USRE27396E - Warm air furnace with radiant burner - Google Patents

Warm air furnace with radiant burner Download PDF

Info

Publication number
USRE27396E
USRE27396E US27396DE USRE27396E US RE27396 E USRE27396 E US RE27396E US 27396D E US27396D E US 27396DE US RE27396 E USRE27396 E US RE27396E
Authority
US
United States
Prior art keywords
air
blower
flue
furnace
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE27396E publication Critical patent/USRE27396E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/065Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2700/00Special arrangements for combustion apparatus using fluent fuel
    • F23C2700/04Combustion apparatus using gaseous fuel
    • F23C2700/043Combustion apparatus using gaseous fuel for surface combustion

Definitions

  • a compact or miniaturized furnace having very compact blower or fan and heating sections.
  • a stream of air to be heated is drawn into an end of an elongated casing and is directed radially outwardly and thence longitudinally to the casing through an annular passageway which extends through the heating zone.
  • the air passes along the outside of the cylindrical primary heating surface and the air also passes around a spiral tubular flue for the exhaust or furnace gases.
  • the primary heating surface receives heat from an infrared radiant burner enclosed within the cylindrical wall and the exhaust gases flow through the spiral flue in countercurrent relationship to the direction of flow of the air being heated.
  • This invention relates to furnaces, and more in particular to radiant gas-burning furnaces for heating moving
  • An object of this invention is to provide a furnace which is highly efiicient, compact, and capable of transferring a large quantity of heat to the air stream.
  • a further object is to provide such a furnace that is capable of operating in various positions relative to the horizontal.
  • a further object is to provide such a furnace that can be adapted to provide a wide range of heat production and transfer levels and to burn a wide range of fuel and air mixtures efficiently.
  • a still further object is to provide such a furnace that does not permit the development of objectionable hot areas on the heating surfaces, and that delivers a stream of air which is fully mixed and even in temperature.
  • a still further object is to provide such a furnace that reduces the loss of heat through the walls of the furnace without the use of heavy insulation.
  • a cylindrical gasfired radiant heater is provided from which heat is transferred directly to a cylindrical wall which surrounds it, and the air being heated flows longitudinally along the outside surface of the cylindrical wall.
  • the flue gases are discharged through a spiral tubular flue which surrounds the cylindrical wall in the path of the flowing air so that the air is also heated by the flue gases.
  • FIGURE 1 is an perspective view of one embodiment of the invention
  • FIGURE 2 is an exploded view of the unit of FIGURE 1 with parts broken away;
  • FIGURES 3 and 4 are vertical sections, respectively, on the lines 33 and 4-4 of FIGURE 1 and showing the structure which is exposed by the removal of the vertical end walls at the opposite ends of the casing;
  • FIGURE 5 is a vertical section on the line 5-5 of FIGURE 3.
  • the furnace 2 has an elongated outer casing 4 which is substantially square in cross-section and through which there is a passageway for the air being heated from an air return or cold-air duct 3 to a heated-air discharge duct 5.
  • a sheet metal cylinder 6 is mounted centrally within casing 4, and concentrically positioned within cylinder 6 are: a centrifugal blower 8, an electric motor 16 which drives the blower and has a cylindrical housing 10, and a heating section or unit 12.
  • Sheet metal cylinder 6 is in two sections, 6-1 surrounding the blower and motor, and 6-2 surrounding the heating unit 12.
  • the portion of easing 1 surrounding cylinder section 6-1 is formed by four horizontol corner frame members 7, rectangular metal walls 9 which form the sides and the top and bottom walls, and end plates 11 and 15 positioned at the ends of cylinder section 6-1 and providing support for the cylinder section.
  • Each of the end plates is square with a round opening concentric with the blower and cylinder axis, so that air may flow to the blower and from the cylinder section.
  • the motor and blower are supported from the bottom of cylinder section 6-1 by mounting brackets which are not shown in the drawings.
  • the section of casing 4 which encloses the heater unit 12 is of similar construction with corner frame members 27, the side walls 9 which extends the length of the casing, and end plates 31 and 35 which provide support for cylinder section 6-2.
  • Blower 8 is mounted on the shaft 14 of motor 16 and has backward curved blades which are rigidly mounted between a solid circular backplatc and a front annular shroud ring.
  • a cylindrical hub 20, approximately 2 inches in diameter, is concentrically and rigidly attached to the circular backplate, and mounted on and keyed to the motor shaft.
  • Motor 16 drives the blower in the direction of the arrows so that the air is discharged radially toward cylinder 6-1 and thence axially along passageway 17.
  • the blower has sixteen blades, extending only between the inner and outer edges of an associated shroud ring annulus, and turns at a speed of the order of 3450 revolutions per minute.
  • the air from duct 3 flows axially through a restricted circular opening 13 in the inlet adapter plate 33 into the center of the blower wheel.
