USRE26303E - Floating axle attachment - Google Patents

Floating axle attachment Download PDF

Info

Publication number
USRE26303E
USRE26303E US26303DE USRE26303E US RE26303 E USRE26303 E US RE26303E US 26303D E US26303D E US 26303DE US RE26303 E USRE26303 E US RE26303E
Authority
US
United States
Prior art keywords
attachment
axle
frame
trailer
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Publication date
Application granted granted Critical
Publication of USRE26303E publication Critical patent/USRE26303E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D53/00Sealing or packing elements; Sealings formed by liquid or plastics material
    • B65D53/06Sealings formed by liquid or plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/06Semi-trailers
    • B62D53/068Semi-trailers having devices to equalise or modify the load between the fifth wheel and the rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D53/00Tractor-trailer combinations; Road trains
    • B62D53/04Tractor-trailer combinations; Road trains comprising a vehicle carrying an essential part of the other vehicle's load by having supporting means for the front or rear part of the other vehicle
    • B62D53/08Fifth wheel traction couplings
    • B62D53/0857Auxiliary semi-trailer handling or loading equipment, e.g. ramps, rigs, coupling supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • B62D61/12Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with variable number of ground engaging wheels, e.g. with some wheels arranged higher than others, or with retractable wheels
    • B62D61/125Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern with variable number of ground engaging wheels, e.g. with some wheels arranged higher than others, or with retractable wheels the retractable wheel being a part of a set of tandem wheels

