USRE28648E - Process for carrying out chemical reactions in a fluidized bed - Google Patents

Process for carrying out chemical reactions in a fluidized bed Download PDF

Info

Publication number
USRE28648E
USRE28648E US49551974A USRE28648E US RE28648 E USRE28648 E US RE28648E US 49551974 A US49551974 A US 49551974A US RE28648 E USRE28648 E US RE28648E
Authority
US
United States
Prior art keywords
windings
process according
speed
catalyst
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB148571A external-priority patent/GB1382991A/en
Application filed filed Critical
Priority to US49551974 priority Critical patent/USRE28648E/en
Application granted granted Critical
Publication of USRE28648E publication Critical patent/USRE28648E/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/34Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel

Definitions

  • the present invention is concerned with a process for carrying out chemical reactions in a fluidized bed.
  • fluidization technique can be used successfully, particularly in the presence of a catalyst, for carrying out chemical reactions in the heterogeneous gas/solid phase, in which the reagents in the gaseous phase are brought into contact with a fluidized bed of finely-divided solid material, usually possessing' catalytic properties. Because of the convenience of fluidization, this tecnhique is widely used in the chemical manufacturing industry and particularly in the petroleum industry.
  • By-passing is mainly responsible for the drop in activity associated with too rapid a passing of the reagents into the catalysis vessel.
  • back-mixing instead of travelling normally from the inlet to the outlet of the reactor, the products return in the rearward direction and consequently have a longer residence time than was intended, with the corollary of more or less considerable destruction of the reagents and particularly of the reaction products, thus entailing a corresponding loss of selectivity.
  • the fluidized bed should contain grids, lattices, horizontal, vertical or oblique bars or tubes, baffles and other till ing elements, such as Raschig rings, Berl saddles or the like.
  • a process is pro vided for carrying out chemical reaction by fluidization, more particularly by catalytic fluidization in a reactor containing heat exchange means and filling elements, characterized in that the filling elements usec are windings of rigid wire, the volume of material 01 which represents from 2 to 12%, preferably 3 to 10% of the volume occupied by the catalyst under working conditions, and in that the speed of displacement of the gaseous constituents through the reactor is from 0.25 to 0.95, preferably 0.40 to 0.90, times the speed of en trainment of the fluidized particles of the catalyst.
  • the rigid wire windings used in accordance with the present invention are composed of a material which i: inert or catalytically active in relation to the gaseou: reagents.
  • lt must be of a material selected to withstanc both the erosion caused by the fluidized catalyst particles and the reaction conditions, for example, tempe rature and pressure. Therefore, in each particular case the nature of the material must be adapted to the par ticular reaction and also to the condition under which the reaction is carried out; by way of example, there may be used glass, ceramic materials and inert or catalytically active metals and metal alloys.
  • the windings used according to the present invention are composed of a rigid wire, for example of a diameter of at least 0.4 mm. so that the windings do not undergo substantial deformation when stacked up in the reactor.
  • the windings used according to the present invention have their turns separated from one another by a distance which is at least 20 times the dimension of the fluidized catalyst particles, so as to permit free passage of the catalyst particles between the turns of the windings.
  • the dimensions of the windings i.e. diameter and length, should be such that at least two windings can be placed end to end over the minimum distance separating the walls of the heat exchange means.
  • the shape of the windings must be such that interpenetration is negligible or even impossible.
  • the turns of the windings may be, for example, circular, oval or polygonal.
  • the fluidized catalyst used in the process according to the present invention may have the particle dimensions conventionally used in fluid catalysis. In order to obtain optimum results; the granulometry limits of the catalyst particles should be as narrow as possible.
  • the heat exchange means may be constituted conventionally by tubes or bundles of tubes through which a liquid or gaseous heat exchange fluid passes. Their number and spatial arrangement depend upon the exothermicity or endothermicity of the reaction in question.
  • the windings used according to the present invention may be stacked regularly or irregularly in the zone of the reactor reserved for the catalyst under working conditions, the only requirement being that the volume of material of the windings should constitute from 2 to 12%, preferably from 3 to 10%, of the volume of the catalyst under working conditions, as has already been indicated above.
  • the fluidization of the catalyst [particules] particles in the reactor containing the windings used according to the present invention should be effected by imparting to the gaseous constit- 3 rents a speed of displacement of from 0.25 to 0.95 imes, preferably of from 0.4 to 0.9 times, the speed of :ntrainment of the fluidized particles of catalyst.
