USRE26883E - Process for the reduction of the aromatic content of petroleum distillates - Google Patents

Process for the reduction of the aromatic content of petroleum distillates Download PDF

Info

Publication number
USRE26883E
USRE26883E US26883DE USRE26883E US RE26883 E USRE26883 E US RE26883E US 26883D E US26883D E US 26883DE US RE26883 E USRE26883 E US RE26883E
Authority
US
United States
Prior art keywords
catalyst
sulphur
weight
silica
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE26883E publication Critical patent/USRE26883E/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/52Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing platinum group metals or compounds thereof

Definitions

  • ABSTRACT OF THE DISCLOSURE This invention is directed to a process for the reduction of the aromatic content of petroleum distillates having a high sulphur content by hydrogenating with a platinum catalyst upon a silica and alumina carrier, each in major quantity.
  • the heat of combustion of a hydrocarbon is proportional to the hydrogen to carbon ratio, so that its value will be higher for a saturated cyclic hydrocarbon than for the corresponding aromatic hydrocarbon. Moreover, the lower the aromatic content of the fuel, the cleaner and the less harmful will be the combustion thereof. It is also desirable to remove aromatics from illuminating oils and stove oils to reduce the evolution of smoke. Still further, the reduction of the aromatic content of some solvents is of great importance on hygenic grounds since the vapors of aromatic hydrocarbons are toxic.
  • catalysts may be used for saturating monoand polycyclic aromatics, for example, nickel on kieselguhr or silica, nickel and tungsten sulphides, and noble metals such as platinum.
  • nickel as a catalyst permits the reaction to be carried out under relatively moderate conditions of temperature and pressure.
  • its use presents two major inconveniences. Firstly, nickel is very sensitive to sulphur-containing compounds and the poisoning resulting from their presence in the feed is irreversible. And secondly, nickel may not be heated above about 400 C. without losing its catalytic activity. The catalyst activity drops continuously as sulphur-containing compounds accumulate thereon; and the lack of heat stability of the nickel catalyst does not allow the regeneration of the catalytic activity by the combustion of these poisons.
  • Nickel and tungsten sulphides in well defined ratios and deposited on a convenient carrier such as alumina, or without carrier, may also be used as catalysts.
  • These sul phides present the advantage of being insensitive to sulphur-containing compounds but are, however, far less catalytically active than the corresponding pure metals.
  • the operating conditions must therefore be more severe, i.e. a higher temperature, lower space velocity and especially, a higher pressure are required. This last condition is essential as satisfactory results can be obtained only at higher pressures, on the order of 100 kg./cm. and upwards.
  • Platinum on the other hand, does not present the disadvantages inherent in nickel and tungsten sulphides as will appear in the following examples. Platinum catalysts, however, are poisoned by sulphur. Their use thus requires a very considerable and important diminution of the sulphur present in the feed in order to permit the hydrogenation to be carried out during long periods of time without having to regenerate the catalyst.
  • the principal advantage of this invention is to provide an improved hydrogenation process for the reduction of aromatics in a petroleum distillate.
  • the petroleum distillates of this invention usually contain as a matter of practice a minimum of 0.1 ppm. by weight of sulphur, and an aromatic content of about 1 to 99% by volume.
  • a continuous method for reducing the aromatic hydrocarbon content of a petroleum distillate having a sulphur content preferably not greater than 300 p.p.m. by weight and boiling in the range of 60 C. to 350 0. comprising hydrogenating said petroleum distillate in the presence of a catalyst, comprising platinum on a silicaalumina catalyst carrier which contains at least by Weight of silica.
  • the influence of the catalyst carrier might be explained by more or less pronounced activity towards the destructive hydrogenation of sulphur-containing molecules. This explanation is purely theoretical and cannot be regarded as in any way limitative of the invention.
  • the catalyst preferably contains between 0.1 and 1% platinum by weight, and even more preferably 0.3 to 0.8% by weight.
  • the silica content of the catalyst carrier is from 75 to by weight.
  • Hydrogenation is desirably carried out under the following conditions:
  • Temperature to 400 C., preferably 250 to 350 C.
  • Space velocity 0.1 to 20 v./v./hr., preferably 0.5 to 10 v./v./hr.
  • Hydrogen to hydrocarbon ratio 100 to 3,000 liters hydrogen at normal temperature and pressure (N.T.P) per liter of liquid feed, preferably to 2,500 liters hydrogen-in English units about 500-11000 s.c.f., preferably 850l4,000 s.c.f.. per barrel of liquid feed.
  • the processing may be carried out continuously for very long periods of time.
  • the sulfur content may be lowered by hydrogenating the petroleum distillate in the presence of a catalyst comprising cobalt and molybdenum oxides supported on alumina according to processes well known in the refining of petroleum distillates.
  • the catalyst activity may drop due to the accidental admission of an excessive amount of sulphur or due to a failure to admit the charge for several hours.
