US9708434B2 - Multigraft copolymers as superelastomers - Google Patents
Multigraft copolymers as superelastomers Download PDFInfo
- Publication number
- US9708434B2 US9708434B2 US13/877,229 US201113877229A US9708434B2 US 9708434 B2 US9708434 B2 US 9708434B2 US 201113877229 A US201113877229 A US 201113877229A US 9708434 B2 US9708434 B2 US 9708434B2
- Authority
- US
- United States
- Prior art keywords
- glassy
- copolymer
- strain
- branch points
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 *[O-].C=CC1=CC=C([Si](C)(Cl)Cl)C=C1.CCC(C)(C[O-])C(C)C.S.[K+].[K+].[Li+]P=[SH-].[Li]C(C)CC Chemical compound *[O-].C=CC1=CC=C([Si](C)(Cl)Cl)C=C1.CCC(C)(C[O-])C(C)C.S.[K+].[K+].[Li+]P=[SH-].[Li]C(C)CC 0.000 description 1
- CTQCUJSUPZJGHO-RWUXNGIBSA-N C=CC(C)CC/C=C/CC.CC/C=C/CCC(C)CC[Si](C)(C)Cl.C[SiH](C)Cl Chemical compound C=CC(C)CC/C=C/CC.CC/C=C/CCC(C)CC[Si](C)(C)Cl.C[SiH](C)Cl CTQCUJSUPZJGHO-RWUXNGIBSA-N 0.000 description 1
- DBYMCNQDZDUVTM-YIKKBJQVSA-N CC/C=C(\C)CC.CC/C=C(\C)CC Chemical compound CC/C=C(\C)CC.CC/C=C(\C)CC DBYMCNQDZDUVTM-YIKKBJQVSA-N 0.000 description 1
- OWEJKUXIXHLOKV-UHFFFAOYSA-N CCC(C)C[C-](C1=CC=CC=C1)C1=CC=CC([C-](CC(C)CC)C2=CC=CC=C2)=C1.[LiH].[LiH] Chemical compound CCC(C)C[C-](C1=CC=CC=C1)C1=CC=CC([C-](CC(C)CC)C2=CC=CC=C2)=C1.[LiH].[LiH] OWEJKUXIXHLOKV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C08K3/0033—
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/003—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/003—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/04—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J151/00—Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
- C09J151/003—Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J151/00—Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
- C09J151/04—Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to rubbers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31645—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31667—Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/3188—Next to cellulosic
- Y10T428/31895—Paper or wood
- Y10T428/31899—Addition polymer of hydrocarbon[s] only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
Definitions
- Elastomers comprising multigraft copolymers having randomly spaced branch points, for example comprising a polydiene backbone and randomly spaced polystyrene grafts, are described. Also described are methods of synthesizing and characterizing the copolymers.
- the copolymers can be used as superelastomers, for example, in adhesives and/or as components in a variety of products, including medical implants.
- TPEs Thermoplastic elastomers
- Thermoplastic elastomers represent an important segment of the worldwide elastomer market due to their combination of mechanical properties comparable to vulcanized rubbers and straightforward processing similar to that of thermoplastics. See Legge et al., Thermoplastic Elastomers, Kunststoff: Hanser, 1987. TPEs are also of interest because of their capacity to self-assemble to form ordered phase separated structures having nanoscale dimensions, with morphologies and properties tunable by controlling the volume fractions of hard and soft segments. See Rader, C. P., in Modern Plastics Encyclopedia, Volume 72, New York: McGraw-Hill, 1996.
- Linear ABA triblock copolymers including styrenic block copolymers (SBC), are often usable as TPEs.
- SBCs include, for example, the SIS and SBS triblock copolymers, where S represents glassy polystyrene (PS) end-blocks and I and B represent rubbery polyisoprene (PI) and polybutadiene (PBD) mid-blocks, respectively.
- PS glassy polystyrene
- I and B represent rubbery polyisoprene
- PBD polybutadiene
- Star block copolymers e.g., star polymers where each arm is a block copolymer, having PS outer blocks and PI inner blocks, have been reported as having improved tensile strength relative to linear triblocks of comparable composition and segment molecular weights. See Bi and Fetters, Macromolecules, 9, 732-742 (1976).
- Commercial star block copolymers based on S/I and S/B compositions have been commercialized by companies such as the Phillips Petroleum Company (now part of ConocoPhillips Company, Houston, Tex., United States of America), and BASF (Ludwigshafen, Germany).
- Graft copolymers comprising PI backbones and regularly spaced PS side chains attached to the backbone at branch points have also been shown to have elastomeric properties. See, e.g., Uhrig and Mays, Macromolecules, 35, 7182-7190 (2002); and Mays et al., Macromol. Symp., 215, 111-126 (2004). However, the synthesis of regular spaced copolymers can be challenging. See Uhrig and Mays, Macromolecules, 35, 7182-7190 (2002).
- the presently disclosed subject matter provides a thermoplastic elastomer composition
- a thermoplastic elastomer composition comprising a random multigraft copolymer comprising a rubbery polymeric backbone and a plurality of glassy polymeric grafts, wherein each of the plurality of glassy polymeric grafts is attached to the rubbery polymeric backbone at one of a plurality of randomly spaced branch points.
- the composition further comprises at least one additional component selected from the group comprising an organic filler, an inorganic filler, a wax, a tackifier, a plasticizer, an anti-oxidant, a stabilizer, a decorative agent, a biocide, a flame retardant, an anti-static agent, a therapeutic agent and combinations thereof.
- the decorative agent is a pigment or a dye.
- the random multigraft copolymer has a residual strain of about 55% or less at an applied strain of about 500% or more. In some embodiments, the random multigraft copolymer has a residual strain of about 40% or less at an applied strain of about 300% or more.
- the random multigraft copolymer has a strain at break of 1200% or greater. In some embodiments, the random multigraft copolymer has a strain at break of at least 1500%.
- the random multigraft copolymer has a percent strain at break that increases linearly with the number of branch points.
- the random multigraft copolymer comprises an architecture selected from the group comprising a trifunctional comb architecture, a tetrafunctional centipede architecture, and a hexafunctional barbwire architecture.
- the rubbery polymeric backbone comprises a polymeric material selected from the group comprising polyisoprene, hydrogenated polyisoprene, polybutadiene, hydrogenated polybutadiene, polyisobutylene, butyl rubber, poly(butadiene-co-acrylonitrile), a silicone rubber (e.g., polydimethylsiloxane or another siloxane polymer), acrylic rubber, polychloroprene, ethylene propylene copolymer, ethylene/acrylic elastomer, urethane rubber, and combinations thereof.
