USRE30955E - Fibrous product - Google Patents

Fibrous product Download PDF

Info

Publication number
USRE30955E
USRE30955E US06039748 US3974879A USRE30955E US RE30955 E USRE30955 E US RE30955E US 06039748 US06039748 US 06039748 US 3974879 A US3974879 A US 3974879A US RE30955 E USRE30955 E US RE30955E
Authority
US
Grant status
Grant
Patent type
Prior art keywords
batt
fibres
density
temperature
conjugate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06039748
Inventor
Harold P. Stanistreet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/549Polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1712Indefinite or running length work
    • Y10T156/1741Progressive continuous bonding press [e.g., roll couples]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/629Composite strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/638Side-by-side multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/69Autogenously bonded nonwoven fabric

Abstract

A resilient, thermally bonded, non-woven fibrous batt having a uniform compression modulus in one plane which is more than the compression modulus measured in a direction perpendicular to that plane, and a substantially uniform density across its thickness is obtained by preparing a batt comprising at least 20% by weight of crimped and/or crimpable conjugate fibres having or capable of developing a crimp frequency of less than 10 crimps per extended cm. and a decitex in the range of 5 to 30. The batt is thermally bonded by subjecting it to an upward flow of a fluid heated to a temperature sufficient to heat the batt to a temperature in excess of the softening temperature of the low softening component but below the softening temperature(s) of the other component(s) of the conjugate fibre to effect inter-fibre bonding. The thermally bonded batt is then cooled by an upward flow of cool air.

Description

The present invention relates to the production of a bonded, non-woven, fibrous batt.

It is known to produce such a batt by compressing an open (e.g. carded) web or batt comprising crimpable and bondable conjugate fibres, and then heating the batt to crimp the conjugate fibres and to effect interfibre bonding. It is also known to produce such a product by initially heating crimpable and bondable conjugate fibres at a temperature sufficient to crimp and stabilise the fibres without effecting interfibre bonding, forming the fibres into an open (e.g. carded) non-woven web or batt, heating the batt to a temperature sufficient to effect inter-fibre bonding, and cooling the batt to form a bonded, integral structure. Moreover, it is also known to form a batt of heat stabilised, crimped conjugate fibres, heating the batt to effect interfibre bonding, and subsequently compressing the batt to the desired density and shape whilst hot.

By the term "fibre" is meant a fibre of staple length of 0.5 to 6 inches, preferably from 1 to 5 inches. The term "conjugate fibre" refers to a fibre composed of at least two fibre-forming polymeric components arranged in distinct zones across the cross-section of the fibre and substantially continuous along the length thereof, and wherein one of the components has a softening temperature significantly lower than the softening temperature(s) of the other components(s) and is located so as to form at least a portion of the peripheral surface of the fibre. Types of conjugate fibres within this definition, for example, include those wherein a component of low melting temperature is (a) one of two components arranged side-by-side, or (b) forms a sheath about another component serving as a core, or (c) forms one or more lobes of a multilobal fibre. Fibres in which the polymeric components are asymmetrically arranged in the cross-section thereof are potentially crimpable in that they tend to develop crimp when subjected to a heat treatment. In contrast, fibres in which the polymeric components are symmetrically arranged do not have a propensity to crimp, and must therefore be crimped by mechanical action, such as, for example, by the stuffer-box method.

In the known processes for producing a bonded non-woven fibrous batt interfibre bonding is effected by passing an unbonded batt of fibres through an oven, especially an oven through which the batt travels on a brattice and hot fluid, for example steam or air, is blown downwards onto the batt. This downward flow of hot air tends to compress the batt and consequently affects the physical properties of the resultant bonded product, in particular the density thereof. The process of the present invention seeks to reduce the degree of compression of the batt during interfibre bonding and to provide bonded non-woven fibrous batts having new characteristics.

Therefore, according to the present invention there is provided a method for the production of a resilient, bonded, non-woven fibrous batt wherein a batt, comprising at least 20% by weight of crimped and/or potentially crimpable conjugate fibres (as hereinbefore defined), is subjected to a heat treatment by the upward passage through the batt of a fluid having a temperature sufficient to heat the batt to a temperature in excess of the softening temperature of the lower softening component but below the softening temperature(s) of the other component(s) to effect inter-fibre bonding, and then causing or permitting the batt to cool. Optionally the hot, bonded fibrous batt may be compressed to a desired shape and/or density before it is cooled. In a preferred process, the thermally bonded batt is cooled by an updraught of cold air to quench the fibres so that they rapidly redevelop their modulus, and any tendency for the batt to collapse is reduced or even eliminated.