  • the initial activity is restored simply by readmitting the initial charge and/or increasing the reaction temperature to 400 C., which is a temperature much higher than the thermodynamically optimum one, all the other conditions being kept constant i.e. pressure, hydrogen to hydrocarbon ratio, space velocity, these conditions being the same as for the reaction itself.
  • EXAMPLE 1 A petroleum distillate was hydrogen pretreated, accordiug to a technique well known in refinery operations, in order to lower its sulphur content. Charges with various sulphur contents, mentioned hereunder, were obtained by blending treated and untreated distillates, the characteristics of which were as follows:
  • Aromatics percent vol 17 17 Olefins 0 0 Saturated 83 83 Sulphur content, percent wt 0. 200 1 0.0001
  • Hydrogen to hydrocarbon ratio 500 liters hydrogen at normal temperature and pressure (N.T.P.) per liter of liquid feed Three catalyst were tested:
  • Catalyst A 0.75% platinum by weight supported on alumina
  • Catalyst B 0.75% platinum by weight supported on silicaalumina having a silica to alumina ratio of 86 to 14 by weight;
  • Catalyst C 0.75% platinum by weight supported on alumina-silica added having a silica to alumina ratio of 12 to 88 by weight.
  • H /hydrocarbon 500 1. H N.T.P./1 liquid feed.
  • the smoke point which is easily and quickly determined is used to evaluate the degree of aromatic hydrogenation.
  • This hydrogenation in accordance with our invention performed on a feed having a smoke point of 26 mm. which corresponds for this feed to an aromatic content of 17% by volume as it may be read in Example 1, leads to a product having a smoke point of 30 mm. which corresponds to an aromatic content of about 10% by volume.
  • This example illustrates that the hydrogenation process in accordance with our invention, that is to say in the presence of a catalyst containing 0.75 by weight of platinum on a silica-alumina carrier having a silica to alumina ratio of 86 to 14 by weight and in the selected operation conditions, may be carried out in a continuous manner on a very large volume of feed without any loss of catalytic activity and with a very substantial lowering of the aromatic content of the feed.
  • EXAMPLE 3 It is of the utmost importance to have a catalyst capable of tolerating charges which contain accidentally a very high sulphur content, and which activity of the catalyst may be regenerated without using a complicated process such as the elimination of the impurities by combustion.
  • This invention is particularly anaveusdtgao This invention is particularly advantageous for the reduction of the aromatic content of jet fuel, kerosene, diesel fuel, and gas oil.
  • a continuous process for reducing the aromatic hydrocarbon content of a petroleum fraction boiling in the range of about 60 C. to 350 C. having a substantial sulphur content not higher than 300 parts per million by weight which process comprises hydrogenating said fraction to obtain a substantial hydrogenation of aromatics at a temperature of about 100 to 400 C., at a pressure of about 70 to 1,000 p.s.i.g., in the presence of about 500 to 17,000 s.c.f. of hydrogen per barrel of liquid feed in contact with a catalyst comprising 0.1 to 1.0% by weight of platinum supported on an active silica-alumina carrier containing from 75 to 90% by weight of silica and at a space velocity of about 0.1 to 20 v./v./hr.]
  • a continuous process for reducing the aromatic hydrocarbon content of a petroleum fraction boiling in the range of about 60 C. to 350 C. having a substantial sulfur content of at least 10 but not higher than 300 parts per million by weight which process comprises hydrogenating said fraction to obtain a substantial hydrogenation of aromatics at a temperature of about to 400 C., at a pressure of about 70 to 1,000 p.s.i.g., in the presence of about 500 to 17,000 s.c.f.
  • a catalyst comprising 0.] to 1.0% by weight of platinum supported on an active silica-alumina carrier containing the silica and alumina each in substantially large porportions, silica being in major quantity, and at a space velocity of about 0.1 to 20 v./v./hr.
  • a continuous process for reducing the aromatic hydrocarbon content of a petroleum fraction boiling in the range of about 60 C. to 350 C. having a substantial sulfur content not higher than 300 parts per million by weight which process comprises hydrogennting said fraction to obtain a substantial hydrogenation of aromatics at a temperature of about 100 to 400 C., at a pressure of about 70 to 1,000 p.s.i.g. in the presence of about 500 to 17,000 s.c.f. of hydrogen per barrel of liquid feed in contact with a catalyst comprising 0.] to 1.0% by weight platinum supported on an active silica-alumina carrier containing from 70 to 90% by weight of silica and at a space velocity of about 0.1 to 20 v./v./hr.
  • a continuous process for reducing the aromatic hydrocarbon content of a petroleum fraction boiling in the range of about 60 C. to 350 C. having a substantial sulfur content not higher than 300 parts per million by weight which process comprises hydrogcnating said fraction to obtain a substantial hydrogenation of aromatics at a temperature of about 100 to 400 C., at a pressure of about 70 to 1,000 p.s.i.g., in the presence of about 500 to 17,000 s.c.f.
  • a catalyst comprising 0.] to 1.0% by weight of platinum supported on an active silicaalumina carrier containing the silica and alumina each in substantially large proportions, silica being in major quantity, and at a space velocity of about 0.1 to 20 v././hr.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

