JP7251201B2 - Non-woven fabric for reinforcing foam molded products - Google Patents

Non-woven fabric for reinforcing foam molded products Download PDF

Info

Publication number
JP7251201B2
JP7251201B2 JP2019028060A JP2019028060A JP7251201B2 JP 7251201 B2 JP7251201 B2 JP 7251201B2 JP 2019028060 A JP2019028060 A JP 2019028060A JP 2019028060 A JP2019028060 A JP 2019028060A JP 7251201 B2 JP7251201 B2 JP 7251201B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
nonwoven fabric
fibers
dtex
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019028060A
Other languages
Japanese (ja)
Other versions
JP2020133051A (en
Inventor
公夫 川戸
まり子 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2019028060A priority Critical patent/JP7251201B2/en
Publication of JP2020133051A publication Critical patent/JP2020133051A/en
Application granted granted Critical
Publication of JP7251201B2 publication Critical patent/JP7251201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Description

本発明は、車両用シートや椅子等の家具に使用されるポリウレタンなどの発泡成型品に使用される補強用不織布に関する。 TECHNICAL FIELD The present invention relates to a reinforcing nonwoven fabric used for foamed products such as polyurethane used for furniture such as vehicle seats and chairs.

近年、車両用シート等の意匠性や車両用シートへの電装品の設置が進むにつれ、発泡成型品の形状も複雑な形状となり、その成型に使用する金型形状も複雑化してきている。複雑な形状の金型を使用した発泡成型に従来の補強用不織布を使用するには、多数の補強布の小片を形状に合わせる様に縫製などによって形成して使用しており、手間が非常にかかる状況であった。 In recent years, as the design of vehicle seats and the installation of electrical components on vehicle seats have progressed, the shapes of foam-molded products have become more complex, and the shapes of molds used for molding have also become more complex. In order to use conventional reinforcing non-woven fabric for foam molding using a mold with a complicated shape, many small pieces of reinforcing fabric are formed by sewing etc. to match the shape, and it is very laborious. Such was the situation.

特許文献1には、緻密層の少なくとも片面に、繊維径が20μmより大きい熱可塑性樹脂短繊維、繊維径が20μm以下の熱可塑性樹脂短繊維と、融点の異なる2種以上の樹脂を含んで形成される複合ポリエステル系短繊維が含まれた補強層とをニードルパンチにより交絡させた不織布積層体が記載されている。そして、得られた不織布積層体を型にてプレス成型し補強材を製造する場合に、型への追従性が優れ、引き伸ばしを受けても緻密性が充分保たれ、かつ厚み方向の熱圧縮を受けても薄肉化が抑えられ、型取りした後でも補強効果とウレタン染み出し防止性能(異音防止性能)と不織布層の柔軟性(椅子等に用いたときの座り心地)のバランスに優れることが記載されている。 In Patent Document 1, at least one surface of a dense layer contains thermoplastic resin short fibers having a fiber diameter of more than 20 μm, thermoplastic resin short fibers having a fiber diameter of 20 μm or less, and two or more resins having different melting points. A nonwoven fabric laminate obtained by interlacing a reinforcing layer containing composite polyester short fibers obtained by needle punching is described. When the obtained nonwoven fabric laminate is press-molded in a mold to produce a reinforcing material, it has excellent conformability to the mold, sufficiently maintains its denseness even when subjected to stretching, and can be thermally compressed in the thickness direction. Thinning is suppressed even when it is received, and even after molding, it has an excellent balance of reinforcing effect, prevention of urethane seepage (noise prevention performance), and flexibility of the nonwoven fabric layer (comfort when used for chairs, etc.). is described.

また、特許文献2には、2種類の短繊維を機械交絡させて得られる不織布からなる発泡成型品補強材用不織布が記載されている。得られた不織布はコールド発泡に代表される低温発泡における深絞り成型においても追随性が良好である旨記載されてはいるが、プレス成型用型への追随性が十分であるとは言えないものであった。 Further, Patent Document 2 describes a nonwoven fabric for a reinforcing material for a foam molded product, which is obtained by mechanically entangling two kinds of short fibers. Although it is described that the obtained nonwoven fabric has good followability even in deep drawing molding in low temperature foaming represented by cold foaming, it cannot be said that the followability to press molding molds is sufficient. Met.

特許第5722511号公報Japanese Patent No. 5722511 特開2012-82548号公報JP 2012-82548 A

本発明は、従来技術を背景になされたもので、車両用シートや椅子等の家具に使用されるポリウレタンなどの発泡成型品に使用される補強用不織布に関する。より詳しくは、近年使用される形状が複雑な発泡成型品の製造で採用される、補強用不織布を型によりプレス成型した後発泡加工を実施する発泡成型品の製造において、プレス成型用型の形状に十分追随性を有し、かつ発泡加工時に発泡成分の漏れや滲み出しがなく、加工や取り扱い性に優れた発泡成型品補強用不織布を提供することを課題とする。 The present invention has been made against the background of the prior art, and relates to a reinforcing nonwoven fabric used for foamed molded articles such as polyurethane used for furniture such as vehicle seats and chairs. More specifically, in the manufacture of foam-molded products that are used in recent years to manufacture foam-molded products with complicated shapes, in which a reinforcing nonwoven fabric is press-molded with a mold and then foamed, the shape of the press-molding mold is To provide a nonwoven fabric for reinforcing a foamed molded product which has sufficient followability to a foaming process, does not leak or bleed out foaming components during foaming process, and is excellent in processability and handleability.

本発明者らは上記課題を解決するため、鋭意研究した結果、ついに本発明を完成するに到った。すなわち、本発明は以下の通りである。
1.(A)繊度が2dtex以上6dtex以下の機械捲縮を有する熱可塑性樹脂複合短繊維、(B)繊度が3dtex以上17dtex以下の単成分からなり繊維断面形状が中空断面である立体捲縮を有する熱可塑性樹脂短繊維、および(C)繊度が1dtex以上3dtex以下の単成分からなる機械捲縮を有する熱可塑性樹脂短繊維の3種類の短繊維を少なくとも含み、目付が80g/m以上500g/m以下である発泡成型品補強用不織布。
2.160℃における熱時5%伸張時応力がタテ方向およびヨコ方向ともに5N/5cm以下である上記1に記載の発泡成型品補強用不織布。
3.160℃における熱時最大点引張伸度がタテ方向およびヨコ方向ともに160%以上である上記1または2に記載の発泡成型品補強用不織布。
4.前記(A)の機械捲縮を有する熱可塑性樹脂複合短繊維、前記(B)の単成分からなる立体捲縮を有する熱可塑性樹脂短繊維、および前記(C)の単成分からなる機械捲縮を有する熱可塑性樹脂短繊維の混合比率が、それぞれ25質量%以上60質量%以下、20質量%以上50質量%以下、10質量%以上50質量%以下である上記1~3のいずれかに記載の発泡成型品補強用不織布。
In order to solve the above problems, the inventors of the present invention have finally completed the present invention as a result of earnest research. That is, the present invention is as follows.
1. (A) Thermoplastic resin composite short fibers having a mechanical crimp with a fineness of 2 dtex or more and 6 dtex or less, (B) Thermal fibers made of a single component with a fineness of 3 dtex or more and 17 dtex or less and having a three-dimensional crimp with a hollow cross section. Plastic resin staple fibers and (C) mechanically crimped thermoplastic resin staple fibers consisting of a single component with a fineness of 1 dtex or more and 3 dtex or less, and having a basis weight of 80 g/m2 or more and 500 g/m2. 2 or less nonwoven fabric for reinforcing foam molded products.
2. The nonwoven fabric for reinforcing foam molded articles according to 1 above, wherein the stress at 5% hot elongation at 160° C. is 5 N/5 cm or less in both the vertical and horizontal directions.
3. The nonwoven fabric for reinforcing foam molded articles according to 1 or 2 above, wherein the maximum hot tensile elongation at 160° C. is 160% or more in both the vertical and horizontal directions.
4. The thermoplastic resin composite staple fibers having mechanical crimps (A), the thermoplastic resin staple fibers having three-dimensional crimps consisting of a single component (B), and the mechanical crimps consisting of a single component (C). Any one of 1 to 3 above, wherein the mixing ratio of the thermoplastic resin short fibers having Non-woven fabric for reinforcing foam molded products.