The conjugate fibres may have or be capable of developing a crimp frequency in excess of 10 crimps per extended cm. of fibre, but particularly useful products may be obtained from conjugate fibres having or capable of developing a crimp frequency of less than 10 crimps per extended cm., and desirably in the range of 2 to 4 crimps per extended cm.

Preferably the initial, unbonded batt comprises at least 50% by weight of crimped and/or crimpable bondable conjugate fibres, and, desirably, is composed wholly of such fibres. In those circumstances where non-conjugate fibres are present, the non-conjugate fibres are preferably crimped and heat stabilised under conditions similar to those used for bonding the conjugate fibres, and, preferably, are also compatibly bondable with the conjugate fibres.

The crimp of potentially crimpable conjugate fibres may be developed before the batt is prepared. Thus the uncrimped conjugate fibres may be carded and formed into a batt by cross-layering and the batt heated to a temperature sufficient to develop the crimp of the fibres but not sufficiently high to effect inter-fibre bonding. The batt is then recarded before being subjected to an upward flow of hot fluid to bond the fibres. However, the recarding is not essential since the upward flow of gas tends to keep the batt open during crimp development.

Normally the fibres may have a decitex within a wide range, for example 1 to 50 decitex. Conveniently, fibres having a decitex in the range 5 to 30 are employed. The process is particularly useful for producing non-woven fibrous products of low density from fibres having a low decitex.

The density of the batt prior to bonding according to the present invention is conveniently the natural carded density, i.e. that normally produced by the carding machine, and which, though variable, is usually of the order of 0.005 gm/cm3. If desired, of course, the density may be varied to suit the density required of the final product. The batt may be built up to varying thicknesses, if desired, by utilising a cross-lapping machine.

Inter-fibre bonding is effected by passing the batt through an oven in which a heated fluid is blown upwards through the batt, for example, through a fluidized bed of ballotini which evens out the air flow and acts as a heat exchanger. The velocity of the fluid should be sufficient to support the batt during its passage through the oven, and to prevent compacting of the fibres, but not sufficient to break the batt. Disintegration of the batt by the use of very high velocities may be reduced by imposing above the batt a foraminous surface and against which the batt is blown. The fluid may be any inert gas, such as, for example, air, or it may be admixed with or comprised solely of a plasticizing agent, for example steam in the case of nylon fibres. Before cooling, the bonded fibrous batt may optionally be compressed to a desired shape, for example, by compressing the batt between heated, shaped platens, or to a required density, for example, by passing it through a pair of rollers. Excessive compression is to be avoided in order to produce a product having a low density, high porosity, open "sponge-like" structure, and not a high density, "felt-like" structure.

An advantage of the process of the present invention is that it is possible to obtain a resilient, thermally bonded, non-woven, fibrous batt comprising at least 20% by weight of crimped conjugate fibres, the fibrous batt having a substantially uniform density across its thickness. The process is particularly useful for producing bonded batts having a substantially uniform density across its thickness from carded batts having a thickness greater than 1.5 cms and especially greater than 4 cms. The process may be used for bonding carded batts having a thickness of 20 cms. or even greater.

The process of the present invention is also useful for producing shaped articles having a minimum thickness of at least 1.5 cm., the carded batt being thermally bonded by the upward passage of the heating fluid, and then compressed to the desired shape. In the resulting product the ratio of number of bonds per unit volume to the density of the unit volume is substantially constant throughout the entire product. By contrast, shaping of the unbonded batt by compression followed by the passage of hot fluid causes tracking of the fluid which results in uneven thermal bonding.

The products of the invention may be utilized in the production of pillows, mattresses, and upholstery, for example.

The invention will be further described by way of example with reference to the following examples.

EXAMPLE 1

A 12 decitex per filament conjugate staple fibre having a length of 2 inches and a crimp level of 3 crimps per extended cm. was prepared. The fibre was of the sheath/core (1:2) type in which the core was polyethylene terephthalate and the sheath polyethylene terephthalate-isophthalate (80:20 mole %). The crimp was produced by stuffer-box crimping.