  • the air is then directed radially outward through the blower wheel and discharged into the annular passageway 17 between the outer surface 19 of motor housing 10 and cylinder section 6-1.
  • Blades 18 extend radially outwardly beyond surface 19.
  • the discharge arrangement for the air creates air pressure and flow conditions which cause the air to move axially along passageway 1'7 in a quantitatively uniform annular pattern.
  • Heating unit 12 has a sheet metal cylinder 26, the outer surface 25 of which is the primary heating surface for the air flowing through the annular passageway 17,
  • a cylindrical infrared radiant burner 30 Positioned concentrically within cylinder 26 (see FIG- JRES 3 and 5) is a cylindrical infrared radiant burner 30 composed of three layers of fine mesh wire cloth 34, a large mesh reradiating screen 32 and a gas dis- :harge nozzle 38. Gas is supplied to nozzle 38 through 1 pipe or tube 36 and a control system 39, which in- :ludes conventional gas train and appropriate controls. The desired amount of air is supplied to burner 30 from )assageway :17 through an opening 42 under the presure of blower 8. The air passes into the central chamber )f the burner with the gas and mixes therewith and that nixture flows outwardly through the wire mesh cylnders.
  • the burner produces uniform infrared radiation, 1nd can achieve a very high rate of combustion with- )ut the high levels of flame noise that accompany rapid :ombustion and heat transfer in some types of burners. Furthermore, this burner permits the use of a wide range )f mixtures of gas and air, so that the rate of heat proluction and transfer can be adjusted and controlled.
  • the 'adiant burner has ignition means of known construcion and arrangement. When ignited, the burner produces adiant heat throughout its outer cylindrical wall, which mat is radiated to cylinder 26, and the cylinder is also mated by convection along the inner surface by the Inc gases flowing from the burner.
  • the flue gases are discharged from cylinder 26 through :teel spiral tubular flue 50 which has its flue gas receivng end 51 connected to an opening in cylinder 26 at the lownstream side of the air passageway 17.
  • Flue 50 is :omewhat oval in cross-section and is positioned centraly of the passageway 17 with the minor axis of the oval :ross-section of the flue parallel to the thickness or radial limension of the passageway.
  • the major dimen :ion of the oval and the greater portion surface 28 of he flue is somewhat parallel to the direction of air flow.
  • lube or flue 50 has its discharge end 53 at the upstream :nd with respect to the direction of air flow in passagevay 17.
  • the flue gases pass through the flue along he spiral path in counterflow relationship to the stream )f air being heated, so that the flue provides very satsfactory additional or secondary heat transfer of heat 0 the air.
  • the outer mesh cylinder 32 is of :oarse mesh and has a diameter of 7 W inches
  • the nner mesh cylinder 34 consists of three layers of very ine mesh and has a diameter of 7% inches.
  • the diam- :ter of cylinder 26 is 9 /3 inches and the diameter of cylnder 6 is 13 inches.
  • passageway 17 has a radial limension of 11 inches.
  • Flue 50 is a flattened tube raving an original diameter of 2 inches and its crossection is an oval with a minimum dimension of /s inch Llld a maximum dimension of 2% inches.
  • the major dimension of 2% inches extends generilly in the direction of the stream of air being heated so hat the broad side walls of the flattened tube provide ;00d heat transfer between the flue gases and the air.
  • Fhe minimum dimension of the flue which is M: inch, is n general alignment with the transverse thickness or adial dimension of the passageway 17, which is 1 nches.
  • blower 18 has an outer ditIIlCtfiI of /4 inches so that it overhangs 1% inches ieyond the 6% inch diameter motor housing.
  • the air lischarge characteristics of the blower provide etficient lischarge of the air in the annular stream through pasageway 17.
  • Motor 16 is cooled directly by the flowing iir in passageway 17.
  • the outer casing 4 is 14 /2 inches nigh and wide, and it is in the order of 30 inches long.
  • Fhe controls for the burner are mounted in casing 4 in the blower section between the casing wall and cylinder 6.
  • the temperature of the air passing into duct 5 is sensed by a temperature limit control 70.
  • a summary of the mode of operation is as follows: Return air enters the furnace at the center of blower 8 and is moved outwardly along blades 18 by centrifugal force toward the inner surface of cylinder 6, which diverts the flow of the air to a longitudinal direction, parallel to the axis of the cylinder. As the air stream leaves the spaces between the ends of blades 18 and cylinder 6, it flows evenly along passageway 17 between motor housing 10 and cylinder 6. When the air reaches the heating portion of the furnace, it is heated by both the primary heating surface 25 of cylinder 26 and the secondary heating surface 28 of flue 50. The evenness and uniformity of the air stream prevents the formation of objectionably overheated areas on either of the heating surfaces.
  • Outlet air adapter 58 transforms the annulus of moving air to a solid cylindrical stream. The air is mixed as it flows so that it is of uniform temperature throughout prior to reaching the first air outlet from the distribution conduit.