本発明の発泡成型品補強用不織布は、近年使用される形状が複雑な発泡成型品の製造で採用される、補強用不織布を型によりプレス成型した後発泡加工を実施する発泡成型品の製造において、プレス成型用型の形状に十分追随性を有し、かつ発泡加工時に発泡成分の漏れや滲み出しがなく、加工や取り扱い性に優れた発泡成型品補強用不織布を得ることができる。 The nonwoven fabric for reinforcing foam-molded products of the present invention is used in the production of foam-molded products with complicated shapes that have been used in recent years. It is possible to obtain a non-woven fabric for reinforcing foamed molded articles which has sufficient conformability to the shape of a press molding mold, does not leak or seep out foam components during foaming processing, and is excellent in processability and handleability.

以下、本発明を詳細に説明する。
本発明の発泡成型品補強用不織布は、(A)繊度が2dtex以上6dtex以下の機械捲縮を有する熱可塑性樹脂複合短繊維、(B)繊度が3dtex以上17dtex以下の単成分からなり繊維断面形状が中空断面である立体捲縮を有する熱可塑性樹脂短繊維、および(C)繊度が1dtex以上3dtex以下の単成分からなる機械捲縮を有する熱可塑性樹脂短繊維の3種類の短繊維を少なくとも含むものである。
The present invention will be described in detail below.
The nonwoven fabric for reinforcing foam molded products of the present invention is composed of (A) a thermoplastic resin composite short fiber having a fineness of 2 dtex or more and 6 dtex or less and having mechanical crimps, and (B) a single component having a fineness of 3 dtex or more and 17 dtex or less. contains at least three types of staple fibers: a thermoplastic resin staple fiber having a three-dimensional crimp having a hollow cross section, and (C) a thermoplastic resin staple fiber having a mechanical crimp consisting of a single component with a fineness of 1 dtex or more and 3 dtex or less. It is a thing.

なお、本発明でいう機械捲縮とは、スタッフィングボックス型クリンパー等によって捲縮加工した繊維であって、繊維の捲縮の形態が平面状(二次元的に広がる面に沿って繊維が折れ曲がるような捲縮形態)のものをいう。また、本発明でいう立体捲縮とは、繊維の捲縮の形態が立体的(三次元的)である繊維をいう。立体捲縮繊維の捲縮形態は、代表的なものとして、例えば、コイル状、スパイラル状等の三次元的な捲縮形態が挙げられるものの、繊維が立体的な捲縮を有している限り、これに限定されるものではない。 The term "mechanically crimped" as used in the present invention refers to fibers that have been crimped by a stuffing box type crimper or the like, and the crimped form of the fibers is planar (so that the fibers are bent along a plane that spreads two-dimensionally). crimped form). Further, the three-dimensional crimp as used in the present invention refers to fibers whose crimped form is three-dimensional (three-dimensional). Typical crimped forms of three-dimensionally crimped fibers include, for example, three-dimensionally crimped forms such as coils and spirals, as long as the fibers have three-dimensional crimps. , but not limited to.

本明細書において、「(A)繊度が2dtex以上6dtex以下の機械捲縮を有する熱可塑性樹脂複合短繊維」を「(A)の熱可塑性樹脂複合短繊維」、「(B)繊度が3dtex以上17dtex以下の単成分からなり繊維断面形状が中空断面である立体捲縮を有する熱可塑性樹脂短繊維」を「(B)の熱可塑性樹脂短繊維」、「(C)繊度が1dtex以上3dtex以下の単成分からなる機械捲縮を有する熱可塑性樹脂短繊維」を「(C)の熱可塑性樹脂短繊維」とそれぞれいう場合がある。 In the present specification, "(A) a thermoplastic resin composite staple fiber having a mechanical crimp having a fineness of 2 dtex or more and 6 dtex or less" is referred to as "(A) a thermoplastic resin composite staple fiber", and "(B) a fineness of 3 dtex or more." "(B) Thermoplastic resin staple fiber", "(C) Fineness of 1 dtex or more and 3 dtex or less" A "machine crimped thermoplastic resin staple fiber consisting of a single component" is sometimes referred to as "(C) thermoplastic resin staple fiber".

本発明の発泡成型品補強用不織布に含まれる(A)の熱可塑性樹脂複合短繊維の繊度は2dtex以上6dtex以下であり、3dtex以上5dtex以下であることが好ましい。(A)の熱可塑性樹脂複合短繊維の繊度が2dtex未満では、不織布を構成する繊維の構成本数が多くなり、その結果不織布に繊維同士の接着点が多くなり、プレス成型時に繊維の動きが阻害され、プレス成型用型への追従性が悪くなり、破れが発生するおそれがある。また、繊度が6dtexを超えると得られる補強用不織布の構造が粗くなり発泡加工時にウレタンの滲み出しが発生するおそれがある。
(A)の熱可塑性樹脂複合短繊維の繊維長は、30mm以上110mm以下が好ましい。
The fineness of the (A) thermoplastic resin composite short fibers contained in the nonwoven fabric for reinforcing foam molded articles of the present invention is 2 dtex or more and 6 dtex or less, preferably 3 dtex or more and 5 dtex or less. If the fineness of the thermoplastic resin composite short fibers of (A) is less than 2 dtex, the number of fibers constituting the nonwoven fabric increases, resulting in increased adhesion points between fibers in the nonwoven fabric, hindering movement of the fibers during press molding. This results in poor conformability to the press-molding mold, which may lead to breakage. On the other hand, if the fineness exceeds 6 dtex, the resulting reinforcing nonwoven fabric will have a rough structure, and urethane may ooze out during the foaming process.
The fiber length of the thermoplastic resin composite staple fibers (A) is preferably 30 mm or more and 110 mm or less.

本発明の発泡成型品補強用不織布に含まれる(A)の熱可塑性樹脂複合短繊維は機械捲縮を有する。機械捲縮を有するとは、繊維の捲縮形態として主たる捲縮形態が機械捲縮であればよく、立体捲縮と併用されるものを排除するものではない。 The (A) thermoplastic resin conjugate short fibers contained in the nonwoven fabric for reinforcing foam molded articles of the present invention have mechanical crimps. Having mechanical crimps means that the main crimping form of the fiber is mechanical crimping, and does not exclude those used in combination with three-dimensional crimping.