Definitions

  • This invention relates generally to a floating axle attachment and more particularly to a floating axle attachment for load distribution suitable for use also as a four to six wheel converter.
  • Converters for effecti vely converting a four-wheel tractor to a six-wheel tractor.
  • Converters in general, carry a portion of the load to provide an improved load distribution between the sets of wheels so that no set exceeds the maximum permitted by the load laws of most states.
  • prior converters include a framework which carries a second fifth wheel for receiving the trailer and a king pin for attaching the tandem trailer to the tractor fifth wheel.
  • the second fifth wheel adds height to the overall combination. In many instances, this leads to excessive overall height when a semi-trailer is attached.
  • the load distribution in prior converters is fixed by the relative location of the tractor and converter fifth wheels.
  • the load distribution in general, is not maintained as the equipment is operated over rough or irregular roads or terrain.
  • FIGURE 1 is a side elevational view of a tractor and semi-trailer including a floating axle attachment or dolly;
  • FIGURE 2 is an enlarged side elevational view showing the floating axle attachment or dolly before coupling to the fifth wheel of a tractor
  • FIGURE 3 is an enlarged side elevational view of the combination shown in FIGURE 2 with the floating axle attachment or dolly coupled to the tractor fifth wheel;
  • FIGURE 4 is a perspective view of a floating axle attachment as viewed from the front;
  • FIGURE 5 is a plan view of a floating axle attachment in accordance with the invention.
  • FIGURE 6 is a side elevational view, partly in section, of the floating axle attachment shown in FIGURE 5;
  • FIGURE 7 is a plan view showing the three pin connection of the axle to the frame
  • FIGURE 8 is a side elevation of FIGURE 7;
  • FIGURE 9 shows the air supply for the brakes and the pneumatic springs of the floating axle attachment
  • FIGURE 10 shows a modified air supply for the brakes and pneumatic springs of the floating axle attachment
  • FIGURE 11 shows a modified pneumatic spring
  • FIGURE 12 shows a floating axle attachment in accordance with the present invention carried by a trailer body for load distribution.
  • FIGURE 1 there is schematically shown a tractor 11 including a cab 12 carried on tractor frame 13. Front wheels 14 and rear wheels 16 are mounted to the tractor frame 13. A semi-trailer 17 having tandem rear wheels 18 and 19 is shown attached to the tractor 11 by a floating axle attachment designated generally by the numeral 21. The attachment is interposed between the semi-trailer 17 and the tractor 11. The attachment 21 includes a frame 22 and Wheels 23 carried by a floating axle.
  • the semi-trailer is of conventional form and thus has a frame at the lower portion of the body thereof and this frame is supported in stable relation to the terrain by its own pairs of wheels 18 and 19 disposed at its rear end, and at its front end by wheels 16.
  • the tractor frame 13 carries a fifth wheel 26 which i pivotally mounted to the frame and includes opening 27 adapted to receive the king pin of an associated semi-trailer or floating axle attachment, hereinafter referred to as attachment.
  • the frame 22 of the attachment includes spaced channels 31 and 32, FIGURES 4 and 5, which serve to support a coupling plate 33.
  • the forward end of the coupling plate carries a coupling pin 34 (FIGURE 4) which is received in the opening 27 of the tractor fifth wheel for coupling the attachment to the tractor.
  • a conventional locking mechanism is employed on the fifth wheel for locking the attachment thereto.
  • Spaced guide members 38 are provided at the rear of the tractor frame as, for example, by attachment to the cross member.
  • the guide members 38 cooperate with the spaced guides 39 mounted on the attachment to the cross member 41 secured to the spaced channels 31 and 32.
  • the guide members serve to limit, in the horizontal plane, the turning movement of the attachment with respect to the tractor.
  • Retractable telescoping spaced supports 43 are provided for supporting the attachment when it is detached from an associated tractor.
  • the retractable supports each include an outer sleeve 44, FIGURE 4, which slidably accommodates the leg or shaft 46 which carries spring loaded wheels 47.
  • the other ends of the shafts 46 are driven by means of a conventional mechanism (not shown).
  • the drive means may comprise screws which are turned by the handles 48 (FIGURES 2 and 4) and are pivotally connected to a drive shaft 49 whereby the activating cranks 48 may be folded downwardly out of the way as shown in FIGURES and 6. Referring to FIGURE 3, the supports 43 are shown in retracted position.
  • the plate 33 includes a rearwardly extending slot which has a V-shapcd opening and which terminates in a narrow rounded slot which receives the king pin of a semi-trailer.
  • Conventional locking means are provided for locking the king pin to the plate.
  • Such means may comprise a locking means 36, FIGURE 4, with an associated lever arm 37 extending from the side of the attachment.
  • the rear of the plate 33 is inclined downwardly to guide the trailer onto the attachment.
  • Suitable spaced guides 51 may be provided at the rear of the channel for further guiding the semi-trailer onto the attachment.
  • the wheels 23 are supported on a floating axle 56, FIGURES 4, 5 and 6.
  • the floating axle is maintained in spaced relationship with respect to the attachment frame by means of air or pneumatic springs 57 which include a bag 58 suitably attached to the frame and a piston-like member 59 attached to a bracket 61.
  • the bracket 61 is suitably secured to the axle as, for example, by welding.
  • Brake cylinders 63 which activate brake levers 64 are also mounted on the axle. Cable 65 are attached at their ends to the attachment frame with the loop 650 encircling the axle 56 to limit the movement of the axle with respect to the frame.
  • the axle in effect, floats on the air springs.
  • Means are provided for adjusting the track of the axle with respect to the tractor and for absorbing torque loads.
  • Such means comprises a forwardly extending torque arm 66 which is welded near one end of the axle and is pivotally received by the torque bracket 67 attached to and extending downwardly from the cross member 41.
  • the bracket 67 carries a pin 68 which pivotally receives the arm 66.
  • Disposed at the other end of the axle is an adjustable radius rod 71 which is pivotally received by spaced brackets 72 and 73.
  • One bracket is attached to the axle as, for example, by welding.
  • the other bracket is attached to cross member 41 through a bracket 77.
  • the radius rod 71 is adjustable in length whereby proper tracking of the floating axle attachment wheels can be obtained.
  • a three pin axle attachment of this type is simple in construction and yet can take care of brake torque and side loads, while the adjustable free link takes off fore and aft loading and prevents side bending loads in the fixed arm.
  • This adjustable link provides the additional feature of adjusting the track of the vehicle with respect to the towing vehicle thereby reducing tire wear due to misalignment. It is apparent, however, that the link or radius rod 71 may be of fixed length and still take fore and aft loading and prevent side bending.
  • FIG- URE 9 A pneumatic system is schematically illustrated in FIG- URE 9. Compressed air is supplied to the tank 81 through an air line 82.