  • a warm air furnace comprising a blower section and a heating section, said sections having wall means defining a substantially annular passageway for the flow of air through said blower section and thence through said heater section there being air receiving and air discharge openings substantially in alignment with [said axis] the axis of said passageway, said blower section having a blower mounted adjacent said air receiving opening and an electric motor driving said blower and positioned along said axis, said wall means within said blower section presenting substantially cylindrical and coextensive passageway surfaces which surround said blower and said blower being adapted to deliver air to said passageway with the air flowing axially therefrom, said heating section being defined by an outer cylindrical surface and a parallel inner surface which constitutes a primary air heating surface and is the outer surface of a heat transmitting cylinder, said heater section including a radiant heater positioned concentrically within said heat transmitting cylinder to transmit heat thereto, said radiant heater comprising a cylindrical radiant heating element to which air and gas pass and are ignited to produce infrared radiant heat
  • a furnace as described in claim 1 which includes a heat transmitting flue connected to discharge the products of combustion from said heating element in heat exchange relationship with the stream of air being heated.
  • a furnace as described in claim 3 wherein said blower is of the centrifugal type with backward curved vanes from which air is discharged in an annular profile.
  • a furnace as described in claim 2 which includes means to deliver air from said blower to said burner.
  • each of said sections is enclosed within a rectangular casing, and adapter means to direct the stream of air to and from the respective casings.
  • an air heating unit comprising, an outer casing, a gas burner centrally positioned within said casing, a heating shell surrounding said burner and providing a substantially cylindrical heat transmitting wall along which air passes to be heated, an outer wall spaced from said heat transmitting wall and forming an outer surface confining the stream of air to be heated to an air flow passageway, a heat transmitting spiral flue connected to provide a discharge flue for the products of combustion of said burner and positioned spirally within said air-flow passageway whereby the air is heated simultaneously by contact with said heating surface and said flue, and means to direct a stream of air through said passageway.
  • said means to direct air comprises a blower which directs air under pressure through said passageway, and means to supply air from said blower to said burner.
  • Apparatus as described in claim 8 which includes control means for said burner, including means responsive to the tempertaure of the air passing from said passageway.
  • an air heating unit comprising, an outer casing, a gas burner centrally positioned within said casing, a heating shell surrounding said burner and providing an outer heat transmitting wall along which air passes to be heated, an outer wall spaced from and concentric with said heat transmitting wall and having an inner surface confining the stream of air to be heated to an air-flow passageway of substantially uniform cross-sectiou, a heat transmitting spiral flue means connected to discharge the products of combustion of said burner and positioned spirally within said air-flow passageway whereby the air is heated simultaneously by contact with said heating surface and said flue means, and means to direct a stream of air through said passageway.
  • a warm air furnace comprising a blower section and a heating section, said sections having wall means defining a substantially annular passageway for the flow f air through said blower section and thence through said heater section with there being air receiving and air discharge openings substantially in alignment with said axis, said blower section having a blower mounted adjacent said air receiving opening and an electric motor driving said blower and positioned along said axis, said wall means within said blower section presenting substantially cylindrical and coextensive passageway surfaces which surround said motor and said blower being adapted to deliver air to said passageway with the air flowing axially therefrom, said heating section being defined by an outer cylindrical surface and a parallel inner surface which constitutes a primary air-heating surface and is the outer surface of a heat transmitting cylinder, said heater section including a radiant gas burner positioned concentrically within said heat transmitting cylinder to transmit heat thereto, and heat transmitting spiral flue means connected to provide a discharge flue for the products of combustion of said burner and positioned spirally around and adjacent said heat transmitting surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A COMPACT OR MINIATURIZED FURNACE IS DISCLOSED HAVING VERY COMPACT BLOWER OR FAN AND HEATING SECTIONS. A STREAM OF AIR TO BE HEATED IS DRAWN INTO AN END OF AN ELONGATED CASING AN IS DIRECTED RADIALLY OUTWARDLY AND THENCE LONGITUDINALLY TO THE CASING THROUGH AN ANNULAR PASSAGEWAY WHICH EXTENDS THROUGH THE HEATING ZONE. WITHIN THE HEATING ZONE THE AIR PASSES ALONG THE OUTSIDE OF THE CYLINDRICAL PRIMARY HEATING SURFACE AND THE AIR ALSO PASSES AROUND A SPIRAL TUBULAR FLUE FOR THE EXHAUST OR FURNACE GASES. THE PRIMARY HEATING SURFACE RECEIVES HEAT FROM AN INFRARED RADIANT BURNER CLOSED WITHIN THE CYLINDRICAL WALL AND THE EXHAUST GASES FLOW THROUGH THE SPIRAL FLUE IN COUNTERCURRENT RELATIONSHIP TO THE DIRECTION OF FLOW OF THE AIR BEING HEATED.