本発明の発泡成型品補強用不織布に含まれる(A)の熱可塑性樹脂複合短繊維は、融点の異なる2種以上の樹脂を含んで形成される複合短繊維である。繊維の複合形態としては、シース・コア複合繊維やサイド・バイ・サイド複合繊維等が挙げられる。シース・コア複合繊維の場合は、シース成分の融点がコア成分の融点より低い熱可塑性樹脂を使用する。
融点の高い方の熱可塑性樹脂としては、ポリエステル樹脂、ナイロン樹脂、ポリプロピレン等が挙げられる。融点の低い方の熱可塑性樹脂としては、変性低融点ポリエステル樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等が挙げられる。中でも、シース成分に低融点変性ポリエステル樹脂、コア成分にポリエチレンテレフタレートを使用したシース・コア複合短繊維が好ましい。シース成分とコア成分の質量比率としては、60/40~40/60の範囲が好ましい。
The (A) thermoplastic resin composite short fibers contained in the nonwoven fabric for reinforcing foam molded articles of the present invention are composite short fibers formed by containing two or more resins having different melting points. Composite forms of fibers include sheath-core composite fibers and side-by-side composite fibers. In the case of the sheath-core composite fiber, a thermoplastic resin in which the melting point of the sheath component is lower than that of the core component is used.
Examples of thermoplastic resins having a higher melting point include polyester resins, nylon resins, and polypropylene. Examples of thermoplastic resins having a lower melting point include modified low-melting polyester resins, polypropylene resins, and polyethylene resins. Among them, sheath-core composite short fibers using low-melting-point modified polyester resin as the sheath component and polyethylene terephthalate as the core component are preferred. The mass ratio of the sheath component and core component is preferably in the range of 60/40 to 40/60.

本発明の発泡成型品補強用不織布に含まれる(B)の熱可塑性樹脂短繊維の繊度は、3dtex以上17dtex以下であり、4dtex以上15dtex以下が好ましく、5dtex以上13dtex以下がより好ましい。(B)の熱可塑性樹脂短繊維の繊度が3dtex未満では、プレス成型の熱処理時に不織布の捲縮回復応力が低下し、プレス成型用型の深絞り形状に追従しきれず破れや穴開きが発生するおそれがある。また、繊度が17dtexを超えると得られる補強用不織布の構造が粗くなり発泡加工時にウレタンの滲み出しが発生するおそれがある。
(B)の熱可塑性樹脂複合短繊維の繊維長は、30mm以上110mm以下が好ましい。
The fineness of the (B) thermoplastic resin staple fibers contained in the nonwoven fabric for reinforcing foam molded articles of the present invention is 3 dtex or more and 17 dtex or less, preferably 4 dtex or more and 15 dtex or less, and more preferably 5 dtex or more and 13 dtex or less. If the fineness of the thermoplastic resin staple fibers (B) is less than 3 dtex, the crimp recovery stress of the nonwoven fabric is reduced during the heat treatment for press molding, and the nonwoven fabric cannot follow the deep drawing shape of the press molding die, resulting in tearing and holes. There is a risk. On the other hand, if the fineness exceeds 17 dtex, the resulting reinforcing nonwoven fabric will have a rough structure, and urethane may ooze out during the foaming process.
The fiber length of the (B) thermoplastic resin composite short fibers is preferably 30 mm or more and 110 mm or less.

本発明の発泡成型品補強用不織布に含まれる(B)の熱可塑性樹脂短繊維は単成分の熱可塑性樹脂からなる立体捲縮を有する短繊維である。(B)の熱可塑性樹脂短繊維は立体捲縮に加え、機械捲縮を有していても良い。単成分の熱可塑性樹脂からなる短繊維に立体捲縮を付与する方法としては、製糸時の非対称冷却による方法により得ることができる。 The (B) thermoplastic resin short fibers contained in the nonwoven fabric for reinforcing foam molded articles of the present invention are short fibers having three-dimensional crimps and made of a single-component thermoplastic resin. The thermoplastic resin short fibers (B) may have mechanical crimps in addition to three-dimensional crimps. As a method for imparting three-dimensional crimps to short fibers made of a single-component thermoplastic resin, a method of asymmetric cooling during spinning can be used.

本発明の発泡成型品補強用不織布に含まれる(B)の熱可塑性樹脂短繊維の繊維断面形状は、中空断面形状である。中空断面形状繊維を使用することで不織布に嵩高性を付与できプレス成型用型への追従性が良くなり、破れの発生を抑制することができる。そして、発泡加工時のウレタンの滲み出しの発生を抑制することができる。 The fiber cross-sectional shape of the (B) thermoplastic resin short fibers contained in the nonwoven fabric for reinforcing foam molded products of the present invention is a hollow cross-sectional shape. The use of hollow cross-section fibers can impart bulkiness to the nonwoven fabric, improve followability to press molding dies, and suppress the occurrence of tearing. In addition, it is possible to suppress the occurrence of exudation of urethane during foaming.

本発明の発泡成型品補強用不織布に含まれる(B)の熱可塑性樹脂短繊維に使用する熱可塑性樹脂としては、ポリエステル樹脂、ナイロン樹脂、ポリプロピレン、ポリエチレン等が挙げられる。中でも、ポリエチレンテレフタレートを使用したものが好ましい。 Examples of the thermoplastic resin used for the (B) thermoplastic resin short fibers contained in the nonwoven fabric for reinforcing foam molded articles of the present invention include polyester resin, nylon resin, polypropylene, and polyethylene. Among them, those using polyethylene terephthalate are preferable.

本発明の発泡成型品補強用不織布に含まれる(C)の熱可塑性樹脂短繊維の繊度は、1dtex以上3dtex以下であり、1.5dtex以上2.5dtex以下が好ましい。(C)の熱可塑性樹脂短繊維の繊度が1dtex未満では、不織布を構成する繊維の構成本数が多く、その結果不織布に繊維同士の接着点が多くなり、プレス成型時に繊維の動きが阻害され、プレス成型用型への追従性が悪くなり、破れが発生するおそれがある。また、繊度が3texを超えると得られる補強用不織布の構造が粗くなり発泡加工時にウレタンの滲み出しが発生するおそれがある。
(C)の熱可塑性樹脂複合短繊維の繊維長は、30mm以上110mm以下が好ましい。
The fineness of the (C) thermoplastic resin short fibers contained in the nonwoven fabric for reinforcing foam molded articles of the present invention is 1 dtex or more and 3 dtex or less, preferably 1.5 dtex or more and 2.5 dtex or less. If the fineness of the thermoplastic resin short fibers of (C) is less than 1 dtex, the number of fibers constituting the nonwoven fabric is large, and as a result, the number of adhesion points between fibers in the nonwoven fabric increases, and the movement of the fibers is hindered during press molding. Followability to the mold for press molding deteriorates, and there is a risk of tearing. On the other hand, if the fineness exceeds 3 tex, the structure of the obtained reinforcing nonwoven fabric becomes rough, and urethane may ooze out during the foaming process.
The fiber length of the (C) thermoplastic resin composite short fibers is preferably 30 mm or more and 110 mm or less.

本発明の発泡成型品補強用不織布に含まれる(C)の熱可塑性樹脂短繊維は単成分の熱可塑性樹脂からなる機械捲縮を有する短繊維である。 The (C) thermoplastic resin short fibers contained in the nonwoven fabric for reinforcing foam molded articles of the present invention are machine-crimped short fibers made of a single-component thermoplastic resin.