  • the measures proposed according to the present inention considerably reduce backmixing, while not educing axial and radial heat exchange between theizidized catalyst particles and the walls of the heat ex- :hange means. Furthermore, the homogeneity of theucidized bed is greatly improved and gas circulation urbulence in the reactor is substantially reduced.
  • the process of the present invention can be used on .n industrial scale.
  • the advantages which it provides n cludes not only an improvement of the conversion of he reagents used for the reaction and the efficiency in espect of the desired reaction products product Iut also an increase of the production rate of the reacor because of the high linear gas speeds which are posible in the latter.
  • the windings according to the resent invention it is easier to calculate the parameers for a reactor operating on a pilot or industrial sale, which is difficult to do with techniques known at resent.
  • the following examples of the process of the present ivention relate to the synthesis of acrylonitrile from ropylene and ammonia. It is, however, to be undertood that the process of the present invention has a Iider scope and is applicable, in principle, to all chemial reactions which can be carried out in the fluidized ed, for example, the catalytic oxidation of naphtha- :ne to phthalic anhydride; of benzene to maleic anhyride; of ethylene and propylene to the corresponding xides; of ethylene and propylene to acrolein and ⁇ ethacrolein, respectively, or to arylic or methacrylic cid, respectively; and of isobutene, together with amlonia, to methacrylonitrile, etc.', the catalytic dehydroenation of saturated hydrocarbons into olefins or olyolefins; and the production of chlorine by oxidaon of hydrochloric
  • the catalyst fluidization reactor used for the tests dezribed in Examples 1 and 2 is made of stainless steel ieeting with a thickness of 3 mm. It comprises 3 suc essive cylindrical parts, all of which have a diameter of mm. and heights of l m., l m. and 1.5 m., respecvely (from bottom to top).
  • cooling is effected y an axial cooler comprising an outer casing (having a iameter of mm./44 mm. in the bottom section and 2 mm./48 mm. in the middle section) and an inner antral passage comprising a tube with a diameter of 6 ll'TL/lO mm., all these parts being made of stainless eel.
  • Each cooling tube has a length of l m. and is supied with distilled water by means of a metering pump. he gases are distributed through a sintered stainless eel plate at the base of the reactor.
  • the gases are freed from dust by means of an exter- 1l cyclone fitted to the top section, the particles of italyst collected being recycled through a stand-pipe the bottom section, below the sintered distributor.
  • the feed mixture consists of a gaseous mixture of 'opylene, ammonia and water, together with air supied by a compressor.
  • the isolation of the reaction products is effected by mventional cooling tecnhiques, neutralization with lfuric acid and absorption of the neutral gas in water.
  • the catalyst is prepared in accordance with Example 0. 6 of Belgian patent specification No. 622,025. This ttalyst is obtained by precipitation with ammonia of iron and antimony salts, the Sb/Fe atomic ratio being 1.67/ l.
  • the catalyst has a particle size of between 40 and 150 microns.
  • baffles each of which is made of a stainless steel plate with a thickness of 1 mm., perforated mechanically with staggered apertures with a diameter of 3 mm.
  • baffles are strung on the cooling tubes and fixed by spotwelding. Their spacing varies in [depence] dependence upon their number;
  • windings made of stainless steel wire with a calibre of 2 mm., wound in turns with a diameter of 40 mm., and with a spacing of 10 mm. between turns, the length of each winding being mm. These windings are stacked randomly in the raector, the height of the stack being 175 cm.;
  • the temperature in the catalytic bed is, in each case, 450 C.
  • test c shows that, with the windings used according to the present invention (test c), best results are obtained than those obtained without windings (test a), by means of baffles (test b) or by a combination of baffles and windings (test d).
  • This example shows that, by means of the process according to the present invention, it is possible for the residence time to be substantially reduced, thus making it possible to increase production considerably, while obtaining still better efficiency and conversion.
  • a gaseous mixture comprising propylene, ammonia and oxygen are passed through a reaction zone comprising fluidized catalyst particles and filling elements
  • the filling elements consist of a plurality of windings of rigid material which is inert or catalytically active in relation to the gaseous reactants, the volume of which represents 2 to 12% of the volume occupied by the catalyst particles under the working conditions and the speed of displacement of the gaseous reactants through the re- 6 action zone is from 0.25 to 0.95 times the speed of entrainment of the fluidized catalyst particles.
  • volume of material of the windings represents 3 to 10% of the volume occupied by the catalyst under working conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