Description

June 20, 1972 R. A. HEMMERT 27395 WARM AIR FURNACE WITH RADIANT BURNER Original Filed Feb. 27, 1968 2 Sheets-Sheet.1
mm m m N 3 m 1H T A MA .0 0 m M m 0,... w m R W June 20, 1972 HEMMERT Re. 27,396
WARM AIR FURNACE WITH RADIANT BURNER 2 Sheets-Sheet? 2 Original Filed Feb. 27, 1968 INVENTOR. Raymond A. Hemmerf B A TTORNEYS Fig.5
United States Patent Olfice Re. 27,396 Reissued June 20, 1972 27 396 WARM AIR FURNACE {VITH RADIANT BURNER Raymond A. Hemmert, Columbus, Ohio, assignon to Columbia Gas System Service Corporation, New York,
N.Y. Original No. 3,507,481, dated Apr. 21, 1970, Ser. No. 708,691, Feb. 27, 1968. Application for reissue Jan.
6, 1971, Ser. No. 104,52
6 Int. F23] 15/04 US. Cl. 263-20 11 Claims ABSTRACT OF THE DISCLOSURE A compact or miniaturized furnace is disclosed having very compact blower or fan and heating sections. A stream of air to be heated is drawn into an end of an elongated casing and is directed radially outwardly and thence longitudinally to the casing through an annular passageway which extends through the heating zone. Within the heating zone the air passes along the outside of the cylindrical primary heating surface and the air also passes around a spiral tubular flue for the exhaust or furnace gases. The primary heating surface receives heat from an infrared radiant burner enclosed within the cylindrical wall and the exhaust gases flow through the spiral flue in countercurrent relationship to the direction of flow of the air being heated.
This invention relates to furnaces, and more in particular to radiant gas-burning furnaces for heating moving An object of this invention is to provide a furnace which is highly efiicient, compact, and capable of transferring a large quantity of heat to the air stream.
A further object is to provide such a furnace that is capable of operating in various positions relative to the horizontal.
A further object is to provide such a furnace that can be adapted to provide a wide range of heat production and transfer levels and to burn a wide range of fuel and air mixtures efficiently.
A still further object is to provide such a furnace that does not permit the development of objectionable hot areas on the heating surfaces, and that delivers a stream of air which is fully mixed and even in temperature.
A still further object is to provide such a furnace that reduces the loss of heat through the walls of the furnace without the use of heavy insulation.
These and other objects will be in part obvious and in part pointed out below.
It is often desirable to provide forced-air heating systems whose furnaces and ducts take up very little space. In such compact or miniaturized-systems, it is necessary that heat be transferred to a swiftly flowing stream of air at a rapid rate. In devices that have been heretofore developed, the rapid combustion of gas that is necessary to produce heat at the high rates required has resulted in undesirable characteristics, including high noise levels. The present invention overcomes this and other disadvantages of conventional prior art arrangements. In the illustrative embodiment, a cylindrical gasfired radiant heater is provided from which heat is transferred directly to a cylindrical wall which surrounds it, and the air being heated flows longitudinally along the outside surface of the cylindrical wall. The flue gases are discharged through a spiral tubular flue which surrounds the cylindrical wall in the path of the flowing air so that the air is also heated by the flue gases.
In the drawings:
FIGURE 1 is an perspective view of one embodiment of the invention;
FIGURE 2 is an exploded view of the unit of FIGURE 1 with parts broken away;
FIGURES 3 and 4 are vertical sections, respectively, on the lines 33 and 4-4 of FIGURE 1 and showing the structure which is exposed by the removal of the vertical end walls at the opposite ends of the casing; and
FIGURE 5 is a vertical section on the line 5-5 of FIGURE 3.