United States Patent 26,883 PROCESS FOR THE REDUCTION OF THE AROMATIC CONTENT OF PETROLEUM DISTILLATES Joseph Eugene Marcel Marechal, Watermael-Boitsfort, Henri Robert Debus, Meise, and Raymond Marc Cahen, Woluwe-St. Pierre, Belgium, assignors t0 Labofina S.A., Bruxelles, Belgium No Drawing. Original No. 3,269,939, dated Aug. 30, 1966, Ser. No. 357,317, Apr. 3, 1964. Application for reissue Aug. 26, 1968, Ser. No. 760,385
Int. Cl. Cltlg 23/04; C07c /02 US. Cl. 208143 11 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE This invention is directed to a process for the reduction of the aromatic content of petroleum distillates having a high sulphur content by hydrogenating with a platinum catalyst upon a silica and alumina carrier, each in major quantity.
Petroleum distillates boiling within the range of about 60 C. to about 350 C. and used either as jet fuels or as fuel oils or as solvents and the like, contain aromatic hydrocarbons which are harmful in certain cases.
The heat of combustion of a hydrocarbon is proportional to the hydrogen to carbon ratio, so that its value will be higher for a saturated cyclic hydrocarbon than for the corresponding aromatic hydrocarbon. Moreover, the lower the aromatic content of the fuel, the cleaner and the less harmful will be the combustion thereof. It is also desirable to remove aromatics from illuminating oils and stove oils to reduce the evolution of smoke. Still further, the reduction of the aromatic content of some solvents is of great importance on hygenic grounds since the vapors of aromatic hydrocarbons are toxic.
Several methods are known for the reduction or the complete elimination of aromatic hydrocarbons from petroleum distillates, such techniques as sulphuric acid refining, solvent extraction with sulphur dioxide, adsorption on a solid adsorbent or catalytic hydrogenation. The first three methods separate a fraction rich in aromatic hydrocarbons and therefore present the disadvantage of lowering the yield of the refined product. Such is not the case with catalytic hydrogenation which moreover presents the advantage of simpler processing and is therefore more economical.
Several types of catalysts may be used for saturating monoand polycyclic aromatics, for example, nickel on kieselguhr or silica, nickel and tungsten sulphides, and noble metals such as platinum.
The use of nickel as a catalyst permits the reaction to be carried out under relatively moderate conditions of temperature and pressure. However, its use presents two major inconveniences. Firstly, nickel is very sensitive to sulphur-containing compounds and the poisoning resulting from their presence in the feed is irreversible. And secondly, nickel may not be heated above about 400 C. without losing its catalytic activity. The catalyst activity drops continuously as sulphur-containing compounds accumulate thereon; and the lack of heat stability of the nickel catalyst does not allow the regeneration of the catalytic activity by the combustion of these poisons.
Nickel and tungsten sulphides in well defined ratios and deposited on a convenient carrier such as alumina, or without carrier, may also be used as catalysts. These sul phides present the advantage of being insensitive to sulphur-containing compounds but are, however, far less catalytically active than the corresponding pure metals. The operating conditions must therefore be more severe, i.e. a higher temperature, lower space velocity and especially, a higher pressure are required. This last condition is essential as satisfactory results can be obtained only at higher pressures, on the order of 100 kg./cm. and upwards.
Platinum, on the other hand, does not present the disadvantages inherent in nickel and tungsten sulphides as will appear in the following examples. Platinum catalysts, however, are poisoned by sulphur. Their use thus requires a very considerable and important diminution of the sulphur present in the feed in order to permit the hydrogenation to be carried out during long periods of time without having to regenerate the catalyst.
The principal advantage of this invention, therefore, is to provide an improved hydrogenation process for the reduction of aromatics in a petroleum distillate.
Upon further study of the specification and claims other objects and advantages of the present invention will become apparent.
These objects are attained by the discovery that much higher values of the sulphur content of the charge may be tolerated if platinum is supported on silica-alumina rather than on alumina alone.