The staple fibre was fully opened by one passage through a carding machine and was built up into a batt having a thickness of 5 cms. using a lap wheel. Three layers were placed on top of each other, and the combined layers were heated in an oven in which air at a temperature of 210° C. and at a flow rate of 15 cfm was passed through a fluidized bed of ballotini (which acted as a heated exchanger) and upwards through the non-woven web. The velocity of the air was sufficient to prevent the fibres from compacting without displacing the fibres.

After cooling, a 13 cm. cube was cut out of the resulting non-woven, fibrous batt and each side subjected to a compression load of 5 kg. The vertical direction, as made, compressed 30% while at right angles, i.e. horizontal directions, the compression was only 4%. The product had a density of 0.019 gm per cc.

EXAMPLE 2

Staple conjugate fibre (20 decitex per filament) having a length of 49 mm. and slight crimp was produced from equal proportions of nylon-66 and nylon-6 spun in a side-by-side configuration, and was fully opened by one passage through a Tatham (Regd. Trade Mark) carding machine. The thus obtained web was cross folded to form a lofty batt having a thickness of 150 mm. which was then subjected for 1.5 minutes to super-heated steam having a temperature of 230° C. blown vertically upwards through the batt at a velocity of 30 feet per minute. The steaming caused the fibres to develop fully their crimp, and to bond to each other. Finally, the batt was compressed to a thickness of 60 mm., cooled to 180° C. in steam, and then to ambient temperature by an upward draught of air. The resulting non-woven fibrous structure had a thickness of 60 mm. and a density of 0.026 gm. per cc.

EXAMPLE 3

Core/sheath (67:33) conjugate filaments (12 dpf), the core comprising poly(ethylene terephthalate) and the sheath polypropylene, were stuffer box crimped (8 crimps per extended cm.), heat set, and cut to a staple length of 49 mm. The staple was fully opened by one passage through a Tatham (Regd. Trade Mark) carding machine and cross-folded to give a batt having a thickness of 60 mm. The batt was subjected for 1 minute to an up-draught of air having a temperature of 175° C. and a velocity of 50 feet per minute, by passing it through an up-flow air oven. This treatment caused the fibres to bond together. Afterwards the batt was compressed whilst hot to a thickness of 30 mm. and then cooled by an upward flow of air to give a structure having a density of 0.023 gm. per cc.

EXAMPLE 4

Side/side conjugate filaments (6 dpf) were spun from equal amounts of poly(ethylene terephthalate) and a copolymer of poly(ethylene terephthalate) containing 20 moles percent of poly(ethylene isophthalate), the filaments then being stuffer-box crimped (6 crimps per extended cm), heat set, and cut to a staple length of 50 mm. A mixture of this fibre with an equal weight of the staple core/sheath fibre of Example 3, was opened and blended using a Shirley (Regd. Trade Mark) miniature carding machine, and formed into a batt having a thickness of 120 mm. on a lap wheel. The batt was subjected for 1.5 minutes in an up-flow oven to an up-draught of air having a temperature of 215° C. and a velocity of 50 feet per minute. The resulting batt was compressed to a thickness of 70 mm and cooled to give a non-woven structure having a density of 0.03 gm. per cc.

EXAMPLES 5 AND 6, AND COMPARATIVE EXAMPLES A AND B

Staple fibre used in Example 2 was carded and formed into a batt having a thickness of 150 mm. The batt was divided into several aliquot portions. The samples were heated at different temperatures in an up flow oven, according to the present invention, or in a down flow oven according to the known processes of bonding. The air velocity in the up-flow oven was 50 feet per minute whereas that in the down flow oven was 500 feet per minute. The average density of each bonded sample was measured and then cut in a horizontal plane, the density of the upper and lower halves then being measured. Conditions of the experiments and the density of the products are given in table I below.

              TABLE I______________________________________          Temp.          of    Density (gm. per cc)    Type of Air     Aver-   Upper Lower    Oven    (°C.)                    age     half  half______________________________________Example 5                207   0.010 0.010 0.010          Up flowExample 6                215   0.012 0.011 0.012ComparativeExamples A     Down flow 207   0.023 0.013 0.044B                   215   0.037 0.017 0.063______________________________________

The results given in the table clearly show that the non-woven structures of the present invention have a substantially uniform density throughout their thickness whereas the structures produced by known methods vary considerably in density.