Referring to FIGURE 1 of the drawings, the furnace 2 has an elongated outer casing 4 which is substantially square in cross-section and through which there is a passageway for the air being heated from an air return or cold-air duct 3 to a heated-air discharge duct 5. A sheet metal cylinder 6 is mounted centrally within casing 4, and concentrically positioned within cylinder 6 are: a centrifugal blower 8, an electric motor 16 which drives the blower and has a cylindrical housing 10, and a heating section or unit 12. Sheet metal cylinder 6 is in two sections, 6-1 surrounding the blower and motor, and 6-2 surrounding the heating unit 12. The portion of easing 1 surrounding cylinder section 6-1 is formed by four horizontol corner frame members 7, rectangular metal walls 9 which form the sides and the top and bottom walls, and end plates 11 and 15 positioned at the ends of cylinder section 6-1 and providing support for the cylinder section. Each of the end plates is square with a round opening concentric with the blower and cylinder axis, so that air may flow to the blower and from the cylinder section. The motor and blower are supported from the bottom of cylinder section 6-1 by mounting brackets which are not shown in the drawings. The section of casing 4 which encloses the heater unit 12 is of similar construction with corner frame members 27, the side walls 9 which extends the length of the casing, and end plates 31 and 35 which provide support for cylinder section 6-2.
Blower 8 is mounted on the shaft 14 of motor 16 and has backward curved blades which are rigidly mounted between a solid circular backplatc and a front annular shroud ring. A cylindrical hub 20, approximately 2 inches in diameter, is concentrically and rigidly attached to the circular backplate, and mounted on and keyed to the motor shaft. Motor 16 drives the blower in the direction of the arrows so that the air is discharged radially toward cylinder 6-1 and thence axially along passageway 17. Illustratively, the blower has sixteen blades, extending only between the inner and outer edges of an associated shroud ring annulus, and turns at a speed of the order of 3450 revolutions per minute. The air from duct 3 flows axially through a restricted circular opening 13 in the inlet adapter plate 33 into the center of the blower wheel. The air is then directed radially outward through the blower wheel and discharged into the annular passageway 17 between the outer surface 19 of motor housing 10 and cylinder section 6-1. Blades 18 extend radially outwardly beyond surface 19. The discharge arrangement for the air creates air pressure and flow conditions which cause the air to move axially along passageway 1'7 in a quantitatively uniform annular pattern.
Heating unit 12 has a sheet metal cylinder 26, the outer surface 25 of which is the primary heating surface for the air flowing through the annular passageway 17,
Positioned concentrically within cylinder 26 (see FIG- JRES 3 and 5) is a cylindrical infrared radiant burner 30 composed of three layers of fine mesh wire cloth 34, a large mesh reradiating screen 32 and a gas dis- :harge nozzle 38. Gas is supplied to nozzle 38 through 1 pipe or tube 36 and a control system 39, which in- :ludes conventional gas train and appropriate controls. The desired amount of air is supplied to burner 30 from )assageway :17 through an opening 42 under the presure of blower 8. The air passes into the central chamber )f the burner with the gas and mixes therewith and that nixture flows outwardly through the wire mesh cylnders. The burner produces uniform infrared radiation, 1nd can achieve a very high rate of combustion with- )ut the high levels of flame noise that accompany rapid :ombustion and heat transfer in some types of burners. Furthermore, this burner permits the use of a wide range )f mixtures of gas and air, so that the rate of heat proluction and transfer can be adjusted and controlled. The 'adiant burner has ignition means of known construcion and arrangement. When ignited, the burner produces adiant heat throughout its outer cylindrical wall, which mat is radiated to cylinder 26, and the cylinder is also mated by convection along the inner surface by the Inc gases flowing from the burner.
The flue gases are discharged from cylinder 26 through :teel spiral tubular flue 50 which has its flue gas receivng end 51 connected to an opening in cylinder 26 at the lownstream side of the air passageway 17. Flue 50 is :omewhat oval in cross-section and is positioned centraly of the passageway 17 with the minor axis of the oval :ross-section of the flue parallel to the thickness or radial limension of the passageway. Hence, the major dimen :ion of the oval and the greater portion surface 28 of he flue is somewhat parallel to the direction of air flow. lube or flue 50 has its discharge end 53 at the upstream :nd with respect to the direction of air flow in passagevay 17. Hence, the flue gases pass through the flue along he spiral path in counterflow relationship to the stream )f air being heated, so that the flue provides very satsfactory additional or secondary heat transfer of heat 0 the air.
