USRE22770E - Lapping block - Google Patents

Lapping block Download PDF

Info

Publication number
USRE22770E
USRE22770E US22770DE USRE22770E US RE22770 E USRE22770 E US RE22770E US 22770D E US22770D E US 22770DE US RE22770 E USRE22770 E US RE22770E
Authority
US
United States
Prior art keywords
lapping
micrometer
block
lapping block
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Publication date
Application granted granted Critical
Publication of USRE22770E publication Critical patent/USRE22770E/en
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D15/00Hand tools or other devices for non-rotary grinding, polishing, or stropping
    • B24D15/02Hand tools or other devices for non-rotary grinding, polishing, or stropping rigid; with rigidly-supported operative surface

Definitions

  • My invention relates to lapping blocks and, more specifically, to blocks for lapping the points of a micrometer to square the same.
  • An object of my invention is to provide a lapping block adapted to lap micrometer points to true squareness.
  • Another object of the invention is to provide a lapping block which contains its own abrasive compound.
  • a further object is to provide a lapping block which can be easily and cheaply manufactured and easily used.
  • Figure 1 is a plan view of said embodiment or lapping block.
  • Figure 2 is a side View thereof, partly in section.
  • Figure 3 is a bottom view thereof.
  • a body I which has a lapping surface 2, which is parallel with the three mutually successively adjacent control surfaces 3, 4 and 5, which are parallel with and opposed to surface 2 in a manner whereby each of said control surfaces and a thereto opposed part of surface 2 together correspond to a lapping block section and which is differently thick from each of the two other lapping block sec tions.
  • a lapping block compound such as powdered carborundum.
  • the surfaces 3, 4 and 5 are all parallel with surface 2, and each successive one of said control surfaces is progressively further apart from surface 2 in the order mentioned.
  • One rotation of an English micrometer causes the movable point thereof to move .025 inch.
  • One rotation of a metric micrometer causes the movable point thereof to move one millimeter. I therefore dispose the surface 3 at any given spacing from the surface 2 and I x the distance between surfaces 2 and 4, in the case of an English micrometer, at one-third of .025 inch greater than that between surfaces 2 and 3. Similarly, the distance between surfaces 2 and 5 is one-third of .025 inch greater than that between surfaces 2 and 4. While the steps correspond to one-third of a rotation, two-thirds of a rotation would also be practical.
  • control surfaces 3, 4 and 5 are successively stepped and the difference between the respective distances from surface 2 of each two adjacent said control surfaces is equal Vto the quotient, arrived at by diving one fortieth of an inch, in the case of an English micrometer, by the number that corresponds to the plurality of control surfaces in question, which, in this particular embodiment, is three; therefore the divisor is three. If the micrometer should be of the metric-measuring type, one millimeter, instead of one fortieth of an inch, would be divided.
  • a projection 'I is inserted in a vise, surface 2 facing upwardly. Upon it, is placed a mass of lapping or abrasive compound.
  • the micrometer points IU and II are then disposed upon the surfaces 2 and 3 respectively, and point Ill is lapped until smooth. Thereupon the micrometer position is reversed for the smooth lapping of point Il on surface 2.
  • the frame of the micrometer is disposed in at least three differently angular aspects relatively to the longitudinal axis of the block, namely, for example, thirty, one hundred and fifty and two hundred and seventy degrees.
  • the movable point is then moved correspondingly to one third of a rotation and points IU and II are then lapped smooth on surface 2 under control of the control surface 4. Thereupon the points are again lapped smooth under the control of control surface 5.
  • the two points are not only smooth and parallel with one another but are, respecting their two respective end surfaces, normal to the axis of the points.
  • I form the bore I2 in the center of the body I and I provide a cap I3 therefor.
  • bore I2 can be ⁇ placed a mass of any convenient and desired lapping compound.
  • the body I can be of any thicknessV deemed suitable for the size of the micrometer or micrometers in question.
  • a body having a lapping surface and a plurality of at least three mutually successively adjacent control surfaces parallel with and opposed to said lapping surface in a manner whereby each of said control surfaces and a thereto opposed part of said lapping surface together correspond to a lapping section of the block, said control surfaces being successively stepped and the difference between the respective distances from said lapping surface of each two adjacent said control surfaces being equal to the quotient, arrived at by dividing one fortieth of an inch by the number indicating said plurality of control surfaces.