EXAMPLES 7 TO 10

Conjugate staple fibres spun from equal proportions of nylon-66 and nylon-11, and having a decitex of 10 per filament, were converted into a lofty batt having a thickness of 50 mm. Portions of this batt were then subjected to an upward flow of air heated to a temperature of 185°-190° C., the velocity being varied.

              TABLE II______________________________________Velocity of air(feet per min.)  Effect on loftiness of batt______________________________________Example 7   22           Some reduction in thickness.8       61           Very slight reduction in thickness9       79           No change in thickness10      92           Some fibers blown from surface.______________________________________

The results of the experiments, given in table II, show that the velocity of the updraught of the bonding fluid has some effect upon the resultant non-woven structure. The actual effect will depend upon the conditions employed, such as, the nature of the fibres, the weight and thickness of the unbonded batt, and the characteristics of the oven used.

Claims (5)

What I claim is:
1. In a method for the production of a low-density, high porosity, resilient, thermally bonded, non-woven fibrous batt having a substantially uniform density across its thickness by the steps of forming a lofty fibrous batt from at least 20% by weight of conjugated staple fibres having a length of 0.5 to 6 inches and being selected from the group consisting of crimped and potentially crimpable fibres, the conjugate fibres being composed of at least two fibre forming polymeric components arranged in distinct zones across the cross-section of the fibre and substantially continuous along the length thereof, one of the components having a softening temperature significantly lower than the softening temperature of a second component and being located so as to form at least a portion of the peripheral surface of the fibre, subjecting said batt to a heat treatment to heat the batt to a temperature in excess of the softening temperature of the component having the lower softening temperature but below the softening temperature of the second component to effect inter-fibre bonding, and then causing .[.or permitting.]. the batt to cool, the improvement comprising heating the batt by passing a heated gas upwardly through the batt, the gas having a temperature sufficient to effect thermal bonding of the conjugate fibres and having a velocity such that the batt is supported by the gas in a high-porosity condition without disintegrating the batt therein .Iadd.and causing the batt to cool by an upward passage of cooling air through the batt to quench the fibres and permit them to rapidly redevelop their modulus, .Iaddend.whereby the resulting batt has substantially uniform density across its thickness. .[.2. A method for the production of a resilient, bonded, non-woven fibrous batt as in claim 1 including cooling the thermally bonded batt by
an updraught of cold air..]. 3. A method for the production of a resilient, bonded, non-woven fibrous batt as in claim 1 including
compressing the thermally bonded batt before the cooling stage. 4. A method for the production of a resilient, bonded, non-woven fibrous batt as in claim 1 wherein the fibres have or are capable of developing a crimp
frequency of less that 10 crimps per extended centimeter. 5. A method for the production of a resilient, bonded, non-woven fibrous batt as in claim 1 wherein the conjugate fibres have or are capable of developing a crimp frequency of less than 10 crimps per extended centimeter and a decitex in
the range 5 to 30. 6. A method as in claim 1 wherein the upward stream of gas blows the batt against a foraminous surface disposed above the batt. .[.7. An improved low density, high porosity, resilient, thermally bonded, non-woven fibrous batt having a substantially non-uniform density across its width, made by the process of claim 1..].
US06039748 1975-04-11 1979-05-16 Fibrous product Expired - Lifetime USRE30955E (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1496275A GB1524713A (en) 1975-04-11 1975-04-11 Autogeneously bonded non-woven fibrous structure
GB14962/75 1975-04-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US05673547 Reissue US4068036A (en) 1975-04-11 1976-04-05 Fibrous product

Publications (1)

Publication Number Publication Date
USRE30955E true USRE30955E (en) 1982-06-01

Family

ID=10050632

Family Applications (2)

Application Number Title Priority Date Filing Date
US05673547 Expired - Lifetime US4068036A (en) 1975-04-11 1976-04-05 Fibrous product
US06039748 Expired - Lifetime USRE30955E (en) 1975-04-11 1979-05-16 Fibrous product

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US05673547 Expired - Lifetime US4068036A (en) 1975-04-11 1976-04-05 Fibrous product

Country Status (7)

