US9935074B2 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
US9935074B2
US9935074B2 US15/128,126 US201515128126A US9935074B2 US 9935074 B2 US9935074 B2 US 9935074B2 US 201515128126 A US201515128126 A US 201515128126A US 9935074 B2 US9935074 B2 US 9935074B2
Authority
US
United States
Prior art keywords
heat sink
semiconductor chip
passive component
electrode
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/128,126
Other versions
US20170103962A1 (en
Inventor
Syoichirou Oomae
Akira Iwabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OOMAE, Syoichirou, IWABUCHI, AKIRA
Publication of US20170103962A1 publication Critical patent/US20170103962A1/en
Application granted granted Critical
Publication of US9935074B2 publication Critical patent/US9935074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4825Connection or disconnection of other leads to or from flat leads, e.g. wires, bumps, other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • H01L23/49551Cross section geometry characterised by bent parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49572Lead-frames or other flat leads consisting of thin flexible metallic tape with or without a film carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/29294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/292 - H01L2224/29291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48195Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49589Capacitor integral with or on the leadframe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1205Capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1207Resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1425Converter
    • H01L2924/14253Digital-to-analog converter [DAC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a semiconductor device that includes semiconductor chips including switching elements, a resin molding for sealing the semiconductor chips, and heat sinks disposed on both surfaces of the semiconductor chips and connected to main electrodes via soldering, and also relates to a method for manufacturing this semiconductor device.
  • Patent Literature 1 JP 2008-135613 A
  • a semiconductor device includes a lead frame, a first semiconductor chip, a second heat sink, a second semiconductor chip, a passive component, and a resin molding.
  • the lead frame includes one surface and a rear surface opposite to the one surface, and further includes a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink.
  • the first semiconductor chip includes a first main electrode disposed on facing surface of the first semiconductor chip facing the rear surface, and further includes a control electrode and a second main electrode.
  • the second main electrode is paired with the first main electrode.
  • the control electrode and the second main electrode are disposed on a surface of the first semiconductor chip opposite to the facing surface.
  • the first main electrode is connected to the first heat sink.
  • the second heat sink is disposed opposed to the surface of the first semiconductor chip on which surface the control electrode is disposed.
  • the second heat sink is connected to the second main electrode.
  • the second semiconductor chip is fixed to the island on the rear surface to control driving of the first semiconductor chip.
  • the second semiconductor chip is connected to the control electrode via a first bonding wire, and connected to the control terminal via a second bonding wire.
  • the passive component is mounted on a passive component mounting portion of the control terminals via a bonding material.
  • the resin molding includes a surface on the first heat sink side, and a surface on the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip.
  • the resin molding integrally seals the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion.
  • a part of the lead frame is bent with respect to a rest of part of the lead frame such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface than the first heat sink and the passive component mounting portion of the control terminals are.
  • the passive component is mounted on the passive component mounting portion of the control terminal on the one surface.
  • the semiconductor device is capable of reducing connection failure of the first bonding wire and the second bonding wire while avoiding increase in size.
  • a method for manufacturing a semiconductor device is a method for manufacturing semiconductor device that includes a lead frame, a first semiconductor chip, a second heat sink, a second semiconductor chip, a passive component, and a resin molding.
  • the lead frame includes one surface and a rear surface opposite to the one surface, and further includes a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink.
  • the first semiconductor chip includes a first main electrode disposed on a facing surface of the first semiconductor chip facing the rear surface, and further includes a control electrode and a second main electrode.
  • the second main electrode is paired with the first main electrode.
  • the control electrode and the second main electrode are disposed on a surface of the first semiconductor chip opposite to the facing surface.
  • the first main electrode is connected to the first heat sink via solder.
  • the second heat sink is disposed opposed to the surface of the first semiconductor chip on which surface the control electrode is disposed.
  • the second heat sink is connected to the second main electrode via solder.
  • the second semiconductor chip is fixed to the island on the rear surface to control driving of the first semiconductor chip.
  • the second semiconductor chip is connected to the control electrode via a first bonding wire, and connected to the control terminal via a second bonding wire.
  • the passive component is mounted on a passive component mounting portion of the control terminal via a bonding material.
  • the resin molding includes a surface on the first heat sink side, and a surface on the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip.
  • the resin molding integrally seals the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion.
  • the lead frame included in the semiconductor device is bent such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface than the first heat sink and the passive component mounting portion of the control terminals are.
  • a connection body that integrates the lead frame and the first semiconductor chips is formed by reflow of the solder between the first heat sink and the first semiconductor chip.
  • the second semiconductor chip is fixed on the island.
  • the control electrode and the second semiconductor chip are connected via the first bonding wire after the second semiconductor chip is fixed.
  • the second semiconductor chip and the control terminal are connected via the second bonding wire.
  • the connection body is reversed, and positioned on the second heat sink after the second semiconductor chip is connected via the first bonding wire and the second bonding wire. Reflow of the solder between the second heat sink and the connection body is carried out.
  • the passive component is mounted on the passive component mounting portion of the control terminal on the one surface via the bonding member.
  • the resin molding is molded after the passive component is mounted.
  • the manufacturing method manufactures a semiconductor device capable of reducing connection failure of the first bonding wire and the second bonding wire while avoiding increase in size.
  • FIG. 1 is a side view illustrating a general configuration of a power converter incorporating a semiconductor device according to an embodiment of the present disclosure
  • FIG. 2 is a plan view illustrating a general configuration of the semiconductor device
  • FIG. 3 is a cross-sectional view of the semiconductor device taken along a line in FIG. 2 ;
  • FIG. 4 is a cross-sectional view of the semiconductor device taken along a line IV-IV in FIG. 2 ;
  • FIG. 5 is a plan view of the semiconductor device illustrated in FIG. 2 , not showing a resin molding, and indicating second heat sinks by alternate long and two short dashes lines;
  • FIG. 6 is a plan view of the semiconductor device illustrated in FIG. 2 , not showing the resin molding and bonding wires, as viewed from the lead frame side;
  • FIG. 7 is a perspective view illustrating an enlarged area VII indicated by an alternate long and short dash line in FIG. 5 ;
  • FIG. 8 is a perspective view illustrating an enlarged area VIII indicated by an alternate long and short dash line in FIG. 6 ;
  • FIG. 9 is a plan view illustrating a method for manufacturing the semiconductor device, showing a state after completion of a first reflow step
  • FIG. 10 is a cross-sectional view illustrating the state after completion of the first reflow step, as a view corresponding to FIG. 4 ;
  • FIG. 11 is a plan view illustrating the method for manufacturing the semiconductor device, showing a state after completion of a bonding step
  • FIG. 12 is a cross-sectional view illustrating the state after completion of the bonding step
  • FIG. 13 is a plan view illustrating the method for manufacturing the semiconductor device, showing a state after completion of a second reflow step.
  • FIG. 14 is a cross-sectional view illustrating the state after completion of the second reflow step.
  • a semiconductor device which includes second semiconductor chips having circuits for controlling driving of switching elements, and passive components such as a chip resistor and a chip capacitor, in addition to constituent elements of the semiconductor device disclosed in Patent Literature 1, for the purpose of improvement of functions and noise resistance properties of the semiconductor device, for example.
  • first heat sinks are constituted by a common lead frame, similarly to other components constituted by the common lead frame, such as islands on which the second semiconductor chips are disposed, and control terminals.
  • the second semiconductor chips are connected to the first semiconductor chips via bonding wires.
  • the bonding wires due to shape limitations of the bonding wires such as a connection angle, the size of the semiconductor device increases in the direction perpendicular to a lamination direction of the first semiconductor chips and the heat sinks, depending on the positions of the first semiconductor chips and the second semiconductor chips.
  • connection failure of the bonding wires easily occurs during connection of the bonding wires and resin molding.
  • each of the passive components has a small coating area of a bonding material, in which condition solder is difficult to wet-spread through an electrode of the passive component when the solder is constituted by a fluxless solder.
  • solder containing flux, Ag paste or like material is used as a bonding material for the passive components.
  • these bonding materials generate scatterings such as flux, outgas, and fume. Accordingly, when the passive components lie on the lead frame on the same surface side as the second semiconductor chips, scattered flux or the like may contaminate the connection portions of the bonding wires, and cause connection failure of the bonding wires as a result of contamination of the bonding wires.
  • an object of the present disclosure is to provide a semiconductor device capable of reducing connection failure of bonding wires while avoiding increase in size, and a method for manufacturing this semiconductor device.
  • a semiconductor device includes a lead frame, a first semiconductor chip, a second heat sink, a second semiconductor chip, a passive component, and a resin molding.
  • the lead frame includes one surface and a rear surface opposite to the one surface, and further includes a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink.
  • the first semiconductor chip includes a first main electrode disposed on facing surface of the first semiconductor chip facing the rear surface, and further includes a control electrode and a second main electrode.
  • the second main electrode is paired with the first main electrode.
  • the control electrode and the second main electrode are disposed on a surface of the first semiconductor chip opposite to the facing surface.
  • the first main electrode is connected to the first heat sink.
  • the second heat sink is disposed opposed to the surface of the first semiconductor chip on which surface the control electrode is disposed.
  • the second heat sink is connected to the second main electrode.
  • the second semiconductor chip is fixed to the island on the rear surface to control driving of the first semiconductor chip.
  • the second semiconductor chip is connected to the control electrode via a first bonding wire, and connected to the control terminal via a second bonding wire.
  • the passive component is mounted on a passive component mounting portion of the control terminals via a bonding material.
  • the resin molding includes a surface on the first heat sink side, and a surface on the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip.
  • the resin molding integrally seals the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion.
  • a part of the lead frame is bent with respect to a rest of part of the lead frame such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface than the first heat sink and the passive component mounting portion of the control terminals are.
  • the passive component is mounted on the passive component mounting portion of the control terminal on the one surface.
  • the lead frame is bent such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface of the lead frame than the first heat sink and the passive component mounting portion of the control terminal are.
  • the connection surface of the first bonding wire comes close to the first semiconductor chip and the second semiconductor chip in the lamination direction.
  • connection angle in a range approximately from 40° to 50°, for example.
  • connection surface of the first bonding wire is located closer in the lamination direction, and thus failure at the time of connection of the first bonding wire decreases. Furthermore, the connection length of the first bonding wire becomes short. Accordingly, connection failure caused when the bonding wire is pressed by resin pressure during resin molding decreases.
  • the second semiconductor chip is mounted on the rear surface of the lead frame, and the passive component is mounted on the one surface of the lead frame. Accordingly, connection failure of the bonding wire caused by scatterings such as flux decreases even when the bonding material of the passive component is made of solder containing flux, Ag paste or the like.
  • the passive component mounting portion of the control terminal is disposed farther from the first heat sink side surface of the resin molding than the islands are. Accordingly, the passive component is allowed to be disposed at the passive component mounting portion of the control terminal on the one surface opposite to the rear surface where the second semiconductor chip is mounted.
  • a method for manufacturing a semiconductor device is a method for manufacturing semiconductor device that includes a lead frame, a first semiconductor chip, a second heat sink, a second semiconductor chip, a passive component, and a resin molding.
  • the lead frame includes one surface and a rear surface opposite to the one surface, and further includes a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink.
  • the first semiconductor chip includes a first main electrode disposed on a facing surface of the first semiconductor chip facing the rear surface, and further includes a control electrode and a second main electrode.
  • the second main electrode is paired with the first main electrode.
  • the control electrode and the second main electrode are disposed on a surface of the first semiconductor chip opposite to the facing surface.
  • the first main electrode is connected to the first heat sink via solder.
  • the second heat sink is disposed opposed to the surface of the first semiconductor chip on which surface the control electrode is disposed.
  • the second heat sink is connected to the second main electrode via solder.
  • the second semiconductor chip is fixed to the island on the rear surface to control driving of the first semiconductor chip.
  • the second semiconductor chip is connected to the control electrode via a first bonding wire, and connected to the control terminal via a second bonding wire.
  • the passive component is mounted on a passive component mounting portion of the control terminal via a bonding material.
  • the resin molding includes a surface on the first heat sink side, and a surface on the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip.
  • the resin molding integrally seals the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion.
  • the lead frame included in the semiconductor device is bent such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface than the first heat sink and the passive component mounting portion of the control terminals are.
  • a connection body that integrates the lead frame and the first semiconductor chips is formed by reflow of the solder between the first heat sink and the first semiconductor chip.
  • the second semiconductor chip is fixed on the island.
  • the control electrode and the second semiconductor chip are connected via the first bonding wire after the second semiconductor chip is fixed.
  • the second semiconductor chip and the control terminal are connected via the second bonding wire.
  • the connection body is reversed, and positioned on the second heat sink after the second semiconductor chip is connected via the first bonding wire and the second bonding wire. Reflow of the solder between the second heat sink and the connection body is carried out.
  • the passive component is mounted on the passive component mounting portion of the control terminal on the one surface via the bonding member.
  • the resin molding is molded after the passive component is mounted.
  • the one surface of the lead frame is positioned above the rear surface after the connection body is reversed and positioned on the second heat sink.
  • the passive component is disposed on the one surface of the passive component mounting portion of the control terminal in the reversed connection body via the bonding material.
  • the passive component is mounted by heating during reflow of the solders between the second heat sink and the connection body. Accordingly, mounting of the passive component is completed without the necessity of an additional manufacturing step.
  • mounting of the passive component is executed after the connection of the second semiconductor chip via the first bonding wire and the second bonding wire, and thus connection failure of the bonding wire caused by scatterings such as flux is more securely avoidable.
  • a lamination direction of a heat sink and a first semiconductor chip in other words, a thickness direction of the first semiconductor chip is expressed as a Z-direction.
  • An extension direction of a main terminal and a control terminal perpendicular to the Z-direction is expressed as a Y-direction.
  • a direction perpendicular to both the Y-direction and the Z-direction is expressed as an X-direction.
  • a planar shape in this context refers to a shape extending along a plane defined by the X-direction and the Y-direction unless specified otherwise.
  • FIG. 1 An example of a power converter incorporating a semiconductor device according to this embodiment is initially described with reference to FIG. 1 .
  • a power converter 100 illustrated in FIG. 1 includes an inverter 102 that drives a vehicle driving motor 200 , a driver 104 that drives the inverter 102 , and a microcomputer 106 that outputs driving signals to the inverter 102 via the driver 104 .
  • the power converter 100 thus constructed is included in an electric car or a hybrid electric car, for example.
  • Each of semiconductor devices 10 includes an upper arm portion 10 U and a lower arm portion 10 L connected with each other in series between a positive electrode (high potential side) and a negative electrode (low potential side) of a direct current power supply 108 .
  • the upper arm portion 10 U is disposed on the high potential side of the direct current power supply 108
  • the lower arm portion 10 L is disposed on the low potential side of the direct current power supply 108 .
  • the inverter 102 includes three phases each of which contains upper and lower arms constituted by the upper arm portion 10 U and the lower arm portion 10 L.
  • the inverter 102 is configured to convert direct current power into three-phase alternating currents, and output the converted currents to the motor 200 .
  • a component indicated by a reference number 110 in FIG. 1 is a smoothing capacitor.
  • the driver 104 includes chips respectively corresponding to the arm portion 10 U and 10 L. Each of the chips includes a circuit for controlling driving of elements of the corresponding arm portion 10 U or 10 L. According to this embodiment, each of the semiconductor devices 10 includes one phase of the upper and lower arms, and the chips of the driver 104 corresponding to these upper and lower arms. Accordingly, both the inverter 102 and the driver 104 are constituted by the three semiconductor devices 10 .