- the glassy polymeric grafts comprise a polymer selected from the group comprising polystyrene, hydrogenated polystyrene, poly( ⁇ -methylstyrene) or another glassy styrenic polymer or hydrogenated derivative thereof, polyethylene, urethane hard domain, polyester, polymethylmethacrylate or another glassy acrylic polymer, polyvinyl chloride, poly(vinylpyridine), polycarbonate, nylon, polyethylene terephthalate, polycyclohexadiene, hydrogenated polycyclohexadiene, and combinations thereof.
- the rubbery polymeric material is polyisoprene and the glassy polymeric material is polystyrene.
- the random multigraft copolymer has a volume fraction of glassy polymeric grafts of between about 10% and about 50%. In some embodiments, the volume fraction of glassy polymeric grafts is between about 14% and about 26%. In some embodiments, the random multigraft copolymer comprises at least three branch points. In some embodiments, the random multigraft copolymer has a molecular weight of between about 400,000 and about 600,000.
- the presently disclosed subject matter provides a fabricated article comprising a thermoplastic elastomer composition comprising a random multigraft copolymer comprising a rubbery polymeric backbone and a plurality of glassy polymeric grafts, wherein each of the plurality of glassy polymeric grafts is attached to the rubbery polymeric backbone at one of a plurality of randomly spaced branch points.
- the fabricated article is prepared by injection molding, compression molding, extrusion, or calendaring.
- the fabricated article is selected from the group comprising automotive interior or exterior parts, shoe soles or other shoe parts, elastic waistbands, diaper backings or attachments, adhesive tapes, membranes, balloons, bags, tubing, roofing tiles, medical devices, and electronic wiring coatings or other electronic device components.
- the fabricated article is a medical device selected from a balloon catheter and a stent.
- the article is a balloon catheter, wherein at least the inflatable portion of the balloon catheter comprises the thermoplastic elastomer composition.
- the presently disclosed subject matter provides an adhesive comprising: a random multigraft copolymer comprising a rubbery polymeric backbone and a plurality of glassy polymeric grafts, wherein each of the plurality of glassy polymeric grafts is attached to the rubbery polymeric backbone at one of a plurality of randomly spaced branch points; and a tackifier.
- the adhesive is a pressure sensitive adhesive or a hot melt adhesive.
- the tackifier is selected from the group comprising rosins and derivatives thereof, terpenes, modified terpenes, an aliphatic resin, a cycloaliphatic resin, an aromatic resin, a hydrogenated hydrocarbon resin, a terpene-phenol resin, and mixtures thereof.
- the adhesive further comprises one or more additives selected from the group comprising waxes, plasticizers, anti-oxidants, stabilizers, decorative agents, biocides, flame retardants, anti-static agents, and fillers.
- the decorative agent is a pigment, a dye or glitter.
- the presently disclosed subject matter provides a coated object comprising a coating layer comprising a random graft copolymer, wherein the random multigraft copolymer comprises a rubbery polymeric backbone and a plurality of glassy polymeric grafts, wherein each of the plurality of glassy polymeric grafts is attached to the rubbery polymeric backbone at one of a plurality of randomly spaced branch points, wherein the coating layer covers at least a portion of a surface of a wood, ceramic, glass, carbon fiber, metal, metallic, leather, fabric, stone, or plastic object.
- the object is selected from the group comprising an article of clothing, an eating/cooking utensil, a medical implant, a medical/surgical tool, and an electronic device.
- the object is a medical implant or a medical/surgical tool and the coating layer further comprises a therapeutic agent additive selected from the group comprising a carcinostatic, an immunosuppressive, an antibiotic, an antirheumatic, an antithrombotic, an antihyperlipidemic, an ACE inhibitor, a calcium antagonist, an integrin inhibitor, an antiallergic, an antioxidant, a GPIIb/IIIa antagonist, a retinoid, a flavonoid, a carotenoid, a lipid improving agent, a DNA synthesis inhibitor, a tyrosine kinase inhibitor, an antiplatelet, a vascular smooth muscle antiproliferative agent, an anti-inflammatory agent, an interferon, and a NO production accelerator.
- the coated object comprises a stent, wherein the stent comprises metal or metallic wire mesh or a metal or metallic coil having a cylindrical shape, wherein the wire mesh or coil is covered by the coating layer.
- FIG. 1A is a schematic drawing showing the molecular architecture of miktoarm star copolymers comprising two types of block material, A and B.
- FIG. 1B is a schematic drawing showing the molecular architectures of regular multigraft copolymers having rubbery polymer backbones and glassy polymer side chains.
- the copolymer architectures include a trifunctional “comb” architecture, a tetrafunctional “centipede” architecture, and a hexafunctional “barbwire” architecture.
- FIG. 1C is a schematic drawing showing the molecular architecture of random multigraft copolymers having rubbery polymer backbones and glassy polymer side chains.
- the copolymer architectures include a trifunctional “comb” architecture, a tetrafunctional “centipede” architecture, and a hexafunctional “barbwire” architecture.
- FIG. 2A is a theoretical phase diagram for a linear diblock or triblock copolymers comprising rubbery and glassy components, which can also apply to regular tetrafunctional multigraft copolymers.
- the volume fraction of the glassy component is plotted on the x axis.
- L lamellar
- H stands for hexagonally packed cylindrical morphology.
- FIG. 2B is a transmission electron micrograph (TEM) image of a regular tetrafunctional multigraft copolymer with a PI backbone and PS grafts.
- TEM transmission electron micrograph
- the copolymer comprises 14 volume % PS and an average of 2.5 branch points.
- a morphology of dispersed spheres of PS in a PI matrix is formed.
- FIG. 2C is a transmission electron micrograph (TEM) image of a regular tetrafunctional multigraft copolymer with a PI backbone and PS grafts.
- TEM transmission electron micrograph
- the copolymer comprises 23 volume % PS and an average of 3 branch points.
- a hexagonally packed cylindrical morphology is formed.
- FIG. 2D is a transmission electron micrograph (TEM) image of a regular tetrafunctional multigraft copolymer with a PI backbone and PS grafts.
- TEM transmission electron micrograph
- FIG. 3 is a miktoarm star morphology diagram based on experimental results.
- Epsilon ( ⁇ ) is a parameter that describes the level of architectural asymmetry.
- FIG. 4 are schematic drawings and a morphology diagram showing how Milner theory can be applied to regular multigraft copolymers by considering local asymmetry, imagining that the regular multigraft copolymers are strings of miktoarm stars.
- epsilon ( ⁇ ) is a parameter that describes primarily the level of architectural asymmetry.
- Phi B ( ⁇ B ) is the volume fraction of component B in the copolymer.