Country Link
US (2) US4068036A (en)
JP (1) JPS51136978A (en)
CA (1) CA1071943A (en)
DE (1) DE2615981A1 (en)
FR (1) FR2307071B1 (en)
GB (1) GB1524713A (en)
NL (1) NL7603779A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336552A (en) * 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5405682A (en) * 1992-08-26 1995-04-11 Kimberly Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5437909A (en) * 1994-05-20 1995-08-01 Minnesota Mining And Manufacturing Company Multilayer nonwoven thermal insulating batts
US5443893A (en) * 1994-05-20 1995-08-22 Minnesota Mining And Manufacturing Company Multilayer nonwoven thermal insulating batts
US5462793A (en) * 1992-12-22 1995-10-31 Toyo Boseki Kabushiki Kaisha Structured fiber material comprised of composite fibers coiled around crimped short fibers
EP0685579A2 (en) 1994-06-03 1995-12-06 Kimberly-Clark Corporation Highly crimpable conjugate fibers and nonwoven webs made therefrom
US5569525A (en) * 1992-11-02 1996-10-29 Masuda; Yugoro Ultra-bulky fiber aggregate and production method thereof
US5622772A (en) * 1994-06-03 1997-04-22 Kimberly-Clark Corporation Highly crimpable spunbond conjugate fibers and nonwoven webs made therefrom
US5643662A (en) * 1992-11-12 1997-07-01 Kimberly-Clark Corporation Hydrophilic, multicomponent polymeric strands and nonwoven fabrics made therewith
US5695376A (en) * 1994-09-09 1997-12-09 Kimberly-Clark Worldwide, Inc. Thermoformable barrier nonwoven laminate
US6169045B1 (en) 1993-11-16 2001-01-02 Kimberly-Clark Worldwide, Inc. Nonwoven filter media
US6500538B1 (en) 1992-12-28 2002-12-31 Kimberly-Clark Worldwide, Inc. Polymeric strands including a propylene polymer composition and nonwoven fabric and articles made therewith
US20030068947A1 (en) * 1998-10-30 2003-04-10 Marmon Samuel Edward Uniformly treated fibrous webs and methods of making the same
US20040118546A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US20040118545A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US6815383B1 (en) 2000-05-24 2004-11-09 Kimberly-Clark Worldwide, Inc. Filtration medium with enhanced particle holding characteristics
US20050067125A1 (en) * 2003-09-26 2005-03-31 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US7381296B2 (en) 2004-11-03 2008-06-03 Kimberly-Clark Worldwide, Inc. Method of forming decorative tissue sheets
US7624765B2 (en) 2004-12-23 2009-12-01 Kimberly-Clark Worldwide, Inc. Woven throughdrying fabric having highlighted design elements