  • the upper arm portion 10 U includes an n-channel IGBT element 12 U, and a reflex FWD element 14 U connected to the IGBT element 12 U in anti-parallel.
  • the IGBT element 12 U and the FWD element 14 U are provided on an identical semiconductor chip.
  • the IGBT element 12 U and the FWD element 14 U may be provided on different chips.
  • the IGBT element 12 U includes a collector electrode 16 U and an emitter electrode 18 U that are main electrodes, and a gate electrode 20 U that is a control electrode.
  • the FWD element 14 U includes a cathode electrode constituted by the foregoing collector electrode 16 U, and an anode electrode constituted by the foregoing emitter electrode 18 U.
  • the lower arm portion 10 L has a structure similar to the structure of the upper arm portion 10 U.
  • the lower arm portion 10 L includes an n-channel IGBT element 12 L, and a reflex FWD element 14 L connected to the IGBT element 12 L in anti-parallel.
  • the IGBT element 12 L and the FWD element 14 L are provided on an identical semiconductor chip. However, the IGBT element 12 L and the FWD element 14 L may be provided on different chips.
  • the IGBT element 12 L includes a collector electrode 16 L and an emitter electrode 18 L that are main electrodes, and a gate electrode 20 L that is a control electrode.
  • the FWD element 14 L includes a cathode electrode constituted by the foregoing collector electrode 16 L, and an anode electrode constituted by the foregoing emitter electrode 18 L.
  • the collector electrode 16 U of the IGBT element 12 U is electrically connected to a high-potential power supply line 22 connected to the positive electrode of the direct current power supply 108 .
  • the emitter electrode 18 L of the IGBT element 12 L is electrically connected to a low-potential power supply line 24 (also referred to as ground line) connected to the negative electrode of the direct current power supply 108 .
  • the emitter electrode 18 U of the IGBT element 12 U and the collector electrode 16 L of the IGBT element 12 L are connected to an output line 26 for output from the inverter 102 to the motor 200 .
  • P indicates the positive electrode of the high-potential power supply line 22
  • N indicates the negative electrode of the low potential power supply line 24
  • O indicates the output of the output line 26 .
  • Gate terminals 28 U and 28 L are connected to the gate electrodes 20 U and 20 L, respectively.
  • the microcomputer 106 electrically connected to the gate terminals 28 U and 28 L via the driver 104 outputs driving signals (PWM signals) to the gate terminals 28 U and 28 L to control driving of the IGBT elements 12 U and 12 L.
  • the microcomputer 106 includes a ROM that stores programs describing various types of control processing to be executed, a CPU that executes various types of arithmetic processing, a RAM that temporarily stores arithmetic processing results and various types of data, and other components.
  • the microcomputer 106 receives detection signals from not-shown current sensor, rotation sensor and the like, and generates driving signals for driving the motor 200 in accordance with torque command values received from the outside, and the foregoing detection signals received from the respective sensors.
  • the six IGBT elements 12 U and 12 L of the inverter 102 are driven in accordance with the generated driving signals.
  • driving currents are supplied from the direct current power supply 108 to the motor 200 via the inverter 102 .
  • the motor 200 is driven to generate desired driving torque.
  • currents corresponding to power generated by the motor 200 are rectified by the inverter 102 , and supplied for discharge of the direct current power supply 108 .
  • FIG. 5 does not show a resin molding, and indicates second heat sinks by alternate long and two short dashes lines.
  • FIG. 6 does not show the resin molding and bonding wires.
  • each of the semiconductor devices 10 includes two semiconductor chips: one of the semiconductor chips constituting the upper arm portion 10 U; and the other semiconductor chip constituting the lower arm portion 10 L.
  • each of the semiconductor devices 10 is constituted by a so-called two-in-one package including the two IGBT elements 12 U and 12 L.
  • the arm portions 10 U and 10 L correspond to first semiconductor chips.
  • the upper arm portion 10 U includes the collector electrode 16 U that is a first main electrode and is disposed on one surface of the upper arm portion 10 U in the Z-direction.
  • the upper arm portion 10 U further includes the emitter electrode 18 U that is a second main electrode paired with the first main electrode, and a control electrode 30 U that includes the gate electrode 20 U. Both the emitter electrode 18 U and the control electrode 30 U are disposed on a surface of the upper arm portion 10 U on the side opposite to the collector electrode surface side.
  • the lower arm portion 10 L includes the collector electrode 16 L that is a high-potential side main electrode and disposed on one surface of the lower arm portion 10 L in the Z-direction.
  • the lower arm portion 10 L further includes the emitter electrode 18 L that is a lower potential side electrode, and a control electrode 30 L including the gate electrode 20 L. Both the emitter electrode 18 L and the control electrode 30 L are disposed on a surface of the lower arm portion 10 L on the side opposite to the collector electrode surface side.
  • each of the control electrodes 30 U and 30 L includes electrodes (pads) for temperature sensing, current sensing, and Kelvin emitter, in addition to the gate electrode 20 U or 20 L.
  • Each of the arm portions 10 U and 10 L has a substantially rectangular planar shape approximately equivalent to each other, and has a thickness approximately equivalent to each other in the Z-direction.
  • the arm portions 10 U and 10 L are disposed in a line in the X-direction, and disposed substantially at the same position in the Z-direction, i.e., disposed in parallel, with the respective collector electrode surfaces located on the same side.
  • the semiconductor device 10 includes a resin molding 32 , a lead frame 34 , terminals 46 U and 46 L, second heat sinks 48 U and 48 L, driver ICs 60 U and 60 L, and passive components 68 , in addition to the arm portions 10 U and 10 L discussed above.
  • the resin molding 32 is made of a resin material having electric insulation properties. According to this embodiment, the resin molding 32 is molded from epoxy resin by transfer molding.
  • the resin molding 32 has a substantially rectangular parallelepiped shape, and includes one surface 32 a and a rear surface 32 b on the side opposite to the one surface 32 a in the Z-direction.
  • Each of the one surface 32 a and the rear surface 32 b is a flat surface substantially parallel with a plane defined by the X-direction and the Y-direction.
  • the arm portions 10 U and 10 L are sealed by the resin molding 32 .
  • the lead frame 34 is constituted by a partially bent metal plate, and includes one surface 34 a and a rear surface 34 b on the side opposite to the one surface 34 a in the Z-direction.
  • the one surface 32 a and the one surface 34 a are disposed on the same side in the Z-direction, while the rear surfaces 32 b and 34 b are disposed on the same side in the Z-direction.
  • the metal plate discussed above may be a single plate, or may be a plurality of pressure-bonded metal plates, for example.
  • the lead frame 34 is at least made of a metal material.
  • the lead frame 34 may be made of a metal material having excellent thermal conductivity and electric conductivity, such as copper, copper alloy, and aluminum alloy.
  • the lead frame 34 includes first heat sinks 36 U and 36 L, islands 38 U and 38 L, main terminals 40 , and control terminals 42 U and 42 L.
  • Each of the first heat sinks 36 U and 36 L performs a function for radiating heat generated from the corresponding arm portion 10 U or 10 L, and an electric connection function.
  • the upper arm portion 10 U provided at the portion of the first heat sink 36 U on the rear surface 34 b of the lead frame 34 is disposed such that the collector electrode surface faces the first heat sink 36 U.
  • the first heat sink 36 U is connected to the collector electrode 16 U via a solder 44 .
  • the lower arm portion 10 L provided on the first heat sink 36 L is disposed such that the collector electrode surface faces the first heat sink 36 L.
  • the first heat sink 36 L is electrically, mechanically, and thermally connected to the collector electrode 16 L via the solder 44 .
  • Each of the first heat sinks 36 U and 36 L has a substantially rectangular planar shape, and has a thickness approximately equivalent to each other.
  • Each of the first heat sinks 36 U and 36 L has a larger size along the plane defined by the X-direction and the Y-direction than the size of the corresponding arm portion 10 U or 10 L to accommodate the arm portion 10 U or 10 L.
  • the rear surface 34 b and the side surface facing the upper arm portion 10 U in the portion of the first heat sink 36 U are covered by the resin molding 32 .
  • the one surface 34 a is exposed from the one surface 32 a of the resin molding 32 . More specifically, the one surface 34 a is substantially flush with the one surface 32 a .
  • the flush state in this context refers to a state that two or more surfaces are positioned in the same plane without steps produced between these surfaces.
  • the rear surface 34 b and the side surface facing the lower arm portion 10 L in the portion of the first heat sink 36 L are covered by the resin molding 32 .
  • the one surface 34 a is exposed from the one surface 32 a of the resin molding 32 .
  • the one surface 34 a is substantially flush with the one surface 32 a .
  • the portions of the first heat sinks 36 U and 36 L contained in the one surface 34 a of the lead frame 34 constitute exposed portions 36 Ua and 36 La exposed from the one surface 32 a of the resin molding 32 .
  • the exposed portions 36 Ua and 36 La function as heat radiation surfaces.
  • the solders 44 are also sealed by the resin molding 32 .
  • the second heat sinks 48 U and 48 L are disposed on the arm portions 10 U and 10 L via the terminals 46 U and 46 L on the side opposite to the first heat sinks 36 U and 36 L in the Z-direction.
  • the terminals 46 U and 46 L are provided to secure predetermined clearances between the arm portions 10 U and 10 L and the second heat sinks 48 U and 48 L for connection of bonding wires 62 to the control electrodes 30 U and 30 L.
  • the terminals 46 U and 46 L thermally and electrically relay the arm portions 10 U and 10 L with the second heat sinks 48 U and 48 L. Accordingly, it is preferable that the terminals 46 U and 46 L are made of a metal material having at least excellent thermal conductivity and electric conductivity.
  • Each of the terminals 46 U and 46 L has shape and size corresponding to those of the emitter electrode 18 U or 18 L. According to this embodiment, each of the terminals 46 U and 46 L has a rectangular parallelepiped shape.
  • the upper arm side terminal 46 U is so disposed as to face the emitter electrode 18 U of the upper arm portion 10 U, and connected to the emitter electrode 18 U via a solder 50 .
  • the lower arm side terminal 46 L is so disposed as to face the emitter electrode 18 L of the lower arm portion 10 L, and connected to the emitter electrode 18 L via the solder 50 .
  • the terminals 46 U and 46 L and the solders 50 are also sealed by the resin molding 32 .
  • the upper arm side second heat sink 48 U is connected to the surface of the upper arm side terminal 46 U on the side opposite to the upper arm portion 10 U via a solder 52 .
  • the lower arm side second heat sink 48 L is connected to the surface of the lower arm side terminal 46 L on the side opposite to the lower arm portion 10 L via the solder 52 .
  • the second heat sinks 48 U and 48 L are at least made of a metal material to secure thermal conductivity and electric conductivity.
  • the second heat sinks 48 U and 48 L may be made of a metal material having excellent thermal conductivity and electric conductivity, such as copper, copper alloy, and aluminum alloy.
  • the second heat sinks 48 U and 48 L have substantially the same thickness.
  • the second heat sinks 48 U and 48 L have substantially the same shape and size as those of the first heat sinks 36 U and 36 L, respectively. Accordingly, the entire arm portions 10 U and 10 L are accommodated within opposed areas of the first heat sinks 36 U and 36 L and the second heat sinks 48 U and 48 L in the plane defined by the X-direction and the Y-direction.
  • the facing surface of the upper arm side second heat sink 48 U facing the upper arm portion 10 U (terminal 46 U), and the side surface of the upper arm side second heat sink 48 U are covered by the resin molding 32 .
  • the surface of the upper arm side second heat sink 48 U on the side opposite to the facing surface is exposed from the rear surface 32 b of the resin molding 32 .
  • the facing surface of the second heat sink 48 L facing the lower arm portion 10 L (terminal 46 L), and the side surface of the lower arm side second heat sink 48 L are covered by the resin molding 32 .
  • the surface of the upper arm side second heat sink 48 U on the side opposite to the facing surface is exposed from the rear surface 32 b of the resin molding 32 .
  • the surfaces of the second heat sinks 48 U and 48 L on the side opposite to the arm portions 10 U and 10 L constitute exposed portions 48 Ua and 48 La exposed from the resin molding 32 .
  • the exposed portions 48 Ua and 48 La function as heat radiation surfaces.
  • the exposed portions 48 Ua and 48 La are substantially flush with the rear surface 32 b.
  • each of the second heat sinks 48 U and 48 L has a substantially rectangular planar shape. Two sides of the rectangular shape extend substantially in parallel with the X-direction, while the other two sides extend substantially in parallel with the Y-direction.
  • a protrusion portion 48 Ub protrudes in the Y-direction from one of the sides of the upper arm side second heat sink 48 U extending substantially in parallel with the X-direction.
  • a protrusion portion 48 Lb protrudes in the same direction as the protrusion direction of the protrusion portion 48 Ub from the lower arm side second heat sink 48 L.
  • the protrusion portions 48 Ub and 48 Lb are portions electrically connected with a part of the plurality of main terminals 40 .
  • Each of the protrusion portions 48 Ub and 48 Lb has a smaller thickness than each thickness of the second heat sinks 48 U and 48 L, and is sealed by the resin molding 32 .
  • the lower arm side first heat sink 36 L and the upper arm side second heat sink 48 U are electrically connected to each other via a relay portion 54 .
  • a protrusion portion 54 a protrudes toward the upper arm side from an upper arm side end of the first heat sink 36 L in the X-direction.
  • a protrusion portion 54 b protrudes toward the lower arm side from a lower arm side end of the second heat sink 48 U in the X-direction.
  • the protrusion portions 54 a and 54 b are connected to each other via a solder 54 c to constitute the relay portion 54 .
  • the relay portion 54 electrically connects the emitter electrode 18 U of the IGBT element 12 U and the collector electrode 16 L of the IGBT element 12 L to form the substantially N-shaped upper and lower arms as illustrated in FIG. 3 .
  • the relay portion 54 is sealed by the resin molding 32 .
  • Presented in this embodiment is a configuration example of the second heat sink 48 U side protrusion portion 54 b extending in the X-direction.
  • the first heat sink 36 L side protrusion portion 54 a extends in the X-direction, and bends at an intermediate portion to extend in the Z-direction as well.
  • the main terminals 40 of the lead frame 34 extend to the outside of the resin molding 32 from a side surface 32 c of the resin molding 32 forming a substantially rectangular planar shape. According to this structure, a part of the main terminals 40 is sealed by the resin molding 32 .
  • the respective main terminals 40 are configured to extend in the Y-direction, and disposed in a line in the X-direction.
  • the respective main terminals 40 are further bent at intermediate positions in the longitudinal direction to extend from positions between the one surface 32 a and the rear surface 32 b.
  • the main terminals 40 include a power supply terminal 40 p , a ground terminal 40 n , and output terminals 40 o 1 and 40 o 2 .
  • the power supply terminal 40 p is a terminal for connecting the collector electrode 16 U of the upper arm portion 10 U to the high potential power supply line 22 (so-called P-terminal). As illustrated in FIGS. 5 and 6 , the power supply terminal 40 p is connected to the upper arm side first heat sink 36 U, and extends in the Y-direction from one side of the first heat sink 36 U having a substantially rectangular planar shape.
  • the ground terminal 40 n is a terminal for connecting the emitter electrode 18 L of the lower arm portion 10 L to the low potential power supply line 24 (so-called N terminal).
  • the ground terminal 40 n is disposed adjacent to the power supply terminal 40 p .
  • the ground terminal 40 n is electrically connected to the protrusion portion 48 Lb of the lower arm side second heat sink 48 L via a not-shown solder.
  • the output terminal 40 o 1 is a terminal for connecting the emitter electrode 18 U of the upper arm portion 10 U to the output line 26 (so-called O terminal).
  • the output terminal 40 o 1 is disposed adjacent to the power supply terminal 40 p such that the power supply terminal 40 p is sandwiched between the output terminal 40 o 1 and the ground terminal 40 n .
  • the output terminal 40 o 1 is electrically connected to the protrusion portion 48 Ub of the upper arm side second heat sink 48 U via a not-shown solder.
  • the output terminal 40 o 2 is a terminal for connecting the collector electrode 16 L of the lower arm portion 10 L to the output line 26 (so-called O terminal).
  • the output terminal 40 o 2 is connected to the lower arm side first heat sink 36 L, and extends in the Y-direction from one side of the first heat sink 36 L forming a substantially rectangular planar shape.
  • the control terminals 42 U and 42 L extend to the outside of the resin molding 32 from a side surface 32 d of the resin molding 32 on the side opposite to the side surface 32 c . According to this structure, a part of the main terminals 40 is sealed by the resin molding 32 .
  • the respective control terminals 42 U and 42 L are configured to extend in the Y-direction, and disposed in a line in the X-direction.
  • the respective main terminals 40 are further bent at intermediate positions in the longitudinal direction to extend in the Z-direction from positions between the one surface 32 a and the rear surface 32 b.
  • the upper arm side control terminal 42 U includes terminals for temperature sensing, current sensing, Kelvin emitter, power supply, test mode setting, input for generating driving signals for the gate electrode 20 U by the driver IC 60 U, and error check, in addition to the upper arm side gate terminal 28 U.
  • a part of the plurality of the control terminals 42 U are connected to the upper arm side island 38 U.
  • the ten control terminals 42 U are provided in total.
  • Two of the control terminals 42 U are connected to the island 38 U. More specifically, the second and ninth control terminals 42 U in the X-direction are connected such that the island 38 U is sandwiched between both ends of the second and ninth control terminals 42 U in the X-direction.
  • the lower arm side control terminal 42 L includes terminals for temperature sensing, current sensing, Kelvin emitter, power supply, test mode setting, input for generating driving signals for the gate electrode 20 L by the driver IC 60 L, and error check, in addition to the upper and lower arm side gate terminal 28 L.
  • a part of the plurality of control terminals 42 L are connected to the lower arm side island 38 L.
  • the ten control terminals 42 L are provided in total.
  • Two of the control terminals 42 L are connected to the island 38 L. More specifically, the second and ninth control terminals 42 L in the X-direction are connected such that the island 38 L is sandwiched between the second and ninth control terminals 42 L in the X-direction.
  • the control terminals 42 U and 42 L connected to the islands 38 U and 38 L are hereinafter referred to as connection terminals 42 a.
  • Each of the islands 38 U and 38 L and the control terminals 42 U and 42 L has a substantially the same thickness.
  • a component indicated by a reference number 56 in FIGS. 2, 5, and 6 is a suspension lead.
  • the suspension lead 56 is a portion for connecting the first heat sinks 36 U and 36 L to an outer circumferential frame of the lead frame 34 .
  • Each of the side surfaces 32 c and 32 d of the resin molding 32 includes a plurality of recesses 32 e .
  • Each of the recesses 32 e of the side surface 32 c is provided in a portion between an adjoining pair of the main terminals 40 .
  • the recesses 32 e of the side surface 32 d are provided in a portion between the control terminals 42 U and 42 L, and each of portions between the control terminals 42 U and 42 L and the suspension leads 56 .