A process for carrying out chemical reactions by catalytic fluidization, in a reactor containing heat exchange means and filling elements, in which said filling elements used are windings of rigid wire, the volume of material of which represents 2 to 12% of the volume occupied by the catalyst under working conditions, and in which the speed of displacement of the gaseous constituents through the reactor is from 0.25 to 0.95 times the speed of entrainment of the fluidized particles of the catalyst.

Description

United States Patent [1 1 Slinko [111 E Re. 28,648
1 Reissued Dec. 9, 1975 1 PROCESS FOR CARRYING OUT CHEMICAL REACTIONS IN A FLUIDIZED BED [75] Inventor: Mikhail Gavrilovitch Slinko,
Novosibirsk, USSR.
[73] Assignee: UCB Societe Anonyme, Brussels,
Belgium; a part interest [22] Filed: Aug. 7, 1974 [21] Appl. No.: 495,519
Related US. Patent Documents Reissue of:
[64] Patent No.: 3,784,561
Issued: Jan. 8, 1974 Appl. No.: 216,774 Filed: Jan. 10, 1972 [30] Foreign Application Priority Data Jan. 12, 1971 United Kingdom 1485/71 [52] US. Cl. 260/4653; 260/3464; 260/3467, 260/348.5; 260/533 N; 260/604 R; 260/680; 260/683 [51] Int. Cl." ..C07C 120/14; C07C 121/02 [58] Field of Search 260/4653 [56] References Cited UNITED STATES PATENTS 2,893,851 7/1959 Georgian 23/2885 3,226,422 12/1965 Sennewald et 260/4653 3,254,110 5/1966 Sennewald et a1 260/4653 3,472,892 10/1969 Callahan et a1 260/4653 3,501,517 3/1970 Hughes et a1. 260/4653 X 3,639,103 2/1972 Sheely 260/4653 X FOREIGN PATENTS OR APPLICATIONS 1,019,235 2/1966 United Kingdom 23/2885 768,836 2/1957 United Kingdom 23/2885 774,325 5/1957 United Kingdom 23/2885 Primary Examiner-Joseph P. Brust Attorney, Agent, or Firm-Wenderoth, Lind & Ponack [57] ABSTRACT 9 Claims, No Drawings PROCESS FOR CARRYING OUT CHEMICAL REACTIONS IN A FLUIDIZED BED Matter enclosed in heavy brackets I: 1 appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
This is a reissue application of US. Patent No.. 3,784,561 which matured from Serial No. 216,774 filed January 10, 1972.
The present invention is concerned with a process for carrying out chemical reactions in a fluidized bed.
lt is known that fluidization technique can be used successfully, particularly in the presence of a catalyst, for carrying out chemical reactions in the heterogeneous gas/solid phase, in which the reagents in the gaseous phase are brought into contact with a fluidized bed of finely-divided solid material, usually possessing' catalytic properties. Because of the convenience of fluidization, this tecnhique is widely used in the chemical manufacturing industry and particularly in the petroleum industry.
Nevertheless, great difficulties are sometimes encountered in carrying out this technique when the reactions in question are highly exothermal, because of the delicate problem of correct dissipation of the heat of reaction. it has, in fact, been found that it is often very difficult to keep the temperature within optimum limits, which often constitute a very narrow range, the obtaining of optimum results being conditional upon correct maintenance of temperature. It is for this reason that it has been proposed to incorporate cooling means in the reaction vessel, precisely with the object of promoting dissipation of the heat released by the reaction. This measure is, however, often found to be inadequate because other factors considerably lower the activity and selectivity of the catalyst in relation to theoretical values, theoretical valve being understood to mean not what would be expected from [stiochiometry stoichiometry but, more precisely, what is indicated by kinetic data obtained under ideal conditions free from all the disturbances associated with transfers of heat and mass. This drop in activity and selectivity is caused, amongst other factors, by insufflcient exchange of mass between the light and dense phases of the catalytic bed, by the existence of [heterogeneityin] heterogeneity in the latter and by the formation and coalescence of gas bubbles of increasing dimensions. Phenomena known, for example, under the names of by-passing and back-mixing also intervene. By-passing is mainly