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1564550A (en) * 1976-12-14 1980-04-10 Jowitt P Fire protection means for fuel tanks
GB1567977A (en) * 1977-02-23 1980-05-21 Ici Ltd Water repellant fibrous structure and its use as a flame suppressant
US4129675A (en) * 1977-12-14 1978-12-12 E. I. Du Pont De Nemours And Company Product comprising blend of hollow polyester fiber and crimped polyester binder fiber
JPS5587388U (en) * 1978-12-13 1980-06-16
US4304817A (en) * 1979-02-28 1981-12-08 E. I. Dupont De Nemours & Company Polyester fiberfill blends
US4281042A (en) * 1979-08-30 1981-07-28 E. I. Du Pont De Nemours And Company Polyester fiberfill blends
US4310594A (en) * 1980-07-01 1982-01-12 Teijin Limited Composite sheet structure
US4732809A (en) * 1981-01-29 1988-03-22 Basf Corporation Bicomponent fiber and nonwovens made therefrom
JPH0321648B2 (en) * 1981-01-29 1991-03-25 Akzo Nv
US4418116A (en) * 1981-11-03 1983-11-29 E. I. Du Pont De Nemours & Co. Copolyester binder filaments and fibers
EP0088191A3 (en) * 1982-03-08 1986-02-19 Imperial Chemical Industries Plc Polyester fibrefill blend
US4774124A (en) * 1982-09-30 1988-09-27 Chicopee Pattern densified fabric comprising conjugate fibers
US4592943A (en) * 1982-09-30 1986-06-03 Chicopee Open mesh belt bonded fabric
CA1235292A (en) * 1982-09-30 1988-04-19 Charles J. Shimalla Open mesh belt bonded fabric
CA1243963A (en) * 1983-02-01 1988-11-01 Harvey J. Berg Molded nonwoven shaped articles
US4551378A (en) * 1984-07-11 1985-11-05 Minnesota Mining And Manufacturing Company Nonwoven thermal insulating stretch fabric and method for producing same
US5532050A (en) * 1986-06-30 1996-07-02 Wm. T. Burnett & Co., Inc. Densified thermo-bonded synthetic fiber batting
JPH02154050A (en) * 1988-12-01 1990-06-13 Kanebo Ltd Cushioning material and its production
US5198057A (en) * 1988-12-23 1993-03-30 Fiberweb North America, Inc. Rebulkable nonwoven fabric
US5143779A (en) * 1988-12-23 1992-09-01 Fiberweb North America, Inc. Rebulkable nonwoven fabric
DE3933358C1 (en) * 1989-10-06 1990-11-15 Helsa-Werke Helmut Sandler Gmbh & Co Kg, 8586 Gefrees, De Cover for shoulder pad - is moulded to required shape and made of two fibre components of different softening temp.
BE1003389A3 (en) * 1989-10-23 1992-03-10 Poppe Willy Method for obtaining a layer of fibres
CA2063732C (en) * 1990-05-28 1995-01-17 Makoto Yoshida Cushion structure and process for producing the same
US5599420A (en) * 1993-04-06 1997-02-04 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material and method for making same
US5399174A (en) * 1993-04-06 1995-03-21 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material
US5512358A (en) * 1993-09-22 1996-04-30 Kimberly-Clark Corporation Multi-component polymeric strands including a butene polymer and nonwoven fabric and articles made therewith
CA2124389C (en) * 1993-11-16 2005-08-23 Richard D. Pike Nonwoven filter media
CA2121513A1 (en) * 1994-01-03 1995-07-04 Richard Daniel Pike Thermoformable nonwoven fabric
CN1067910C (en) * 1994-10-31 2001-07-04 金伯利-克拉克环球有限公司 High density nonwowen filter media
ES2143209T3 (en) * 1995-06-23 2000-05-01 Minnesota Mining & Mfg Method of attenuating sound, and sound insulation for the same.
US5721180A (en) * 1995-12-22 1998-02-24 Pike; Richard Daniel Laminate filter media
US5931823A (en) * 1997-03-31 1999-08-03 Kimberly-Clark Worldwide, Inc. High permeability liner with improved intake and distribution
US6454989B1 (en) 1998-11-12 2002-09-24 Kimberly-Clark Worldwide, Inc. Process of making a crimped multicomponent fiber web
JP4024006B2 (en) * 2000-04-13 2007-12-19 キヤノン株式会社 Molding apparatus molding method and the fiber aggregate fiber aggregate
GB0113109D0 (en) * 2001-05-30 2001-07-18 Du Pont A floor covering
US6984276B2 (en) * 2001-12-21 2006-01-10 Invista North America S.Arl. Method for preparing high bulk composite sheets
US7036197B2 (en) * 2001-12-21 2006-05-02 Invista North America S.A.R.L. Stretchable multiple-component nonwoven fabrics and methods for preparing
US20030232552A1 (en) * 2002-01-04 2003-12-18 So Peter K.F. Bonded polyester fiberfill battings with a sealed outer surface having improved stretch and recovery capability
US20040203309A1 (en) * 2003-04-14 2004-10-14 Nordson Corporation High-loft spunbond non-woven webs and method of forming same
US20060157210A1 (en) * 2004-12-23 2006-07-20 Kimberly-Clark Worldwide, Inc. Method of making tissue sheets with textured woven fabrics having highlighted design elements
US20060140902A1 (en) * 2004-12-23 2006-06-29 Kimberly-Clark Worldwide, Inc. Odor control substrates
US20070098953A1 (en) * 2005-10-27 2007-05-03 Stabelfeldt Sara J Fastening systems utilizing combinations of mechanical fasteners and foams
US20070099531A1 (en) * 2005-10-27 2007-05-03 Efremova Nadezhda V Foam fastening system that includes a surface modifier
US8034430B2 (en) * 2005-10-27 2011-10-11 Kimberly-Clark Worldwide, Inc. Nonwoven fabric and fastening system that include an auto-adhesive material
US20070122603A1 (en) * 2005-11-29 2007-05-31 Kajander Richard E Nonwoven fibrous mats and methods
US20070172630A1 (en) * 2005-11-30 2007-07-26 Jones David M Primary carpet backings composed of bi-component fibers and methods of making and using thereof
US20070184732A1 (en) * 2006-02-07 2007-08-09 Lunsford David J High strength polyvinyl acetate binders
US20080131649A1 (en) * 2006-11-30 2008-06-05 Jones David M Low melt primary carpet backings and methods of making thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1140710A (en) 1966-06-01 1969-01-22 Du Pont Unbonded fibrous assembly
US3589956A (en) * 1966-09-29 1971-06-29 Du Pont Process for making a thermally self-bonded low density nonwoven product
US3595731A (en) * 1963-02-05 1971-07-27 British Nylon Spinners Ltd Bonded non-woven fibrous materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1560792B2 (en) * 1951-01-28 1974-05-30 Fa. Carl Freudenberg, 6940 Weinheim
FR1458293A (en) * 1964-07-30 1966-03-04 British Nylon Spinners Ltd Nonwoven fabrics and their methods of manufacture
GB1237603A (en) * 1968-02-14 1971-06-30 Vepa Ag Process and device for strengthening felts and other non-woven fabrics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595731A (en) * 1963-02-05 1971-07-27 British Nylon Spinners Ltd Bonded non-woven fibrous materials
GB1140710A (en) 1966-06-01 1969-01-22 Du Pont Unbonded fibrous assembly
US3589956A (en) * 1966-09-29 1971-06-29 Du Pont Process for making a thermally self-bonded low density nonwoven product