According to the present invention there is provided a continuous process for lowering the aromatic hydrocarbon content of a petroleum distillate boiling between 60 C. and 350 C., whose sulphur content is previously adjusted, using a platinum on silica-alumina catalyst in the presence of hydrogen under pressure, at a temperature and a liquid space velocity determined according to the desired degree of aromatic hydrogenation and the sulphur content of the charge.
In general, the petroleum distillates of this invention usually contain as a matter of practice a minimum of 0.1 ppm. by weight of sulphur, and an aromatic content of about 1 to 99% by volume.
More particularly, according to the invention, there is provided a continuous method for reducing the aromatic hydrocarbon content of a petroleum distillate having a sulphur content preferably not greater than 300 p.p.m. by weight and boiling in the range of 60 C. to 350 0. comprising hydrogenating said petroleum distillate in the presence of a catalyst, comprising platinum on a silicaalumina catalyst carrier which contains at least by Weight of silica.
The influence of the catalyst carrier might be explained by more or less pronounced activity towards the destructive hydrogenation of sulphur-containing molecules. This explanation is purely theoretical and cannot be regarded as in any way limitative of the invention. The catalyst preferably contains between 0.1 and 1% platinum by weight, and even more preferably 0.3 to 0.8% by weight. Preferably the silica content of the catalyst carrier is from 75 to by weight.
Hydrogenation is desirably carried out under the following conditions:
Temperature: to 400 C., preferably 250 to 350 C.
Space velocity: 0.1 to 20 v./v./hr., preferably 0.5 to 10 v./v./hr.
Pressure: 5.0 to 70 kg./cm. preferably 20 to 55 kg./
cm. (70 to 1000 p.s.i.g.) (300 to 800 p.s.i.g.)
Hydrogen to hydrocarbon ratio: 100 to 3,000 liters hydrogen at normal temperature and pressure (N.T.P) per liter of liquid feed, preferably to 2,500 liters hydrogen-in English units about 500-11000 s.c.f., preferably 850l4,000 s.c.f.. per barrel of liquid feed.
It is of great advantage to use as high temperature as possible in order to increase the reaction rate. Temperature should, however, be kept under a certain limit according to the thermodynamic equilibrium. Use of temperatures higher than this limit indeed favors the dehydrogenation reaction rather than the hydrogenation reaction.
When the sulphur content of the charge has ben adjusted according to the desired degree of aromatic saturation, the processing may be carried out continuously for very long periods of time. The sulfur content may be lowered by hydrogenating the petroleum distillate in the presence of a catalyst comprising cobalt and molybdenum oxides supported on alumina according to processes well known in the refining of petroleum distillates.
As the reaction temperatures are relatively low, practically no coke builds up on the catalyst and it is not necessary to regenerate the catalyst by combustion. However, the catalyst activity may drop due to the accidental admission of an excessive amount of sulphur or due to a failure to admit the charge for several hours. In both cases the initial activity is restored simply by readmitting the initial charge and/or increasing the reaction temperature to 400 C., which is a temperature much higher than the thermodynamically optimum one, all the other conditions being kept constant i.e. pressure, hydrogen to hydrocarbon ratio, space velocity, these conditions being the same as for the reaction itself.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the specification and claims in any way whatsoever.
EXAMPLE 1 A petroleum distillate was hydrogen pretreated, accordiug to a technique well known in refinery operations, in order to lower its sulphur content. Charges with various sulphur contents, mentioned hereunder, were obtained by blending treated and untreated distillates, the characteristics of which were as follows:
Untreated Treated distillate distillate Specific gravity 15 C./4 C 0.787 0, 736 A.S.T.M. Distillation:
I.B.P 152 148 2% vol.-. 159 155 5.-. 162 159 107 164 20 172 169 50 184 182 60 189 187 70 194 194 so 203 202 9'0 215 214 95 225 224 F.B.P 233 234 Residue, percent vol... 1. 5 1. 4 Loss, percent vol. 0.3 0 Flash Point, C 42 38 Smoke point, mm 26 26 Hydrocarbon analysis by fluoresc t indicator adsorption (F.I.A.):
Aromatics, percent vol 17 17 Olefins 0 0 Saturated 83 83 Sulphur content, percent wt 0. 200 1 0.0001
1 1 p.p.m.
Charges containing various amounts of sulphur, prepared as described above, were submitted to hydrogenation in a fixed bed unit under following conditions:
Space velocity: 6 v. v./ hr.
Pressure: 35 l g./cm.
Temperature: 300 C.