  • the air line 82 is connected to the tank 81 through strainer 83, protective valve 84, check valve 85 and pressure regulator 86.
  • the pressure regulator 86 includes a pressure gauge 87 for indicating pressure. The gauge may be calibrated to read directly weight carried by the associated wheels.
  • the tank 81 is connected to the spaced air spring bags 57. The amount of force developed by the spring 57 is adjusted by adjusting the pressure regulator 86 to control the pressure. It is observed that as the bags 57 are compressed and expanded due to movement of the axle, the force will remain substantially constant because of the constant pressure in the system.
  • the pneumatic springs have essentially zero spring rate, i.e., there is no change in force as a result of the deflection. In the example, this is achieved by the pressure regulator. However, if the ratio of volumes between the tank 81 and the air bags 57 is sufliciently large, that is, the volume of the tank is many times larger than the volume of the air bags, then the pressure will remain substantially constant even though there is no pressure regulating means available.
  • FIGURE 11 another method of achieving a substantially zero spring rate is illustrated.
  • This includes a pneumatic spring having a piston 96 with a configuration such that as the piston penetrates more deeply, the effective area decreases.
  • the volume of the air spring will also decrease thereby increasing pressure within the air spring.
  • the decreasing area of the piston is proportioned with respect to the decreasing volume of the system (i.e., increasing pressure) whereby the force is held essentially constant for the relatively small and rapid changes such as will be incurred by axle movement during travel over rough roads.
  • the load distribution between the tractor wheels, trailer wheels, and attachment wheels will remain essentially constant. It has been observed that this results in a more nearly constant force than obtained solely front a commercial pressure regulator since conventional pressure regulators customarily allow a slight rise of pressure before bleeding otf air, and conversely, a slight reduction in pressure before adding air.
  • FIGURE 9 also shows a brake line 91 serving to control the spaced brake cylinders 63 by driver actuation of a suitable valve 92, such as a pilot operated valve of conventional design, which serves to apply w rking pressure to the brake cylinders. It is observed that by supplying the air brakes from the same supply, the pressure applied to the brakes is proportional to the load carried by the associated Wheels. This gives effective braking action.
  • a suitable valve 92 such as a pilot operated valve of conventional design
  • FIGURE 10 there is shown a pneumatic system in which the air spring bags 57 are supplied from individual supplies 88 and 89. This permits application of ditferent pressure to the air springs whereby the lateral load distribution can be controlled.
  • the attachment may be constructed so that it can be secured to the center of the semi-trailer body as shown in FIGURE 12.
  • the spring rate of the pneumatic spring 57 By controlling the spring rate of the pneumatic spring 57, the Weight distribution between the rear wheels of the semi-trailer and the tractor wheels can be controlled.
  • Apparatus for carrying a load over terrain comprising a frame adapted to carry the load, first and second pairs of ground engaging wheels supporting the frame in stable relation to the terrain at each end of the frame, a load distribution attachment disposed between the pairs of ground engaging wheels to distribute the load therebetween, said attachment comprising a frame, an axle, a pair of ground engaging wheels carried by said axle, resilient means having substantially zero spring rate interposed between the axle and the last named frame to support the load in varying spaced relation with respect to the axle with substantially constant force applied by said resilient means whereby load distribution between the first and second pairs of Wheels is maintained constant.
  • Apparatus for carrying a load over terrain comprising a tractor vehicle having ground engaging wheels, 21 semi-trailer vehicle having ground engaging wheels, means coupling the semi-trailer to the tractor including a fifth wheel carried by said tractor, and a load distribution attachment disposed between the first and second named ground engaging wheels to distribute the load therebetween, said attachment comprising a frame, an axle, ground engaging Wheels on said axle, and resilient means having substantially zero spring rate interposed between the axle and frame for supporting the frame in varying spaced relation with respect to the axle free of variations in the supporting force supplied.
  • a tandem trailer adapted to be attached to the fifth wheel of a tractor and serving to receive the king pin of a semi-trailer comprising a single relatively thin support plate serving to carry a pin for attachment to the fifth wheel of the tractor and a socket in said plate for receiving the pin of the semi-trailer, frame means for supporting said plate, an axle, resilient means having a substantially zero spring rate interposed between the axle and frame and serving to apply a substantially constant supporting force to said plate, and means attached to said axle for absorbing brake torque and side loads.
  • a tandem trailer comprising a frame, said frame including first and second spaced longitudinal members and a single relatively thin plate supported by said members, a pin carried at one end of said plate, said plate being formed to receive the king pin of a semi-trailer, means adapted to lock the king pin to said plate, an axle, ground engaging wheels carried on the ends of the axle, resilient means interposed between the axle and frame and serving to support the frame in varying spaced relationship with respect to the axle.
  • Apparatus for carrying a load over terrain comprising a frame adapted to carry the load, first and second pairs of ground engaging wheels supporting the frame in stable relation to the terrain at each end of the frame, a load distribution attachment having a pair of ground engaging wheels disposed between said pairs of ground engaging wheels to distribute the load thercbctwcen, said attachment comprising a frame, an axle on which the ground engaging wheels of the attachment are carried, resilient means having substantially zero spring rate interposed between the axle and the last named frame to support the loud in varying spaced relation with respect to the axle with substantially constant force applied by said resilient mcans whereby load distribution between the first and second pairs of wheels is maintained constant.
  • An apparatus f r carrying a loud over terrain comprising a semi-trailer vehicle having rear ground crigaging wheels, a tractor vehicle having rcurwardly located ground engaging wheels disposed in supporting relation to the front of the semi-trailer, a load distributing attachment comprising a frame, an axle, ground engaging wheels on said axle, and resilient means having substantinlly zero spring rate interposed between the axle and frame of the attachment for supporting such frame in varying spaced relation with respect to the axle free of variations in the supporting force supplied, the attachmen! being disposed in supporting relation to the semirrailer vehicle at a place with its ground engaging wheels located between the rear wheels of the tractor vchiclc and the rear wheels of the semi-trailer to distribute the load thercbclwccn.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Description