Description

Reissued July 2, 1946 UNITED STATES PATENT OFFICE Serial No. 527,383, March 21, 1944. Application for reissue December 20, 1945, Serial No.
2 Claims.
My invention relates to lapping blocks and, more specifically, to blocks for lapping the points of a micrometer to square the same.
I have found that a micrometer can be lapped to squareness only by the use of three or more differently thick lapping blocks or lapping block sections. If less than three be used, it is impossible to obtain true squareness at the micrometer points, although mutual parallelism between them is obtainable.
An object of my invention is to provide a lapping block adapted to lap micrometer points to true squareness.
Another object of the invention is to provide a lapping block which contains its own abrasive compound.
A further object is to provide a lapping block which can be easily and cheaply manufactured and easily used.
Additional objects and advantages manifest themselves throughout the following description of a preferred embodiment of said invention.
In the drawing:
Figure 1 is a plan view of said embodiment or lapping block.
Figure 2 is a side View thereof, partly in section.
Figure 3 is a bottom view thereof.
In said embodiment, there is a body I, which has a lapping surface 2, which is parallel with the three mutually successively adjacent control surfaces 3, 4 and 5, which are parallel with and opposed to surface 2 in a manner whereby each of said control surfaces and a thereto opposed part of surface 2 together correspond to a lapping block section and which is differently thick from each of the two other lapping block sec tions. On the surface 2 are cut grooves 6 for the reception of a lapping block compound, such as powdered carborundum. The surfaces 3, 4 and 5 are all parallel with surface 2, and each successive one of said control surfaces is progressively further apart from surface 2 in the order mentioned. One rotation of an English micrometer causes the movable point thereof to move .025 inch. One rotation of a metric micrometer causes the movable point thereof to move one millimeter. I therefore dispose the surface 3 at any given spacing from the surface 2 and I x the distance between surfaces 2 and 4, in the case of an English micrometer, at one-third of .025 inch greater than that between surfaces 2 and 3. Similarly, the distance between surfaces 2 and 5 is one-third of .025 inch greater than that between surfaces 2 and 4. While the steps correspond to one-third of a rotation, two-thirds of a rotation would also be practical. Otherwise described, the control surfaces 3, 4 and 5 are successively stepped and the difference between the respective distances from surface 2 of each two adjacent said control surfaces is equal Vto the quotient, arrived at by diving one fortieth of an inch, in the case of an English micrometer, by the number that corresponds to the plurality of control surfaces in question, which, in this particular embodiment, is three; therefore the divisor is three. If the micrometer should be of the metric-measuring type, one millimeter, instead of one fortieth of an inch, would be divided.
In the use of my lapping blocks, a projection 'I is inserted in a vise, surface 2 facing upwardly. Upon it, is placed a mass of lapping or abrasive compound. The micrometer points IU and II are then disposed upon the surfaces 2 and 3 respectively, and point Ill is lapped until smooth. Thereupon the micrometer position is reversed for the smooth lapping of point Il on surface 2. During each of the above two operations, the frame of the micrometer is disposed in at least three differently angular aspects relatively to the longitudinal axis of the block, namely, for example, thirty, one hundred and fifty and two hundred and seventy degrees. The movable point is then moved correspondingly to one third of a rotation and points IU and II are then lapped smooth on surface 2 under control of the control surface 4. Thereupon the points are again lapped smooth under the control of control surface 5. Upon completion of said lapping operations, it will have been found that the two points are not only smooth and parallel with one another but are, respecting their two respective end surfaces, normal to the axis of the points.
To store the lapping compound, I form the bore I2 in the center of the body I and I provide a cap I3 therefor. Into bore I2 can be `placed a mass of any convenient and desired lapping compound. The body I can be of any thicknessV deemed suitable for the size of the micrometer or micrometers in question.
While I have described the preferred embodiment, I am not to be limited thereto excepting as set forth in the following claims.
I claim:
l. In a lapping block, 'a body having a lapping surface and a plurality of at least three mutually successively adjacent control surfaces parallel with and opposed to said lapping surface in a manner whereby each of said control surfaces and a thereto opposed part of said lapping surface together correspond to a lapping section of the block, said control surfaces being successively stepped and the difference between the respective distances from said lapping surface of each two adjacent said control surfaces being equal to the quotient, arrived at by dividing one fortieth of an inch by the number indicating said plurality of control surfaces.
2. A lapping block body as set forth in claim 1, excepting that one millimeter is divided instead of one fortieth of an inch.
KNUT ROBERT SJOGREN.
US22770D Lapping block Expired USRE22770E (en)

Publications (1)

Publication Number Publication Date
USRE22770E true USRE22770E (en) 1946-07-02

Family

ID=2089578

Family Applications (1)

Application Number Title Priority Date Filing Date
US22770D Expired USRE22770E (en) Lapping block

Country Status (1)

Country Link
US (1) USRE22770E (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655775A (en) * 1950-05-22 1953-10-20 Du Pont Lapping method and tool
US2950585A (en) * 1957-08-13 1960-08-30 Commw Scient Ind Res Org Apparatus for use in the sharpening of knives, knife blades and the like

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655775A (en) * 1950-05-22 1953-10-20 Du Pont Lapping method and tool
US2950585A (en) * 1957-08-13 1960-08-30 Commw Scient Ind Res Org Apparatus for use in the sharpening of knives, knife blades and the like

Similar Documents

Publication Publication Date Title
USRE22770E (en) Lapping block
US2383619A (en) Instrument for grinding and polishing diamonds
US3785057A (en) Workpiece edge and corner locating tool
US3739528A (en) Grinding machine
US2807922A (en) Prism machining method
US2863209A (en) Bore calibrating stamp
US2711621A (en) Method of grinding curved slots, and a product produced according to this method
US2213665A (en) Device for dressing screw-threadgrinding disks
US2367857A (en) Grinding wheel dressing
US345989A (en) Scale section-liner
US2542704A (en) Gem holder for grinding machines
US2577262A (en) Spherical bore gauge
US816700A (en) Tracer and tool for engraving-machines.
US1388308A (en) Device for dressing grinding-wheels
US3200503A (en) Sine gage
US2373829A (en) Angle edging device
US2483228A (en) Compound angle measuring device
Samuels A STUDY OF THE DEFORMED LAYER PRODUCED ON METAL SURFACES BY MECHANICAL MACHINING, ABRASION AND POLISHING OPERATIONS--2 PARTS
GB1256876A (en)
FR2229487A1 (en) Parting off tool and holder for metal cutting - angled faces on tool holder locate rounded top and bottom edges of tool
SU722735A1 (en) Spherical-surface working method
CN103949965A (en) Mould polishing equipment and method thereof
USD182026S (en) Abrading tool or similar article
FR1273100A (en) Working head for apparatus for straightening and polishing hard materials, such as stones, marble and the like
FR1426620A (en) Improvements in the manufacture of artificial abrasive materials