  • the recesses 32 e increase a creeping distance of insulation, for example.
  • the driver IC 60 U is mounted on the upper arm side island 38 U via a solder 58 , for example.
  • the driver IC 60 L is mounted on the lower arm side island 38 L via the not-shown solder 58 .
  • the respective driver ICs 60 U and 60 L constitute the driver 104 .
  • Each of the driver ICs 60 U and 60 L includes a single-side electrode element such as MOSFET on a semiconductor chip to control driving of an element provided on the corresponding arm portion 10 U or 10 L.
  • Each thickness of the driver ICs 60 U and 60 L is larger than each thickness of the arm portions 10 U and 10 L.
  • the driver ICs 60 U and 60 L correspond to second semiconductor chips.
  • Electrodes are provided on the surfaces of the driver ICs 60 U and 60 L on the side opposite to the islands 38 U and 38 L.
  • the bonding wires 62 are connected to these electrodes.
  • the control electrodes 30 U and 30 L of the arm portions 10 U and 10 L are connected to the driver ICs 60 U and 60 L, respectively, via the bonding wires 62 .
  • the bonding wires 62 correspond to first bonding wires.
  • the driver ICs 60 U and 60 L are connected to the control terminals 42 U and 42 L, respectively, via bonding wires 64 .
  • the bonding wires 64 correspond to second bonding wires.
  • the passive components 68 such as a chip resistance and a chip capacitor are mounted on the control terminals 42 U and 42 L via bonding materials 66 .
  • Each of the passive components 68 is so mounted as to electrically connect the plurality of control terminals 42 U or 42 L on the corresponding arm.
  • each of the passive components 68 is a two-terminal chip component, and so mounted as to bridge the adjoining two control terminals 42 U or 42 L as illustrated in FIG. 6 . More specifically, each of the passive components 68 is so mounted as to bridge a connection terminal 42 a and the control terminal 42 U or 42 L disposed adjacent to the connection terminal 42 a.
  • the passive components 68 are mounted to reduce noise transmitted from the control terminals 42 U and 42 L to the driver ICs 60 U and 60 L, for example. Accordingly, it is preferable that the passive components 68 mounted on the control terminal 42 U and 42 L are located in the vicinity of the driver ICs 60 U and 60 L.
  • Each of the passive components 68 has a small coating area of the bonding material 66 .
  • the bonding material 66 may be made of a material providing bonding when heated in a second reflow step, such as a solder containing flux and Ag paste.
  • the bonding material 66 of this type generates not a small amount of flux, outgas, fume, or other scatterings when heated.
  • the bonding material 66 is constituted by a solder containing flux.
  • the solders 44 , 50 , 52 , and 58 of the semiconductor device 10 bonded before wire bonding are constituted by fluxless solders.
  • the semiconductor device 10 thus constructed is cooled by coolers each of which includes a refrigerant flow path. More specifically, coolers are disposed on both sides of the semiconductor device 10 in the Z-direction to cool the semiconductor device 10 from both the surfaces 32 a and 32 b sides. An insulation sheet is attached to each of the one surface 32 a and the rear surface 32 b of the resin molding 32 in a manner covering the exposed portions 36 Ua, 36 La, 48 Ua, and 48 La. The semiconductor device 10 is sandwiched between the coolers via the insulation sheets.
  • a structure of an area around the islands 38 U and 38 L is hereinafter described with reference to FIGS. 4, 7, and 8 .
  • the lead frame 34 is formed by punching a metal plate into a predetermined shape, and bending a part of the punched shape. More specifically, the islands 38 U and 38 L are depressed to reduce a step formed between the control electrode surfaces of the arm portions 10 U and 10 L and the electrode surfaces of the driver ICs 60 U and 60 L in the Z-direction as much as possible.
  • the islands 38 U and 38 L are depressed such that the portions of the islands 38 U and 38 L are located closer to the one surface 32 a of the resin molding 32 than the portions of the first heat sinks 36 U and 36 L and the passive component mounting portions of the control terminals 42 U and 42 L are. More specifically, the portions of the islands 38 U and 38 L on the rear surface 34 b are depressed toward the one surface 32 a of the resin molding 32 with respect to the portions of the first heat sinks 36 U and 36 L and the passive component mounting portions of the control terminals 42 U and 42 L.
  • each of the connection terminals 42 a includes a bent portion 70 between the connection end of the connection terminal 42 a connecting with the islands 38 U and 38 L and the passive component mounting portion of the connection terminal 42 a to depress the islands 38 U and 38 L toward the one surface 32 a as illustrated in FIGS. 7 and 8 .
  • the passive components 68 are mounted on the control terminals 42 U and 42 L on the one surface 34 a of the lead frame 34 .
  • the distance between the one surface 34 a of the lead frame 34 and the one surface 32 a of the resin molding 32 in the Z-direction is determined such that a distance L 1 at the passive component mounting portions of the control terminals 42 U and 42 L is longer than a distance L 2 at the islands 38 U and 38 L. In this case, a sufficient clearance is securable between the passive components 68 and the one surface 32 a of the resin molding 32 even in the structure of the passive components 68 mounted on the one surface 34 a.
  • FIG. 13 does not show the bonding wires 62 and 64 .
  • respective elements constituting the semiconductor device 10 are prepared. More specifically, the respective arm portions 10 U and 10 L, the lead frame 34 , the terminals 46 U and 46 L, the second heat sinks 48 U and 48 L, the driver ICs 60 U and 60 L, and the passive components 68 are prepared.
  • the lead frame 34 to be prepared includes the first heat sinks 36 U and 36 L, the islands 38 U and 38 L, the main terminals 40 , and the control terminals 42 U and 42 L as one piece body as illustrated in FIGS. 9 and 10 .
  • the lead frame 34 to be prepared is bent such that the portions of the islands 38 U and 38 L are located closer to the one surface 32 a of the resin molding 32 on the rear surface 34 b than the portions of the first heat sinks 36 U and 36 L and the passive component mounting portions of the control terminals 42 U and 42 L are.
  • the lead frame 34 to be prepared is bent such that steps in the Z-direction between the control electrode surfaces of the arm portions 10 U and 10 L and the electrode surfaces of the driver ICs 60 U and 60 L become the smallest possible lengths.
  • the lead frame 34 to be prepared is bent such that substantially no step is produced between these portions.
  • the lead frame 34 having this structure is formed by a bending process in which the islands 38 U and 38 L are pressed downward from the rear surface 34 b with respect to the first heat sinks 36 U and 36 L and the passive component mounting portions of the control terminals 42 U and 42 L.
  • the lead frame 34 having this structure is formed by bending the portions of the connection terminals 42 a between the connection ends connected with the islands 38 U and 38 L and the passive component mounting portions.
  • the bent portions of the connection terminals 42 a become the bent portions 70 discussed above.
  • a component indicated by a reference number 72 in FIG. 9 is an outer circumferential frame of the lead frame 34
  • a component indicated by a reference number 74 in FIG. 9 is a tie-bar.
  • a first reflow step is performed.
  • reflow is carried out for the solders 44 interposed between the respective arm portions 10 U and 10 L and the corresponding first heat sinks 36 U and 36 L, and the solders 50 interposed between the respective arm portions 10 U and 10 L and the corresponding terminals 46 U and 46 L.
  • reflow is also carried out for the solders 58 interposed between the respective driver ICs 60 U and 60 L and the corresponding islands 38 U and 38 L.
  • a connection body 76 constituted by the lead frame 34 , the arm portions 10 U and 10 L, the terminals 46 U and 46 L, and the respective driver ICs 60 U and 60 L as one piece body is produced as illustrated in FIG. 9 .
  • solders 50 and 52 are soldered beforehand (soldering beforehand) on both the surfaces of each of the terminals 46 U and 46 L in the preparatory step discussed above. A sufficiently large amount of the solders 52 are disposed to absorb tolerance variations in the height of the semiconductor device 10 .
  • the solder 44 having a foil shape is disposed on each of the portions of the first heat sinks 36 U and 36 L on the rear surface 34 b of the lead frame 34 .
  • the arm portions 10 U and 10 L are disposed on the solders 44 such that the collector electrodes 16 U and 16 L face the solders 44 .
  • the terminals 46 U and 46 L are further disposed in such a condition as to face the emitter electrodes 18 U and 18 L of the arm portions 10 U and 10 L, respectively.
  • the solder 58 having a foil shape is disposed on each of the portions of the islands 38 U and 38 L on the rear surface 34 b of the lead frame 34 .
  • the driver ICs 60 U and 60 are disposed on the solders 58 . Reflow is carried out for the solders 44 , 50 , 52 , and 58 in this laminated state.
  • Each of the solders 52 has an elevated shape with a top located at the center of the terminal 46 U or 46 L by surface tension before the second heat sink 48 U or 48 L as a connection target is formed.
  • each or the solders 44 , 50 , 52 , and 58 is constituted by a fluxless solder. Accordingly, scattering such as flux, outgas, and fume are not generated during the first reflow step. It is preferable that each of the solders 58 is constituted by a solder not fused during a second reflow step described below. According to this structure, a drop of the driver ICs 60 U and 60 L is more securely avoidable at the time of reverse of the connection body 76 .
  • each of the solders 58 may be constituted by a solder fused during the second reflow step similarly to the solders 44 , 50 , and 52 . Even fused, the solders 58 retain high viscosity.
  • the solders 58 are supported by the bonding wires 62 . Accordingly, the solders 58 of this type similarly prevent a drop of the driver ICs 60 U and 60 L.
  • a wire bonding step is performed.
  • the control electrodes 30 U and 30 L of the arm portions 10 U and 10 L are connected to the respective electrodes of the driver ICs 60 U and 60 L via the bonding wires 62 .
  • the electrodes of the driver ICs 60 U and 60 L are connected to the respective control terminals 42 U and 42 L via the bonding wires 64 .
  • the steps between the control electrode surfaces of the arm portions 10 U and 10 L and the electrode surfaces of the driver ICs 60 U and 60 L in the Z-direction decrease.
  • the control electrode surfaces of the arm portions 10 U and 10 L are substantially flush with the electrode surfaces of the driver ICs 60 U and 60 L in the Z-direction. Accordingly, connection failure of the bonding wires 62 due to the steps decreases.
  • the arm portions 10 U and 10 L are allowed to come close to the driver ICs 60 U and 60 L in the Y-direction even when a connection angle of each of the wires 62 is set to an ideal range approximately from 40° to 50°. Accordingly, the size of the semiconductor device 10 does not increase in the Y-direction.
  • connection failure of the bonding wires 62 and 64 also decreases in this point.
  • the connection body 76 is disposed on the second heat sinks 48 U and 48 L such that the terminals 46 U and 46 L face the respective second heat sinks 48 U and 48 L via the solders 52 as illustrated in FIGS. 13 and 14 . More specifically, the connection body 76 is reversed from the state of the first reflow step (and wire bonding step), and disposed on the second heat sinks 48 U and 48 L. In this case, a solder 54 c is disposed on the protrusion portion 54 a constituting the relay portion 54 , and the protrusion portion 54 b is overlapped on the solder 54 c .
  • the bonding material 66 such as a solder containing flux is disposed at a predetermined value of each of the control terminals 42 U and 42 L, and the passive components 68 are disposed on the bonding materials 66 .
  • solders 44 , 50 , 52 , and 54 c Thereafter, reflow is carried out for the solders 44 , 50 , 52 , and 54 c .
  • a not-shown jig may be used to connect the connection body 76 and the second heat sinks 48 U and 48 L while maintaining predetermined distances between the first heat sinks 36 U and 36 L and the exposed portions of the second heat sinks 48 U and 48 L.
  • reflow is also carried out for the bonding materials 66 to mount the passive components 68 on the portions of the control terminals 42 U and 42 L on the one surface 34 a of the lead frame 34 . This reflow may be carried out with pressure applied from the first heat sinks 36 U and 36 L side.
  • a molding step is performed to mold the resin molding 32 .
  • a connection structure obtained in the second reflow step is disposed in a not-shown metal mold.
  • resin is injected into a cavity of the metal mold to mold the resin molding 32 .
  • the resin molding 32 is molded from epoxy resin by transfer molding.
  • the cutting step may include cutting the one surface 32 a and the rear surface 32 b of the resin molding 32 to smooth the surfaces 32 a and 32 b , or cutting the heat sinks 36 U, 36 L, 48 U, and 48 L as well as the resin molding 32 to smooth the one surface 32 a and the rear surface 32 b together with the exposed portions 36 Ua, 36 La, 48 Ua, and 48 La.
  • the cutting step is performed after the molding step.
  • the heat sinks 36 U, 36 L, 48 U, and 48 L are cut simultaneously with the cutting of the resin molding 32 to smooth the one surface 32 a and the rear surface 32 b together with the exposed portions 36 Ua, 36 La, 48 Ua, and 48 La. Accordingly, the exposed portions 36 Ua and 36 La become substantially flush with the one surface 32 a , while the exposed portions 48 Ua and 48 La become substantially flush with the rear surface 32 b.
  • connection failure decreases when the connection angle is set in a range approximately from 40° to 50°.
  • the control electrode surfaces and the electrode surfaces need to be disposed away from each other in the Y-direction for connection at a predetermined connection angle. In this case, the size of the semiconductor device 10 in the Y-direction increases.
  • the lead frame 34 is bent such that the portions of the islands 38 U and 38 L on the rear surface 34 b of the lead frame 34 are located closer to the one surface 32 a of the resin molding 32 than the portions of the heat sinks 36 U and 36 L are.
  • This structure positions the connection surfaces of the bonding wires 62 close to the arm portions 10 U and 10 L and the driver ICs 60 U and 60 L in the Z-direction. In other words, the steps produced between the control electrode surfaces of the arm portions 10 U and 10 L and the electrode surfaces of the driver ICs 60 U and 60 L decrease. Accordingly, the size of the semiconductor device 10 in the Y-direction does not increase.
  • control electrode surfaces of the arm portions 10 U and 10 L are located close to the electrode surfaces of the driver ICs 60 U and 60 L in the Z-direction, and thus failure at the time of connection of the bonding wires 62 also decreases. Furthermore, the control electrode surfaces of the arm portions 10 U and 10 L are located close to the electrode surfaces of the driver ICs 60 U and 60 L in both the Z-direction and the Y-direction, and thus the connection length of the bonding wires 62 decreases. Accordingly, failure caused when the bonding wires 62 are pressed by resin during the forming step decreases.
  • the driver ICs 60 U and 60 L are mounted on the rear surface 34 b of the lead frame 34 , while the passive components 68 are mounted on the one surface 34 a . Accordingly, connection failure of the bonding wires 62 and 64 caused by scatterings such as flux decreases even when the bonding materials 66 of the passive components 68 are made of solder containing flux, Ag paste or the like.
  • the lead frame 34 used herein is bent such that the portions of the islands 38 U and 38 L on the rear surface 34 b of the lead frame 34 are located closer to the one surface 32 a of the resin molding 32 than the passive component mounting portions of the control terminals 42 U and 42 L are.
  • the distance between the one surface 34 a of the lead frame 34 and the one surface 32 a of the resin molding 32 in the Z-direction is determined such that the length L 1 at the passive component mounting portions of the control terminals 42 U and 42 L becomes longer than the distance L 2 at the islands 38 U and 38 L.
  • a predetermined clearance is securable between the one surface 32 a and the passive components 68 .
  • the one surface 34 a of the lead frame 34 is positioned above the rear surface 34 b by reverse of the connection body 76 in the second reflow step.
  • This structure allows positioning of the passive components 68 on the control terminals 42 U and 42 L of the reversed connection body 76 on the one surface 34 a via the bonding materials 66 .
  • Mounting of the passive components 68 is executed by heating during the second reflow step. Accordingly, mounting of the passive components 68 is achievable in the second reflow step without the necessity of an additional manufacturing step.
  • the passive components 68 are mounted after the wire bonding step, and thus connection failure of the bonding wires 62 and 64 caused by scatterings such as flux is more securely avoidable.
  • the control electrode surfaces of the arm portions 10 U and 10 L are substantially flush with the electrode surfaces of the driver ICs 60 U and 60 L in the Z-direction. In this case, substantially no step is produced between the connection surfaces of the bonding wires 62 , and thus increase in size is more effectively avoidable. Moreover, connection failure of the bonding wires 62 caused by steps between these portions more effectively decreases. Furthermore, failure caused when the bonding wires 62 are pressed by resin during the molding step more effectively decreases.
  • the bonding wires 62 may contact the second heat sinks 48 U and 48 L and cause connection failure.
  • large clearances between the second heat sinks 48 U and 48 L and the arm portions 10 U and 10 L are needed.
  • size reduction in the Z-direction becomes difficult.
  • the control electrode surfaces of the arm portions 10 U and 10 L are substantially flush with the electrode surfaces of the driver ICs 60 U and 60 L in the Z-direction. Accordingly, the size in the Z-direction decreases while avoiding contact between the bonding wires 62 and the second heat sinks 48 U and 48 L.
  • the exposed portions 36 Ua and 36 La of the first heat sinks 36 U and 36 L are exposed from the one surface 32 a of the resin molding 32 . Accordingly, heat generated from the arm portions 10 U and 10 L is efficiently radiated to the outside of the semiconductor device 10 , Particularly in case of this embodiment, the exposed portions 36 Ua and 36 La are substantially flush with the one surface 32 a , while the exposed portions 48 Ua and 48 La are substantially flush with the rear surface 32 b . Moreover, the exposed portions 36 Ua and 36 La are substantially in parallel with the exposed portions 48 Ua and 48 La. Accordingly, efficient heat radiation is achievable for the coolers disposed on both sides of the semiconductor device 10 .
  • connection terminals 42 a of the plurality of control terminals 42 U and 42 L are connected to the islands 38 U and 38 L.
  • Each of the connection terminals 42 a includes the bent portion 70 between the connection end of the connection terminal 42 a connecting with the island 38 U or 38 L and the passive component mounting portion for mounting the passive component 68 to depress the island 38 U or 38 L.
  • bent portions are formed in portions different from the control terminals 42 U and 42 L of the lead frame 34 , such as suspension leads
  • the control terminals 42 U and 42 L and the first heat sinks 36 U and 36 L are required to be disposed in portions other than the suspension leads. According to this embodiment, however, the foregoing structure of the semiconductor device 10 decreases the size of the semiconductor device 10 .
  • the semiconductor device 10 includes the terminals 46 U and 46 L.
  • the terminals 46 U and 46 L may be eliminated.
  • protrusions corresponding to the terminals may be provided on the second heat sinks 48 U and 48 L.
  • the main terminals 40 include the two output terminals 40 o 1 and 40 o 2 .
  • the main terminals 40 may include only either the output terminal 40 o 1 or 40 o 2 , i.e., only a single output terminal.
  • the heat sinks 36 U, 36 L, 48 U, and 48 L include the exposed portions 36 Ua, 36 La, 48 Ua, and 48 La, respectively.
  • a structure in which the heat sinks 36 U, 36 L, 48 U, and 48 L are completely sealed by the resin molding 30 i.e., a structure in which the exposed portions 36 Ua, 36 La, 48 Ua, and 48 La are covered with the resin molding 32 may be adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