In this embodiment, the outer mesh cylinder 32 is of :oarse mesh and has a diameter of 7 W inches, and the nner mesh cylinder 34 consists of three layers of very ine mesh and has a diameter of 7% inches. The diam- :ter of cylinder 26 is 9 /3 inches and the diameter of cylnder 6 is 13 inches. Hence, passageway 17 has a radial limension of 11 inches. Flue 50 is a flattened tube raving an original diameter of 2 inches and its crossection is an oval with a minimum dimension of /s inch Llld a maximum dimension of 2% inches. As indicated tbove, the major dimension of 2% inches extends generilly in the direction of the stream of air being heated so hat the broad side walls of the flattened tube provide ;00d heat transfer between the flue gases and the air. Fhe minimum dimension of the flue, which is M: inch, is n general alignment with the transverse thickness or adial dimension of the passageway 17, which is 1 nches. Hence, there is a passageway of slightly more han /2 inch at each side of the flue, i.e., respectively ietween the flue and the cylinders 26 and 6.
It has been indicated above that blades 18 of blower I overhang the inner radius of passageway 17, i.e., the alades extend radially outwardly beyond the motor housng 10. In this embodiment, blower 18 has an outer ditIIlCtfiI of /4 inches so that it overhangs 1% inches ieyond the 6% inch diameter motor housing. The air lischarge characteristics of the blower provide etficient lischarge of the air in the annular stream through pasageway 17. Motor 16 is cooled directly by the flowing iir in passageway 17.
In this embodiment the outer casing 4 is 14 /2 inches nigh and wide, and it is in the order of 30 inches long. Fhe controls for the burner are mounted in casing 4 in the blower section between the casing wall and cylinder 6. The temperature of the air passing into duct 5 is sensed by a temperature limit control 70.
A summary of the mode of operation is as follows: Return air enters the furnace at the center of blower 8 and is moved outwardly along blades 18 by centrifugal force toward the inner surface of cylinder 6, which diverts the flow of the air to a longitudinal direction, parallel to the axis of the cylinder. As the air stream leaves the spaces between the ends of blades 18 and cylinder 6, it flows evenly along passageway 17 between motor housing 10 and cylinder 6. When the air reaches the heating portion of the furnace, it is heated by both the primary heating surface 25 of cylinder 26 and the secondary heating surface 28 of flue 50. The evenness and uniformity of the air stream prevents the formation of objectionably overheated areas on either of the heating surfaces. Because of the geometrical configuration of the primary and secondary heat exchanger surfaces, the temperature of the air stream is highest adjacent cylinder 26 and is lowest adjacent the wall of cylinder 6. For this reason, little heat is transferred from the air to cylinder 6, and there is little need to provide insulation between it and easing 4. Outlet air adapter 58 transforms the annulus of moving air to a solid cylindrical stream. The air is mixed as it flows so that it is of uniform temperature throughout prior to reaching the first air outlet from the distribution conduit.
What is claimed is:
1. A warm air furnace comprising a blower section and a heating section, said sections having wall means defining a substantially annular passageway for the flow of air through said blower section and thence through said heater section there being air receiving and air discharge openings substantially in alignment with [said axis] the axis of said passageway, said blower section having a blower mounted adjacent said air receiving opening and an electric motor driving said blower and positioned along said axis, said wall means within said blower section presenting substantially cylindrical and coextensive passageway surfaces which surround said blower and said blower being adapted to deliver air to said passageway with the air flowing axially therefrom, said heating section being defined by an outer cylindrical surface and a parallel inner surface which constitutes a primary air heating surface and is the outer surface of a heat transmitting cylinder, said heater section including a radiant heater positioned concentrically within said heat transmitting cylinder to transmit heat thereto, said radiant heater comprising a cylindrical radiant heating element to which air and gas pass and are ignited to produce infrared radiant heat whereby said heat transmitting cylinder is heated by radiant heat and by convection from the hot gases.
