inc. Microelectronic component assemblies and microelectronic component lead frame structures
US6879050B2 (en) 2003-02-11 2005-04-12 Micron Technology, Inc. Packaged microelectronic devices and methods for packaging microelectronic devices
US7691680B2 (en) 2003-03-04 2010-04-06 Micron Technologies, Inc. Method of fabricating microelectronic component assemblies employing lead frames having reduced-thickness inner lengths
US7057281B2 (en) 2003-03-04 2006-06-06 Micron Technology Inc. Microelectronic component assemblies employing lead frames having reduced-thickness inner lengths
US7425470B2 (en) 2003-03-04 2008-09-16 Micron Technology, Inc. Microelectronic component assemblies employing lead frames having reduced-thickness inner lengths
US7183485B2 (en) 2003-03-11 2007-02-27 Micron Technology, Inc. Microelectronic component assemblies having lead frames adapted to reduce package bow
US20040177984A1 (en) * 2003-03-11 2004-09-16 Groothuis Steven K. Microelectronic component assemblies having lead frames adapted to reduce package bow
US6921860B2 (en) 2003-03-18 2005-07-26 Micron Technology, Inc. Microelectronic component assemblies having exposed contacts
US20040238909A1 (en) * 2003-05-30 2004-12-02 Boon Suan Jeung Packaged microelectronic devices and methods of packaging microelectronic devices
US6882021B2 (en) 2003-05-30 2005-04-19 Micron Technology, Inc. Packaged image sensing microelectronic devices including a lead and methods of packaging image sensing microelectronic devices including a lead
US7368810B2 (en) 2003-08-29 2008-05-06 Micron Technology, Inc. Invertible microfeature device packages
US7742313B2 (en) 2003-08-29 2010-06-22 Micron Technology, Inc. Stacked microfeature devices
US8400780B2 (en) 2003-08-29 2013-03-19 Micron Technology, Inc. Stacked microfeature devices
US7071421B2 (en) 2003-08-29 2006-07-04 Micron Technology, Inc. Stacked microfeature devices and associated methods
US20050045378A1 (en) * 2003-08-29 2005-03-03 Heng Mung Suan Stacked microfeature devices and associated methods
US10062667B2 (en) 2003-08-29 2018-08-28 Micron Technology, Inc. Stacked microfeature devices and associated methods
US20100258939A1 (en) * 2003-08-29 2010-10-14 Micron Technology, Inc. Stacked microfeature devices and associated methods
US7259451B2 (en) 2003-08-29 2007-08-21 Micron Technology, Inc. Invertible microfeature device packages
US9515046B2 (en) 2003-08-29 2016-12-06 Micron Technology, Inc. Stacked microfeature devices and associated methods
US7218001B2 (en) 2003-10-31 2007-05-15 Micron Technology, Inc. Reduced footprint packaged microelectronic components and methods for manufacturing such microelectronic components
US7307340B2 (en) * 2003-12-05 2007-12-11 Samsung Electronics Co., Ltd. Wafer-level electronic modules with integral connector contacts
US20050121770A1 (en) * 2003-12-05 2005-06-09 Baek Seung D. Wafer-level electronic modules with integral connector contacts and methods of fabricating the same
US7365424B2 (en) 2004-07-23 2008-04-29 Micron Technology, Inc. Microelectronic component assemblies with recessed wire bonds and methods of making same
US20060017177A1 (en) * 2004-07-23 2006-01-26 Seng Eric T S Microelectronic component assemblies with recessed wire bonds and methods of making same
US7250328B2 (en) 2004-07-23 2007-07-31 Micron Technology, Inc. Microelectronic component assemblies with recessed wire bonds and methods of making same
US7696003B2 (en) 2004-07-23 2010-04-13 Micron Technology, Inc. Microelectronic component assemblies with recessed wire bonds and methods of making same
US20060040428A1 (en) * 2004-08-19 2006-02-23 Johnson Mark S Conductive structures for microfeature devices and methods for fabricating microfeature devices
US9313902B2 (en) 2004-08-19 2016-04-12 Micron Technology, Inc. Conductive structures for microfeature devices and methods for fabricating microfeature devices
US20100044876A1 (en) * 2004-08-19 2010-02-25 Micron Technology, Inc. Conductive structures for microfeature devices and methods for fabricating microfeature devices
US8222727B2 (en) 2004-08-19 2012-07-17 Micron Technology, Inc. Conductive structures for microfeature devices and methods for fabricating microfeature devices
US7632747B2 (en) 2004-08-19 2009-12-15 Micron Technology, Inc. Conductive structures for microfeature devices and methods for fabricating microfeature devices
US7385298B2 (en) 2004-09-01 2008-06-10 Micron Technology, Inc. Reduced-dimension microelectronic component assemblies with wire bonds and methods of making same
US20060043611A1 (en) * 2004-09-01 2006-03-02 Kinsman Larry D Reduced-dimension microelectronic component assemblies with wire bonds and methods of making same
US7579684B2 (en) 2004-09-01 2009-08-25 Micron Technology, Inc. Methods for packing microfeature devices and microfeature devices formed by such methods
US20070029681A1 (en) * 2004-09-01 2007-02-08 Micron Technology, Inc. Reduced-dimension microelectronic component assemblies with wire bonds and methods of making same