- FIG. 5 is a graph showing the stress vs. strain tensile curves from data for STYROFLEXTM, KRATONTM, and two regular tetrafunctional graft polystyrene-polyisoprene copolymers.
- MG-4-22-10 has 22 volume % polystyrene (PS) and an average of 10 branch points.
- MG-4-14-3.5 has 14 volume % PS and an average of 3.5 branch points.
- FIG. 6A is a graph of previous data showing the influence of the number of branch points of the % strain at break in regular multigraft copolymers.
- the average number of branch points in the copolymers varied from about 4.5 to about 10, while the chain lengths and PS volume % was held constant.
- FIG. 6B is a graph of previous data showing the influence of the number of branch points on the tensile strength in regular tetrafunctional multigraft copolymers.
- the average number of branch points in the copolymers varied from a little over 4.0 to about 10, while the chain lengths and PS volume % was held constant.
- FIG. 6C is a graph of data showing the influence of the number of branch points on the stress versus strain curves for regular multigraft copolymers.
- the volume fraction of polystyrene was held at a constant 22% while the average number of branch points was 5, 7, or 10.
- FIG. 7 is a schematic representation of microphase separation in a multigraft copolymer with tetrafunctional branch points. Reproduced from Weidisch et al., Macromolecules, 34, 6333 (2001).
- FIG. 8A is a graph of previous data showing the influence of chemical composition on the stress versus strain curves for two regular tetrafunctional multigraft copolymers. Both copolymers had an average of 4.4 branch points. One copolymer had 23 volume % polystyrene (PS) and the other had 41 volume % PS.
- PS polystyrene
- FIG. 8B is a graph of previous data showing the influence of chemical composition on Young's modulus for regular tetrafunctional multigraft copolymers having polystyrene volume % ranging from about 14% to about 40%.
- the copolymers had an average number of branch points between about 3.5 and about 4.4.
- FIG. 9A is a graph of previous data showing the influence of branch point functionality on the stress versus strain curves of various regular multigraft copolymers.
- Trifunctional copolymer MG-3-17-3.7 has 17 volume % polystyrene and an average of 3.7 branch points.
- Tetrafunctional copolymer MG-4-23-4.4 has 23 volume % PS and an average of 4.4 branch points.
- Hexafunctional copolymer MG-6-21-3.6 has 21 volume % PS and an average of 3.6 branch points.
- FIG. 9B is a graph of data showing the influence of morphology and number of branch points on tensile strength in regular multigraft copolymers having 20 volume % polystyrene (PS). Circles show the data for trifunctional copolymers, which had a spherical morphology. Triangles show data for tetrafunctional copolymers, which had a cylindrical morphology. Squares show data for hexafunctional copolymers, which had a lamellar morphology.
- PS polystyrene
- FIG. 10 is a series of graphs showing the hysteresis behavior of regular multigraft copolymers.
- the graphs show stress versus strain data for material that has been stretched and then the load is removed.
- the hypothetical sample that recovers its initial dimensions exactly has zero residual strain.
- the graph in the upper left-hand side is for a regular hexafunctional multigraft copolymer having 21 volume % polystyrene PS content and an average of 5.2 branch points.
- the graph in the upper right-hand side is for a regular tetrafunctional multigraft copolymer having 14 volume % PS content and an average of 5.5 branch points.
- the graph in the lower left for STYROFLEXTM is shown for comparison.
- the residual strain for the tetrafunctional regular multigraft copolymer is only 40% at an applied strain of 1400%. Residual strains for STYROFLEXTM were larger.
- FIG. 11 is a graph of data showing the % residual strain versus the applied strain % for a hexafunctional regular multigraft copolymer having 21 volume % polystyrene (PS) and an average of 5.2 branch points (squares), a tetrafunctional regular multigraft copolymer having 23 volume % PS and an average of 6.6 branch points (circles), and a trifunctional regular multigraft copolymer having 17 volume % PS and an average of 3.7 branch points (triangles). Data for STYROFLEXTM (stars) is shown for comparison.
- FIG. 12A is a schematic drawing showing a balloon catheter assembly inside a partially occluded vessel per U.S. Pat. No. 4,886,062.
- FIG. 12B is a schematic drawing showing a balloon catheter assembly with a stent inside a partially occluded vessel per U.S. Pat. No. 4,886,062 with the balloon inflated and the stent radially expanded.
- FIG. 12C is a schematic drawing showing a stent inside a vessel per U.S. Pat. No. 4,886,062.
- FIG. 13A is a schematic drawing showing a balloon catheter assembly at a target site in a vessel per U.S. Pat. No. 7,794,491.
- FIG. 13B is a schematic drawing showing a balloon catheter assembly at a target site in a vessel per U.S. Pat. No. 7,794,491, with the balloon inflated and the stent radially expanded.
- FIG. 13C is a schematic drawing showing a balloon catheter assembly at a target site in a vessel per U.S. Pat. No. 7,794,491, with the balloon deflated and the stent expanded.
- FIG. 13D is a schematic drawing showing a stent implanted at a target site in a vessel per U.S. Pat. No. 7,794,491.
- FIG. 14 is a graph of data showing tensile characteristics of random multigraft copolymers including strain at break, tensile strength and elastic modulus.
- the term “about”, when referring to a value or to an amount of size, weight, concentration, or percentage is meant to encompass variations of, in some embodiments ⁇ 20%, in some embodiments ⁇ 10%, in some embodiments ⁇ 5%, in some embodiments ⁇ 1%, and in some embodiments ⁇ 0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods.
- the phrase “consisting of” excludes any element, step, or ingredient not specified in the claim.
- the phrase “consists of” appears in a clause of the body of a claim, rather than immediately following the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole.
- anionic polymerization refers to an ionic polymerization in which the kinetic chain carriers are anions. Accordingly, an anionic polymerization reaction is a chain reaction in which the growth of the polymer chain proceeds by reaction(s) between a monomer(s) and a reactive site(s) on the polymer chain with regeneration of the reactive site(s) at the end of each growth step. Anionic polymerization typically takes place with monomers comprising electron-withdrawing groups, such as nitrile, carboxyl, phenyl, and vinyl, or with monomers that can stabilize the anions through resonance.
- polymerizations are initiated by nucleophilic addition to the double bond of the monomer, wherein the initiator comprises an anion, such as hydroxide, alkoxides, cyanide, or a carbanion.
- the carbanion is generated from an organometallic species, such as an alkyl lithium, e.g., butyl lithium, or a Grignard reagent.
- Anionic polymerization typically is used to produce macromolecules from monomers that contain a carbon-carbon double bond, such as styrene and/or butadiene. Such reactions are referred to as anionic vinyl polymerization.