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5418045A (en) * 1992-08-21 1995-05-23 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric
US5336552A (en) * 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
US5405682A (en) * 1992-08-26 1995-04-11 Kimberly Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5425987A (en) * 1992-08-26 1995-06-20 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
US5569525A (en) * 1992-11-02 1996-10-29 Masuda; Yugoro Ultra-bulky fiber aggregate and production method thereof
US5643662A (en) * 1992-11-12 1997-07-01 Kimberly-Clark Corporation Hydrophilic, multicomponent polymeric strands and nonwoven fabrics made therewith
US5462793A (en) * 1992-12-22 1995-10-31 Toyo Boseki Kabushiki Kaisha Structured fiber material comprised of composite fibers coiled around crimped short fibers
US6500538B1 (en) 1992-12-28 2002-12-31 Kimberly-Clark Worldwide, Inc. Polymeric strands including a propylene polymer composition and nonwoven fabric and articles made therewith
US6169045B1 (en) 1993-11-16 2001-01-02 Kimberly-Clark Worldwide, Inc. Nonwoven filter media
US5597427A (en) * 1994-05-20 1997-01-28 Minnesota Mining And Manufacturing Company Method of making multilayer nonwoven thermal insulating batts
US5620541A (en) * 1994-05-20 1997-04-15 Minnesota Mining And Manufacturing Company Method of making multilayer nonwoven thermal insulating batts
US5437909A (en) * 1994-05-20 1995-08-01 Minnesota Mining And Manufacturing Company Multilayer nonwoven thermal insulating batts
US5443893A (en) * 1994-05-20 1995-08-22 Minnesota Mining And Manufacturing Company Multilayer nonwoven thermal insulating batts
US5622772A (en) * 1994-06-03 1997-04-22 Kimberly-Clark Corporation Highly crimpable spunbond conjugate fibers and nonwoven webs made therefrom
EP0685579A2 (en) 1994-06-03 1995-12-06 Kimberly-Clark Corporation Highly crimpable conjugate fibers and nonwoven webs made therefrom
US5695376A (en) * 1994-09-09 1997-12-09 Kimberly-Clark Worldwide, Inc. Thermoformable barrier nonwoven laminate
US20030068947A1 (en) * 1998-10-30 2003-04-10 Marmon Samuel Edward Uniformly treated fibrous webs and methods of making the same
US6815383B1 (en) 2000-05-24 2004-11-09 Kimberly-Clark Worldwide, Inc. Filtration medium with enhanced particle holding characteristics
US20060081349A1 (en) * 2002-12-19 2006-04-20 Bakken Andrew P Non-woven through air dryer and transfer fabrics for tissue making
US20040118545A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US7294238B2 (en) 2002-12-19 2007-11-13 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US6875315B2 (en) 2002-12-19 2005-04-05 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US6878238B2 (en) 2002-12-19 2005-04-12 Kimberly-Clark Worldwide, Inc. Non-woven through air dryer and transfer fabrics for tissue making
US20040118546A1 (en) * 2002-12-19 2004-06-24 Bakken Andrew Peter Non-woven through air dryer and transfer fabrics for tissue making
US7141142B2 (en) 2003-09-26 2006-11-28 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US20050067125A1 (en) * 2003-09-26 2005-03-31 Kimberly-Clark Worldwide, Inc. Method of making paper using reformable fabrics
US7381296B2 (en) 2004-11-03 2008-06-03 Kimberly-Clark Worldwide, Inc. Method of forming decorative tissue sheets
US20080185116A1 (en) * 2004-11-03 2008-08-07 Andrew Peter Bakken Fabrics for forming decorative tissue sheets
US20080196850A1 (en) * 2004-11-03 2008-08-21 Andrew Peter Bakken Decorative tissue sheets
US7871498B2 (en) 2004-11-03 2011-01-18 Kimberly-Clark Worldwide, Inc. Fabrics for forming decorative tissue sheets
US7871492B2 (en) 2004-11-03 2011-01-18 Kimberly-Clark Worldwide, Inc. Decorative tissue sheets
US7624765B2 (en) 2004-12-23 2009-12-01 Kimberly-Clark Worldwide, Inc. Woven throughdrying fabric having highlighted design elements
US20100059189A1 (en) * 2004-12-23 2010-03-11 Mark Alan Burazin Method of Modifying the Surface of a Non-Woven Web
US7988823B2 (en) 2004-12-23 2011-08-02 Kimberly-Clark Worldwide, Inc. Method of making textured tissue sheets having highlighted designs