responsible for the drop in activity associated with too rapid a passing of the reagents into the catalysis vessel. In the case of back-mixing," instead of travelling normally from the inlet to the outlet of the reactor, the products return in the rearward direction and consequently have a longer residence time than was intended, with the corollary of more or less considerable destruction of the reagents and particularly of the reaction products, thus entailing a corresponding loss of selectivity. For this reason, it has been proposed that the fluidized bed should contain grids, lattices, horizontal, vertical or oblique bars or tubes, baffles and other till ing elements, such as Raschig rings, Berl saddles or the like. Although these various means improve the results of fluid catalysis, there is still room for improvement.
It is, therefore, an object of the present invention to provide improvements to fluid catalysis processes in the case of chemical reactions.
According to the present invention, a process is pro vided for carrying out chemical reaction by fluidization, more particularly by catalytic fluidization in a reactor containing heat exchange means and filling elements, characterized in that the filling elements usec are windings of rigid wire, the volume of material 01 which represents from 2 to 12%, preferably 3 to 10% of the volume occupied by the catalyst under working conditions, and in that the speed of displacement of the gaseous constituents through the reactor is from 0.25 to 0.95, preferably 0.40 to 0.90, times the speed of en trainment of the fluidized particles of the catalyst.
The rigid wire windings used in accordance with the present invention are composed of a material which i: inert or catalytically active in relation to the gaseou: reagents. lt must be of a material selected to withstanc both the erosion caused by the fluidized catalyst particles and the reaction conditions, for example, tempe rature and pressure. Therefore, in each particular case the nature of the material must be adapted to the par ticular reaction and also to the condition under which the reaction is carried out; by way of example, there may be used glass, ceramic materials and inert or catalytically active metals and metal alloys.
In contradistinction to the fine wire lattices previously used as filling elements, the windings used according to the present invention are composed of a rigid wire, for example of a diameter of at least 0.4 mm. so that the windings do not undergo substantial deformation when stacked up in the reactor.
The windings used according to the present invention have their turns separated from one another by a distance which is at least 20 times the dimension of the fluidized catalyst particles, so as to permit free passage of the catalyst particles between the turns of the windings. On the other hand, for a reactor of given dimensions, the dimensions of the windings, i.e. diameter and length, should be such that at least two windings can be placed end to end over the minimum distance separating the walls of the heat exchange means. ln addition, the shape of the windings must be such that interpenetration is negligible or even impossible. The turns of the windings may be, for example, circular, oval or polygonal.
The fluidized catalyst used in the process according to the present invention may have the particle dimensions conventionally used in fluid catalysis. In order to obtain optimum results; the granulometry limits of the catalyst particles should be as narrow as possible.
The heat exchange means may be constituted conventionally by tubes or bundles of tubes through which a liquid or gaseous heat exchange fluid passes. Their number and spatial arrangement depend upon the exothermicity or endothermicity of the reaction in question.
The windings used according to the present invention may be stacked regularly or irregularly in the zone of the reactor reserved for the catalyst under working conditions, the only requirement being that the volume of material of the windings should constitute from 2 to 12%, preferably from 3 to 10%, of the volume of the catalyst under working conditions, as has already been indicated above.