US7095122B2 (en) 2004-09-01 2006-08-22 Micron Technology, Inc. Reduced-dimension microelectronic component assemblies with wire bonds and methods of making same
US20060046346A1 (en) * 2004-09-01 2006-03-02 Benson Peter A Methods for packaging microfeature devices and microfeature devices formed by such methods
US20060205116A1 (en) * 2004-09-01 2006-09-14 Micron Technology, Inc. Methods for packaging microfeature devices and microfeature devices formed by such methods
US7157310B2 (en) 2004-09-01 2007-01-02 Micron Technology, Inc. Methods for packaging microfeature devices and microfeature devices formed by such methods
US7518237B2 (en) 2005-02-08 2009-04-14 Micron Technology, Inc. Microfeature systems including adhered microfeature workpieces and support members
US8278751B2 (en) 2005-02-08 2012-10-02 Micron Technology, Inc. Methods of adhering microfeature workpieces, including a chip, to a support member
US9064973B2 (en) 2005-02-08 2015-06-23 Micron Technology, Inc. Die attached to a support member by a plurality of adhesive members
US7745944B2 (en) 2005-08-31 2010-06-29 Micron Technology, Inc. Microelectronic devices having intermediate contacts for connection to interposer substrates, and associated methods of packaging microelectronic devices with intermediate contacts
US8703599B2 (en) 2005-08-31 2014-04-22 Micron Technology, Inc. Microelectronic devices having intermediate contacts for connection to interposer substrates, and associated methods of packaging microelectronic devices with intermediate contacts
US7622377B2 (en) 2005-09-01 2009-11-24 Micron Technology, Inc. Microfeature workpiece substrates having through-substrate vias, and associated methods of formation
US20070155048A1 (en) * 2005-12-29 2007-07-05 Micron Technology, Inc. Methods for packaging microelectronic devices and microelectronic devices formed using such methods
US20100276814A1 (en) * 2005-12-29 2010-11-04 Micron Technology, Inc. Methods for packaging microelectronic devices and microelectronic devices formed using such methods
US8203213B2 (en) 2005-12-29 2012-06-19 Micron Technology, Inc. Methods for packaging microelectronic devices and microelectronic devices formed using such methods
US8772947B2 (en) 2005-12-29 2014-07-08 Micron Technology, Inc. Methods for packaging microelectronic devices and microelectronic devices formed using such methods
US7671459B2 (en) 2006-02-08 2010-03-02 Micron Technologies, Inc. Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
US8450839B2 (en) 2006-02-28 2013-05-28 Micron Technology, Inc. Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
US9362141B2 (en) 2006-02-28 2016-06-07 Micron Technology, Inc. Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
US20100117212A1 (en) * 2006-02-28 2010-05-13 Micron Technology, Inc. Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
US9768121B2 (en) 2006-02-28 2017-09-19 Micron Technology, Inc. Microelectronic devices, stacked microelectronic devices, and methods for manufacturing such devices
US8975745B2 (en) 2006-03-29 2015-03-10 Micron Technology, Inc. Packaged microelectronic devices recessed in support member cavities, and associated methods
US8441132B2 (en) 2006-03-29 2013-05-14 Micron Technology, Inc. Packaged microelectronic devices recessed in support member cavities, and associated methods
US8202754B2 (en) 2006-03-29 2012-06-19 Micron Technology, Inc. Packaged microelectronic devices recessed in support member cavities, and associated methods
US7910385B2 (en) 2006-05-12 2011-03-22 Micron Technology, Inc. Method of fabricating microelectronic devices
US8138613B2 (en) 2006-05-12 2012-03-20 Micron Technology, Inc. Microelectronic devices
US20080006940A1 (en) * 2006-07-05 2008-01-10 Micron Technology, Inc. Lead frames, microelectronic devices with lead frames, and methods for manufacturing lead frames and microelectronic devices with lead frames
US20080012110A1 (en) * 2006-07-17 2008-01-17 Micron Technology, Inc. Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods
US20100173454A1 (en) * 2006-07-17 2010-07-08 Micron Technology, Inc. Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods
US8869387B2 (en) 2006-07-17 2014-10-28 Micron Technology, Inc. Methods for making microelectronic die systems
US7692931B2 (en) 2006-07-17 2010-04-06 Micron Technology, Inc. Microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods
US7833456B2 (en) 2007-02-23 2010-11-16 Micron Technology, Inc. Systems and methods for compressing an encapsulant adjacent a semiconductor workpiece
US8866272B2 (en) 2007-03-13 2014-10-21 Micron Technology, Inc. Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
US20080224329A1 (en) * 2007-03-13 2008-09-18 Micron Technology, Inc. Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
US7955898B2 (en) 2007-03-13 2011-06-07 Micron Technology, Inc. Packaged microelectronic devices and methods for manufacturing packaged microelectronic devices