A lead frame has a first sink, an island, and a control terminal. The lead frame is bent, and at a rear surface, the island is positioned closer to one surface of a resin molded body than the first sink and a passive component mounting portion of the control terminal. A passive component is mounted on the passive component mounting portion of the control terminal through a bonding material, the passive component mounting portion being a part of one surface.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a U.S. national stage of International Application No. PCT/JP2015/001622 filed on Mar. 23, 2015 and is based on based on Japanese Patent Application No. 2014-64193 filed on Mar. 26, 2014, the disclosures of which are incorporated herein by reference.
TECHNICAL FIELD
The present disclosure relates to a semiconductor device that includes semiconductor chips including switching elements, a resin molding for sealing the semiconductor chips, and heat sinks disposed on both surfaces of the semiconductor chips and connected to main electrodes via soldering, and also relates to a method for manufacturing this semiconductor device.
BACKGROUND ART
There has been known a semiconductor device which includes semiconductor chips including switching elements (hereinafter referred to as first semiconductor chips), a resin molding for sealing the first semiconductor chips, and heat sinks disposed both surfaces of the first semiconductor chips, and connected to main electrodes via soldering, as described in Patent Literature 1.
PRIOR ART LITERATURES Patent Literature
Patent Literature 1: JP 2008-135613 A
SUMMARY OF INVENTION
It is an object of the present disclosure to provide a semiconductor device capable of reducing connection failure of bonding wires while avoiding increase in size, and a method for manufacturing this semiconductor device.
A semiconductor device according to an aspect of the present disclosure includes a lead frame, a first semiconductor chip, a second heat sink, a second semiconductor chip, a passive component, and a resin molding. The lead frame includes one surface and a rear surface opposite to the one surface, and further includes a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink. The first semiconductor chip includes a first main electrode disposed on facing surface of the first semiconductor chip facing the rear surface, and further includes a control electrode and a second main electrode. The second main electrode is paired with the first main electrode. The control electrode and the second main electrode are disposed on a surface of the first semiconductor chip opposite to the facing surface. The first main electrode is connected to the first heat sink. The second heat sink is disposed opposed to the surface of the first semiconductor chip on which surface the control electrode is disposed. The second heat sink is connected to the second main electrode. The second semiconductor chip is fixed to the island on the rear surface to control driving of the first semiconductor chip. The second semiconductor chip is connected to the control electrode via a first bonding wire, and connected to the control terminal via a second bonding wire. The passive component is mounted on a passive component mounting portion of the control terminals via a bonding material.
The resin molding includes a surface on the first heat sink side, and a surface on the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip. The resin molding integrally seals the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion.
A part of the lead frame is bent with respect to a rest of part of the lead frame such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface than the first heat sink and the passive component mounting portion of the control terminals are. The passive component is mounted on the passive component mounting portion of the control terminal on the one surface.
The semiconductor device is capable of reducing connection failure of the first bonding wire and the second bonding wire while avoiding increase in size.
A method for manufacturing a semiconductor device according to another aspect of the present disclosure is a method for manufacturing semiconductor device that includes a lead frame, a first semiconductor chip, a second heat sink, a second semiconductor chip, a passive component, and a resin molding. The lead frame includes one surface and a rear surface opposite to the one surface, and further includes a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink. The first semiconductor chip includes a first main electrode disposed on a facing surface of the first semiconductor chip facing the rear surface, and further includes a control electrode and a second main electrode. The second main electrode is paired with the first main electrode. The control electrode and the second main electrode are disposed on a surface of the first semiconductor chip opposite to the facing surface. The first main electrode is connected to the first heat sink via solder. The second heat sink is disposed opposed to the surface of the first semiconductor chip on which surface the control electrode is disposed. The second heat sink is connected to the second main electrode via solder. The second semiconductor chip is fixed to the island on the rear surface to control driving of the first semiconductor chip. The second semiconductor chip is connected to the control electrode via a first bonding wire, and connected to the control terminal via a second bonding wire. The passive component is mounted on a passive component mounting portion of the control terminal via a bonding material.
The resin molding includes a surface on the first heat sink side, and a surface on the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip. The resin molding integrally seals the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion.
According to the method for manufacturing the semiconductor device, the lead frame included in the semiconductor device is bent such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface than the first heat sink and the passive component mounting portion of the control terminals are. A connection body that integrates the lead frame and the first semiconductor chips is formed by reflow of the solder between the first heat sink and the first semiconductor chip. The second semiconductor chip is fixed on the island. The control electrode and the second semiconductor chip are connected via the first bonding wire after the second semiconductor chip is fixed. The second semiconductor chip and the control terminal are connected via the second bonding wire. The connection body is reversed, and positioned on the second heat sink after the second semiconductor chip is connected via the first bonding wire and the second bonding wire. Reflow of the solder between the second heat sink and the connection body is carried out. The passive component is mounted on the passive component mounting portion of the control terminal on the one surface via the bonding member. The resin molding is molded after the passive component is mounted.
The manufacturing method manufactures a semiconductor device capable of reducing connection failure of the first bonding wire and the second bonding wire while avoiding increase in size.
BRIEF DESCRIPTION OF DRAWINGS
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
FIG. 1 is a side view illustrating a general configuration of a power converter incorporating a semiconductor device according to an embodiment of the present disclosure;
FIG. 2 is a plan view illustrating a general configuration of the semiconductor device;
FIG. 3 is a cross-sectional view of the semiconductor device taken along a line in FIG. 2;
FIG. 4 is a cross-sectional view of the semiconductor device taken along a line IV-IV in FIG. 2;
FIG. 5 is a plan view of the semiconductor device illustrated in FIG. 2, not showing a resin molding, and indicating second heat sinks by alternate long and two short dashes lines;
FIG. 6 is a plan view of the semiconductor device illustrated in FIG. 2, not showing the resin molding and bonding wires, as viewed from the lead frame side;
FIG. 7 is a perspective view illustrating an enlarged area VII indicated by an alternate long and short dash line in FIG. 5;
FIG. 8 is a perspective view illustrating an enlarged area VIII indicated by an alternate long and short dash line in FIG. 6;
FIG. 9 is a plan view illustrating a method for manufacturing the semiconductor device, showing a state after completion of a first reflow step;
FIG. 10 is a cross-sectional view illustrating the state after completion of the first reflow step, as a view corresponding to FIG. 4;
FIG. 11 is a plan view illustrating the method for manufacturing the semiconductor device, showing a state after completion of a bonding step;
FIG. 12 is a cross-sectional view illustrating the state after completion of the bonding step;
FIG. 13 is a plan view illustrating the method for manufacturing the semiconductor device, showing a state after completion of a second reflow step; and
FIG. 14 is a cross-sectional view illustrating the state after completion of the second reflow step.
EMBODIMENTS FOR CARRYING OUT INVENTION
Before an embodiment of the present disclosure is described, initially touched upon herein are the circumstances under which the present inventors have arrived at the present disclosure and various modes provided according to the present disclosure. There may be considered such a semiconductor device which includes second semiconductor chips having circuits for controlling driving of switching elements, and passive components such as a chip resistor and a chip capacitor, in addition to constituent elements of the semiconductor device disclosed in Patent Literature 1, for the purpose of improvement of functions and noise resistance properties of the semiconductor device, for example.
In view of positioning easiness, for example, first heat sinks are constituted by a common lead frame, similarly to other components constituted by the common lead frame, such as islands on which the second semiconductor chips are disposed, and control terminals. The second semiconductor chips are connected to the first semiconductor chips via bonding wires. However, due to shape limitations of the bonding wires such as a connection angle, the size of the semiconductor device increases in the direction perpendicular to a lamination direction of the first semiconductor chips and the heat sinks, depending on the positions of the first semiconductor chips and the second semiconductor chips. Moreover, connection failure of the bonding wires easily occurs during connection of the bonding wires and resin molding.
Furthermore, each of the passive components has a small coating area of a bonding material, in which condition solder is difficult to wet-spread through an electrode of the passive component when the solder is constituted by a fluxless solder. For overcoming this difficulty, solder containing flux, Ag paste or like material is used as a bonding material for the passive components. However, these bonding materials generate scatterings such as flux, outgas, and fume. Accordingly, when the passive components lie on the lead frame on the same surface side as the second semiconductor chips, scattered flux or the like may contaminate the connection portions of the bonding wires, and cause connection failure of the bonding wires as a result of contamination of the bonding wires.
In consideration of the aforementioned difficulties, an object of the present disclosure is to provide a semiconductor device capable of reducing connection failure of bonding wires while avoiding increase in size, and a method for manufacturing this semiconductor device.
A semiconductor device according to an aspect of the present disclosure includes a lead frame, a first semiconductor chip, a second heat sink, a second semiconductor chip, a passive component, and a resin molding. The lead frame includes one surface and a rear surface opposite to the one surface, and further includes a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink. The first semiconductor chip includes a first main electrode disposed on facing surface of the first semiconductor chip facing the rear surface, and further includes a control electrode and a second main electrode. The second main electrode is paired with the first main electrode. The control electrode and the second main electrode are disposed on a surface of the first semiconductor chip opposite to the facing surface. The first main electrode is connected to the first heat sink. The second heat sink is disposed opposed to the surface of the first semiconductor chip on which surface the control electrode is disposed. The second heat sink is connected to the second main electrode. The second semiconductor chip is fixed to the island on the rear surface to control driving of the first semiconductor chip. The second semiconductor chip is connected to the control electrode via a first bonding wire, and connected to the control terminal via a second bonding wire. The passive component is mounted on a passive component mounting portion of the control terminals via a bonding material.
The resin molding includes a surface on the first heat sink side, and a surface on the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip. The resin molding integrally seals the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion.
A part of the lead frame is bent with respect to a rest of part of the lead frame such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface than the first heat sink and the passive component mounting portion of the control terminals are. The passive component is mounted on the passive component mounting portion of the control terminal on the one surface.
According to the semiconductor device, the lead frame is bent such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface of the lead frame than the first heat sink and the passive component mounting portion of the control terminal are. In this case, the connection surface of the first bonding wire comes close to the first semiconductor chip and the second semiconductor chip in the lamination direction.
There are shape limitations to the bonding wire, such as a connection angle (in a range approximately from 40° to 50°, for example). When the connection surface of the first bonding wire is separated away in the lamination direction, the connection surface of the first bonding wire are required to be located away in the direction perpendicular to the lamination direction to obtain a predetermined connection angle, for example. According to the arrangement of the semiconductor device described above, however, the first semiconductor chip and the second semiconductor chip are located close to each other also in the direction perpendicular to the lamination direction. Accordingly, the size of the semiconductor device does not increase in the direction perpendicular to the lamination direction. Moreover, the connection surface of the first bonding wire is located closer in the lamination direction, and thus failure at the time of connection of the first bonding wire decreases. Furthermore, the connection length of the first bonding wire becomes short. Accordingly, connection failure caused when the bonding wire is pressed by resin pressure during resin molding decreases.
The second semiconductor chip is mounted on the rear surface of the lead frame, and the passive component is mounted on the one surface of the lead frame. Accordingly, connection failure of the bonding wire caused by scatterings such as flux decreases even when the bonding material of the passive component is made of solder containing flux, Ag paste or the like.
When a lead fame bent by pressing an entire island and a control terminal downward is used, the distance between one surface of the lead frame and the first heat sink side surface of the resin molding becomes short in the lamination direction. In this case, technical difficulties such as exposure of the passive components from the resin mold, and decrease in the resin thickness covering the passive component arise when the passive component is mounted on surface of the control terminal on one side. When the passive component is exposed, contact between the passive component and a mold is produced during molding of the resin molding. In this case, the passive component may be damaged. Moreover, moisture or the like entering from the outside may cause separation of the resin molding, or lower electric connection reliability. When the resin thickness is small, an entrainment void is easily produced.
According to the lead frame included in the semiconductor device described above, however, the passive component mounting portion of the control terminal is disposed farther from the first heat sink side surface of the resin molding than the islands are. Accordingly, the passive component is allowed to be disposed at the passive component mounting portion of the control terminal on the one surface opposite to the rear surface where the second semiconductor chip is mounted.
A method for manufacturing a semiconductor device according to another aspect of the present disclosure is a method for manufacturing semiconductor device that includes a lead frame, a first semiconductor chip, a second heat sink, a second semiconductor chip, a passive component, and a resin molding. The lead frame includes one surface and a rear surface opposite to the one surface, and further includes a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink. The first semiconductor chip includes a first main electrode disposed on a facing surface of the first semiconductor chip facing the rear surface, and further includes a control electrode and a second main electrode. The second main electrode is paired with the first main electrode. The control electrode and the second main electrode are disposed on a surface of the first semiconductor chip opposite to the facing surface. The first main electrode is connected to the first heat sink via solder. The second heat sink is disposed opposed to the surface of the first semiconductor chip on which surface the control electrode is disposed. The second heat sink is connected to the second main electrode via solder. The second semiconductor chip is fixed to the island on the rear surface to control driving of the first semiconductor chip. The second semiconductor chip is connected to the control electrode via a first bonding wire, and connected to the control terminal via a second bonding wire. The passive component is mounted on a passive component mounting portion of the control terminal via a bonding material.
The resin molding includes a surface on the first heat sink side, and a surface on the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip. The resin molding integrally seals the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion.
According to the method for manufacturing the semiconductor device, the lead frame included in the semiconductor device is bent such that the island is located closer to the first heat sink side surface of the resin molding on the rear surface than the first heat sink and the passive component mounting portion of the control terminals are. A connection body that integrates the lead frame and the first semiconductor chips is formed by reflow of the solder between the first heat sink and the first semiconductor chip. The second semiconductor chip is fixed on the island. The control electrode and the second semiconductor chip are connected via the first bonding wire after the second semiconductor chip is fixed. The second semiconductor chip and the control terminal are connected via the second bonding wire. The connection body is reversed, and positioned on the second heat sink after the second semiconductor chip is connected via the first bonding wire and the second bonding wire. Reflow of the solder between the second heat sink and the connection body is carried out. The passive component is mounted on the passive component mounting portion of the control terminal on the one surface via the bonding member. The resin molding is molded after the passive component is mounted.
According to this manufacturing method, advantageous effects similar to those of the semiconductor device described above are offered. Moreover, according to this manufacturing method, the one surface of the lead frame is positioned above the rear surface after the connection body is reversed and positioned on the second heat sink. In this case, the passive component is disposed on the one surface of the passive component mounting portion of the control terminal in the reversed connection body via the bonding material. Thereafter, the passive component is mounted by heating during reflow of the solders between the second heat sink and the connection body. Accordingly, mounting of the passive component is completed without the necessity of an additional manufacturing step. Moreover, mounting of the passive component is executed after the connection of the second semiconductor chip via the first bonding wire and the second bonding wire, and thus connection failure of the bonding wire caused by scatterings such as flux is more securely avoidable.
An embodiment according to the present disclosure is hereinafter described with reference to the drawings. Identical or equivalent parts in the respective figures referred to hereinbelow have been given identical reference numbers.
In the following description, a lamination direction of a heat sink and a first semiconductor chip, in other words, a thickness direction of the first semiconductor chip is expressed as a Z-direction. An extension direction of a main terminal and a control terminal perpendicular to the Z-direction is expressed as a Y-direction. A direction perpendicular to both the Y-direction and the Z-direction is expressed as an X-direction. A planar shape in this context refers to a shape extending along a plane defined by the X-direction and the Y-direction unless specified otherwise.
An example of a power converter incorporating a semiconductor device according to this embodiment is initially described with reference to FIG. 1.
A power converter 100 illustrated in FIG. 1 includes an inverter 102 that drives a vehicle driving motor 200, a driver 104 that drives the inverter 102, and a microcomputer 106 that outputs driving signals to the inverter 102 via the driver 104. The power converter 100 thus constructed is included in an electric car or a hybrid electric car, for example.
Each of semiconductor devices 10 includes an upper arm portion 10U and a lower arm portion 10L connected with each other in series between a positive electrode (high potential side) and a negative electrode (low potential side) of a direct current power supply 108. The upper arm portion 10U is disposed on the high potential side of the direct current power supply 108, and the lower arm portion 10L is disposed on the low potential side of the direct current power supply 108.
The inverter 102 includes three phases each of which contains upper and lower arms constituted by the upper arm portion 10U and the lower arm portion 10L. The inverter 102 is configured to convert direct current power into three-phase alternating currents, and output the converted currents to the motor 200. A component indicated by a reference number 110 in FIG. 1 is a smoothing capacitor.