Hydrogen to hydrocarbon ratio: 500 liters hydrogen at normal temperature and pressure (N.T.P.) per liter of liquid feed Three catalyst were tested:
Catalyst A: 0.75% platinum by weight supported on alumina;
Catalyst B: 0.75% platinum by weight supported on silicaalumina having a silica to alumina ratio of 86 to 14 by weight;
Catalyst C: 0.75% platinum by weight supported on alumina-silica added having a silica to alumina ratio of 12 to 88 by weight.
These three catalysts were formed into pellets having 3 mm. diameter and 3 mm. height.
The following table gives the percentages of aromatic hydrogenation obtained when treating charge containing various amounts of sulphur in the presence of the three catalysts, respectively.
Sulphur content of the charge, parts per million by Catalyst A, Catalyst 13, Catalyst G, weight (p.p.m.) percent percent percent Results presented in the above table clearly demonstrate the superiority of catalyst B in resistance to the poisoning due to sulphur compounds. They show also that it is not sulficient to add only a small amount of silica in the catalyst carrier (catalyst C).
EXAMPLE 2 Temperature 330 C.
Pressure 35 kg./cm.'*
Space velocity 20 v./v./hr.
H /hydrocarbon 500 1. H N.T.P./1 liquid feed.
The smoke point which is easily and quickly determined is used to evaluate the degree of aromatic hydrogenation.
This hydrogenation in accordance with our invention, performed on a feed having a smoke point of 26 mm. which corresponds for this feed to an aromatic content of 17% by volume as it may be read in Example 1, leads to a product having a smoke point of 30 mm. which corresponds to an aromatic content of about 10% by volume. This example illustrates that the hydrogenation process in accordance with our invention, that is to say in the presence of a catalyst containing 0.75 by weight of platinum on a silica-alumina carrier having a silica to alumina ratio of 86 to 14 by weight and in the selected operation conditions, may be carried out in a continuous manner on a very large volume of feed without any loss of catalytic activity and with a very substantial lowering of the aromatic content of the feed.
EXAMPLE 3 It is of the utmost importance to have a catalyst capable of tolerating charges which contain accidentally a very high sulphur content, and which activity of the catalyst may be regenerated without using a complicated process such as the elimination of the impurities by combustion.
The hydrogenation of a charge containing 25 p.p.m. sulphur was started using catalyst B as in Example 1. At a space velocity of 6 v./v./hr., 35 kg./cm. 300 C., and 500 liters N.T.P. hydrogen to 1 liter of liquid feed, the smoke point obtained was 35 mm. In order to simulate the accidental admission of a charge insufliciently pretreated, a charge containing 2,000 p.p.m. sulphur was admitted. The catalyst became posioned very rapidly, the smoke point of the product being equal to that of the feed i.e. 26 mm. The admission of the feed at 2,000 p.p.m.
sulphur was continued for 2 hours, after which the charge at 25 ppm. sulphur was readmitted. Soon the smoke point increased, and after 2 hours equaled the smoke point obtained initially, i.e. 35 mm. This example demonstrates that the catalyst undergoes only a temporary poisoning. it has also been found that the initial catalyst activity may be restored more rapidly if the reaction temperature is raised to 400 C. for about one hour, all the other conditions being maintained constant (pressure, space velocity and hydrogen to hydrocarbon ratio).
EXAMPLE 4 Treating at the 400' C. temperature which favors dehydrogenation rather than hydrogenation is also suitable to restore the initial catalyst activity following a drop of activity due to a feed and/or hydrogen failure for a few hours, the reactor being kept at the reaction temperature. The reason for the drop of activity under these conditions is not well understood but could be due to an accumulation of products on the catalyst. A charge containing 25 p.p.m. sulphur was treated under the conditions of Example 1 in the presence of catalyst B; the smoke point of the product was 35 mm. After 24 hours processing the liquid flow was stopped and the reactor was kept for 12 hours under hydrogen pressure. The charge was next readmitted; the smoke point of the product was only 30 mm. The temperature was then raised to 400 C. for one hour and then set back to its initial value, i.e. 300 C.; the smoke point of the product was 38 min, thus higher than initially; after about 5 hours processing, the smoke point stabilized at the initial value, i.e. 35