2. A furnace as described in claim 1 which includes a heat transmitting flue connected to discharge the products of combustion from said heating element in heat exchange relationship with the stream of air being heated.
3. A furnace as described in claim 2 wherein said flue is a spiral sheet metal tube positioned within said annular passageway and extending around said heat transmitting cylinder and axially in the direction countercurrent to the air flow.
4. A furnace as described in claim 3 wherein said blower is of the centrifugal type with backward curved vanes from which air is discharged in an annular profile.
5. A furnace as described in claim 2 which includes means to deliver air from said blower to said burner.
6. A furnace as described in claim 1 wherein each of said sections is enclosed within a rectangular casing, and adapter means to direct the stream of air to and from the respective casings.
7. In a furnace construction, an air heating unit comprising, an outer casing, a gas burner centrally positioned within said casing, a heating shell surrounding said burner and providing a substantially cylindrical heat transmitting wall along which air passes to be heated, an outer wall spaced from said heat transmitting wall and forming an outer surface confining the stream of air to be heated to an air flow passageway, a heat transmitting spiral flue connected to provide a discharge flue for the products of combustion of said burner and positioned spirally within said air-flow passageway whereby the air is heated simultaneously by contact with said heating surface and said flue, and means to direct a stream of air through said passageway.
8. Apparatus as described in claim 7 wherein said means to direct air comprises a blower which directs air under pressure through said passageway, and means to supply air from said blower to said burner.
9. Apparatus as described in claim 8 which includes control means for said burner, including means responsive to the tempertaure of the air passing from said passageway.
10. In a furnace construction, an air heating unit comprising, an outer casing, a gas burner centrally positioned within said casing, a heating shell surrounding said burner and providing an outer heat transmitting wall along which air passes to be heated, an outer wall spaced from and concentric with said heat transmitting wall and having an inner surface confining the stream of air to be heated to an air-flow passageway of substantially uniform cross-sectiou, a heat transmitting spiral flue means connected to discharge the products of combustion of said burner and positioned spirally within said air-flow passageway whereby the air is heated simultaneously by contact with said heating surface and said flue means, and means to direct a stream of air through said passageway.
11. A warm air furnace comprising a blower section and a heating section, said sections having wall means defining a substantially annular passageway for the flow f air through said blower section and thence through said heater section with there being air receiving and air discharge openings substantially in alignment with said axis, said blower section having a blower mounted adjacent said air receiving opening and an electric motor driving said blower and positioned along said axis, said wall means within said blower section presenting substantially cylindrical and coextensive passageway surfaces which surround said motor and said blower being adapted to deliver air to said passageway with the air flowing axially therefrom, said heating section being defined by an outer cylindrical surface and a parallel inner surface which constitutes a primary air-heating surface and is the outer surface of a heat transmitting cylinder, said heater section including a radiant gas burner positioned concentrically within said heat transmitting cylinder to transmit heat thereto, and heat transmitting spiral flue means connected to provide a discharge flue for the products of combustion of said burner and positioned spirally around and adjacent said heat transmitting surface whereby the air is heated simultaneously by contact with said surface and said flue, and means to direct a stream of air through said passageway.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 3,010,449 11/1961 Owen 126-110 B 3,068,854 12/1962 Freeman 126-110 D JOHN J. CAMBY, Primary Examiner US. Cl. X.R. 126-410 D
US27396D 1971-01-06 1971-01-06 Warm air furnace with radiant burner Expired USRE27396E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10452671A 1971-01-06 1971-01-06