The driver 104 includes chips respectively corresponding to the arm portion 10U and 10L. Each of the chips includes a circuit for controlling driving of elements of the corresponding arm portion 10U or 10L. According to this embodiment, each of the semiconductor devices 10 includes one phase of the upper and lower arms, and the chips of the driver 104 corresponding to these upper and lower arms. Accordingly, both the inverter 102 and the driver 104 are constituted by the three semiconductor devices 10.
The upper arm portion 10U includes an n-channel IGBT element 12U, and a reflex FWD element 14U connected to the IGBT element 12U in anti-parallel. According to this embodiment, the IGBT element 12U and the FWD element 14U are provided on an identical semiconductor chip. However, the IGBT element 12U and the FWD element 14U may be provided on different chips.
The IGBT element 12U includes a collector electrode 16U and an emitter electrode 18U that are main electrodes, and a gate electrode 20U that is a control electrode. On the other hand, the FWD element 14U includes a cathode electrode constituted by the foregoing collector electrode 16U, and an anode electrode constituted by the foregoing emitter electrode 18U.
The lower arm portion 10L has a structure similar to the structure of the upper arm portion 10U. The lower arm portion 10L includes an n-channel IGBT element 12L, and a reflex FWD element 14L connected to the IGBT element 12L in anti-parallel. The IGBT element 12L and the FWD element 14L are provided on an identical semiconductor chip. However, the IGBT element 12L and the FWD element 14L may be provided on different chips.
The IGBT element 12L includes a collector electrode 16L and an emitter electrode 18L that are main electrodes, and a gate electrode 20L that is a control electrode. On the other hand, the FWD element 14L includes a cathode electrode constituted by the foregoing collector electrode 16L, and an anode electrode constituted by the foregoing emitter electrode 18L.
In the inverter 102, the collector electrode 16U of the IGBT element 12U is electrically connected to a high-potential power supply line 22 connected to the positive electrode of the direct current power supply 108. The emitter electrode 18L of the IGBT element 12L is electrically connected to a low-potential power supply line 24 (also referred to as ground line) connected to the negative electrode of the direct current power supply 108. The emitter electrode 18U of the IGBT element 12U and the collector electrode 16L of the IGBT element 12L are connected to an output line 26 for output from the inverter 102 to the motor 200.
In FIG. 1, “P” indicates the positive electrode of the high-potential power supply line 22, “N” indicates the negative electrode of the low potential power supply line 24, and “O” indicates the output of the output line 26. Gate terminals 28U and 28L are connected to the gate electrodes 20U and 20L, respectively.
The microcomputer 106 electrically connected to the gate terminals 28U and 28L via the driver 104 outputs driving signals (PWM signals) to the gate terminals 28U and 28L to control driving of the IGBT elements 12U and 12L. The microcomputer 106 includes a ROM that stores programs describing various types of control processing to be executed, a CPU that executes various types of arithmetic processing, a RAM that temporarily stores arithmetic processing results and various types of data, and other components.
The microcomputer 106 receives detection signals from not-shown current sensor, rotation sensor and the like, and generates driving signals for driving the motor 200 in accordance with torque command values received from the outside, and the foregoing detection signals received from the respective sensors. The six IGBT elements 12U and 12L of the inverter 102 are driven in accordance with the generated driving signals. As a result, driving currents are supplied from the direct current power supply 108 to the motor 200 via the inverter 102. With supply of the currents, the motor 200 is driven to generate desired driving torque. Alternatively, currents corresponding to power generated by the motor 200 are rectified by the inverter 102, and supplied for discharge of the direct current power supply 108.
A general configuration of each of the semiconductor devices 10 is hereinafter described with reference to FIGS. 2 to 6. A line IV-IV in FIG. 5 corresponds to a line IV-IV in FIG. 2. FIG. 5 does not show a resin molding, and indicates second heat sinks by alternate long and two short dashes lines. FIG. 6 does not show the resin molding and bonding wires.
As described above, each of the semiconductor devices 10 includes two semiconductor chips: one of the semiconductor chips constituting the upper arm portion 10U; and the other semiconductor chip constituting the lower arm portion 10L. In other words, each of the semiconductor devices 10 is constituted by a so-called two-in-one package including the two IGBT elements 12U and 12L. The arm portions 10U and 10L correspond to first semiconductor chips.
The upper arm portion 10U includes the collector electrode 16U that is a first main electrode and is disposed on one surface of the upper arm portion 10U in the Z-direction. The upper arm portion 10U further includes the emitter electrode 18U that is a second main electrode paired with the first main electrode, and a control electrode 30U that includes the gate electrode 20U. Both the emitter electrode 18U and the control electrode 30U are disposed on a surface of the upper arm portion 10U on the side opposite to the collector electrode surface side. Similarly, the lower arm portion 10L includes the collector electrode 16L that is a high-potential side main electrode and disposed on one surface of the lower arm portion 10L in the Z-direction. The lower arm portion 10L further includes the emitter electrode 18L that is a lower potential side electrode, and a control electrode 30L including the gate electrode 20L. Both the emitter electrode 18L and the control electrode 30L are disposed on a surface of the lower arm portion 10L on the side opposite to the collector electrode surface side. According to this embodiment, each of the control electrodes 30U and 30L includes electrodes (pads) for temperature sensing, current sensing, and Kelvin emitter, in addition to the gate electrode 20U or 20L. Each of the arm portions 10U and 10L has a substantially rectangular planar shape approximately equivalent to each other, and has a thickness approximately equivalent to each other in the Z-direction. The arm portions 10U and 10L are disposed in a line in the X-direction, and disposed substantially at the same position in the Z-direction, i.e., disposed in parallel, with the respective collector electrode surfaces located on the same side.
As illustrated in FIGS. 2 to 6, the semiconductor device 10 includes a resin molding 32, a lead frame 34, terminals 46U and 46L, second heat sinks 48U and 48L, driver ICs 60U and 60L, and passive components 68, in addition to the arm portions 10U and 10L discussed above.
The resin molding 32 is made of a resin material having electric insulation properties. According to this embodiment, the resin molding 32 is molded from epoxy resin by transfer molding. The resin molding 32 has a substantially rectangular parallelepiped shape, and includes one surface 32 a and a rear surface 32 b on the side opposite to the one surface 32 a in the Z-direction. Each of the one surface 32 a and the rear surface 32 b is a flat surface substantially parallel with a plane defined by the X-direction and the Y-direction. The arm portions 10U and 10L are sealed by the resin molding 32.
The lead frame 34 is constituted by a partially bent metal plate, and includes one surface 34 a and a rear surface 34 b on the side opposite to the one surface 34 a in the Z-direction. The one surface 32 a and the one surface 34 a are disposed on the same side in the Z-direction, while the rear surfaces 32 b and 34 b are disposed on the same side in the Z-direction. The metal plate discussed above may be a single plate, or may be a plurality of pressure-bonded metal plates, for example.
The lead frame 34 is at least made of a metal material. For example, the lead frame 34 may be made of a metal material having excellent thermal conductivity and electric conductivity, such as copper, copper alloy, and aluminum alloy. The lead frame 34 includes first heat sinks 36U and 36L, islands 38U and 38L, main terminals 40, and control terminals 42U and 42L.
Each of the first heat sinks 36U and 36L performs a function for radiating heat generated from the corresponding arm portion 10U or 10L, and an electric connection function. The upper arm portion 10U provided at the portion of the first heat sink 36U on the rear surface 34 b of the lead frame 34 is disposed such that the collector electrode surface faces the first heat sink 36U. The first heat sink 36U is connected to the collector electrode 16U via a solder 44. Similarly, the lower arm portion 10L provided on the first heat sink 36L is disposed such that the collector electrode surface faces the first heat sink 36L. The first heat sink 36L is electrically, mechanically, and thermally connected to the collector electrode 16L via the solder 44.
Each of the first heat sinks 36U and 36L has a substantially rectangular planar shape, and has a thickness approximately equivalent to each other. Each of the first heat sinks 36U and 36L has a larger size along the plane defined by the X-direction and the Y-direction than the size of the corresponding arm portion 10U or 10L to accommodate the arm portion 10U or 10L.
The rear surface 34 b and the side surface facing the upper arm portion 10U in the portion of the first heat sink 36U are covered by the resin molding 32. On the other hand, the one surface 34 a is exposed from the one surface 32 a of the resin molding 32. More specifically, the one surface 34 a is substantially flush with the one surface 32 a. The flush state in this context refers to a state that two or more surfaces are positioned in the same plane without steps produced between these surfaces. Similarly, the rear surface 34 b and the side surface facing the lower arm portion 10L in the portion of the first heat sink 36L are covered by the resin molding 32. On the other hand, the one surface 34 a is exposed from the one surface 32 a of the resin molding 32. More specifically, the one surface 34 a is substantially flush with the one surface 32 a. According to this structure, the portions of the first heat sinks 36U and 36L contained in the one surface 34 a of the lead frame 34 constitute exposed portions 36Ua and 36La exposed from the one surface 32 a of the resin molding 32. In this case, the exposed portions 36Ua and 36La function as heat radiation surfaces. The solders 44 are also sealed by the resin molding 32.
The second heat sinks 48U and 48L are disposed on the arm portions 10U and 10L via the terminals 46U and 46L on the side opposite to the first heat sinks 36U and 36L in the Z-direction.
The terminals 46U and 46L are provided to secure predetermined clearances between the arm portions 10U and 10L and the second heat sinks 48U and 48L for connection of bonding wires 62 to the control electrodes 30U and 30L. The terminals 46U and 46L thermally and electrically relay the arm portions 10U and 10L with the second heat sinks 48U and 48L. Accordingly, it is preferable that the terminals 46U and 46L are made of a metal material having at least excellent thermal conductivity and electric conductivity.
Each of the terminals 46U and 46L has shape and size corresponding to those of the emitter electrode 18U or 18L. According to this embodiment, each of the terminals 46U and 46L has a rectangular parallelepiped shape. The upper arm side terminal 46U is so disposed as to face the emitter electrode 18U of the upper arm portion 10U, and connected to the emitter electrode 18U via a solder 50. Similarly, the lower arm side terminal 46L is so disposed as to face the emitter electrode 18L of the lower arm portion 10L, and connected to the emitter electrode 18L via the solder 50. The terminals 46U and 46L and the solders 50 are also sealed by the resin molding 32.
The upper arm side second heat sink 48U is connected to the surface of the upper arm side terminal 46U on the side opposite to the upper arm portion 10U via a solder 52. Similarly, the lower arm side second heat sink 48L is connected to the surface of the lower arm side terminal 46L on the side opposite to the lower arm portion 10L via the solder 52.
Similarly to the first heat sinks 36U and 36L, the second heat sinks 48U and 48L are at least made of a metal material to secure thermal conductivity and electric conductivity. For example, the second heat sinks 48U and 48L may be made of a metal material having excellent thermal conductivity and electric conductivity, such as copper, copper alloy, and aluminum alloy. The second heat sinks 48U and 48L have substantially the same thickness. The second heat sinks 48U and 48L have substantially the same shape and size as those of the first heat sinks 36U and 36L, respectively. Accordingly, the entire arm portions 10U and 10L are accommodated within opposed areas of the first heat sinks 36U and 36L and the second heat sinks 48U and 48L in the plane defined by the X-direction and the Y-direction.
The facing surface of the upper arm side second heat sink 48U facing the upper arm portion 10U (terminal 46U), and the side surface of the upper arm side second heat sink 48U are covered by the resin molding 32. On the other hand, the surface of the upper arm side second heat sink 48U on the side opposite to the facing surface is exposed from the rear surface 32 b of the resin molding 32. Similarly, the facing surface of the second heat sink 48L facing the lower arm portion 10L (terminal 46L), and the side surface of the lower arm side second heat sink 48L are covered by the resin molding 32. On the other hand, the surface of the upper arm side second heat sink 48U on the side opposite to the facing surface is exposed from the rear surface 32 b of the resin molding 32. According to this structure, the surfaces of the second heat sinks 48U and 48L on the side opposite to the arm portions 10U and 10L constitute exposed portions 48Ua and 48La exposed from the resin molding 32. In this case, the exposed portions 48Ua and 48La function as heat radiation surfaces. The exposed portions 48Ua and 48La are substantially flush with the rear surface 32 b.
As illustrated in FIGS. 5 and 6, each of the second heat sinks 48U and 48L has a substantially rectangular planar shape. Two sides of the rectangular shape extend substantially in parallel with the X-direction, while the other two sides extend substantially in parallel with the Y-direction. A protrusion portion 48Ub protrudes in the Y-direction from one of the sides of the upper arm side second heat sink 48U extending substantially in parallel with the X-direction. Similarly, a protrusion portion 48Lb protrudes in the same direction as the protrusion direction of the protrusion portion 48Ub from the lower arm side second heat sink 48L. The protrusion portions 48Ub and 48Lb are portions electrically connected with a part of the plurality of main terminals 40. Each of the protrusion portions 48Ub and 48Lb has a smaller thickness than each thickness of the second heat sinks 48U and 48L, and is sealed by the resin molding 32.
The lower arm side first heat sink 36L and the upper arm side second heat sink 48U are electrically connected to each other via a relay portion 54. According to this embodiment, a protrusion portion 54 a protrudes toward the upper arm side from an upper arm side end of the first heat sink 36L in the X-direction. On the other hand, a protrusion portion 54 b protrudes toward the lower arm side from a lower arm side end of the second heat sink 48U in the X-direction. The protrusion portions 54 a and 54 b are connected to each other via a solder 54 c to constitute the relay portion 54. The relay portion 54 electrically connects the emitter electrode 18U of the IGBT element 12U and the collector electrode 16L of the IGBT element 12L to form the substantially N-shaped upper and lower arms as illustrated in FIG. 3.
The relay portion 54 is sealed by the resin molding 32. Presented in this embodiment is a configuration example of the second heat sink 48U side protrusion portion 54 b extending in the X-direction. On the other hand, the first heat sink 36L side protrusion portion 54 a extends in the X-direction, and bends at an intermediate portion to extend in the Z-direction as well.
The main terminals 40 of the lead frame 34 extend to the outside of the resin molding 32 from a side surface 32 c of the resin molding 32 forming a substantially rectangular planar shape. According to this structure, a part of the main terminals 40 is sealed by the resin molding 32. The respective main terminals 40 are configured to extend in the Y-direction, and disposed in a line in the X-direction. The respective main terminals 40 are further bent at intermediate positions in the longitudinal direction to extend from positions between the one surface 32 a and the rear surface 32 b.
The main terminals 40 include a power supply terminal 40 p, a ground terminal 40 n, and output terminals 40 o 1 and 40 o 2. The power supply terminal 40 p is a terminal for connecting the collector electrode 16U of the upper arm portion 10U to the high potential power supply line 22 (so-called P-terminal). As illustrated in FIGS. 5 and 6, the power supply terminal 40 p is connected to the upper arm side first heat sink 36U, and extends in the Y-direction from one side of the first heat sink 36U having a substantially rectangular planar shape.
The ground terminal 40 n is a terminal for connecting the emitter electrode 18L of the lower arm portion 10L to the low potential power supply line 24 (so-called N terminal). The ground terminal 40 n is disposed adjacent to the power supply terminal 40 p. The ground terminal 40 n is electrically connected to the protrusion portion 48Lb of the lower arm side second heat sink 48L via a not-shown solder.
The output terminal 40 o 1 is a terminal for connecting the emitter electrode 18U of the upper arm portion 10U to the output line 26 (so-called O terminal). The output terminal 40 o 1 is disposed adjacent to the power supply terminal 40 p such that the power supply terminal 40 p is sandwiched between the output terminal 40 o 1 and the ground terminal 40 n. The output terminal 40 o 1 is electrically connected to the protrusion portion 48Ub of the upper arm side second heat sink 48U via a not-shown solder.
The output terminal 40 o 2 is a terminal for connecting the collector electrode 16L of the lower arm portion 10L to the output line 26 (so-called O terminal). The output terminal 40 o 2 is connected to the lower arm side first heat sink 36L, and extends in the Y-direction from one side of the first heat sink 36L forming a substantially rectangular planar shape.
The control terminals 42U and 42L extend to the outside of the resin molding 32 from a side surface 32 d of the resin molding 32 on the side opposite to the side surface 32 c. According to this structure, a part of the main terminals 40 is sealed by the resin molding 32. The respective control terminals 42U and 42L are configured to extend in the Y-direction, and disposed in a line in the X-direction. The respective main terminals 40 are further bent at intermediate positions in the longitudinal direction to extend in the Z-direction from positions between the one surface 32 a and the rear surface 32 b.
The upper arm side control terminal 42U includes terminals for temperature sensing, current sensing, Kelvin emitter, power supply, test mode setting, input for generating driving signals for the gate electrode 20U by the driver IC 60U, and error check, in addition to the upper arm side gate terminal 28U. A part of the plurality of the control terminals 42U are connected to the upper arm side island 38U. According to this embodiment, the ten control terminals 42U are provided in total. Two of the control terminals 42U are connected to the island 38U. More specifically, the second and ninth control terminals 42U in the X-direction are connected such that the island 38U is sandwiched between both ends of the second and ninth control terminals 42U in the X-direction.
Similarly, the lower arm side control terminal 42L includes terminals for temperature sensing, current sensing, Kelvin emitter, power supply, test mode setting, input for generating driving signals for the gate electrode 20L by the driver IC 60L, and error check, in addition to the upper and lower arm side gate terminal 28L. A part of the plurality of control terminals 42L are connected to the lower arm side island 38L. According to this embodiment, the ten control terminals 42L are provided in total. Two of the control terminals 42L are connected to the island 38L. More specifically, the second and ninth control terminals 42L in the X-direction are connected such that the island 38L is sandwiched between the second and ninth control terminals 42L in the X-direction. The control terminals 42U and 42L connected to the islands 38U and 38L are hereinafter referred to as connection terminals 42 a.
Each of the islands 38U and 38L and the control terminals 42U and 42L has a substantially the same thickness. A component indicated by a reference number 56 in FIGS. 2, 5, and 6 is a suspension lead. The suspension lead 56 is a portion for connecting the first heat sinks 36U and 36L to an outer circumferential frame of the lead frame 34.
Each of the side surfaces 32 c and 32 d of the resin molding 32 includes a plurality of recesses 32 e. Each of the recesses 32 e of the side surface 32 c is provided in a portion between an adjoining pair of the main terminals 40. The recesses 32 e of the side surface 32 d are provided in a portion between the control terminals 42U and 42L, and each of portions between the control terminals 42U and 42L and the suspension leads 56. The recesses 32 e increase a creeping distance of insulation, for example.
The driver IC 60U is mounted on the upper arm side island 38U via a solder 58, for example. Similarly, the driver IC 60L is mounted on the lower arm side island 38L via the not-shown solder 58. The respective driver ICs 60U and 60L constitute the driver 104. Each of the driver ICs 60U and 60L includes a single-side electrode element such as MOSFET on a semiconductor chip to control driving of an element provided on the corresponding arm portion 10U or 10L. Each thickness of the driver ICs 60U and 60L is larger than each thickness of the arm portions 10U and 10L. The driver ICs 60U and 60L correspond to second semiconductor chips.
Electrodes (pads) are provided on the surfaces of the driver ICs 60U and 60L on the side opposite to the islands 38U and 38L. The bonding wires 62 are connected to these electrodes. The control electrodes 30U and 30L of the arm portions 10U and 10L are connected to the driver ICs 60U and 60L, respectively, via the bonding wires 62. The bonding wires 62 correspond to first bonding wires. The driver ICs 60U and 60L are connected to the control terminals 42U and 42L, respectively, via bonding wires 64. The bonding wires 64 correspond to second bonding wires.