本発明の発泡成型品補強用不織布は、前記(A)~(C)の3種類の短繊維を少なくとも含む。(A)の熱可塑性樹脂複合短繊維、(B)の熱可塑性樹脂短繊維、および(C)の熱可塑性樹脂短繊維の混合質量比率は、それぞれ25質量%以上60質量%以下、20質量%以上50質量%以下、10質量%以上50質量%以下であることが好ましい。
(A)の熱可塑性樹脂複合短繊維の混合質量比率が25質量%未満では、発泡成型品補強用不織布としての型保持性や剛性が不足するおそれがあり、60質量%を超えると(A)の熱可塑性樹脂複合短繊維と(B)の熱可塑性樹脂短繊維および(C)の熱可塑性樹脂短繊維との接点が増え、不織布に繊維接着点が増えてしまう結果、プレス成型時に繊維の動きが阻害され、プレス成型用型への追従性が悪くなり、破れが発生するおそれがある。
(B)の熱可塑性樹脂短繊維の混合質量比率が20質量%未満では、プレス成型の熱処理時に不織布の捲縮回復応力が低下し、プレス成型用型の深絞り形状に追従しきれず破れや穴開きが発生するおそれがあり、50質量%を超えると発泡加工時にウレタン滲みだしが発生するおそれがある。
(C)の熱可塑性樹脂短繊維の混合質量比率が10質量%未満では、発泡加工時にウレタン滲みだしが発生するおそれがあり、50質量%を超えると(C)の熱可塑性樹脂短繊維と(A)の熱可塑性樹脂複合短繊維との接点が増え、不織布に繊維接着点が増えてしまう結果、プレス成型時に繊維の動きが阻害され、プレス成型用型への追従性が悪くなり、破れが発生するおそれがある。
The nonwoven fabric for reinforcing foam molded articles of the present invention contains at least the above three types of staple fibers (A) to (C). The mixed mass ratios of the (A) thermoplastic resin composite short fibers, (B) the thermoplastic resin short fibers, and (C) the thermoplastic resin short fibers are 25% by mass or more and 60% by mass or less and 20% by mass, respectively. 50 mass % or less, preferably 10 mass % or more and 50 mass % or less.
If the mixed mass ratio of the thermoplastic resin conjugate short fibers of (A) is less than 25% by mass, there is a risk of insufficient mold retention and rigidity as a nonwoven fabric for reinforcing foam molded products, and if it exceeds 60% by mass (A) The number of points of contact between the thermoplastic resin composite short fibers and the thermoplastic resin short fibers of (B) and the thermoplastic resin short fibers of (C) increases, increasing the number of fiber bonding points in the nonwoven fabric. is hindered, the conformability to the press molding mold is deteriorated, and there is a risk of tearing.
If the mixed mass ratio of the thermoplastic resin staple fibers of (B) is less than 20% by mass, the crimp recovery stress of the nonwoven fabric decreases during the heat treatment for press molding, and the deep drawn shape of the press molding die cannot be followed, resulting in tears and holes. Opening may occur, and if it exceeds 50% by mass, urethane bleeding may occur during foaming.
If the mixed mass ratio of the thermoplastic resin short fibers (C) is less than 10% by mass, urethane bleeding may occur during foaming processing, and if it exceeds 50% by mass, the thermoplastic resin short fibers (C) and ( As a result of increasing the number of points of contact with the thermoplastic resin composite staple fibers in A) and increasing the number of fiber bonding points on the nonwoven fabric, the movement of the fibers is hindered during press molding, the followability to the press molding mold deteriorates, and tearing occurs. It may occur.

本発明の発泡成型品補強用不織布の目付は、80g/m以上500g/m以下であり、好ましくは90g/m以上450g/m以下であり、より好ましくは100g/m以上40g/m以下である。目付が80g/m未満であると発泡加工時にウレタン滲み出しが発生するおそれがある。目付が500g/mを超えると不織布が硬くなりプレス成型用型への追従性が悪くなり、破れが発生するおそれがる。 The basis weight of the nonwoven fabric for reinforcing foam molded articles of the present invention is 80 g/m 2 or more and 500 g/m 2 or less, preferably 90 g/m 2 or more and 450 g/m 2 or less, more preferably 100 g/m 2 or more and 40 g. /m 2 or less. If the basis weight is less than 80 g/m 2 , urethane exudation may occur during foaming. If the basis weight exceeds 500 g/m 2 , the non-woven fabric will be hard and will not conform well to the press-molding mold, which may lead to tearing.

本発明の発泡成型品補強用不織布の160℃における熱時5%伸張時応力は、タテ方向およびヨコ方向ともに5N/5cm以下であり、好ましくは4.5N/5cm以下である。下限は特に限定しないが、通常は0.1N/5cm以上が好ましく、0.2N/5cm以上がより好ましい。熱時5%伸長時応力が5N/5cmを超えるとプレス成型の熱処理時に不織布収縮応力が大きくなり、プレス成型前の不織布の予熱工程で使用するピンテンターで不織布を把持できず成型不良を発生するおそれがある。また、プレス成型時に応力集中により不織布の破れが発生するおそれがある。
なお、補強用不織布のタテ方向とは不織布製造時製品流れ方向であり、ヨコ方向とはタテ方向と直交する方向である。
The stress at 5% hot elongation at 160° C. of the nonwoven fabric for reinforcing foam molded articles of the present invention is 5 N/5 cm or less, preferably 4.5 N/5 cm or less in both the vertical and horizontal directions. Although the lower limit is not particularly limited, it is usually preferably 0.1 N/5 cm or more, more preferably 0.2 N/5 cm or more. When the stress at 5% elongation when hot exceeds 5 N/5 cm, the shrinkage stress of the nonwoven fabric increases during the heat treatment of press molding, and the pin tenter used in the preheating process of the nonwoven fabric before press molding cannot grip the nonwoven fabric, which may cause molding defects. There is In addition, there is a risk that the nonwoven fabric will tear due to stress concentration during press molding.
The vertical direction of the reinforcing nonwoven fabric is the product flow direction during the production of the nonwoven fabric, and the horizontal direction is the direction orthogonal to the vertical direction.

本発明の発泡成型品補強用不織布の160℃における熱時最大点引張伸度は、タテ方向およびヨコ方向ともに160%以上であり、好ましくは170%以上である。上限は特に限定しないが通常は300%以下が好ましい。熱時最大点引張伸度が160%未満だとプレス成型時に不織布の伸びが足りず、不織布の目開きや破れが発生するおそれがある。 The maximum thermal elongation at 160° C. of the nonwoven fabric for reinforcing foam molded articles of the present invention is 160% or more in both the vertical and horizontal directions, preferably 170% or more. Although the upper limit is not particularly limited, it is usually preferably 300% or less. If the maximum hot tensile elongation is less than 160%, the nonwoven fabric will not stretch sufficiently during press molding, and the nonwoven fabric may open or tear.