in order that the effective heat exchange coefficient of the masses may be high, the fluidization of the catalyst [particules] particles in the reactor containing the windings used according to the present invention should be effected by imparting to the gaseous constit- 3 rents a speed of displacement of from 0.25 to 0.95 imes, preferably of from 0.4 to 0.9 times, the speed of :ntrainment of the fluidized particles of catalyst.
The measures proposed according to the present inention considerably reduce backmixing, while not educing axial and radial heat exchange between the luidized catalyst particles and the walls of the heat ex- :hange means. Furthermore, the homogeneity of the luidized bed is greatly improved and gas circulation urbulence in the reactor is substantially reduced.
The process of the present invention can be used on .n industrial scale. The advantages which it provides ncludes not only an improvement of the conversion of he reagents used for the reaction and the efficiency in espect of the desired reaction products product Iut also an increase of the production rate of the reacor because of the high linear gas speeds which are posible in the latter. Furthermore, starting with an experitental reactor, with the windings according to the resent invention it is easier to calculate the parameers for a reactor operating on a pilot or industrial sale, which is difficult to do with techniques known at resent.
The following examples of the process of the present ivention relate to the synthesis of acrylonitrile from ropylene and ammonia. It is, however, to be undertood that the process of the present invention has a Iider scope and is applicable, in principle, to all chemial reactions which can be carried out in the fluidized ed, for example, the catalytic oxidation of naphtha- :ne to phthalic anhydride; of benzene to maleic anhyride; of ethylene and propylene to the corresponding xides; of ethylene and propylene to acrolein and \ethacrolein, respectively, or to arylic or methacrylic cid, respectively; and of isobutene, together with amlonia, to methacrylonitrile, etc.', the catalytic dehydroenation of saturated hydrocarbons into olefins or olyolefins; and the production of chlorine by oxidaon of hydrochloric acid etc.
The catalyst fluidization reactor used for the tests dezribed in Examples 1 and 2 is made of stainless steel ieeting with a thickness of 3 mm. It comprises 3 suc essive cylindrical parts, all of which have a diameter of mm. and heights of l m., l m. and 1.5 m., respecvely (from bottom to top).
In each of the two lower sections, cooling is effected y an axial cooler comprising an outer casing (having a iameter of mm./44 mm. in the bottom section and 2 mm./48 mm. in the middle section) and an inner antral passage comprising a tube with a diameter of 6 ll'TL/lO mm., all these parts being made of stainless eel. Each cooling tube has a length of l m. and is supied with distilled water by means of a metering pump. he gases are distributed through a sintered stainless eel plate at the base of the reactor.
The gases are freed from dust by means of an exter- 1l cyclone fitted to the top section, the particles of italyst collected being recycled through a stand-pipe the bottom section, below the sintered distributor. The feed mixture consists of a gaseous mixture of 'opylene, ammonia and water, together with air supied by a compressor.
The isolation of the reaction products is effected by mventional cooling tecnhiques, neutralization with lfuric acid and absorption of the neutral gas in water. The catalyst is prepared in accordance with Example 0. 6 of Belgian patent specification No. 622,025. This ttalyst is obtained by precipitation with ammonia of iron and antimony salts, the Sb/Fe atomic ratio being 1.67/ l. The catalyst has a particle size of between 40 and 150 microns.
EXAMPLE 1 In the reactor described above, four tests were carried out:
(a) without filling elements;