Publications (1)

Publication Number Publication Date
USRE27396E true USRE27396E (en) 1972-06-20

Family

ID=22300962

Family Applications (1)

Application Number Title Priority Date Filing Date
US27396D Expired USRE27396E (en) 1971-01-06 1971-01-06 Warm air furnace with radiant burner

Country Status (1)

Country Link
US (1) USRE27396E (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0139105A1 (en) * 1983-07-20 1985-05-02 Columbia Gas System Service Corporation Apparatus for burning a combustible gas
US20110104622A1 (en) * 2009-10-30 2011-05-05 Trane International Inc. Gas-Fired Furnace With Cavity Burners
US9175875B1 (en) * 2012-01-24 2015-11-03 Clean Energy Heating Systems, LLC Used oil furnace with vertical flue tubes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0139105A1 (en) * 1983-07-20 1985-05-02 Columbia Gas System Service Corporation Apparatus for burning a combustible gas
US20110104622A1 (en) * 2009-10-30 2011-05-05 Trane International Inc. Gas-Fired Furnace With Cavity Burners
US8591222B2 (en) * 2009-10-30 2013-11-26 Trane International, Inc. Gas-fired furnace with cavity burners
US9175875B1 (en) * 2012-01-24 2015-11-03 Clean Energy Heating Systems, LLC Used oil furnace with vertical flue tubes

Similar Documents

Publication Publication Date Title
US20200191388A1 (en) Fuel/Air Mixture and Combustion Apparatus and Associated Methods for Use in a Fuel-Fired Heating Apparatus
US5022379A (en) Coaxial dual primary heat exchanger
US5022352A (en) Burner for forced draft controlled mixture heating system using a closed combustion chamber
US9772119B2 (en) Fuel-fired heating appliance having improved burner assembly
JPH0755151A (en) Gas cooking assembly with gas burner arranged below continuous cooking board which is made of heat radiation permeable material like glass-ceramics
US5992410A (en) High-efficiency furnace for mobile homes
US3695250A (en) Rotary regenerative space heater
GB1458085A (en) Multi-pass heating apparatus with expandable air cooled jacket
US3630175A (en) Fluid heater
USRE27396E (en) Warm air furnace with radiant burner
US5017129A (en) Porous ceramic gas burner
GB1440980A (en) Apparatus for heating or evaporating liquids or heating gases
US3794014A (en) Hot-air furnace
US2620787A (en) Forced air flow unit air-heating furnace
US5232153A (en) Arrangement for the reduction of the exhaust gas temperature in heating devices
US2077043A (en) Industrial heater
US2843108A (en) Forced-draft unit heater having outside combustion air source
US3507481A (en) Warm air furnace with radiant burner
GB2215177A (en) Heating gas convection ovens
EP0813836B1 (en) Improvement in the flow turbulence creating arrangement of a gas-fired deep fat fryer
US2488548A (en) Forced-air house heating apparatus
US2752912A (en) Forced air flow air heating furnace
US3779230A (en) Indirect or direct fired heater
US4905661A (en) Heat exchanger
US4374514A (en) Fireplace heater stove