本発明の発泡成型品補強用不織布は、例えば以下の方法で製造することができる。
(A)繊度が2dtex以上6dtex以下の機械捲縮を有する熱可塑性樹脂複合短繊維、(B)繊度が3dtex以上17dtex以下の単成分からなり繊維断面形状が中空断面である立体捲縮を有する熱可塑性樹脂短繊維、および(C)繊度が1dtex以上3dtex以下の単成分からなる機械捲縮を有する熱可塑性樹脂短繊維の少なくとも3種類の短繊維を混合し、2台のカード紡出機によって前記混合短繊維をクロスレイアーで積層展開してウェブを得る。得られたウェブを第1ニードルパンチ機で片面より繊維交絡を行う。その後、第2、第3ニードルパンチ機で上下より機械交絡し、繊維をさらに交絡させ、積層体を一体形成し、所望の機械的強度を付与する。得られた短繊維不織布を熱処理ロールまたはエアースルー型ドライアー熱処理で(A)の熱可塑性樹脂複合短繊維の低融点成分を溶融接着することにより製造することができる。
上記各工程は、連続一貫した製造工程にすることが、作業生産性を高める上で好ましい。
The nonwoven fabric for reinforcing foam molded articles of the present invention can be produced, for example, by the following method.
(A) Thermoplastic resin composite short fibers having a mechanical crimp with a fineness of 2 dtex or more and 6 dtex or less, (B) Thermal fibers made of a single component with a fineness of 3 dtex or more and 17 dtex or less and having a three-dimensional crimp with a hollow cross section. At least three types of staple fibers, ie, plastic resin staple fibers and (C) mechanically crimped thermoplastic resin staple fibers consisting of a single component with a fineness of 1 dtex or more and 3 dtex or less are mixed, and the above-mentioned staple fibers are processed by two card spinning machines. A web is obtained by laminating and spreading the mixed short fibers with a cross layer. The obtained web is subjected to fiber entanglement from one side by a first needle punch machine. After that, the fibers are mechanically entangled from above and below with a second and third needle punch machine to further entangle the fibers, integrally form a laminate, and impart a desired mechanical strength. The obtained short fiber nonwoven fabric can be produced by melt-bonding the low melting point component of the thermoplastic resin composite short fibers (A) by heat treatment with a heat treatment roll or an air-through type dryer.
Each of the above steps is preferably a continuous and consistent manufacturing process in order to improve work productivity.

以下、実施例および比較例によって本発明をさらに具体的に説明するが、本発明はこれらに何ら限定されるものではない。
なお、本発明の実施例および比較例で用いた評価方法は下記の方法でおこなった。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to these.
The following evaluation methods were used in the examples and comparative examples of the present invention.

(目付)
試料の3箇所から30cm×30cmの試験片を切り出し、その質量を測定し、平方メートル当りの重さに換算した。
(Metsuke)
Test pieces of 30 cm x 30 cm were cut out from three locations on the sample, and their masses were measured and converted into weight per square meter.

(160℃熱時伸度)
試料の6箇所よりタテ方向/ヨコ方向ともに5cm×15cmの試験片を切り出し、予熱高温炉160℃雰囲気下で1分予熱後、東洋ボールドイン社製テンシロンを用いて、掴み間隔5cm、引張り速度20cm/minで引張試験を実施し、最大点伸度を測定し、その平均値を求めた。
(160°C hot elongation)
A test piece of 5 cm x 15 cm in both the vertical direction and the horizontal direction is cut out from 6 points of the sample, preheated in a preheated high temperature furnace at 160 ° C. for 1 minute, and then using a Tensilon manufactured by Toyo Bold-In Co., Ltd., with a grip interval of 5 cm and a pulling speed of 20 cm. /min, the maximum point elongation was measured, and the average value was obtained.

(160℃熱時5%伸張応力)
試料の6箇所よりタテ方向/ヨコ方向ともに5cm×15cmの試験片を切り出し、予熱高温炉160℃雰囲気下で1分予熱後、東洋ボールドイン社製テンシロンを用いて、掴み間隔5cm、引張り速度20cm/minで引張試験を実施し、5%伸張時の応力を測定し、その平均値を求めた。
(5% tensile stress when heated at 160°C)
A test piece of 5 cm x 15 cm in both the vertical direction and the horizontal direction is cut out from 6 points of the sample, preheated in a preheated high temperature furnace at 160 ° C. for 1 minute, and then using a Tensilon manufactured by Toyo Bold-In Co., Ltd., with a grip interval of 5 cm and a pulling speed of 20 cm. /min, the stress at 5% elongation was measured, and the average value was obtained.

(成型性)
試料の3箇所より直径10cmの円形試験片を切り出し、押込み金型枠に試料片をセットしボルトで4箇所固定し、200℃×5分間予熱炉で加熱後、常温の押込み金棒3cmの半円状を20cm/minの速度で50mm押込んだときの形状で評価した。
均一に成型 ○
目開き △
破れ ×
(moldability)
Circular test pieces with a diameter of 10 cm are cut out from 3 points on the sample, and the test pieces are set in an indentation mold frame and fixed with bolts at 4 points. The shape was evaluated by the shape when pushed 50 mm at a speed of 20 cm/min.
Uniform molding ○
Eye opening △
Torn ×

(ウレタン発泡後の滲み出し評価)
○:ウレタンの表面にガスの後がなく、きれいに発泡されていた。
△:ウレタンの表面にガス後が部分的に発生する。
×:ウレタン表面にガスの後があり、痘痕状などの欠点があった。
(Bleeding evaluation after urethane foaming)
◯: There was no trace of gas on the surface of the urethane, and the foam was cleanly formed.
Δ: Gas residue is partially generated on the urethane surface.
x: There were gas marks on the urethane surface, and there were defects such as pox marks.

<実施例1>
(A)の熱可塑性樹脂複合短繊維としては、繊度4dtex、繊維長51mmの機械捲縮が付与された芯成分がポリエチレンテレフタレート(融点255℃)、鞘成分が共重合ポリエステル(融点110℃)からなる芯鞘型複合短繊維を使用し、(B)の熱可塑性樹脂短繊維としては繊度6dtex、繊維長51mmの非対称冷却製法により立体捲縮を付与したポリエチレンテレフタレート(融点255℃)からなる中空率25%の中空短繊維を使用し、(C)の熱可塑性樹脂短繊維としては繊度2dtex、繊維長51mmの機械捲縮が付与されたポリエチレンテレフタレート(融点255℃)からなる短繊維を使用した。
(A)の熱可塑性樹脂複合短繊維を45質量%、(B)の熱可塑性樹脂短繊維を30質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付143g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表1にまとめた。
<Example 1>
The thermoplastic resin conjugate staple fibers (A) consist of polyethylene terephthalate (melting point: 255°C) as the core component, which has a fineness of 4 dtex and a fiber length of 51 mm, and is mechanically crimped, and copolyester (melting point: 110°C) as the sheath component. The thermoplastic resin staple fibers (B) are made of polyethylene terephthalate (melting point: 255°C) that is three-dimensionally crimped by an asymmetric cooling method with a fineness of 6 dtex and a fiber length of 51 mm. 25% hollow staple fibers were used, and as the thermoplastic resin staple fibers (C), short fibers made of polyethylene terephthalate (melting point 255°C) with a fineness of 2 dtex and a fiber length of 51 mm and mechanically crimped were used.
45% by mass of (A) thermoplastic resin composite staple fibers, 30% by mass of (B) thermoplastic resin staple fibers, and 25% by mass of (C) thermoplastic resin staple fibers are blended, and a web is formed by carding. Obtained.
Next, using the first, second, and third needle punch machines, the fibers are entangled from above and below, and then heat treated with an air-through type dryer at 130°C to obtain a nonwoven fabric for reinforcing foam molded products with a basis weight of 143 g/m 2 . got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 1.

<実施例2>
(A)の熱可塑性樹脂複合短繊維を25質量%、(B)の熱可塑性樹脂短繊維を50質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿した以外は、実施例1と同様にして目付142g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表1にまとめた。
<Example 2>
Example 1 except that 25% by mass of (A) thermoplastic resin composite short fibers, 50% by mass of (B) thermoplastic resin short fibers, and 25% by mass of (C) thermoplastic resin short fibers were blended. A nonwoven fabric for reinforcing foam molded articles having a basis weight of 142 g/m 2 was obtained in the same manner as above.
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 1.