(b) with a baffles, each of which is made of a stainless steel plate with a thickness of 1 mm., perforated mechanically with staggered apertures with a diameter of 3 mm. These baffles are strung on the cooling tubes and fixed by spotwelding. Their spacing varies in [depence] dependence upon their number;
(c) with windings according to the present invention, made of stainless steel wire with a calibre of 2 mm., wound in turns with a diameter of 40 mm., and with a spacing of 10 mm. between turns, the length of each winding being mm. These windings are stacked randomly in the raector, the height of the stack being 175 cm.;
(d) with a mixed system comprising the use of windings of type (c) disposed between baffles of type (bl.
89 litres of the antimony-iron catalyst described above is introduced in order to obtain a residence time of4 seconds for a total flow per hour of m. (N.T.P.) of the gaseous reagents. Under these conditions, the linear speed of uiis mixture is 3 l .4 cm./sec. The speed of entrainment of the catalyst is about 70 cm./sec. for the particle size used. The gas mixture fed to the reactor contains the following proportions of components, expressed in percent by volume:
[C H :Nn :H O:air=6:7:10:77.] C H .'NH :H O:air=6:7:10:77. The volume of the material of the windings constitutes 3.5% of the volume of the catalyst under working conditions.
The temperature in the catalytic bed is, in each case, 450 C.
The following table shows the influence exerted by the different filling systems on the results obtained:
moles of propene introduced Productivity=grummes of acrylonitrile produced per hour per litre of catalyst.
The above table shows that, with the windings used according to the present invention (test c), best results are obtained than those obtained without windings (test a), by means of baffles (test b) or by a combination of baffles and windings (test d).
EXAMPLE 2 With a charge of 56.5 litres of catalyst, a total flow of 90 m. (N.T.P.) per hour (residence time 2.26 sec, linear speed 35.4 cm./sec. a volume of winding material Eff. AN Conv. H Productivity: 146
percent do.
This example shows that, by means of the process according to the present invention, it is possible for the residence time to be substantially reduced, thus making it possible to increase production considerably, while obtaining still better efficiency and conversion.
I claim:
1. In a catalytic fluid-bed process for the preparation of acrylonitrile wherein a gaseous mixture comprising propylene, ammonia and oxygen are passed through a reaction zone comprising fluidized catalyst particles and filling elements, the improvement wherein the filling elements consist of a plurality of windings of rigid material which is inert or catalytically active in relation to the gaseous reactants, the volume of which represents 2 to 12% of the volume occupied by the catalyst particles under the working conditions and the speed of displacement of the gaseous reactants through the re- 6 action zone is from 0.25 to 0.95 times the speed of entrainment of the fluidized catalyst particles.
2. A process according to claim 1, in which the volume of material of the windings represents 3 to 10% of the volume occupied by the catalyst under working conditions.
3. A process according to claim 1, in which the speed of displacement of the gaseous constituents through the reaction zone is 0.40 to 0.90 times the speed of entrain ment of the fluidized particles of the catalyst.
4. A process according to claim I, in which the diameter of the material of the windings is at least 0.4 mm.
5. A process according to claim 1, in which the turns of the windings are separated from one another by a distance which is at least 20 times the dimension of the fluidized catalyst particles.
6. A process according to claim 1, in which the diameter and length of the windings are such that at least two windings can be placed end to end over the minimum distance.
7. A process according to claim 1, in which the shape of the windings is such that interpenetration is negligible.
8. A process according to claim 1, in which the shape of the turns of the windings is circular, oval or polygonal.
9. A process according to claim 1 wherein the filling elements consist of a plurality of windings of rigid wire.