Nov. 21, 1967 B, CHEW Re. 26,303
FLOATING AXLE ATTACHMENT Original Filed Feb. 19, 1962 5 Sheets-Sheet .1.
NORMAN B. CHEW INVENTOR.
ATTORNEYS N. B. CHEW Nov. 21, 1967 FLOATING AXLE ATTACHMENT 5 Sheets-Sheet 9 Original Filed Feb. 19. 1962 NORMAN B4 CHEW INVENTOR.
ATTORNEYS NOV. 21, 1967 a CHEW Re. 26,303
FLOATING AXLE ATTACHMENT Original Filed Feb, 19, 1962 5 Sheets-Sheet p. (O LOI r 7, r|
\ m V W m K) N I N x I r 1\ NORMAN B. CHEW INVENTOR.
ATTORNEYS N. B. CHEW Nov. 21, 1967 FLOATING AXLE ATTACHMENT 5 Sheets-Sheet Original Filed Feb. 19, 1962 NORMAN B. CHEW INVENTOR.
ATTORNEYS Nov. 21, 1967 N. B. CHEW FLOATING AXLE ATTACHMENT 5 Sheets-Sheet 5 Original Filed Feb. 19, 1962 QM V NORMAN B. CHEW F/G. /O
ATTORNEYS United States Patent ABSTRACT OF THE DISCLOSURE A floating axle attachment mountable on a wheeled structure between the wheels thereof for load distribution.
This invention relates generally to a floating axle attachment and more particularly to a floating axle attachment for load distribution suitable for use also as a four to six wheel converter.
There have been many types of converters for effecti vely converting a four-wheel tractor to a six-wheel tractor. Converters, in general, carry a portion of the load to provide an improved load distribution between the sets of wheels so that no set exceeds the maximum permitted by the load laws of most states.
In general, prior converters include a framework which carries a second fifth wheel for receiving the trailer and a king pin for attaching the tandem trailer to the tractor fifth wheel. The second fifth wheel adds height to the overall combination. In many instances, this leads to excessive overall height when a semi-trailer is attached. There have been several attempts to reduce the height of converters. For example, the converter fifth Wheel has been lowered by insetting it into the converter frame.
The load distribution in prior converters is fixed by the relative location of the tractor and converter fifth wheels. The load distribution, in general, is not maintained as the equipment is operated over rough or irregular roads or terrain.
Attachments have also been suggested for mounting an extra axle on a trailer whereby to control the load distribution. However, such attachments do not provide for maintaining the load distribution when the trailer is operated over rough or irregular roads or terrain.
It is a general object of the present invention to provide a floating axle attachment.
It is another object of the present invention to provide a floating axle attachment which will carry a substantially constant load regardless of road or terrain irregularities.
It is another object of the present invention to provide a floating axle attachment having its axle supported from a frame with substantially zero spring rate spring means whereby the load on the axle remains substantially constant with changing axle position relative to the frame.
It is still another object of the present invention to provide a floating axle attachment which does not appreciably add to the overall height of the tractor semi-trailer combination.
It is another object of the present invention to provide a three pin connection for attaching a floating axle to a frame.
It is another object of the present invention to provide a floating axle attachment which is suitable for controlling for and aft and side weight distribution.
It is still a further object of the present invention to provide a floating axle attachment which can be employed to control the effective load center of a tractor and semitrailer combination.
It is a further object of the present invention to provide an axle which is supported from a frame by constant spring rate pneumatic springs and which includes a three pin connection for guiding the axle and absorbing torque loads.
These and other objects of the invention will become more clearly apparent from the following description taken in conjunction with the accompanying drawing.
Referring to the drawing:
FIGURE 1 is a side elevational view of a tractor and semi-trailer including a floating axle attachment or dolly;
FIGURE 2 is an enlarged side elevational view showing the floating axle attachment or dolly before coupling to the fifth wheel of a tractor,
FIGURE 3 is an enlarged side elevational view of the combination shown in FIGURE 2 with the floating axle attachment or dolly coupled to the tractor fifth wheel;
FIGURE 4 is a perspective view of a floating axle attachment as viewed from the front;
FIGURE 5 is a plan view of a floating axle attachment in accordance with the invention;
FIGURE 6 is a side elevational view, partly in section, of the floating axle attachment shown in FIGURE 5;
FIGURE 7 is a plan view showing the three pin connection of the axle to the frame;
FIGURE 8 is a side elevation of FIGURE 7;
FIGURE 9 shows the air supply for the brakes and the pneumatic springs of the floating axle attachment;
FIGURE 10 shows a modified air supply for the brakes and pneumatic springs of the floating axle attachment;
FIGURE 11 shows a modified pneumatic spring; and
FIGURE 12 shows a floating axle attachment in accordance with the present invention carried by a trailer body for load distribution.