- a “monomer” refers to a molecule that can undergo polymerization, thereby contributing constitutional units, i.e., an atom or group of atoms, to the essential structure of a macromolecule.
- a “macromolecule” refers to a molecule of high relative molecular mass, the structure of which comprises the multiple repetition of units derived from molecules of low relative molecular mass, e.g., monomers and/or oligomers.
- oligomer refers to a molecule of intermediate relative molecular mass, the structure of which comprises a small plurality of units derived from molecules of lower relative molecular mass.
- a “polymer” refers to a substance composed of macromolecules.
- a “copolymer” refers to a polymer derived from more than one species of monomer.
- a “block macromolecule” refers to a macromolecule that comprises blocks in a linear sequence.
- a “block” refers to a portion of a macromolecule that has at least one feature that is not present in the adjacent portions of the macromolecule.
- a “block copolymer” refers to a copolymer in which adjacent blocks are constitutionally different, i.e., each of these blocks comprises constitutional units derived from different characteristic species of monomer or with different composition or sequence distribution of constitutional units.
- a diblock copolymer of polybutadiene and polystyrene is referred to as polybutadiene-block-polystyrene.
- Such a copolymer is referred to generically as an “AB block copolymer” or an “AB diblock copolymer”.
- a triblock copolymer can be represented as “ABA.”
- Other types of block polymers exist, such as multiblock copolymers of the (AB) n type, ABC block polymers comprising three different blocks, and star block polymers, which have a central point with three or more arms, each of which is in the form of a block copolymer, usually of the AB type.
- graft macromolecule or “graft copolymer” refers to a macromolecule comprising one or more species of block connected to the main chain as side chains, wherein the side chains comprise constitutional or configurational features that differ from those in the main chain.
- a “branch point” refers to a point on a chain at which a branch is attached.
- a “branch,” also referred to as a “side chain” or “pendant chain,” is an oligomeric or polymeric offshoot from a macromolecule chain.
- An oligomeric branch can be termed a “short chain branch,” whereas a polymeric branch can be termed a “long chain branch.”
- a “chain” refers to the whole or part of a macromolecule, an oligomer, or a block comprising a linear or branched sequence of constitutional units between two boundary constitutional units, wherein the two boundary constitutional units can comprise an end group, a branch point, or combinations thereof.
- a “main chain” or “backbone” refers to a linear chain from which all other chains are regarded as being pendant.
- a “side chain” refers to a linear chain which is attached to a main chain at a branch point.
- An “end group” refers to a constitutional unit that comprises the extremity of a macromolecule or oligomer and, by definition, is attached to only one constitutional unit of a macromolecule or oligomer.
- a “comb macromolecule” refers to a macromolecule comprising a main chain with multiple trifunctional branch points from each of which a linear side chain emanates.
- a “star polymer” refers to a polymer comprising a macromolecule comprising a single branch point from which a plurality of linear chains (or arms) emanate.
- a star polymer or macromolecule with “n” linear chains emanating from the branch point is referred to as an “n-star polymer.” If the linear chains of a star polymer are identical with respect to constitution and degree of polymerization, the macromolecule is referred to as a “regular star macromolecule.” If different arms of a star polymer comprise different monomeric units, the macromolecule is referred to as a “variegated star polymer.”
- a “miktoarm star polymer” refers to a star polymer comprising chemically different (i.e., “mixed”) arms, thereby producing a star polymer having the characteristic of chemical asymmetry.
- FIG. 1B shows comb, centipede and barbwire regular multigraft copolymers where the branch points are evenly spaced along the backbone, i.e., “regular” multigraft copolymers.
- regular multigraft copolymers the backbone chain segment between each branch point is the same length. Elastomeric properties of certain regular multigraft copolymers have been described previously. See e.g., Zhu et al., Macromolecules, 39, 4428-4436 (2006).
- multigraft copolymers comprising rubbery backbones and glassy (or semi-crystalline) grafts are believed to be related to the backbone imparting stretchability, while the grafts impart elastic recovery.
- the multigraft copolymers show improved strain at break in comparison to other TPEs (e.g., triblock copolymers), believed to be due to enhanced load transfer between the rubbery matrix and the many dispersed glassy domains.
- FIG. 1C shows comb, centipede and barbwire copolymers where the branch points are randomly spaced along the backbone, wherein the backbone chain segments between the branch points have different lengths.
- the random placement of the grafts does not negatively affect the elastic properties of the copolymers. Rather, it is believed that the random multigraft copolymers can provide elastic properties similar to regular multigraft copolymers and/or superior to block copolymer TPEs traditionally used as elastomers. Since they can be synthesized cost-effectively and easily on a large scale, it is further believed that the random multigraft copolymer can be readily provided for numerous applications.
- multigraft copolymers can be prepared by metallation of a polydiene backbone (referred to as a “grafting from strategy”).
- a grafting from strategy a polydiene backbone
- grafting from strategy a polydiene backbone
- Tate et al. J. Poly. Sci. Part A -1, 9, 139-145 (1971).
- original metallation syntheses were reported to lead to degradation of the polydiene backbone, milder metallation conditions can be employed to minimize polymer degradation.
- PI-graft-PS multigraft copolymers have been prepared using mild metallation conditions in concert with high vacuum line techniques and a vessel equipped with an optical cell to improve control during the synthesis. See Hadjichristidis et al., J. Polym. Sci. Polym. Phys. Ed., 16, 851-858 (1978); Hadjichristidis et al., J. Polym. Sci. Part A: Polym. Chem., 38, 3211-3234 (2000); and Uhrig and Mays, J. Polym. Sci. Part A: Polym. Chem., 43, 6179-6222 (2005).
- Scheme 1 shows a route to a graft copolymer via mild metallation using sec-butyl lithium and tetramethylethylenediamine (TMEDA) to create anionic sites on a polydiene backbone chain that can serve as initiation sites for the growth of polystyrene side chains. While some homopolystyrene can be produced, it can be removed by fractionation.
- TMEDA sec-butyl lithium and tetramethylethylenediamine
- Graft copolymers can also be synthesized by a “grafting to” approach, involving the use of hydrosilation chemistry to introduce chlorosilane functionality onto the backbone chain as shown below in Scheme 2.
- the chlorosilane groups can then be reacted with pre-prepared side chains. See Cameron and Qureshi, Makromol. Chem., Rapid Commun., 2, 287-291 (1981).
- the “grafting to” approach allows for characterization of both the backbone and side chains prior to the grafting reaction. Further, the reaction of the polystyrene anions with chlorosilane groups is generally free of side reactions.