This invention is particularly anaveusdtgao This invention is particularly advantageous for the reduction of the aromatic content of jet fuel, kerosene, diesel fuel, and gas oil.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Consequently, such changes and modifications are properly, equitably, and intended to be, within the full range of equivalent of the following claims.
What is claimed is:
[1. A continuous process for reducing the aromatic hydrocarbon content of a petroleum fraction boiling in the range of about 60 C. to 350 C. having a substantial sulphur content not higher than 300 parts per million by weight, which process comprises hydrogenating said fraction to obtain a substantial hydrogenation of aromatics at a temperature of about 100 to 400 C., at a pressure of about 70 to 1,000 p.s.i.g., in the presence of about 500 to 17,000 s.c.f. of hydrogen per barrel of liquid feed in contact with a catalyst comprising 0.1 to 1.0% by weight of platinum supported on an active silica-alumina carrier containing from 75 to 90% by weight of silica and at a space velocity of about 0.1 to 20 v./v./hr.]
2. The process as defined in claim [1] 10, wherein the pressure is 300 to 800 p.s.i.g.
3. The process defined in claim [1] 10, wherein the temperature is 250 to 350 C.
4. The process defined in claim [1] 10, wherein the ratio of hydrogen/liquid charge is 850 to 14,000 s.c.f. H per barrel liquid charge.
5. The process defined in claim [1] 10, wherein the catalyst contains 0.5 to 0.8% by weight of platinum.
6. The process defined in claim [1] 10, wherein the liquid fluid flow is in the range of 0.5 to v./.v/hr.
7. The process defined in claim [1] 10, wherein the petroleum fraction is selected from the group consisting of kerosene, diesel fuel, gas oil and jet fuel.
8. The process as defined in claim [1] 10, wherein the catalyst temporarily in a state of reduced activity is regenerated by raising the temperature to about 400 C. for a period of about /2 to 2 hours, other conditions being main tained the same.
9. The process as defined in claim 10 wherein the silica and alumina carrier contains about to by weight of silica.
10. A continuous process for reducing the aromatic hydrocarbon content of a petroleum fraction boiling in the range of about 60 C. to 350 C. having a substantial sulfur content of at least 10 but not higher than 300 parts per million by weight, which process comprises hydrogenating said fraction to obtain a substantial hydrogenation of aromatics at a temperature of about to 400 C., at a pressure of about 70 to 1,000 p.s.i.g., in the presence of about 500 to 17,000 s.c.f. of hydrogen per barrel of liquid feed in contact with a catalyst comprising 0.] to 1.0% by weight of platinum supported on an active silica-alumina carrier containing the silica and alumina each in substantially large porportions, silica being in major quantity, and at a space velocity of about 0.1 to 20 v./v./hr.
11. A continuous process for reducing the aromatic hydrocarbon content of a petroleum fraction boiling in the range of about 60 C. to 350 C. having a substantial sulfur content not higher than 300 parts per million by weight, which process comprises hydrogennting said fraction to obtain a substantial hydrogenation of aromatics at a temperature of about 100 to 400 C., at a pressure of about 70 to 1,000 p.s.i.g. in the presence of about 500 to 17,000 s.c.f. of hydrogen per barrel of liquid feed in contact with a catalyst comprising 0.] to 1.0% by weight platinum supported on an active silica-alumina carrier containing from 70 to 90% by weight of silica and at a space velocity of about 0.1 to 20 v./v./hr.
12. A continuous process for reducing the aromatic hydrocarbon content of a petroleum fraction boiling in the range of about 60 C. to 350 C. having a substantial sulfur content not higher than 300 parts per million by weight, which process comprises hydrogcnating said fraction to obtain a substantial hydrogenation of aromatics at a temperature of about 100 to 400 C., at a pressure of about 70 to 1,000 p.s.i.g., in the presence of about 500 to 17,000 s.c.f. of hydrogen per barrel of liquid feed in contact with a catalyst comprising 0.] to 1.0% by weight of platinum supported on an active silicaalumina carrier containing the silica and alumina each in substantially large proportions, silica being in major quantity, and at a space velocity of about 0.1 to 20 v././hr.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 2,965,564 12/1960 Kirshenbaum et al. 208743 3,012,961 12/1961 Weisz 260667 3,201,345 8/1965 Hamilton et al. 208-743 HERBERT LEVINE, Primary Examiner US. Cl. X.R.
US26883D 1968-08-26 1968-08-26 Process for the reduction of the aromatic content of petroleum distillates Expired USRE26883E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76038568A 1968-08-26 1968-08-26