Referring to FIGURE 1, there is schematically shown a tractor 11 including a cab 12 carried on tractor frame 13. Front wheels 14 and rear wheels 16 are mounted to the tractor frame 13. A semi-trailer 17 having tandem rear wheels 18 and 19 is shown attached to the tractor 11 by a floating axle attachment designated generally by the numeral 21. The attachment is interposed between the semi-trailer 17 and the tractor 11. The attachment 21 includes a frame 22 and Wheels 23 carried by a floating axle. The semi-trailer is of conventional form and thus has a frame at the lower portion of the body thereof and this frame is supported in stable relation to the terrain by its own pairs of wheels 18 and 19 disposed at its rear end, and at its front end by wheels 16.
Referring more specifically to FIGURE 2, the tractor frame 13 carries a fifth wheel 26 which i pivotally mounted to the frame and includes opening 27 adapted to receive the king pin of an associated semi-trailer or floating axle attachment, hereinafter referred to as attachment. The frame 22 of the attachment includes spaced channels 31 and 32, FIGURES 4 and 5, which serve to support a coupling plate 33. The forward end of the coupling plate carries a coupling pin 34 (FIGURE 4) which is received in the opening 27 of the tractor fifth wheel for coupling the attachment to the tractor. A conventional locking mechanism is employed on the fifth wheel for locking the attachment thereto.
Spaced guide members 38 are provided at the rear of the tractor frame as, for example, by attachment to the cross member. The guide members 38 cooperate with the spaced guides 39 mounted on the attachment to the cross member 41 secured to the spaced channels 31 and 32. The guide members serve to limit, in the horizontal plane, the turning movement of the attachment with respect to the tractor.
Retractable telescoping spaced supports 43 are provided for supporting the attachment when it is detached from an associated tractor. The retractable supports each include an outer sleeve 44, FIGURE 4, which slidably accommodates the leg or shaft 46 which carries spring loaded wheels 47. The other ends of the shafts 46 are driven by means of a conventional mechanism (not shown). The drive means may comprise screws which are turned by the handles 48 (FIGURES 2 and 4) and are pivotally connected to a drive shaft 49 whereby the activating cranks 48 may be folded downwardly out of the way as shown in FIGURES and 6. Referring to FIGURE 3, the supports 43 are shown in retracted position.
The plate 33 includes a rearwardly extending slot which has a V-shapcd opening and which terminates in a narrow rounded slot which receives the king pin of a semi-trailer. Conventional locking means are provided for locking the king pin to the plate. Such means may comprise a locking means 36, FIGURE 4, with an associated lever arm 37 extending from the side of the attachment.
The rear of the plate 33 is inclined downwardly to guide the trailer onto the attachment. Suitable spaced guides 51 may be provided at the rear of the channel for further guiding the semi-trailer onto the attachment.
It is to be observed that once the semi-trailer is coupled to the attachment, the upper surface of the plate 33 is in intimate contact with the cooperating lower surface of the semi-trailer. Only turning movement between the attachment and semi-trailer is provided. This feature. as will be presently described, permits the effec tive load center to be at a location other than at the king pin connection of the semi-trailer to the attachment.
The wheels 23 are supported on a floating axle 56, FIGURES 4, 5 and 6. The floating axle is maintained in spaced relationship with respect to the attachment frame by means of air or pneumatic springs 57 which include a bag 58 suitably attached to the frame and a piston-like member 59 attached to a bracket 61. The bracket 61 is suitably secured to the axle as, for example, by welding. Brake cylinders 63 which activate brake levers 64 are also mounted on the axle. Cable 65 are attached at their ends to the attachment frame with the loop 650 encircling the axle 56 to limit the movement of the axle with respect to the frame.
The axle, in effect, floats on the air springs. Means are provided for adjusting the track of the axle with respect to the tractor and for absorbing torque loads. Such means comprises a forwardly extending torque arm 66 which is welded near one end of the axle and is pivotally received by the torque bracket 67 attached to and extending downwardly from the cross member 41. The bracket 67 carries a pin 68 which pivotally receives the arm 66. Disposed at the other end of the axle is an adjustable radius rod 71 which is pivotally received by spaced brackets 72 and 73. One bracket is attached to the axle as, for example, by welding. The other bracket is attached to cross member 41 through a bracket 77. The radius rod 71 is adjustable in length whereby proper tracking of the floating axle attachment wheels can be obtained. A three pin axle attachment of this type is simple in construction and yet can take care of brake torque and side loads, while the adjustable free link takes off fore and aft loading and prevents side bending loads in the fixed arm. This adjustable link provides the additional feature of adjusting the track of the vehicle with respect to the towing vehicle thereby reducing tire wear due to misalignment. It is apparent, however, that the link or radius rod 71 may be of fixed length and still take fore and aft loading and prevent side bending.