As illustrated in FIGS. 4 and 6, the passive components 68 such as a chip resistance and a chip capacitor are mounted on the control terminals 42U and 42L via bonding materials 66. Each of the passive components 68 is so mounted as to electrically connect the plurality of control terminals 42U or 42L on the corresponding arm. According to this embodiment, each of the passive components 68 is a two-terminal chip component, and so mounted as to bridge the adjoining two control terminals 42U or 42L as illustrated in FIG. 6. More specifically, each of the passive components 68 is so mounted as to bridge a connection terminal 42 a and the control terminal 42U or 42L disposed adjacent to the connection terminal 42 a.
The passive components 68 are mounted to reduce noise transmitted from the control terminals 42U and 42L to the driver ICs 60U and 60L, for example. Accordingly, it is preferable that the passive components 68 mounted on the control terminal 42U and 42L are located in the vicinity of the driver ICs 60U and 60L.
Each of the passive components 68 has a small coating area of the bonding material 66. When a fluxless solder is used for the bonding material 66, the solder is difficult to wet-spread through an electrode of the passive component 68. Accordingly, the bonding material 66 may be made of a material providing bonding when heated in a second reflow step, such as a solder containing flux and Ag paste. The bonding material 66 of this type generates not a small amount of flux, outgas, fume, or other scatterings when heated. According to this embodiment, the bonding material 66 is constituted by a solder containing flux. On the other hand, the solders 44, 50, 52, and 58 of the semiconductor device 10 bonded before wire bonding are constituted by fluxless solders.
The semiconductor device 10 thus constructed is cooled by coolers each of which includes a refrigerant flow path. More specifically, coolers are disposed on both sides of the semiconductor device 10 in the Z-direction to cool the semiconductor device 10 from both the surfaces 32 a and 32 b sides. An insulation sheet is attached to each of the one surface 32 a and the rear surface 32 b of the resin molding 32 in a manner covering the exposed portions 36Ua, 36La, 48Ua, and 48La. The semiconductor device 10 is sandwiched between the coolers via the insulation sheets.
A structure of an area around the islands 38U and 38L is hereinafter described with reference to FIGS. 4, 7, and 8.
The lead frame 34 is formed by punching a metal plate into a predetermined shape, and bending a part of the punched shape. More specifically, the islands 38U and 38L are depressed to reduce a step formed between the control electrode surfaces of the arm portions 10U and 10L and the electrode surfaces of the driver ICs 60U and 60L in the Z-direction as much as possible.
According to a comparison made in view of the position of the rear surface 34 b in the Z-direction, the islands 38U and 38L are depressed such that the portions of the islands 38U and 38L are located closer to the one surface 32 a of the resin molding 32 than the portions of the first heat sinks 36U and 36L and the passive component mounting portions of the control terminals 42U and 42L are. More specifically, the portions of the islands 38U and 38L on the rear surface 34 b are depressed toward the one surface 32 a of the resin molding 32 with respect to the portions of the first heat sinks 36U and 36L and the passive component mounting portions of the control terminals 42U and 42L.
In particular, in this embodiment, the control electrode surfaces of the arm portions 10U and 10L are substantially flush with the electrode surfaces of the driver ICs 60U and 60L in the Z-direction as a result of bending as can be seen from illustration of the upper arm side in FIG. 4 by way of example. Moreover, each of the connection terminals 42 a includes a bent portion 70 between the connection end of the connection terminal 42 a connecting with the islands 38U and 38L and the passive component mounting portion of the connection terminal 42 a to depress the islands 38U and 38L toward the one surface 32 a as illustrated in FIGS. 7 and 8.
The passive components 68 are mounted on the control terminals 42U and 42L on the one surface 34 a of the lead frame 34. The distance between the one surface 34 a of the lead frame 34 and the one surface 32 a of the resin molding 32 in the Z-direction is determined such that a distance L1 at the passive component mounting portions of the control terminals 42U and 42L is longer than a distance L2 at the islands 38U and 38L. In this case, a sufficient clearance is securable between the passive components 68 and the one surface 32 a of the resin molding 32 even in the structure of the passive components 68 mounted on the one surface 34 a.
A method for manufacturing the semiconductor device 10 described above is hereinafter described with reference to FIGS. 9 to 14. FIG. 13 does not show the bonding wires 62 and 64.
Initially, respective elements constituting the semiconductor device 10 are prepared. More specifically, the respective arm portions 10U and 10L, the lead frame 34, the terminals 46U and 46L, the second heat sinks 48U and 48L, the driver ICs 60U and 60L, and the passive components 68 are prepared.
In this case, the lead frame 34 to be prepared includes the first heat sinks 36U and 36L, the islands 38U and 38L, the main terminals 40, and the control terminals 42U and 42L as one piece body as illustrated in FIGS. 9 and 10. In addition, the lead frame 34 to be prepared is bent such that the portions of the islands 38U and 38L are located closer to the one surface 32 a of the resin molding 32 on the rear surface 34 b than the portions of the first heat sinks 36U and 36L and the passive component mounting portions of the control terminals 42U and 42L are. In other words, the lead frame 34 to be prepared is bent such that steps in the Z-direction between the control electrode surfaces of the arm portions 10U and 10L and the electrode surfaces of the driver ICs 60U and 60L become the smallest possible lengths. In particular, in this embodiment, the lead frame 34 to be prepared is bent such that substantially no step is produced between these portions.
The lead frame 34 having this structure is formed by a bending process in which the islands 38U and 38L are pressed downward from the rear surface 34 b with respect to the first heat sinks 36U and 36L and the passive component mounting portions of the control terminals 42U and 42L. According to this embodiment, the lead frame 34 having this structure is formed by bending the portions of the connection terminals 42 a between the connection ends connected with the islands 38U and 38L and the passive component mounting portions. The bent portions of the connection terminals 42 a become the bent portions 70 discussed above. A component indicated by a reference number 72 in FIG. 9 is an outer circumferential frame of the lead frame 34, while a component indicated by a reference number 74 in FIG. 9 is a tie-bar.
Subsequently, a first reflow step is performed. In the first reflow step, reflow is carried out for the solders 44 interposed between the respective arm portions 10U and 10L and the corresponding first heat sinks 36U and 36L, and the solders 50 interposed between the respective arm portions 10U and 10L and the corresponding terminals 46U and 46L. In addition, reflow is also carried out for the solders 58 interposed between the respective driver ICs 60U and 60L and the corresponding islands 38U and 38L. As a result, a connection body 76 constituted by the lead frame 34, the arm portions 10U and 10L, the terminals 46U and 46L, and the respective driver ICs 60U and 60L as one piece body is produced as illustrated in FIG. 9.
According to this embodiment, the solders 50 and 52 are soldered beforehand (soldering beforehand) on both the surfaces of each of the terminals 46U and 46L in the preparatory step discussed above. A sufficiently large amount of the solders 52 are disposed to absorb tolerance variations in the height of the semiconductor device 10.
Subsequently, the solder 44 having a foil shape, for example, is disposed on each of the portions of the first heat sinks 36U and 36L on the rear surface 34 b of the lead frame 34. The arm portions 10U and 10L are disposed on the solders 44 such that the collector electrodes 16U and 16L face the solders 44. The terminals 46U and 46L are further disposed in such a condition as to face the emitter electrodes 18U and 18L of the arm portions 10U and 10L, respectively. On the other hand, the solder 58 having a foil shape, for example, is disposed on each of the portions of the islands 38U and 38L on the rear surface 34 b of the lead frame 34. The driver ICs 60U and 60 are disposed on the solders 58. Reflow is carried out for the solders 44, 50, 52, and 58 in this laminated state. Each of the solders 52 has an elevated shape with a top located at the center of the terminal 46U or 46L by surface tension before the second heat sink 48U or 48L as a connection target is formed.
In this case, each or the solders 44, 50, 52, and 58 is constituted by a fluxless solder. Accordingly, scattering such as flux, outgas, and fume are not generated during the first reflow step. It is preferable that each of the solders 58 is constituted by a solder not fused during a second reflow step described below. According to this structure, a drop of the driver ICs 60U and 60L is more securely avoidable at the time of reverse of the connection body 76. However, each of the solders 58 may be constituted by a solder fused during the second reflow step similarly to the solders 44, 50, and 52. Even fused, the solders 58 retain high viscosity. In addition, the solders 58 are supported by the bonding wires 62. Accordingly, the solders 58 of this type similarly prevent a drop of the driver ICs 60U and 60L.
Subsequently, a wire bonding step is performed. As illustrated in FIGS. 11 and 12, the control electrodes 30U and 30L of the arm portions 10U and 10L are connected to the respective electrodes of the driver ICs 60U and 60L via the bonding wires 62. Similarly, the electrodes of the driver ICs 60U and 60L are connected to the respective control terminals 42U and 42L via the bonding wires 64.
According to the structure including the lead frame 34 constructed as above, the steps between the control electrode surfaces of the arm portions 10U and 10L and the electrode surfaces of the driver ICs 60U and 60L in the Z-direction decrease. In particular, in this embodiment, the control electrode surfaces of the arm portions 10U and 10L are substantially flush with the electrode surfaces of the driver ICs 60U and 60L in the Z-direction. Accordingly, connection failure of the bonding wires 62 due to the steps decreases. Moreover, in a state of substantially no step produced in the Z-direction, the arm portions 10U and 10L are allowed to come close to the driver ICs 60U and 60L in the Y-direction even when a connection angle of each of the wires 62 is set to an ideal range approximately from 40° to 50°. Accordingly, the size of the semiconductor device 10 does not increase in the Y-direction.
Furthermore, scatterings such as flux, outgas, and fume are not produced during the first reflow step. Accordingly, connection failure of the bonding wires 62 and 64 also decreases in this point.
Subsequently, the second reflow step is performed. In the second reflow step, the connection body 76 is disposed on the second heat sinks 48U and 48L such that the terminals 46U and 46L face the respective second heat sinks 48U and 48L via the solders 52 as illustrated in FIGS. 13 and 14. More specifically, the connection body 76 is reversed from the state of the first reflow step (and wire bonding step), and disposed on the second heat sinks 48U and 48L. In this case, a solder 54 c is disposed on the protrusion portion 54 a constituting the relay portion 54, and the protrusion portion 54 b is overlapped on the solder 54 c. In addition, the bonding material 66 such as a solder containing flux is disposed at a predetermined value of each of the control terminals 42U and 42L, and the passive components 68 are disposed on the bonding materials 66.
Thereafter, reflow is carried out for the solders 44, 50, 52, and 54 c. In this case, a not-shown jig may be used to connect the connection body 76 and the second heat sinks 48U and 48L while maintaining predetermined distances between the first heat sinks 36U and 36L and the exposed portions of the second heat sinks 48U and 48L. According to this embodiment, reflow is also carried out for the bonding materials 66 to mount the passive components 68 on the portions of the control terminals 42U and 42L on the one surface 34 a of the lead frame 34. This reflow may be carried out with pressure applied from the first heat sinks 36U and 36L side.
Subsequently, a molding step is performed to mold the resin molding 32. While not shown in the figures, a connection structure obtained in the second reflow step is disposed in a not-shown metal mold. Thereafter, resin is injected into a cavity of the metal mold to mold the resin molding 32. According to this embodiment, the resin molding 32 is molded from epoxy resin by transfer molding.
After the molding step, a cutting step is performed as necessary. Thereafter, the outer circumferential frame 72 and the tie-bar 74 of the lead frame 34 are removed to produce the semiconductor device 10. The unnecessary portions may be removed before the cutting step. The cutting step may include cutting the one surface 32 a and the rear surface 32 b of the resin molding 32 to smooth the surfaces 32 a and 32 b, or cutting the heat sinks 36U, 36L, 48U, and 48L as well as the resin molding 32 to smooth the one surface 32 a and the rear surface 32 b together with the exposed portions 36Ua, 36La, 48Ua, and 48La.
According to this embodiment, the cutting step is performed after the molding step. In this case, the heat sinks 36U, 36L, 48U, and 48L are cut simultaneously with the cutting of the resin molding 32 to smooth the one surface 32 a and the rear surface 32 b together with the exposed portions 36Ua, 36La, 48Ua, and 48La. Accordingly, the exposed portions 36Ua and 36La become substantially flush with the one surface 32 a, while the exposed portions 48Ua and 48La become substantially flush with the rear surface 32 b.
Advantageous effects of the semiconductor device 10 and the method for manufacturing the semiconductor device 10 are hereinafter described.
There are shape limitations to the bonding wires 62. Connection failure decreases when the connection angle is set in a range approximately from 40° to 50°. When a large step is produced between the control electrode surfaces of the arm portions 10U and 10L and the electrode surfaces of the driver ICs 60U and 60L in the Z-direction, the control electrode surfaces and the electrode surfaces need to be disposed away from each other in the Y-direction for connection at a predetermined connection angle. In this case, the size of the semiconductor device 10 in the Y-direction increases.
According to this embodiment, however, the lead frame 34 is bent such that the portions of the islands 38U and 38L on the rear surface 34 b of the lead frame 34 are located closer to the one surface 32 a of the resin molding 32 than the portions of the heat sinks 36U and 36L are. This structure positions the connection surfaces of the bonding wires 62 close to the arm portions 10U and 10L and the driver ICs 60U and 60L in the Z-direction. In other words, the steps produced between the control electrode surfaces of the arm portions 10U and 10L and the electrode surfaces of the driver ICs 60U and 60L decrease. Accordingly, the size of the semiconductor device 10 in the Y-direction does not increase.
In addition, the control electrode surfaces of the arm portions 10U and 10L are located close to the electrode surfaces of the driver ICs 60U and 60L in the Z-direction, and thus failure at the time of connection of the bonding wires 62 also decreases. Furthermore, the control electrode surfaces of the arm portions 10U and 10L are located close to the electrode surfaces of the driver ICs 60U and 60L in both the Z-direction and the Y-direction, and thus the connection length of the bonding wires 62 decreases. Accordingly, failure caused when the bonding wires 62 are pressed by resin during the forming step decreases.
The driver ICs 60U and 60L are mounted on the rear surface 34 b of the lead frame 34, while the passive components 68 are mounted on the one surface 34 a. Accordingly, connection failure of the bonding wires 62 and 64 caused by scatterings such as flux decreases even when the bonding materials 66 of the passive components 68 are made of solder containing flux, Ag paste or the like.
The lead frame 34 used herein is bent such that the portions of the islands 38U and 38L on the rear surface 34 b of the lead frame 34 are located closer to the one surface 32 a of the resin molding 32 than the passive component mounting portions of the control terminals 42U and 42L are. In this case, the distance between the one surface 34 a of the lead frame 34 and the one surface 32 a of the resin molding 32 in the Z-direction is determined such that the length L1 at the passive component mounting portions of the control terminals 42U and 42L becomes longer than the distance L2 at the islands 38U and 38L. According to this structure, a predetermined clearance is securable between the one surface 32 a and the passive components 68. Accordingly, exposure of the passive components 68 from the resin molding 32, and generation of entrainment voids or the like resulting from decrease in the thickness of resin covering the passive components 68 decrease. This structure therefore allows mounting of the passive components 68 on the one surface 34 a side of the lead frame 34.
Particularly in case of this embodiment, the one surface 34 a of the lead frame 34 is positioned above the rear surface 34 b by reverse of the connection body 76 in the second reflow step. This structure allows positioning of the passive components 68 on the control terminals 42U and 42L of the reversed connection body 76 on the one surface 34 a via the bonding materials 66. Mounting of the passive components 68 is executed by heating during the second reflow step. Accordingly, mounting of the passive components 68 is achievable in the second reflow step without the necessity of an additional manufacturing step. Moreover, the passive components 68 are mounted after the wire bonding step, and thus connection failure of the bonding wires 62 and 64 caused by scatterings such as flux is more securely avoidable.
The control electrode surfaces of the arm portions 10U and 10L are substantially flush with the electrode surfaces of the driver ICs 60U and 60L in the Z-direction. In this case, substantially no step is produced between the connection surfaces of the bonding wires 62, and thus increase in size is more effectively avoidable. Moreover, connection failure of the bonding wires 62 caused by steps between these portions more effectively decreases. Furthermore, failure caused when the bonding wires 62 are pressed by resin during the molding step more effectively decreases.
When the electrode surfaces of the driver ICs 60U and 60L are located closer to the second heat sinks 48U and 48L than the control electrode surfaces of the arm portions 10U and 10L are with large steps produced between these surfaces, the bonding wires 62 may contact the second heat sinks 48U and 48L and cause connection failure. For avoiding this difficulty, large clearances between the second heat sinks 48U and 48L and the arm portions 10U and 10L are needed. In this case, size reduction in the Z-direction becomes difficult. According to this embodiment, however, the control electrode surfaces of the arm portions 10U and 10L are substantially flush with the electrode surfaces of the driver ICs 60U and 60L in the Z-direction. Accordingly, the size in the Z-direction decreases while avoiding contact between the bonding wires 62 and the second heat sinks 48U and 48L.
According to this embodiment, the exposed portions 36Ua and 36La of the first heat sinks 36U and 36L are exposed from the one surface 32 a of the resin molding 32. Accordingly, heat generated from the arm portions 10U and 10L is efficiently radiated to the outside of the semiconductor device 10, Particularly in case of this embodiment, the exposed portions 36Ua and 36La are substantially flush with the one surface 32 a, while the exposed portions 48Ua and 48La are substantially flush with the rear surface 32 b. Moreover, the exposed portions 36Ua and 36La are substantially in parallel with the exposed portions 48Ua and 48La. Accordingly, efficient heat radiation is achievable for the coolers disposed on both sides of the semiconductor device 10.
According to this embodiment, only a part of the connection terminals 42 a of the plurality of control terminals 42U and 42L are connected to the islands 38U and 38L. Each of the connection terminals 42 a includes the bent portion 70 between the connection end of the connection terminal 42 a connecting with the island 38U or 38L and the passive component mounting portion for mounting the passive component 68 to depress the island 38U or 38L. For example, when bent portions are formed in portions different from the control terminals 42U and 42L of the lead frame 34, such as suspension leads, the control terminals 42U and 42L and the first heat sinks 36U and 36L are required to be disposed in portions other than the suspension leads. According to this embodiment, however, the foregoing structure of the semiconductor device 10 decreases the size of the semiconductor device 10.
While a preferred embodiment of the present disclosure has been described, the present disclosure is not limited to this embodiment in any sense. Various modifications may be made without departing from the scope of the present disclosure.
According to this embodiment, the semiconductor device 10 includes the terminals 46U and 46L. However, the terminals 46U and 46L may be eliminated. For example, protrusions corresponding to the terminals may be provided on the second heat sinks 48U and 48L.
According to this embodiment, the main terminals 40 include the two output terminals 40 o 1 and 40 o 2. However, the main terminals 40 may include only either the output terminal 40 o 1 or 40 o 2, i.e., only a single output terminal.
Discussed in this embodiment has been an example of a two-in-one package which seals the two arm portions 10U and 10L of the six arm portions 10U and 10L of the three-phase inverter by using the resin molding 32. However, a one-in-one package which seals the single arm portion 10U or 10L by the resin molding 32, or a six-in-one package which seals the six arm portions 10U and 10L by the resin molding 32 may be adopted.
According to this embodiment, the heat sinks 36U, 36L, 48U, and 48L include the exposed portions 36Ua, 36La, 48Ua, and 48La, respectively. However, a structure in which the heat sinks 36U, 36L, 48U, and 48L are completely sealed by the resin molding 30, i.e., a structure in which the exposed portions 36Ua, 36La, 48Ua, and 48La are covered with the resin molding 32 may be adopted.