Publications (1)

Publication Number Publication Date
USRE26883E true USRE26883E (en) 1970-05-19

Family

ID=25058953

Family Applications (1)

Application Number Title Priority Date Filing Date
US26883D Expired USRE26883E (en) 1968-08-26 1968-08-26 Process for the reduction of the aromatic content of petroleum distillates

Country Status (1)

Country Link
US (1) USRE26883E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669162A1 (en) * 1994-02-24 1995-08-30 Fina Research S.A. Silica-alumina carriers preparation, hydrogenation catalysts preparation therewith and their use for aromatics hydrogenation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669162A1 (en) * 1994-02-24 1995-08-30 Fina Research S.A. Silica-alumina carriers preparation, hydrogenation catalysts preparation therewith and their use for aromatics hydrogenation
US6479004B1 (en) 1994-02-24 2002-11-12 Fina Research, S.A. Silica-alumina carriers preparation, hydrogenation catalysts preparation therewith and their use for aromatics hydrogenation

Similar Documents

Publication Publication Date Title
US2542970A (en) Refining of cracked naphthas by selective hydrogenation
US3114701A (en) Catalytic hydrodenitrification process
US3943053A (en) Selective hydrogenation of aromatics and olefins in hydrocarbon fractions
US3362901A (en) Two stage hydrogenation of reduced crude
US2560433A (en) Desulfurization of hydrocarbon oils
US3269939A (en) Process for the reduction of the aromatic content of petroleum distillates
CA1264694A (en) Process for the removal of polynuclear aromatic hydrocarbon compounds from admixtures of liquid hydrocarbon compounds
GB1436622A (en) Regeneration of zeolite catalysts
EP0464931A1 (en) Aromatics saturation process for diesel boiling-range hydrocarbons
JPS6041114B2 (en) Selective hydrogenation method for gasoline
US3155608A (en) Process for reducing metals content of catalytic cracking feedstock
US3026260A (en) Three-stage hydrocarbon hydrocracking process
US2440673A (en) Method of utilizing a fuel gas in refining a petroleum fraction
US5358630A (en) Regenerating zeolitic cracking catalyst
US3206391A (en) Catalytic conversion of hydrocarbons
US3051647A (en) Hydrogenation of gasolines
US3125503A (en) Preparation of a jet fuel
USRE26883E (en) Process for the reduction of the aromatic content of petroleum distillates
US1932369A (en) Removal of sulphur compounds from crude hydrocarbons
CA2054434C (en) Hydrodenitrification process
JPS6132356B2 (en)
US3222274A (en) Process for producing high energy jet fuels
GB1565754A (en) Selective hydrogenation
US2885352A (en) Process for hydrodesulfurization employing a platinum-alumina catalyst
US3725244A (en) Hydrocracking process with fluorine treat to avoid condensed polyaromatics