US7843050B2 (en) 2007-07-24 2010-11-30 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US20090026592A1 (en) * 2007-07-24 2009-01-29 Micron Technology, Inc. Semiconductor dies with recesses, associated leadframes, and associated systems and methods
US10056359B2 (en) 2007-07-24 2018-08-21 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US8906744B2 (en) 2007-07-24 2014-12-09 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US8198720B2 (en) 2007-07-24 2012-06-12 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US7816750B2 (en) 2007-07-24 2010-10-19 Aptina Imaging Corporation Thin semiconductor die packages and associated systems and methods
US8536702B2 (en) 2007-07-24 2013-09-17 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US9165910B2 (en) 2007-07-24 2015-10-20 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US9679834B2 (en) 2007-07-24 2017-06-13 Micron Technology, Inc. Semiconductor dies with recesses, associated leadframes, and associated systems and methods
US10074599B2 (en) 2007-07-24 2018-09-11 Micron Technology, Inc. Semiconductor dies with recesses, associated leadframes, and associated systems and methods
US20090026593A1 (en) * 2007-07-24 2009-01-29 Micron Technology, Inc. Thin semiconductor die packages and associated systems and methods
US20110068454A1 (en) * 2007-07-24 2011-03-24 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US9653444B2 (en) 2007-07-24 2017-05-16 Micron Technology, Inc. Microelectronic die packages with metal leads, including metal leads for stacked die packages, and associated systems and methods
US7947529B2 (en) 2007-08-16 2011-05-24 Micron Technology, Inc. Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods
US20110215453A1 (en) * 2007-08-16 2011-09-08 Micron Technology, Inc. Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods
US8525320B2 (en) 2007-08-16 2013-09-03 Micron Technology, Inc. Microelectronic die packages with leadframes, including leadframe-based interposer for stacked die packages, and associated systems and methods
US9232681B2 (en) * 2012-06-29 2016-01-05 Hewlett Packard Enterprise Development Lp Multi-chip socket
US20140315435A1 (en) * 2012-06-29 2014-10-23 Hewlett-Packard Development Company, L.P. Multi-chip socket
US9237109B2 (en) * 2013-09-06 2016-01-12 Stmicroelectronics, Inc. System and method for efficient upstream transmission using suppression
US20150071300A1 (en) * 2013-09-06 2015-03-12 Cisco Technology, Inc. System and method for efficient upstream transmission using suppression
US9313131B2 (en) 2013-09-06 2016-04-12 Stmicroelectronics, Inc. Hardware implemented ethernet multiple tuple filter system and method

Similar Documents

Publication Publication Date Title
US5581122A (en) Packaging assembly with consolidated common voltage connections for integrated circuits
US6207474B1 (en) Method of forming a stack of packaged memory die and resulting apparatus
US6331221B1 (en) Process for providing electrical connection between a semiconductor die and a semiconductor die receiving member
US7414312B2 (en) Memory-module board layout for use with memory chips of different data widths
US5448511A (en) Memory stack with an integrated interconnect and mounting structure
US5247423A (en) Stacking three dimensional leadless multi-chip module and method for making the same
US6884653B2 (en) Folded interposer
US5155067A (en) Packaging for a semiconductor die
US5633533A (en) Electronic package with thermally conductive support member having a thin circuitized substrate and semiconductor device bonded thereto
US7329945B2 (en) Flip-chip adaptor package for bare die
US6326244B1 (en) Method of making a cavity ball grid array apparatus
US5280193A (en) Repairable semiconductor multi-package module having individualized package bodies on a PC board substrate
US6287949B1 (en) Multi-chip semiconductor chip module
US6440770B1 (en) Integrated circuit package
US6713854B1 (en) Electronic circuit module with a carrier having a mounting pad array
US5266912A (en) Inherently impedance matched multiple integrated circuit module
US5789816A (en) Multiple-chip integrated circuit package including a dummy chip
US6563217B2 (en) Module assembly for stacked BGA packages
US6087716A (en) Semiconductor device package having a connection substrate with turned back leads and method thereof
US6218202B1 (en) Semiconductor device testing and burn-in methodology
US5861666A (en) Stacked chip assembly
US6867496B1 (en) Interconnect substrate, semiconductor device, methods of fabricating, inspecting, and mounting the semiconductor device, circuit board, and electronic instrument
US5514907A (en) Apparatus for stacking semiconductor chips
US5818698A (en) Method and apparatus for a chip-on-board semiconductor module
US20050011672A1 (en) Overmolded MCM with increased surface mount component reliability

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12