A pneumatic system is schematically illustrated in FIG- URE 9. Compressed air is supplied to the tank 81 through an air line 82. The air line 82 is connected to the tank 81 through strainer 83, protective valve 84, check valve 85 and pressure regulator 86. The pressure regulator 86 includes a pressure gauge 87 for indicating pressure. The gauge may be calibrated to read directly weight carried by the associated wheels. The tank 81 is connected to the spaced air spring bags 57. The amount of force developed by the spring 57 is adjusted by adjusting the pressure regulator 86 to control the pressure. It is observed that as the bags 57 are compressed and expanded due to movement of the axle, the force will remain substantially constant because of the constant pressure in the system. Thus, the pneumatic springs have essentially zero spring rate, i.e., there is no change in force as a result of the deflection. In the example, this is achieved by the pressure regulator. However. if the ratio of volumes between the tank 81 and the air bags 57 is sufliciently large, that is, the volume of the tank is many times larger than the volume of the air bags, then the pressure will remain substantially constant even though there is no pressure regulating means available.
Referring to FIGURE 11, another method of achieving a substantially zero spring rate is illustrated. This includes a pneumatic spring having a piston 96 with a configuration such that as the piston penetrates more deeply, the effective area decreases. The volume of the air spring will also decrease thereby increasing pressure within the air spring. The decreasing area of the piston is proportioned with respect to the decreasing volume of the system (i.e., increasing pressure) whereby the force is held essentially constant for the relatively small and rapid changes such as will be incurred by axle movement during travel over rough roads. Thus, the load distribution between the tractor wheels, trailer wheels, and attachment wheels will remain essentially constant. It has been observed that this results in a more nearly constant force than obtained solely front a commercial pressure regulator since conventional pressure regulators customarily allow a slight rise of pressure before bleeding otf air, and conversely, a slight reduction in pressure before adding air.
As previously described, there is intimate coupling between the semi-trailer and the plate 33 of the attachment, while still allowing for turning movement. If the pressure is increased in the air bag 57, there will be a tendency to lift the rear of the trailer with the pivot point being the pivot of the tractor fifth wheel. The effective load center is shifted forward with respect to the pin connection at the plate 33. The load at the rear wheels will be reduced while the load on the floating axle wheels 23 and the wheels of the tractor will be increased.
The diagram of FIGURE 9 also shows a brake line 91 serving to control the spaced brake cylinders 63 by driver actuation of a suitable valve 92, such as a pilot operated valve of conventional design, which serves to apply w rking pressure to the brake cylinders. It is observed that by supplying the air brakes from the same supply, the pressure applied to the brakes is proportional to the load carried by the associated Wheels. This gives effective braking action.
Referring to FIGURE 10, there is shown a pneumatic system in which the air spring bags 57 are supplied from individual supplies 88 and 89. This permits application of ditferent pressure to the air springs whereby the lateral load distribution can be controlled.
The attachment may be constructed so that it can be secured to the center of the semi-trailer body as shown in FIGURE 12. By controlling the spring rate of the pneumatic spring 57, the Weight distribution between the rear wheels of the semi-trailer and the tractor wheels can be controlled.
It is seen that by providing a floating axle which works against springs having a zero spring rate, the load that the wheels associated therewith carry remains constant even though the wheels and axle move essentially due to uneven or irregular roads or terrain. The system described employing pneumatic springs provides the further advantage that the load distribution can be controlled by controlling the pressure applied thereto.
1 claim:
1. Apparatus for carrying a load over terrain comprising a frame adapted to carry the load, first and second pairs of ground engaging wheels supporting the frame in stable relation to the terrain at each end of the frame, a load distribution attachment disposed between the pairs of ground engaging wheels to distribute the load therebetween, said attachment comprising a frame, an axle, a pair of ground engaging wheels carried by said axle, resilient means having substantially zero spring rate interposed between the axle and the last named frame to support the load in varying spaced relation with respect to the axle with substantially constant force applied by said resilient means whereby load distribution between the first and second pairs of Wheels is maintained constant.