Also Published As

Publication number Publication date Type
CA1071943A (en) 1980-02-19 grant
FR2307071B1 (en) 1981-09-25 grant
US4068036A (en) 1978-01-10 grant
NL7603779A (en) 1976-10-13 application
GB1524713A (en) 1978-09-13 application
JPS51136978A (en) 1976-11-26 application
FR2307071A1 (en) 1976-11-05 application
CA1071943A1 (en) grant
DE2615981A1 (en) 1976-10-21 application

Similar Documents

Publication Publication Date Title
US3616031A (en) Process for bonding felts and needled felts
US3595731A (en) Bonded non-woven fibrous materials
US3511747A (en) Bonded textile materials
US4500384A (en) Process for producing a non-woven fabric of hot-melt-adhered composite fibers
US4154889A (en) Nonwoven fabric, method and apparatus for it's manufacture
US2336797A (en) Felted product
US4320167A (en) Nonwoven fabric and method of production thereof
US4783231A (en) Method of making a fibrous web comprising differentially cooled/thermally relaxed fibers
US5066538A (en) Nonwoven insulating webs
US4167604A (en) Thermal insulation material comprising a mixture of down and synthetic fiber staple
US5407739A (en) Ignition resistant meltbrown or spunbonded insulation material
US20080038976A1 (en) Bonded nonwoven fibrous webs comprising softenable oriented semicrystalline polymeric fibers and apparatus and methods for preparing such webs
US4005169A (en) Non-woven fabrics
US5702801A (en) Method for producing a variable density, corrugated resin-bonded or thermo-bonded fiberfill and the structure produced thereby
US2910763A (en) Felt-like products
US4488928A (en) Method and apparatus for forming soft, bulky absorbent webs and resulting product
US4548856A (en) Method for forming soft, bulky absorbent webs and resulting product
US3348549A (en) Brassiere pad and process
US4818599A (en) Polyester fiberfill
US4486485A (en) Nonwoven textile structures with reversible stretch
US5104725A (en) Batts and articles of new polyester fiberfill
US4601937A (en) Temporary compaction of fiber non-wovens
US5141805A (en) Cushion material and method for preparation thereof
US5591523A (en) Polyester tow
US4555430A (en) Entangled nonwoven fabric made of two fibers having different lengths in which the shorter fiber is a conjugate fiber in which an exposed component thereof has a lower melting temperature than the longer fiber and method of making same