Claims (7)

The invention claimed is:
1. A semiconductor device comprising:
a single lead frame that includes
one surface and a rear surface opposite to the one surface, and further includes
a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink;
a first semiconductor chip that includes
a first main electrode arranged at a facing surface of the first semiconductor chip facing the rear surface, and further includes
a control electrode and a second main electrode, the second main electrode paired with the first main electrode, the control electrode and the second main electrode being arranged at a surface of the first semiconductor chip opposite to the facing surface, the first main electrode being connected to the first heat sink;
a second heat sink arranged opposed to the surface of the first semiconductor chip at which the control electrode is arranged, the second heat sink being connected to the second main electrode;
a second semiconductor chip fixed to the island at the rear surface to control driving of the first semiconductor chip, the second semiconductor chip being connected to the control electrode through a first bonding wire, and connected to the control terminal through a second bonding wire;
a passive component mounted on a passive component mounting portion of the control terminal through a bonding material; and
a resin molding that includes a surface at the first heat sink side, and a surface at the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip, the resin molding integrally sealing the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion, wherein:
a part of the single lead frame is bent with respect to a remaining part of the single lead frame such that a surface of the island on which the second semiconductor chip is mounted is located closer to the first heat sink side surface of the resin molding at the rear surface than a surface of the first heat sink on which the first semiconductor chip is mounted and the passive component mounting portion of the control terminal; and
the passive component is mounted on the passive component mounting portion of the control terminal at the one surface.
2. The semiconductor device according to claim 1, wherein:
the control terminal is included in a plurality of control terminals;
a part of the plurality of control terminals are connected to the island; and
the control terminal connected to the island includes a bent portion between a connection end of the control terminal connected to the island, and the passive component mounting portion.
3. The semiconductor device according to claim 1,
wherein a connection surface of the first semiconductor chip connected to the first bonding wire and a connection surface of the second semiconductor chip connected to the first bonding wire are located in an identical plane.
4. The semiconductor device according to claim 1,
wherein a part of the first heat sink at the one surface is exposed from the resin molding.
5. A method for manufacturing a semiconductor device, the semiconductor device including:
a lead frame that includes
one surface and a rear surface opposite to the one surface, and further includes
a first heat sink, an island, and a control terminal, the island and the control terminal being separated from the first heat sink;
a first semiconductor chip that includes
a first main electrode arranged at a facing surface of the first semiconductor chip facing the rear surface, and further includes
a control electrode and a second main electrode, the second main electrode paired with the first main electrode, the control electrode and the second main electrode being arranged at a surface of the first semiconductor chip opposite to the facing surface, the first main electrode being connected to the first heat sink through solder;
a second heat sink arranged opposed to the surface of the first semiconductor chip at which the control electrode is arranged, the second heat sink being connected to the second main electrode through solder;
a second semiconductor chip fixed to the island at the rear surface to control driving of the first semiconductor chip, the second semiconductor chip connected to the control electrode through a first bonding wire, and connected to the control terminal through a second bonding wire;
a passive component mounted on a passive component mounting portion of the control terminal through a bonding material; and
a resin molding that includes a front surface at the first heat sink side, and a rear surface at the second heat sink side in a lamination direction of the first heat sink, the second heat sink, and the first semiconductor chip, the resin molding integrally sealing the first semiconductor chip, the second semiconductor chip, the passive component, at least a part of the first heat sink and the second heat sink, the first bonding wire, the second bonding wire, the island, and a part of the control terminal including the passive component mounting portion,
the method comprising:
using the lead frame, which is bent, such that a surface of the island on which the second semiconductor chip is mounted is located closer to the first heat sink side front surface of the resin molding at the rear surface than a surface of the first heat sink on which the first semiconductor chip is mounted and the passive component mounting portion of the control terminal;
forming a connection body that integrates the lead frame and the first semiconductor chip by reflow of the solder between the first heat sink and the first semiconductor chip, and fixing the second semiconductor chip at the island;
connecting the control electrode and the second semiconductor chip through the first bonding wire after fixing the second semiconductor chip, and further connecting the second semiconductor chip and the control terminal through the second bonding wire;
reversing the connection body and positioning the reversed connection body at the second heat sink after connecting the second semiconductor chip through the first bonding wire and the second bonding wire, carrying out reflow of the solder between the second heat sink and the connection body, and mounting the passive component on the passive component mounting portion of the control terminal at the one surface through the bonding material; and
molding the resin molding after mounting the passive component.
6. The method for manufacturing the semiconductor device according to claim 5,
wherein the lead frame is bended such that connection surface of the first semiconductor chip connected to the first bonding wire and connection surface of the second semiconductor chip connected to the first bonding wire are located in an identical plane.
7. The method for manufacturing the semiconductor device according to claim 5, further comprising:
exposing a part of the first heat sink at the one surface from the resin molding.
US15/128,126 2014-03-26 2015-03-23 Semiconductor device and method for manufacturing same Active US9935074B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014064193A JP6256145B2 (en) 2014-03-26 2014-03-26 Semiconductor device and manufacturing method thereof
JP2014-64193 2014-03-26
PCT/JP2015/001622 WO2015146130A1 (en) 2014-03-26 2015-03-23 Semiconductor device and method for manufacturing same