<実施例3>
(A)の熱可塑性樹脂複合短繊維を30質量%、(B)の熱可塑性樹脂短繊維を20質量%、(C)の熱可塑性樹脂短繊維を50質量%混綿した以外は、実施例1と同様にして目付140g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表1にまとめた。
<Example 3>
Example 1 except that 30% by mass of (A) thermoplastic resin composite short fibers, 20% by mass of (B) thermoplastic resin short fibers, and 50% by mass of (C) thermoplastic resin short fibers were blended. A nonwoven fabric for reinforcing foam molded articles having a basis weight of 140 g/m 2 was obtained in the same manner as above.
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 1.

<実施例4>
(A)の熱可塑性樹脂複合短繊維を45質量%、(B)の熱可塑性樹脂短繊維を30質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿した以外は、実施例1と同様にして目付304g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表1にまとめた。
<Example 4>
Example 1 except that 45% by mass of (A) thermoplastic resin composite short fibers, 30% by mass of (B) thermoplastic resin short fibers, and 25% by mass of (C) thermoplastic resin short fibers were blended. A nonwoven fabric for reinforcing foam molded articles having a basis weight of 304 g/m 2 was obtained in the same manner as above.
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 1.

<比較例1>
(A)の熱可塑性樹脂複合短繊維を、繊度1dtex、繊維長51mmの機械捲縮が付与された芯成分がポリエチレンテレフタレート(融点255℃)、鞘成分が共重合ポリエステル(融点110℃)からなる芯鞘型複合短繊維を使用した以外は、実施例1と同じ短繊維を使用した。
(A)の熱可塑性樹脂複合短繊維を45質量%、(B)の熱可塑性樹脂短繊維を30質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付141g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表1にまとめた。
<Comparative Example 1>
The thermoplastic resin conjugate staple fibers of (A) have a fineness of 1 dtex and a fiber length of 51 mm, and are mechanically crimped. The core component is polyethylene terephthalate (melting point: 255°C), and the sheath component is copolymer polyester (melting point: 110°C). The same staple fibers as in Example 1 were used, except that sheath-core type conjugate staple fibers were used.
45% by mass of (A) thermoplastic resin composite staple fibers, 30% by mass of (B) thermoplastic resin staple fibers, and 25% by mass of (C) thermoplastic resin staple fibers are blended, and a web is formed by carding. Obtained.
Next, using the first, second, and third needle punch machines, the fibers are entangled from above and below, and then heat treated with an air-through type dryer at 130°C to obtain a nonwoven fabric for reinforcing foam molded products with a basis weight of 141 g/m 2 . got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 1.

<比較例2>
(A)の熱可塑性樹脂複合短繊維を、繊度7dtex、繊維長51mmの機械捲縮が付与された芯成分がポリエチレンテレフタレート(融点255℃)、鞘成分が共重合ポリエステル(融点110℃)からなる芯鞘型複合短繊維を使用した以外は、実施例1と同じ短繊維を使用した。
(A)の熱可塑性樹脂複合短繊維を45質量%、(B)の熱可塑性樹脂短繊維を30質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付142g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表1にまとめた。
<Comparative Example 2>
The thermoplastic resin conjugate staple fibers of (A) are composed of polyethylene terephthalate (melting point 255°C) as the core component and copolyester (melting point 110°C) as the sheath component, having a fineness of 7 dtex and a fiber length of 51 mm. The same staple fibers as in Example 1 were used, except that sheath-core type conjugate staple fibers were used.
45% by mass of (A) thermoplastic resin composite staple fibers, 30% by mass of (B) thermoplastic resin staple fibers, and 25% by mass of (C) thermoplastic resin staple fibers are blended, and a web is formed by carding. Obtained.
Next, after using the first, second and third needle punch machines to entangle the fibers from above and below, heat treatment is performed with an air through type dryer at 130 ° C., and the nonwoven fabric for reinforcing foam molded products with a basis weight of 142 g / m 2 got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 1.

<比較例3>
(B)の熱可塑性樹脂短繊維を、繊度2dtex、繊維長51mmの非対称冷却製法により立体捲縮を付与したポリエチレンテレフタレート(融点255℃)からなる中空率15%の中空短繊維を使用した以外は、実施例1と同じ短繊維を使用した。
(A)の熱可塑性樹脂複合短繊維を45質量%、(B)の熱可塑性樹脂短繊維を30質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付143g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表1にまとめた。
<Comparative Example 3>
The thermoplastic resin short fibers of (B) are hollow short fibers of polyethylene terephthalate (melting point 255° C.) which have a fineness of 2 dtex and a fiber length of 51 mm and are three-dimensionally crimped by an asymmetric cooling method, and have a hollow ratio of 15%. , the same short fibers as in Example 1 were used.
45% by mass of (A) thermoplastic resin composite staple fibers, 30% by mass of (B) thermoplastic resin staple fibers, and 25% by mass of (C) thermoplastic resin staple fibers are blended, and a web is formed by carding. Obtained.
Next, using the first, second, and third needle punch machines, the fibers are entangled from above and below, and then heat treated with an air-through type dryer at 130°C to obtain a nonwoven fabric for reinforcing foam molded products with a basis weight of 143 g/m 2 . got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 1.

<比較例4>
(B)の熱可塑性樹脂短繊維を、繊度20dtex、繊維長51mmの非対称冷却製法により立体捲縮を付与したポリエチレンテレフタレート(融点255℃)からなる中空率30%の中空短繊維を使用した以外は、実施例1と同じ短繊維を使用した。
(A)の熱可塑性樹脂複合短繊維を45質量%、(B)の熱可塑性樹脂短繊維を30質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付144g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表1にまとめた。
<Comparative Example 4>
The thermoplastic resin short fibers of (B) are hollow short fibers of polyethylene terephthalate (melting point 255° C.) which have a fineness of 20 dtex and a fiber length of 51 mm and which are three-dimensionally crimped by an asymmetric cooling method and have a hollow ratio of 30%. , the same short fibers as in Example 1 were used.
45% by mass of (A) thermoplastic resin composite staple fibers, 30% by mass of (B) thermoplastic resin staple fibers, and 25% by mass of (C) thermoplastic resin staple fibers are blended, and a web is formed by carding. Obtained.
Next, using the first, second, and third needle punch machines, the fibers are entangled from above and below, and then heat treated with an air-through type dryer at 130°C to obtain a nonwoven fabric for reinforcing foam molded products with a basis weight of 144 g/m 2 . got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 1.

<比較例5>
(C)の熱可塑性樹脂短繊維を、繊度0.8dtex、繊維長51mmの機械捲縮が付与されたポリエチレンテレフタレート(融点255℃)からなる短繊維とした以外は、実施例1と同じ短繊維を使用した。
(A)の熱可塑性樹脂複合短繊維を45質量%、(B)の熱可塑性樹脂短繊維を30質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付142g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表2にまとめた。
<Comparative Example 5>
The same staple fibers as in Example 1 except that the thermoplastic resin staple fibers of (C) were staple fibers made of polyethylene terephthalate (melting point 255°C) with a fineness of 0.8 dtex and a fiber length of 51 mm and mechanically crimped. It was used.
45% by mass of (A) thermoplastic resin composite staple fibers, 30% by mass of (B) thermoplastic resin staple fibers, and 25% by mass of (C) thermoplastic resin staple fibers are blended, and a web is formed by carding. Obtained.
Next, after using the first, second and third needle punch machines to entangle the fibers from above and below, heat treatment is performed with an air through type dryer at 130 ° C., and the nonwoven fabric for reinforcing foam molded products with a basis weight of 142 g / m 2 got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 2.