- each branch point can have two side chains (i.e., tetrafunctional branch points) by using dichloromethylsilane in the hydrosilation step. See Xenidou and Hadjichristidis, Macromolecules, 31, 5690-5694 (1998).
- Randomizers can include, for example, potassium alkoxides and other alkali metal oxides.
- the synthesis of polybutadiene-graft-polystyrene “doubly tailed” multigrafts is shown below in Scheme 3.
- multigraft copolymers having regularly spaced branch points and a controlled number or branch points can be prepared using a macromonomer end-linking reaction scheme.
- Polymer backbone segments for example, polybutadiene (PBD) or PI
- PBD polybutadiene
- PI polybutadiene
- Polymer branches for example, PS
- PS can be made using a monofunctional anionic initiator, e.g., sec-BuLi: sec-BuLi+S ⁇ PSLi.
- multigraft polymers comprising a “comb” architecture can be synthesized via the following reaction scheme: PSLi+MeSiCl 3 (large excess) ⁇ (PS)(Me)SiCl 2 +MeSiCl 3 ⁇ (PS)(Me)SiCl 2 +LiPBDLi (small excess) ⁇ PBD[Si(PS)(Me)] n PBD.
- Multigraft polymers comprising a “centipede” architecture can be synthesized via the following reaction scheme: PSLi+SiCl 4 (vacuum titration) ⁇ (PS) 2 SiCl 2 (PS) 2 SiCl 2 +LiPBDLi ⁇ PBD[Si(PS) 2 ] n PBD.
- samples of polymer segments can be taken during the reactions (whenever possible) to allow for the independent characterization of the precursor segments and the final block copolymers by absolute molecular weight methods such as osmometry, matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and light scattering, as well as by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectrometry, and infrared (IR) spectrometry.
- absolute molecular weight methods such as osmometry, matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and light scattering, as well as by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectrometry, and infrared (IR) spectrometry.
- Variations in the molecular architecture of graft copolymers can be manipulated to control their nano-scale structure (morphology) and their ability to form long-range order during self-assembly.
- morphology nano-scale structure
- the size, shape and symmetry, and overall volume fraction of different types of domains can be controlled independently. This independent control is not possible with conventional linear AB diblock copolymers and ABA triblock copolymers for which the nanophase separated morphology which forms (e.g., spheres, cylinders, cubic bicontinuous gyroid, or lamella) is tied directly to the relative volume fractions of the two block materials.
- One way to uncouple block copolymer morphology from its rigid dependence on component volume fractions is to vary molecular architecture.
- constituting block copolymer This fundamental component of a larger graft molecular architecture is referred to as the “constituting block copolymer.”
- constituting block copolymer is an A 2 B single graft copolymer.
- the morphology can be varied independently of volume fraction by adjusting the molecular architecture.
- Milner's theory is not strictly applicable to more complex, multiple graft copolymer materials, however.
- the use of the building block principle of the constituting block copolymer to understand the morphological behavior of multiple graft materials by mapping them back to the more well-understood behavior of single graft materials has been required.
- FIG. 4 these ideas have been used to develop a rational framework for predicting the morphologies of all the types of molecular architecture shown in FIG. 1B .
- Morphological characterization of regular tetrafunctional multiblock polymers is presented in FIGS. 2A-2D .
- Morphological characterization of these multigraft (or block) copolymers can utilize real-space, transmission electron microscope (TEM) imaging and reciprocal-space small angle scattering (SAXS and/or SANS) techniques.
- TEM transmission electron microscope
- SAXS reciprocal-space small angle scattering
- junction point functionality increases material strength and elasticity.
- increasing the number of junction points per copolymer increases the strength, strain at break, and elasticity.
- the presently disclosed subject matter can compared to the strength, elasticity and strain at break performance of commercial thermoplastic elastomers, such as KRATONTM and STYROFLEXTM materials (Kraton Polymers, Houston, Tex., United States of America and BASF, Ludwigshafen, Germany, respectively).
- FIG. 5 provides a representative test that compares the stress versus strain curves for KRATONTM and STYROFLEXTM with previous data for two tetrafunctional multigraft copolymers comprising regularly spaced PS grafts and a polydiene backbone.
- Each of the multigraft copolymers comprises 22 volume % PS grafts.
- One (MG-4-22-10) has an average of 10 branch points, while the other (MG-4-14-3.5) has an average of 3.5 branch points.
- These tests utilize a scaled down ASTM standard “dog bone” and obtain good testing statistics by reusing broken tensile specimens to produce new specimens for further testing. This is done by re-dissolving the broken dog bones in solution, casting and annealing new sample films from which new dog bones are cut.
- this representative test is employed with respect to the presently disclosed subject matter.
- FIGS. 6A-6C show representative tests that in some embodiments are applied to the presently disclosed subject matter.
- FIGS. 6A-6C show data indicating that both strain at break and tensile strength increase as the number of branch points is increased when segment lengths and composition is held constant. These data appear to reinforce the theory that multiple tethers lead to better load distribution. Without being bound to any one theory, it is believed that improved strain at break is due to enhanced load transfer between the rubbery backbone and the many dispersed glassy side chain domains. See FIG. 7 .
- randomly spaced side chains can take the place of the regularly spaced side chain glassy domains of FIG. 7 , as it is believed that the number of side chains is of greater importance to the properties of the copolymer than the spacing of the side chains.
- FIGS. 8A and 8B show representative tests that in some embodiments are applied to the presently disclosed subject matter.
- FIGS. 8A and 8B show previous data regarding the influence of glassy polymer content on the mechanical properties of regular multigraft copolymers. Increasing PS content increases stiffness of the copolymer.
- FIGS. 9A and 9B show representative tests that in some embodiments are applied to the presently disclosed subject matter.
- FIGS. 9A and 9B show the influence of branch point functionality on mechanical properties obtained from previous data with regular multigraft copolymers.
- FIG. 9B at 20 vol % PS both the hexafunctional (lamellar) and tetrafunctional (cylinders) samples exhibit high tensile strength and elongations well over 1,000%, but show large differences in modulus.
- the trifunctional sample (spheres) is much softer and less strong but again has exceptional elongation at break.
- the property profile can be tailored to meet a specific application by changing the architecture (branch point functionality) while keeping the chemical composition the same.
- FIG. 10 shows representative tests that in some embodiments are applied to the presently disclosed subject matter.
- FIG. 10 shows previous stress versus strain data for regular multigrafts where the material has been stretched and then the load removed. Ideally the sample can recover its initial dimensions exactly (zero residual strain).