Publications (2)

Publication Number Publication Date
US20170103962A1 US20170103962A1 (en) 2017-04-13
US9935074B2 true US9935074B2 (en) 2018-04-03

Family

ID=54194680

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/128,126 Active US9935074B2 (en) 2014-03-26 2015-03-23 Semiconductor device and method for manufacturing same

Country Status (5)

Country Link
US (1) US9935074B2 (en)
JP (1) JP6256145B2 (en)
CN (1) CN106133906B (en)
DE (1) DE112015001398B4 (en)
WO (1) WO2015146130A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595325B2 (en) * 2015-12-04 2019-10-23 トヨタ自動車株式会社 Semiconductor device
JP6358296B2 (en) * 2016-08-05 2018-07-18 トヨタ自動車株式会社 Manufacturing method of semiconductor module
JP6610568B2 (en) * 2017-01-16 2019-11-27 株式会社デンソー Semiconductor device
JP6512231B2 (en) * 2017-01-27 2019-05-15 トヨタ自動車株式会社 Semiconductor device
JP6874467B2 (en) * 2017-03-29 2021-05-19 株式会社デンソー Semiconductor devices and their manufacturing methods
US10607857B2 (en) 2017-12-06 2020-03-31 Indium Corporation Semiconductor device assembly including a thermal interface bond between a semiconductor die and a passive heat exchanger
JP7147187B2 (en) * 2018-03-06 2022-10-05 株式会社デンソー semiconductor equipment
US10991670B2 (en) * 2018-09-28 2021-04-27 Semiconductor Components Industries, Llc Semiconductor device assemblies including spacer with embedded semiconductor die
JP7109347B2 (en) * 2018-12-03 2022-07-29 三菱電機株式会社 Semiconductor equipment and power conversion equipment
JP7095632B2 (en) * 2019-03-11 2022-07-05 株式会社デンソー Semiconductor equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199986A1 (en) * 2004-03-11 2005-09-15 Advanced Semiconductor Engineering, Inc. Leadframe with die pad
JP2006032470A (en) 2004-07-13 2006-02-02 Denso Corp Electronic device
US20060219008A1 (en) * 2005-03-31 2006-10-05 Fujitsu Media Devices Limited Angular velocity sensor
JP2008027994A (en) 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2008135613A (en) 2006-11-29 2008-06-12 Denso Corp Manufacturing method of semiconductor device
JP2008218688A (en) 2007-03-05 2008-09-18 Denso Corp Semiconductor device
US20100193920A1 (en) * 2009-01-30 2010-08-05 Infineon Technologies Ag Semiconductor device, leadframe and method of encapsulating
US20110310585A1 (en) * 2010-06-21 2011-12-22 Hitachi Automotive Systems, Ltd. Power Semiconductor Device and Power Conversion Device
US20120175757A1 (en) 2011-01-12 2012-07-12 Fuji Electric Co., Ltd. Method of manufacturing semiconductor apparatus, the semiconductor apparatus, and ignitor using the semiconductor apparatus
US20140210062A1 (en) * 2013-01-28 2014-07-31 Texas Instruments Incorporated Leadframe-Based Semiconductor Package Having Terminals on Top and Bottom Surfaces

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037589B2 (en) 2000-03-07 2008-01-23 三菱電機株式会社 Resin-encapsulated power semiconductor device
US6744121B2 (en) * 2001-04-19 2004-06-01 Walton Advanced Electronics Ltd Multi-chip package
JP5163069B2 (en) 2007-11-20 2013-03-13 株式会社デンソー Semiconductor device
US8497572B2 (en) 2010-07-05 2013-07-30 Denso Corporation Semiconductor module and method of manufacturing the same
JP2012069640A (en) * 2010-09-22 2012-04-05 Toshiba Corp Semiconductor device and power semiconductor device
CN102157500A (en) * 2011-03-04 2011-08-17 南通富士通微电子股份有限公司 Semiconductor package
WO2012127696A1 (en) * 2011-03-24 2012-09-27 三菱電機株式会社 Power semiconductor module and power unit device
JP5985877B2 (en) * 2012-04-27 2016-09-06 ラピスセミコンダクタ株式会社 Semiconductor device and measuring instrument

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199986A1 (en) * 2004-03-11 2005-09-15 Advanced Semiconductor Engineering, Inc. Leadframe with die pad
JP2006032470A (en) 2004-07-13 2006-02-02 Denso Corp Electronic device
US20060219008A1 (en) * 2005-03-31 2006-10-05 Fujitsu Media Devices Limited Angular velocity sensor
JP2008027994A (en) 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2008135613A (en) 2006-11-29 2008-06-12 Denso Corp Manufacturing method of semiconductor device
JP2008218688A (en) 2007-03-05 2008-09-18 Denso Corp Semiconductor device
US20100193920A1 (en) * 2009-01-30 2010-08-05 Infineon Technologies Ag Semiconductor device, leadframe and method of encapsulating
US20110310585A1 (en) * 2010-06-21 2011-12-22 Hitachi Automotive Systems, Ltd. Power Semiconductor Device and Power Conversion Device
US20120175757A1 (en) 2011-01-12 2012-07-12 Fuji Electric Co., Ltd. Method of manufacturing semiconductor apparatus, the semiconductor apparatus, and ignitor using the semiconductor apparatus
US20140210062A1 (en) * 2013-01-28 2014-07-31 Texas Instruments Incorporated Leadframe-Based Semiconductor Package Having Terminals on Top and Bottom Surfaces

Also Published As

Publication number Publication date
JP6256145B2 (en) 2018-01-10
CN106133906B (en) 2018-11-09
JP2015185832A (en) 2015-10-22
DE112015001398T5 (en) 2016-12-22
US20170103962A1 (en) 2017-04-13
WO2015146130A1 (en) 2015-10-01
CN106133906A (en) 2016-11-16
DE112015001398B4 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
US9935074B2 (en) Semiconductor device and method for manufacturing same
US11075190B2 (en) Semiconductor device and semiconductor device fabrication method
WO2013121491A1 (en) Semiconductor device and method for manufacturing same
US9831160B2 (en) Semiconductor device
JP6319137B2 (en) Semiconductor device and manufacturing method thereof
US20170110341A1 (en) Semiconductor device manufacturing method
EP2871676B1 (en) Semiconductor device
CN110178304B (en) Semiconductor device with a plurality of semiconductor chips
CN103370788A (en) Semiconductor device and method for manufacturing same
JP2007165714A (en) Semiconductor device
JP7100569B2 (en) Manufacturing method of semiconductor modules, power converters and semiconductor modules
CN114175234A (en) Semiconductor device and electronic device
JP7266508B2 (en) semiconductor equipment
JP2015144216A (en) Semiconductor device and manufacturing method of the same
CN110959191A (en) Semiconductor device with a plurality of semiconductor chips
US10615131B2 (en) Semiconductor device with high quality and reliability wiring connection, and method for manufacturing the same
KR101644913B1 (en) Semiconductor package by using ultrasonic welding and methods of fabricating the same
EP2634799A2 (en) Semiconductor device and method for manufacturing semiconductor device
JP5381251B2 (en) Semiconductor device
JP6787118B2 (en) Manufacturing methods for semiconductor devices, power converters, lead frames, and semiconductor devices
WO2021065736A1 (en) Semiconductor device
WO2023175861A1 (en) Semiconductor device
JP7006015B2 (en) Manufacturing method of semiconductor module
JP2022067902A (en) Electronic device and manufacturing method for electronic device
JP2021061393A (en) Semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OOMAE, SYOICHIROU;IWABUCHI, AKIRA;SIGNING DATES FROM 20160829 TO 20160909;REEL/FRAME:039874/0660

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4