<比較例6>
(C)の熱可塑性樹脂短繊維を、繊度4dtex、繊維長51mmの機械捲縮が付与されたポリエチレンテレフタレート(融点255℃)からなる短繊維とした以外は、実施例1と同じ短繊維を使用した。
(A)の熱可塑性樹脂複合短繊維を45質量%、(B)の熱可塑性樹脂短繊維を30質量%、(C)の熱可塑性樹脂短繊維を25質量%混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付142g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表2にまとめた。
<Comparative Example 6>
The same short fibers as in Example 1 were used, except that the thermoplastic resin short fibers of (C) were made of polyethylene terephthalate (melting point: 255°C) with a fineness of 4 dtex and a fiber length of 51 mm and mechanically crimped. bottom.
45% by mass of (A) thermoplastic resin composite staple fibers, 30% by mass of (B) thermoplastic resin staple fibers, and 25% by mass of (C) thermoplastic resin staple fibers are blended, and a web is formed by carding. Obtained.
Next, after using the first, second and third needle punch machines to entangle the fibers from above and below, heat treatment is performed with an air through type dryer at 130 ° C., and the nonwoven fabric for reinforcing foam molded products with a basis weight of 142 g / m 2 got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 2.

<比較例7>
繊度4dtex、繊維長51mmの機械捲縮が付与された芯成分がポリエチレンテレフタレート(融点255℃)、鞘成分が共重合ポリエステル(融点110℃)からなる芯鞘型複合短繊維45質量%と、繊度6dtex、繊維長51mmの非対称冷却製法により立体捲縮を付与したポリエチレンテレフタレート(融点255℃)からなる中空率25%の中空短繊維55質量%とを混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付142g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表2にまとめた。
<Comparative Example 7>
45% by mass of core-sheath type composite staple fibers having a fineness of 4 dtex and a fiber length of 51 mm, which are mechanically crimped and have a core component of polyethylene terephthalate (melting point of 255°C) and a sheath component of copolymer polyester (melting point of 110°C); 55% by mass of short hollow fibers of 6 dtex, fiber length of 51 mm, made of polyethylene terephthalate (melting point: 255° C.) three-dimensionally crimped by an asymmetric cooling method, and having a hollow ratio of 25%, were blended to obtain a web by carding.
Next, after using the first, second and third needle punch machines to entangle the fibers from above and below, heat treatment is performed with an air through type dryer at 130 ° C., and the nonwoven fabric for reinforcing foam molded products with a basis weight of 142 g / m 2 got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 2.

<比較例8>
繊度4dtex、繊維長51mmの機械捲縮が付与された芯成分がポリエチレンテレフタレート(融点255℃)、鞘成分が共重合ポリエステル(融点110℃)からなる芯鞘型複合短繊維45質量%と、繊度6dtex、繊維長51mmの機械捲縮が付与されたポリエチレンテレフタレート(融点255℃)からなる中空率25%の中空短繊維55質量%とを混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付139g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表2にまとめた。
<Comparative Example 8>
45% by mass of core-sheath type composite staple fibers having a fineness of 4 dtex and a fiber length of 51 mm, which are mechanically crimped and have a core component of polyethylene terephthalate (melting point of 255°C) and a sheath component of copolymer polyester (melting point of 110°C); This was blended with 55% by mass of short hollow fibers of 6 dtex, fiber length of 51 mm, made of polyethylene terephthalate (melting point: 255° C.) and having a hollow ratio of 25%, to obtain a web by carding.
Next, using the first, second, and third needle punch machines, the fibers are entangled from above and below, and then heat treated with an air-through type dryer at 130°C to obtain a nonwoven fabric for reinforcing foam molded products with a basis weight of 139 g/m 2 . got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 2.

<比較例9>
繊度4dtex、繊維長51mmの機械捲縮が付与された芯成分がポリエチレンテレフタレート(融点255℃)、鞘成分が共重合ポリエステル(融点110℃)からなる芯鞘型複合短繊維45質量%と、繊度2dtex、繊維長51mmの機械捲縮が付与されたポリエチレンテレフタレート(融点255℃)からなる短繊維55質量%とを混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付143g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表2にまとめた。
<Comparative Example 9>
45% by mass of core-sheath type composite staple fibers having a fineness of 4 dtex and a fiber length of 51 mm, which are mechanically crimped and have a core component of polyethylene terephthalate (melting point of 255°C) and a sheath component of copolymer polyester (melting point of 110°C); This was blended with 55% by mass of short fibers of polyethylene terephthalate (melting point: 255° C.) having a length of 2 dtex and a fiber length of 51 mm, to which mechanical crimping was imparted, to obtain a web by carding.
Next, using the first, second, and third needle punch machines, the fibers are entangled from above and below, and then heat treated with an air-through type dryer at 130°C to obtain a nonwoven fabric for reinforcing foam molded products with a basis weight of 143 g/m 2 . got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 2.

<比較例10>
繊度2dtex、繊維長51mmの機械捲縮が付与されたポリエチレンテレフタレート(融点255℃)からなる短繊維のみを使用し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付142g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表2にまとめた。
<Comparative Example 10>
A web was obtained by carding using only staple fibers of polyethylene terephthalate (melting point: 255° C.) having a fineness of 2 dtex and a fiber length of 51 mm and having a mechanical crimp.
Next, after using the first, second and third needle punch machines to entangle the fibers from above and below, heat treatment is performed with an air through type dryer at 130 ° C., and the nonwoven fabric for reinforcing foam molded products with a basis weight of 142 g / m 2 got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 2.

<比較例11>
(B)の熱可塑性樹脂短繊維を、繊度2dtex、繊維長51mmの機械捲縮を付与したポリエチレンテレフタレート(融点255℃)からなる短繊維を使用した以外は、実施例1と同じ短繊維を使用した。
(A)の熱可塑性樹脂複合短繊維を30質量%、(B)の熱可塑性樹脂短繊維を20質量%、(C)の熱可塑性樹脂短繊維を50質量%混綿し、カーディングによりウェブを得た。
次に、第1、第2、第3ニードルパンチ機を使用し、上下より繊維を交絡させた後、130℃エアースルー型ドライヤーで熱処理を行い、目付143g/mの発泡成形品補強用不織布を得た。
得られた不織布の各種物性を測定し、結果を表2にまとめた。
<Comparative Example 11>
The same short fibers as in Example 1 were used, except that the thermoplastic resin short fibers of (B) were short fibers made of polyethylene terephthalate (melting point 255°C) with a fineness of 2 dtex and a fiber length of 51 mm and mechanically crimped. bottom.
30% by mass of (A) thermoplastic resin composite staple fibers, 20% by mass of (B) thermoplastic resin staple fibers, and 50% by mass of (C) thermoplastic resin staple fibers are blended, and a web is formed by carding. Obtained.
Next, using the first, second, and third needle punch machines, the fibers are entangled from above and below, and then heat treated with an air-through type dryer at 130°C to obtain a nonwoven fabric for reinforcing foam molded products with a basis weight of 143 g/m 2 . got
Various physical properties of the obtained nonwoven fabric were measured, and the results are summarized in Table 2.