- the multigrafts (a hexafunctional sample on the left and a tetrafunctional sample on the right) show extraordinarily low residual strain, even when stretched far beyond what is possible with commercial linear TPEs. STYROFLEXTM data is shown for comparison at the bottom left side of FIG. 10 . Residual strain for a multigraft tetrafunctional copolymer comprising 14 volume % PS grafts and an average of 5.5 branch points is only about 40% at an applied strain of 1400%.
- FIG. 10 shows previous stress versus strain data for regular multigrafts where the material has been stretched and then the load removed. Ideally the sample can recover its initial dimensions exactly (zero residual strain).
- the multigrafts (a hexafunctional
- FIG. 11 shows representative tests that in some embodiments are applied to the presently disclosed subject matter.
- FIG. 11 shows additional previous data for PI-g-PS regular multigrafts summarized in a graph of residual strain versus applied strain. The elastic recovery is again believed to be due to having many sites along the backbone where the rubbery backbone is tethered to glassy domains.
- tensile performance at elevated temperatures can be evaluated, to determine material properties under conditions of any particular proposed use. Dynamical mechanical, creep, and fatigue performance of these materials at room and elevated temperatures can also be evaluated. Thermogravimetric analysis (TGA) can be used to investigate the chemical stability of the materials at elevated temperatures.
- TGA Thermogravimetric analysis
- the presently disclosed subject matter provides a composition comprising a random multigraft copolymer comprising a rubbery polymeric backbone and a plurality of glassy polymeric grafts, each attached at one of a plurality of randomly placed branch points on the polymeric backbone.
- the multigraft copolymer can comprise, for example a trifunctional comb architecture, in which a single graft is attached at each branch point, a tetrafunctional centipede architecture, in which two grafts are attached at each branch point, or a hexafunctional barbwire architecture, in which four grafts are attached at each branch point.
- rubbery refers to a polymer that has a glass transition temperature of about 0° C. or less (e.g., about 0, ⁇ 10, ⁇ 20, ⁇ 30, ⁇ 40, ⁇ 50, ⁇ 60, ⁇ 70, ⁇ 90, ⁇ 100° C. or less).
- the rubbery polymer backbone can comprise one of the polymers including, but not limited to, polyisoprene, hydrogenated polyisoprene, polybutadiene, hydrogenated polybutadiene, polyisobutylene, butyl rubber, poly(butadiene-co-acrylonitrile), a silicone rubber (e.g., polydimethylsiloxane or another siloxane polymer), acrylic rubber, polychloroprene, ethylene propylene copolymer, ethylene/acrylic elastomer, urethane rubber, and combinations thereof.
- polyisoprene hydrogenated polyisoprene
- polybutadiene hydrogenated polybutadiene
- polyisobutylene polyisobutylene
- butyl rubber poly(butadiene-co-acrylonitrile)
- silicone rubber e.g., polydimethylsiloxane or another siloxane polymer
- acrylic rubber e.g., polydimethylsi
- glassy refers to a polymer that has a glass transition temperature of about 60° C. or more (e.g., about 60, 70, 80, 90, or 100° C. or more).
- glassy can include semi-crystalline polymers (e.g., having a melting point of about 60° C. or greater).
- the glassy polymer grafts can comprise a polymer selected from, but not limited to, polystyrene, hydrogenated polystyrene, poly( ⁇ -methylstyrene) or another glassy styrenic polymer hydrogenated derivative thereof, polyethylene, urethane hard domain, polyester, polymethylmethacrylate or another glassy acrylic polymer, polyvinyl chloride, poly(vinyl pyridine), polycarbonate, nylon, polyethylene teraphthalate, polycyclohexadiene, hydrogenated polycyclohexadiene, and combinations thereof.
- polystyrene hydrogenated polystyrene
- poly( ⁇ -methylstyrene) or another glassy styrenic polymer hydrogenated derivative thereof polyethylene, urethane hard domain
- polyester polymethylmethacrylate or another glassy acrylic polymer
- polyvinyl chloride poly(vinyl pyridine)
- polycarbonate nylon
- polyethylene teraphthalate polycyclohex
- one or more of the copolymer components can include or be chemically functionalized to include an ionizable group (e.g., carboxylic acids, sulfonates, etc.).
- an ionizable group e.g., carboxylic acids, sulfonates, etc.
- the volume fraction of the glassy polymeric grafts can be between about 5 and about 50%. In some embodiments, the volume fraction of glassy polymeric grafts is between about 14% and about 26% (e.g., about 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or 26%).
- the random multigraft copolymer can comprise at least three branch points (i.e., an average of about 3 branch points). In some embodiments, the multigraft copolymer can comprise an average of at least four, five, six, seven, eight, nine, ten, twelve, fourteen or more branch points.
- the copolymer can have any suitable molecular weight (i.e., any suitable average molecular weight). Typically, the molecular weights for the presently disclosed polymers are expressed as a number average molecular weight. In some embodiments, the copolymer can have a molecular weight of about 400,000 to about 600,000 (e.g., about 400,000, about 425,000, about 450,000, about 475,000, about 500,000, about 525,000, about 550,000, about 575,000, about 600,000). However, in some embodiments, the molecular weight can be smaller or greater.
- the molecular weight can be about 25,000 to about 400,000 (e.g., about 25,000, about 50,000, about 75,000, about 100,000, about 125,000, about 150,000, about 175,000, about 200,000, about 225,000, about 250,000, about 275,000, about 300,000, about 325,000, about 350,000, about 375,000, or about 400,000).
- the random multigraft copolymer can be synthesized to have a narrow molecular weight distribution (MWD).
- MWD molecular weight distribution
- the MWD is less than 2.
- the MWD is less than about 1.5, 1.4, 1.3, 1.2, or less than 1.1. These narrow MWDs are in contrast to the MWDs of regular multigraft copolymers, which are typically at least about 2.
- the random multigraft copolymer can have a residual strain of about 55% or less (e.g., 55%, 50%, 45%, 40%, 35%, 30%, 25% or 20%) at an applied strain of about 500% or more (e.g., about 500%, 600%, 700%, 800%, 900%, 1000%, 1100%, 1200, 1300%, or 1400%).
- the copolymer can have a residual strain of about 50% at an applied strain of 900%.
- the copolymer can have a residual strain of about 40% or less at an applied strain of about 300% or more.
- the copolymer can have a residual strain of about 40% at an applied strain of 1400%.
- the presently disclosed copolymers typically have high strain at break.
- the multigraft copolymer has a strain at break of about 1200% or greater (e.g., about 1200%, 1300%, 1400%, 1500%, etc.).
- the random multigraft copolymer has a strain at break of at least 1500%. The percent strain at break can increase linearly with the number of branch points.
- compositions comprising the materials can be provided for use in a wide variety of areas, both as high-tech and commodity thermoplastics.