Claims (9)

1. IN A CATALYTIC FLUID-BED PROCESS FOR THE PREPARATION OF ACRYLONITRILE WHEREIN A GASEOUS MIXTURE COMPRISING PROPYLENE AMMONIA AND OXYGEN ARE PASSED THROUGH A REACTION ZONE COMPRISING FLUIDIZED CATALYST PARTICLES AND FILLING ELEMENTS, THE IMPROVEMENT WHEREIN THE FILLING ELEMENTS CONSIST OF A PLURALITY OF WINDINGS OF RIGID MATERIAL WHICH IS INERT OR CATALYTICALLY ACTIVE IN RELATION TO THE GASEOUS REACTANTS, THE VOLUME OF WHICH REPRESENTS 2 TO 12% OF THE VOLUME OCCUPIED BY THE CATALYST PARTICLES UNDER THE WORKING CONDITIONS AND THE SPEED OF DISPLACEMENT OF THE GASEOUS REACTANTS THROUGH THE REACTIONS ZONE IS FROM 0.25 TO 0.95 TIMES THE SPEED OF ENTRAINMENT OF THE FLUIDIZED CATALYST PARTICLES.
2. A process according to claim 1, in which the volume of material of the windings represents 3 to 10% of the volume occupied by the catalyst under working conditions.
3. A process according to claim 1, in which the speed of displacement of the gaseous constituents through the reaction zone is 0.40 to 0.90 times the speed of entrainment of the fluidized particles of the catalyst.
4. A process according to claim 1, in which the diameter of the material of the windings is at least 0.4 mm.
5. A process according to claim 1, in which the turns of the windings are separated from one another by a distance which is at least 20 times the dimension of the fluidized catalyst particles.
6. A process according to claim 1, in which the diameter and length of the windings are such that at least two windings can be placed end to end over the minimum distance.
7. A process according to claim 1, in which the shape of the windings is such that interpenetration is negligible.
8. A process according to claim 1, in which the shape of the turns of the windings is circular, oval or polygonal.
9. A process according to claim 1 wherein the filling elements consist of a plurality of windings of rigid wire.
US49551974 1971-01-12 1974-08-07 Process for carrying out chemical reactions in a fluidized bed Expired USRE28648E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US49551974 USRE28648E (en) 1971-01-12 1974-08-07 Process for carrying out chemical reactions in a fluidized bed

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB148571A GB1382991A (en) 1971-01-12 1971-01-12 Process for carrying out chemical reactions in a fluidised bed
US21677472A 1972-01-10 1972-01-10
US49551974 USRE28648E (en) 1971-01-12 1974-08-07 Process for carrying out chemical reactions in a fluidized bed

Publications (1)

Publication Number Publication Date
USRE28648E true USRE28648E (en) 1975-12-09

Family

ID=27253895

Family Applications (1)

Application Number Title Priority Date Filing Date
US49551974 Expired USRE28648E (en) 1971-01-12 1974-08-07 Process for carrying out chemical reactions in a fluidized bed

Country Status (1)

Country Link
US (1) USRE28648E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2391192A1 (en) * 1977-05-20 1978-12-15 Gulf Research Development Co ACRYLONITRILE CATALYTIC PREPARATION PROCESS