Figure 0007251201000001
Figure 0007251201000001

Figure 0007251201000002
Figure 0007251201000002

本発明の発泡成型品補強用不織布は、近年使用される形状が複雑な発泡成型品の製造で採用される、補強用不織布を型によりプレス成型した後発泡加工を実施する発泡成型品の製造において、プレス成型用型の形状に十分追随性を有し、かつ発泡加工時に発泡成分の漏れや滲み出しがなく、加工や取り扱い性に優れた発泡成型品補強用不織布を得ることができ、自動車や鉄道車輌ばかりではなく、オートバイ、航空機、家庭用イス張り材などの広範囲で使用できる発泡成型品補強用不織布を得ることができ、産業界への寄与大である。 The nonwoven fabric for reinforcing foam-molded products of the present invention is used in the production of foam-molded products with complicated shapes that have been used in recent years. It is possible to obtain a nonwoven fabric for reinforcing foam molded products that has sufficient conformability to the shape of a press molding mold, does not leak or seep out foam components during foam processing, and is excellent in processing and handling. It is possible to obtain a non-woven fabric for reinforcing foam molded products that can be used not only in railway vehicles but also in a wide range of applications such as motorcycles, aircraft, and household chair materials, making a great contribution to the industrial world.

Claims (4)

(A)繊度が2dtex以上6dtex以下の機械捲縮を有する熱可塑性樹脂複合短繊維、(B)繊度が3dtex以上17dtex以下の単成分からなり繊維断面形状が中空断面である立体捲縮を有する熱可塑性樹脂短繊維、および(C)繊度が1dtex以上3dtex以下の単成分からなる機械捲縮を有する熱可塑性樹脂短繊維の3種類の短繊維を少なくとも含み、目付が80g/m以上500g/m以下である発泡成型品補強用不織布。 (A) Thermoplastic resin composite short fibers having a mechanical crimp with a fineness of 2 dtex or more and 6 dtex or less, (B) Thermal fibers made of a single component with a fineness of 3 dtex or more and 17 dtex or less and having a three-dimensional crimp with a hollow cross section. Plastic resin staple fibers and (C) mechanically crimped thermoplastic resin staple fibers consisting of a single component with a fineness of 1 dtex or more and 3 dtex or less, and having a basis weight of 80 g/m2 or more and 500 g/m2. 2 or less nonwoven fabric for reinforcing foam molded products. 160℃における熱時5%伸張時応力がタテ方向およびヨコ方向ともに5N/5cm以下である請求項1に記載の発泡成型品補強用不織布。 2. The nonwoven fabric for reinforcing foam molded articles according to claim 1, wherein the stress at 5% hot elongation at 160[deg.] C. is 5 N/5 cm or less in both the vertical and horizontal directions. 160℃における熱時最大点引張伸度がタテ方向およびヨコ方向ともに160%以上である請求項1または2に記載の発泡成型品補強用不織布。 3. The nonwoven fabric for reinforcing foam molded articles according to claim 1 or 2, wherein the maximum hot tensile elongation at 160[deg.] C. is 160% or more in both the vertical and horizontal directions. 前記(A)の機械捲縮を有する熱可塑性樹脂複合短繊維、前記(B)の単成分からなる立体捲縮を有する熱可塑性樹脂短繊維、および前記(C)の単成分からなる機械捲縮を有する熱可塑性樹脂短繊維の混合比率が、それぞれ25質量%以上60質量%以下、20質量%以上50質量%以下、10質量%以上50質量%以下である請求項1~3のいずれかに記載の発泡成型品補強用不織布。 The thermoplastic resin composite staple fibers having mechanical crimps (A), the thermoplastic resin staple fibers having three-dimensional crimps consisting of a single component (B), and the mechanical crimps consisting of a single component (C). Any one of claims 1 to 3, wherein the mixing ratio of the thermoplastic resin short fibers having The nonwoven fabric for reinforcing foam molded articles described.
JP2019028060A 2019-02-20 2019-02-20 Non-woven fabric for reinforcing foam molded products Active JP7251201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028060A JP7251201B2 (en) 2019-02-20 2019-02-20 Non-woven fabric for reinforcing foam molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028060A JP7251201B2 (en) 2019-02-20 2019-02-20 Non-woven fabric for reinforcing foam molded products

Publications (2)

Publication Number Publication Date
JP2020133051A JP2020133051A (en) 2020-08-31
JP7251201B2 true JP7251201B2 (en) 2023-04-04

Family

ID=72262422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028060A Active JP7251201B2 (en) 2019-02-20 2019-02-20 Non-woven fabric for reinforcing foam molded products

Country Status (1)

Country Link
JP (1) JP7251201B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3150605U (en) 2009-01-29 2009-05-28 呉羽テック株式会社 Non-woven fabric for urethane reinforcement
JP2010174393A (en) 2009-01-28 2010-08-12 Kureha Ltd Urethan-reinforcing material
JP2012082548A (en) 2010-10-12 2012-04-26 Toyobo Co Ltd Nonwoven fabric for reinforcing material for foamed molded article and method for producing the same
WO2015034069A1 (en) 2013-09-06 2015-03-12 三井化学株式会社 Nonwoven fabric laminate for foaming molding, method for producing nonwoven fabric laminate for foaming molding, urethane foaming molding composite using nonwoven fabric laminate, vehicle seat, and chair

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174393A (en) 2009-01-28 2010-08-12 Kureha Ltd Urethan-reinforcing material
JP3150605U (en) 2009-01-29 2009-05-28 呉羽テック株式会社 Non-woven fabric for urethane reinforcement
JP2012082548A (en) 2010-10-12 2012-04-26 Toyobo Co Ltd Nonwoven fabric for reinforcing material for foamed molded article and method for producing the same
WO2015034069A1 (en) 2013-09-06 2015-03-12 三井化学株式会社 Nonwoven fabric laminate for foaming molding, method for producing nonwoven fabric laminate for foaming molding, urethane foaming molding composite using nonwoven fabric laminate, vehicle seat, and chair

Also Published As

Publication number Publication date
JP2020133051A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
US8221187B2 (en) Molded non-woven fabrics and methods of molding
EP3034667B1 (en) Nonwoven fabric laminate for foaming molding, method for producing nonwoven fabric laminate for foaming molding, urethane foaming molding composite using nonwoven fabric laminate, vehicle seat, and chair
JP5486243B2 (en) Polyolefin-based crimped long fiber nonwoven fabric and nonwoven fabric laminate
US9422652B2 (en) Stretchable bulky nonwoven fabric and method for manufacturing same
JPWO2018190342A1 (en) Method for producing needle-punched nonwoven fabric
KR101865965B1 (en) The method for manufacturing Polyester nonweaven fiber for using an electric wire
JP7251201B2 (en) Non-woven fabric for reinforcing foam molded products
JP6713873B2 (en) Lightweight web for automobile interiors, needle-punched nonwoven fabric using the same, manufacturing method thereof, and automobile interior parts using the same
JP5605148B2 (en) Non-woven fabric for foam molded article reinforcement and method for producing the same
JP2004183179A (en) Nonwoven fabric
JP6782543B2 (en) Vehicle cushioning material
US20200102678A1 (en) Method for producing fiber molded body
JPS6316504B2 (en)
JP2013119672A (en) Method for producing molded article
KR20160019583A (en) Polyester nonwoven fabric and manufacturing method thereof
EP3476991B1 (en) Method for manufacturing non-woven fabric for carpet foam backing
JP5847503B2 (en) Manufacturing method of molded products
KR102163071B1 (en) Non-woven fabric with improved elongation and manufacturing method thereof
JP5813427B2 (en) Manufacturing method of molded products
CN114622344A (en) Dry preparation method of non-woven fabric and application of non-woven fabric in facial mask
JPH02116534A (en) Manufacture of formed item
JPH08199468A (en) Molding
JP2001055654A (en) Pattern formation of on stretchable nonwoven fabric
JPH09277417A (en) Molded product
JP2007070745A (en) Method for forming carpet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R151 Written notification of patent or utility model registration

Ref document number: 7251201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350