- the random multigraft copolymers disclosed herein can be prepared readily in large amounts and at relatively low cost, while still providing materials having high tensile strength, high elasticity, and high strain at break.
- thermoplastic elastomer composition comprising: a random multigraft copolymer comprising a rubbery polymeric backbone and a plurality of glassy or semi-crystalline polymeric grafts, wherein each of the plurality of glassy or semi-crystalline polymeric grafts is attached to the rubbery polymeric backbone at one of a plurality of randomly spaced branch points and at least one additional component, such as, but not limited to, an organic filler, an inorganic filler, a wax, a plasticizer, a tackifier, an anti-oxidant, a stabilizer (e.g., a thermal or UV stabilizer), a decorative agent, a biocide, a flame retardant, an anti-static agent, a therapeutic agent, a processing aid, such as a lubricant or a mold-release agent, and combinations thereof.
- a random multigraft copolymer comprising a rubbery polymeric backbone and a plurality of glassy or semi-crystalline polymeric grafts,
- an additive or additives can be chosen based on the properties desired for the final end use of the composition.
- the additive or additives can be present in an amount that is less than 50% by volume or by weight of the composition as a whole.
- the multigraft copolymer can comprise less than 50% of the composition as a whole.
- the inorganic and organic fillers that can be used according to the presently disclosed subject matter can be of any known type and can have a form, such as but not limited to, granule, plate, lamella, fiber and whisker.
- the inorganic filler can be an inorganic-matter type filler, a metallic filler, a ceramics filler, etc.
- inorganic-matter type fillers include an oxide such as silica, diatomaceous earth, barium ferrite, berylium oxide, pumice and pumice balloon; a hydroxide such as aluminum hydroxide, magnesium hydroxide and basic magnesium carbonate; a carbonate such as calcium carbonate, magnesium carbonate, dolomite and dosonite; a sulfate or sulfite such as calcium sulfate, barium sulfate, ammonium sulfate and calcium sulfite; a silicate such as talc, clay, mica, asbestos, glass fiber, glass balloon, glass bead, calcium silicate, montmorillonite and bentonire; a carbon such as carbon black, graphite, carbon fiber and hollow carbon sphere; molybdenum sulfide; boron fiber; zinc borate; barium metaborate; calcium borate; and sodium borate.
- oxide such as silica, diatomaceous earth, barium ferrite, be
- metallic fillers include metal elements, metal compounds, alloys, etc. each in the form of powder or granule, including a metal element or elements such as, but not limited to, zinc, copper, iron, lead, aluminum, nickel, chromium, titanium, manganese, tin, platinum, tungsten, gold, magnesium, cobalt and strontium; oxides thereof; alloys thereof, such as stainless steel, solder and brass.
- Metallic fibers can include, for example, aluminum fiber, stainless-steel fiber, copper fiber, bronze fiber, nickel fiber, potassium titanate fiber, other simple metal fibers and synthetic fibers and corresponding metal whiskers.
- inorganic fillers include, but are not limited to, Inorganic fillers, can include, but are not limited to, carbonates (e.g., calcium carbonate), oxides of varying hydration levels (e.g., titanium dioxide), sulfates (e.g., barium sulfate), silicates (e.g., calcium or magnesium silicates), talc, amorphous silica, silica gel, carbon black, and clays (e.g., kaolin).
- carbonates e.g., calcium carbonate
- oxides of varying hydration levels e.g., titanium dioxide
- sulfates e.g., barium sulfate
- silicates e.g., calcium or magnesium silicates
- talc amorphous silica, silica gel, carbon black, and clays (e.g., kaolin).
- organic fillers include, but are not limited to shell fiber such as husk, wooden powder, cotton, jute, paper pieces, cellophane pieces, aromatic polyamide fiber, polyimide fiber, cellulose fiber, nylon fiber, polyester fiber, polypropylene fiber and thermosetting resin powders.
- shell fiber such as husk, wooden powder, cotton, jute, paper pieces, cellophane pieces, aromatic polyamide fiber, polyimide fiber, cellulose fiber, nylon fiber, polyester fiber, polypropylene fiber and thermosetting resin powders.
- Waxes suitable for use in the presently disclosed compositions include, but are not limited to, paraffin waxes, microcrystalline waxes, polyethylene waxes, polypropylene waxes, by-product polyethylene waxes, Fischer-Tropsch waxes, oxidized Fischer-Tropsch waxes and functionalized waxes such as hydroxy stearamide waxes and fatty amide waxes. It is common in the art to use the terminology synthetic high melting point waxes to include high density low molecular weight polyethylene waxes, by-product polyethylene waxes and Fischer-Tropsch waxes.
- Modified waxes including vinyl acetate modified waxes such as AC-400 (Honeywell International Inc., Morristown, N.J., United States of America) and MC-400 (available from Marcus Oil and Chemical Company, Houston, Tex., United States of America), maleic anhydride modified waxes such as Epolene C-18 (available from Eastman Chemical, Kingsport, Tenn., United States of America) and AC-575A and AC-575P (available from Honeywell International Inc., Morristown, N.J., United States of America) and oxidized waxes can be used in the presently disclosed compositions. Typically, if used, the wax can be present in an amount of between about 2% and about 25%.
- Plasticizers for use in the presently disclosed compositions can include any plasticizer known in the art, including, but not limited to, ester plasticizers, such as phthalates, trimellitates, adipates, sebacates, and maleates; benzoates; epoxidized vegetable oil, paraffin or a chlorinated paraffin, sulfonamides, polyethers, glycols, organophosphates, and alkyl citrates.
- Plasticizers can also include, for example, paraffinic and naphthenic petroleum oils, highly refined aromatic-free paraffinic and naphthenic food and technical grade white petroleum mineral oils, and synthetic liquid oligomers of polybutene, polypropene, polyterpene, etc.
- the synthetic series process oils are high viscosity oligomers which are permanently fluid liquid nonolefins, isoparaffins or paraffins of moderate to high molecular weight. Many such oils are known and commercially available.
- Suitable tackifiers include any compatible resins or mixtures thereof such as: (1) natural or modified rosins such, for example, as gum rosin, wood rosin, tall-oil rosin, distilled rosin, hydrogenated rosin, dimerized rosin, and polymerized rosin; (2) glycerol and pentaerythritol esters of natural or modified rosins, such, for example as the glycerol ester of pale, wood rosin, the glycerol ester of hydrogenated rosin, the glycerol ester of polymerized rosin, the pentaerythritol ester of hydrogenated rosin, and the phenolic-modified pentaerythritol ester of rosin; (3) natural terpenes and copolymers and terpolymers of natural terpenes, e.g., styrene/terpene and alpha methyl styrene/
- Specific polyterpene tackifiers include, for example, WINGTACK® 95 from Goodyear (Goodyear Tire and Rubber Company, Akron, Ohio, United States of America).