2. Apparatus for carrying a load over terrain comprising a tractor vehicle having ground engaging wheels, 21 semi-trailer vehicle having ground engaging wheels, means coupling the semi-trailer to the tractor including a fifth wheel carried by said tractor, and a load distribution attachment disposed between the first and second named ground engaging wheels to distribute the load therebetween, said attachment comprising a frame, an axle, ground engaging Wheels on said axle, and resilient means having substantially zero spring rate interposed between the axle and frame for supporting the frame in varying spaced relation with respect to the axle free of variations in the supporting force supplied.
3. A tandem trailer adapted to be attached to the fifth wheel of a tractor and serving to receive the king pin of a semi-trailer comprising a single relatively thin support plate serving to carry a pin for attachment to the fifth wheel of the tractor and a socket in said plate for receiving the pin of the semi-trailer, frame means for supporting said plate, an axle, resilient means having a substantially zero spring rate interposed between the axle and frame and serving to apply a substantially constant supporting force to said plate, and means attached to said axle for absorbing brake torque and side loads.
4. A tandem trailer comprising a frame, said frame including first and second spaced longitudinal members and a single relatively thin plate supported by said members, a pin carried at one end of said plate, said plate being formed to receive the king pin of a semi-trailer, means adapted to lock the king pin to said plate, an axle, ground engaging wheels carried on the ends of the axle, resilient means interposed between the axle and frame and serving to support the frame in varying spaced relationship with respect to the axle.
5. An apparatus as set forth in claim 1, wherein the attachment is located next to one pair of the ground engaging whecls which support the first named frame, and wherein part of the frame of the attachment is interposed between the first named frame and said one pair of ground engaging wheels.
6. An apparatus as set forth in claim I, wherein there are connecting means establishing a supporting conncction between the first named frame and said first and second pairs of ground engaging wheels, and wherein the frame of the attachment is connected to the first named frame at a place spaced from said connecting means.
7. Apparatus for carrying a load over terrain comprising a frame adapted to carry the load, first and second pairs of ground engaging wheels supporting the frame in stable relation to the terrain at each end of the frame, a load distribution attachment having a pair of ground engaging wheels disposed between said pairs of ground engaging wheels to distribute the load thercbctwcen, said attachment comprising a frame, an axle on which the ground engaging wheels of the attachment are carried, resilient means having substantially zero spring rate interposed between the axle and the last named frame to support the loud in varying spaced relation with respect to the axle with substantially constant force applied by said resilient mcans whereby load distribution between the first and second pairs of wheels is maintained constant.
8. An apparatus as set forth in claim 2 wherein the frame of the attachment comprises part of the means coupling the semi-trailer vehicle to the tractor vehicle.
9. An apparatus as in claim 2 whcrcin the frame of the attachment is connected to the semi-trailer vehicle in rernote relation to the means which couple the semi-trailer to the tractor.
10. An apparatus f r carrying a loud over terrain comprising a semi-trailer vehicle having rear ground crigaging wheels, a tractor vehicle having rcurwardly located ground engaging wheels disposed in supporting relation to the front of the semi-trailer, a load distributing attachment comprising a frame, an axle, ground engaging wheels on said axle, and resilient means having substantinlly zero spring rate interposed between the axle and frame of the attachment for supporting such frame in varying spaced relation with respect to the axle free of variations in the supporting force supplied, the attachmen! being disposed in supporting relation to the semirrailer vehicle at a place with its ground engaging wheels located between the rear wheels of the tractor vchiclc and the rear wheels of the semi-trailer to distribute the load thercbclwccn.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 820,707 5/ 1906 Downer. 1,03 9,537 9/1912 Hofmann 267- 2,816,776 12/1957 Nimtz .267-66 2,859,046 11/ 1958 Easton 280-124 2,882,042 4/1959 Fleckenstein 267-34 2,893,520 7/1959 Rockwell 303-22 2,917,319 12/ 1959 Axtmann 267-65 2,941,816 6/1960 Benson 267-65 3,018,139 1/1962 Stelzer 303-22 3,022,087 2/1962 Black 267-65 X 3,043,582 7/1962 Hirtreiter 267-65 3,078,085 2/1963 Bank 267-65 LEO FRIAGLIA, Primary Examiner,
US26303D 1962-02-19 Floating axle attachment Expired USRE26303E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US173996A US3203711A (en) 1962-02-19 1962-02-19 Floating axle attachment