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768836A (en) * 1953-08-26 1957-02-20 Stone & Webster Eng Corp Method and apparatus for the treatment of gaseous reactants with fluidized catalysts
GB774325A (en) * 1954-03-20 1957-05-08 Basf Ag Improvements in filler bodies for carrying out reactions of gases with solids in fluidized beds
US2893851A (en) * 1955-12-29 1959-07-07 American Oil Co Powdered catalyst contacting unit
US3226422A (en) * 1960-12-07 1965-12-28 Knapsack Ag Process for preparing unsaturated nitriles
GB1019235A (en) * 1961-10-26 1966-02-02 Canadian Patents Dev Improvements in or relating to catalytic processes
US3254110A (en) * 1961-04-18 1966-05-31 Knapsack Ag Process for preparing unsaturated nitriles
US3472892A (en) * 1967-05-10 1969-10-14 Standard Oil Co Fluid bed process for synthesis of nitriles by ammoxidation and the recycling of ammonia-rich catalyst from a quench zone to a reaction zone
US3501517A (en) * 1965-03-08 1970-03-17 Chevron Res Fluid - bed quenching ammoxidation reaction process for nitrile preparation
US3639103A (en) * 1970-04-21 1972-02-01 Badger Co Fluid bed reactors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB768836A (en) * 1953-08-26 1957-02-20 Stone & Webster Eng Corp Method and apparatus for the treatment of gaseous reactants with fluidized catalysts
GB774325A (en) * 1954-03-20 1957-05-08 Basf Ag Improvements in filler bodies for carrying out reactions of gases with solids in fluidized beds
US2893851A (en) * 1955-12-29 1959-07-07 American Oil Co Powdered catalyst contacting unit
US3226422A (en) * 1960-12-07 1965-12-28 Knapsack Ag Process for preparing unsaturated nitriles
US3254110A (en) * 1961-04-18 1966-05-31 Knapsack Ag Process for preparing unsaturated nitriles
GB1019235A (en) * 1961-10-26 1966-02-02 Canadian Patents Dev Improvements in or relating to catalytic processes
US3501517A (en) * 1965-03-08 1970-03-17 Chevron Res Fluid - bed quenching ammoxidation reaction process for nitrile preparation
US3472892A (en) * 1967-05-10 1969-10-14 Standard Oil Co Fluid bed process for synthesis of nitriles by ammoxidation and the recycling of ammonia-rich catalyst from a quench zone to a reaction zone
US3639103A (en) * 1970-04-21 1972-02-01 Badger Co Fluid bed reactors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2391192A1 (en) * 1977-05-20 1978-12-15 Gulf Research Development Co ACRYLONITRILE CATALYTIC PREPARATION PROCESS

Similar Documents

Publication Publication Date Title
US3230246A (en) Process for preparing olefinically unsaturated nitriles
US7534339B2 (en) Reactor filled with solid particle and gas-phase catalytic oxidation with the reactor
US6069271A (en) Production method of acrylic acid
US7226567B1 (en) Multi-tube fixed-bed reactor, especially for catalytic gas phase reactions
EP0351167B1 (en) Method for production of methacrylic acid
US4873368A (en) Process for producing acrylic acid
US6657088B2 (en) Temperature measurements in tubular reactors during treatment of fluid masses
US6399818B2 (en) Process for producing unsaturated aldehydes and unsaturated carboxylic acids
US5252613A (en) Enhanced catalyst mixing in slurry bubble columns (OP-3723)
JP3382983B2 (en) Cylindrical catalyst granules
US8038950B2 (en) Fluidized-bed reactor for carrying out a gas-phase reaction
US3429654A (en) Reacting gases or vapors in a fluidized bed
US20110178334A1 (en) Fixed-bed reactor and process for producing acrylic acid using the reactor
US8044244B2 (en) Process for preparing aromatic amines in a fluidized-bed reactor
US7265250B2 (en) Method of producing unsaturated aldehyde and/or unsaturated fatty acid
US2620262A (en) System for synthesis from hydrogen and carbon monoxide with fluidized catalyst
US3427343A (en) Process for preparing olefinically unsaturated aldehydes and nitriles
JP6427225B1 (en) Fluid bed reactor and method for producing α, β-unsaturated nitrile
US3471545A (en) Catalytic process for the preparation of acrylonitrile or methacrylonitrile
US11161806B2 (en) Process for producing compound
KR940007528B1 (en) Apparatus for producing dip-unsaturated nitrile
USRE28648E (en) Process for carrying out chemical reactions in a fluidized bed
US3784561A (en) Process for carrying out chemical reactions in a fluidized bed
WO1988004199A1 (en) Fluidized bed
US4087462A (en) Production of formaldehyde in a fluidized bed with a fixed temperature gradient