Publications (1)

Publication Number Publication Date
USRE26303E true USRE26303E (en) 1967-11-21

Family

ID=22634385

Family Applications (2)

Application Number Title Priority Date Filing Date
US26303D Expired USRE26303E (en) 1962-02-19 Floating axle attachment
US173996A Expired - Lifetime US3203711A (en) 1962-02-19 1962-02-19 Floating axle attachment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US173996A Expired - Lifetime US3203711A (en) 1962-02-19 1962-02-19 Floating axle attachment

Country Status (2)

Country Link
US (2) US3203711A (en)
GB (1) GB998110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663131B2 (en) 2002-01-17 2003-12-16 Fraser Evans Dolly for towing disabled trailers
US20050082787A1 (en) * 2003-10-20 2005-04-21 Popup Industries, Inc. Offset coupler for kingpin trailer

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3421778A (en) * 1966-11-18 1969-01-14 Utility Trailer Mfg Co Dual purpose dolly for semitrailers
US3484852A (en) * 1967-11-13 1969-12-16 Pacific Car & Foundry Co Dual-purpose single-axle wheeled vehicle for use in tractor-trailer rigs
US3479055A (en) * 1967-11-16 1969-11-18 Cunha Products Inc Load distributing assembly for wheel supported vehicles
US3486768A (en) * 1968-02-15 1969-12-30 Neway Equipment Co Fifth wheel dolly with air suspension
US3476405A (en) * 1968-12-17 1969-11-04 Cunha Products Inc Detachable running gear for vehicles
DE2401830A1 (en) * 1973-01-24 1974-07-25 Sverre Damm COUPLING CONSTRUCTION FOR TOWING CARS WITH SEMI-TRAILER
FR2240628A1 (en) * 1973-08-07 1975-03-07 Nicolas & Fils Jean
FR2384665A1 (en) * 1977-03-24 1978-10-20 Nicolas France Sa Jb SEMI-TRAILER HITCH IMPROVEMENTS
US4202277A (en) * 1977-06-27 1980-05-13 Bi-Modal Corporation Convertible rail-highway semi-trailer
US4316418A (en) * 1980-05-01 1982-02-23 Bi-Modal Corporation Convertible rail highway semi-trailer air controlled suspension shifting system
US5346233A (en) * 1989-04-10 1994-09-13 Moser Donald W Slider for adjusting the position of the dual axles of a semi-trailer
DE59301567D1 (en) * 1992-03-20 1996-03-21 Bpw Bergische Achsen Kg Air spring
DE9317407U1 (en) * 1993-11-13 1994-02-10 GS Meppel B.V., Meppel Trailer for a truck
GB9710061D0 (en) * 1997-05-20 1997-07-09 Ancrum John H Add on axle /chassis extension
CA2241385C (en) * 1998-07-29 2007-01-09 N. Royce Curry Automotive transport tractors, semi-trailers, trailers and combinations thereof
DE10159977A1 (en) * 2001-12-06 2003-06-18 Bpw Bergische Achsen Kg Trailer vehicle for connection to a towing vehicle, in particular a heavy-duty truck
US9341539B2 (en) * 2008-07-23 2016-05-17 Eric Raymond Schubert Cargo container system with selectively deployable support and wheel assemblies
RU2440265C2 (en) * 2009-11-25 2012-01-20 Нальбий Махмудович Цику Semitrailer wheels steering system
WO2012118505A1 (en) * 2011-03-03 2012-09-07 Navistar Canada, Inc. Adjustable fifth wheel hitch assembly
NL2006523C2 (en) * 2011-04-01 2012-10-02 Bomaco Beheer B V CHASSIS FOR A MOTOR VEHICLE AND SUCH A MOTOR VEHICLE.

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US820707A (en) * 1904-04-11 1906-05-15 Murillo Downer Vehicle.
US1039537A (en) * 1911-09-06 1912-09-24 Josef Hofmann Pneumatic cushion.
US2941816A (en) * 1954-02-02 1960-06-21 Spencer Safford Loadcraft Inc Vehicle chassis and axle mounting assembly
US2816776A (en) * 1955-05-31 1957-12-17 Herbert A Nimtz Wheeled tandem attachment for coupling tractor-trailers
US2893520A (en) * 1956-05-22 1959-07-07 Rockwell Standard Co Air spring emergency brake
NL220888A (en) * 1956-10-02
US2917319A (en) * 1956-11-19 1959-12-15 Gen Motors Corp Plural compartment fluid suspension for vehicles
US3078085A (en) * 1957-02-11 1963-02-19 Firestone Tire & Rubber Co Vehicle suspension
US2859046A (en) * 1957-02-14 1958-11-04 Youngstown Steel Car Corp Stabilizer beam structure for air cushion vehicle suspension
US2882042A (en) * 1958-01-06 1959-04-14 Johnson Service Co Vapor pressure spring
US3018139A (en) * 1958-04-01 1962-01-23 Kelsey Hayes Co Pressure control mechanism for vehicle brakes
US3022087A (en) * 1959-10-01 1962-02-20 Trailmobile Inc Leaf spring vehicle suspension system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663131B2 (en) 2002-01-17 2003-12-16 Fraser Evans Dolly for towing disabled trailers
US20050082787A1 (en) * 2003-10-20 2005-04-21 Popup Industries, Inc. Offset coupler for kingpin trailer
US7000937B2 (en) * 2003-10-20 2006-02-21 Popup Industries, Inc. Offset coupler for kingpin trailer

Also Published As

Publication number Publication date
GB998110A (en) 1965-07-14
US3203711A (en) 1965-08-31

Similar Documents

Publication Publication Date Title
USRE26303E (en) Floating axle attachment
US4256326A (en) Liftable tandem axle suspension
US4943078A (en) Heavy duty transport vehicle
US4365820A (en) Trailer connecting running gear
US4372572A (en) Lift bed tandem axle trailer
US3400948A (en) Trailer load-transferring and antisway hitch
US3479055A (en) Load distributing assembly for wheel supported vehicles
US3093388A (en) Liftable load wheel assemblage
US2325822A (en) Truck for trailer vehicles
US2727755A (en) Stabilizer lever for tractor semitrailer fifth-wheel hitches
US3193330A (en) Dump trailer
US3836178A (en) Demountable load carrying bodies
US2864627A (en) Tractor with semi-trailer lifting device
US3347563A (en) Fifth-wheel elevating and level controlling air jack for semi-trailer dollies
US2731276A (en) Supplemental wheel assembly for vehicles
US3860256A (en) Retractable tag-axle assembly for overland vehicles
US2772892A (en) Load distributing gooseneck for low bed trailer
US2309766A (en) Automotive train
US4740005A (en) Weight transfer device for tractor trailer
US2546206A (en) Trailer hitch
US4181324A (en) Overload stabilizer unit for vehicle
US2772098A (en) Trailer hitch with stabilizer device
US2776846A (en) Auxiliary rear axle mounting for trucks
US3421778A (en) Dual purpose dolly for semitrailers
US2519564A (en) Trailer dolly