- Specific cycloaliphatic resins include, for example, EASTOTACTM H100R from Eastman Chemical (Kingsport, Tenn., United States of America).
- the tackifier is selected from the group comprising rosins and derivatives thereof, terpenes, modified terpenes, an aliphatic resin, a cycloaliphatic resin, an aromatic resin, a hydrogenated hydrocarbon resin, a terpene-phenol resin, and mixtures thereof.
- Anti-oxidant additives and stabilizers can be used to protect the copolymers and copolymer compositions from degradation during the fabrication and/or use of the articles comprising the compositions.
- UV stabilizers can protect the articles from degradation due to exposure to light.
- Antioxidants typically used in the production of pressure sensitive adhesives can be present in an amount of up to about 3 wt %.
- Stabilizers can include, but are not limited to, epoxides, sterically hindered phenols, butylated hydroxytoluene (BHT), benozophenones, amines (e.g., hindered aromatic amines), thioesters, phosphites, and triazine-, piperidine-, and benzotriazoles.
- Sterically hindered phenols utilized herein include, for example, high molecular weight hindered phenols and multifunctional phenols such as sulfur and phosphorous-containing phenols.
- Hindered phenols are well known to those skilled in the art and may be characterized as phenolic compounds which also contain sterically bulky radicals in close proximity to the phenolic hydroxyl group thereof.
- tertiary butyl groups generally are substituted onto the benzene ring in at least one of the ortho positions relative to the phenolic hydroxy group.
- hindered phenols include: 1,3,5-trimethyl 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene; pentaerythrityl tetrakis-3(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate; 4,4′-methylenebis(2,6-tert-butylphenol); 4,4′-thiobis(6-tert-butyl-o-cresol); 2,6-di-tert-butylphenol; 6-(4-hydroxyphenoxy)-2,4-bis(n-octylthio)-1,2,5-triazine; di-n-octadecyl-3,5-di-tert-butyl-4-hydroxybenzyl phosphonate; 2-(n-octylthio)ethyl 3,5-di-tert-butyl-4-hydroxybenzoate; and sorbitol hexa[
- Decorative agents include materials added to enhance the visual appeal of the article prepared from the presently disclosed composition.
- decorative agents include, but are not limited to, pigments, dyes or other colorants, and materials such as glitter or metallic dust.
- the composition can contain metallic pigments (aluminum and brass flakes), TiO 2 , mica, fluorescent dyes and pigments, phosphorescent pigments, aluminatrihydrate, antimony oxide, iron oxides iron cobalt oxides, chromium dioxide, iron, barium ferrite, strontium ferrite and other magnetic particle materials, molybdenum, silicone fluids, lake pigments, aluminates, ceramic pigments, ironblues, ultramarines, phthalocynines, azo pigments, carbon blacks, silicon dioxide, silica, clay, feldspar, glass microspheres, barium ferrite, wollastonite and the like.
- other additives can be added to increase other aspects of the aesthetic appeal of the articles prepared from the presently disclosed compositions,
- compositions can obtained by mixing and homogenizing the components by the usual methods of plastics technology, and the sequence of adding the components may be varied.
- suitable mixing equipment are continuous or batch kneaders, compounding rolls, plastographs, Banbury mixers, co-rotating or counter rotating single- or twin-screw extruders, or other mixers which will provide essentially homogeneous mixtures.
- the presently disclosed compositions are prepared by blending together the components including the multigraft copolymer and other additive or additives as desired at between about 23° C. to about 100° C., forming a paste like mixture, and further heating said mixture uniformly (e.g., to about 150° C., or to about 200° C. or more) until a homogeneous molten blend is obtained.
- Any heated vessel equipped with a stirrer can be used, including those equipped with components to pressure and/or vacuum.
- thermoplastic properties of the presently disclosed copolymers and compositions lend themselves to the fabrication of a variety of articles, via molding and other methods of fabrication known in the art, including, but not limited to injection molding, compression molding, extrusion, and calendering. Accordingly, in some embodiments, the presently disclosed subject matter provides a fabricated article comprising a random multigraft copolymer.
- the fabricated articles can be for example an automotive interior or exterior part (e.g., an air bag or air bag door, a seat covering (such as artificial leather upholstery), bumpers, decorative molding pieces, etc.); shoe soles or other shoe parts; elastic waistbands; diaper or sanitary napkin backings or attachments; adhesive tapes, membranes, toys (or parts for toys), balloons, bags, tubing, roofing tiles, medical devices, and electronic wiring coatings or other electronic device components.
- an automotive interior or exterior part e.g., an air bag or air bag door, a seat covering (such as artificial leather upholstery), bumpers, decorative molding pieces, etc.); shoe soles or other shoe parts; elastic waistbands; diaper or sanitary napkin backings or attachments; adhesive tapes, membranes, toys (or parts for toys), balloons, bags, tubing, roofing tiles, medical devices, and electronic wiring coatings or other electronic device components.
- U.S. Patent Application Publication No. 2009/0028356 describes the use of elastomeric polymers as an expandable bubble
- compositions can be used to provide elastic or flexible moldings for “soft-touch” applications, such as grips, handles, antislip surfaces, gaskets, switches, housings with sealing lips, control knobs, flexographic printing plates, hoses, profiles, medical items, hygiene items, such as toothbrushes, materials for insulating or sheathing cables, sound-deadening elements, folding bellows, rolls or roll coatings, and carpet backings.
- soft-touch such as grips, handles, antislip surfaces, gaskets, switches, housings with sealing lips, control knobs, flexographic printing plates, hoses, profiles, medical items, hygiene items, such as toothbrushes, materials for insulating or sheathing cables, sound-deadening elements, folding bellows, rolls or roll coatings, and carpet backings.
- the article is a medical device.
- Medical devices can include, but are not limited to, infusion kits, dialysis units, breathing masks, catheter tubing, intravenous (iv) bags or tubing therefore, blood bags, syringes, prosthetics, implants or implant coverings (e.g., orthopedic implants, stents or other endoprostheses, or coverings for pacemakers or cochlear implants).
- the article is a balloon catheter or a stent.
- the article can comprise a balloon catheter wherein at least the inflatable portion of the balloon catheter comprises the presently disclosed thermoplastic elastomer composition.
- Catheters can include any tubing (e.g., flexible or “soft” tubing) that can be inserted into a body cavity, duct, or vessel to inject or to drain fluids.
- the body cavity, duct, or vessel can be for example, the urethra, the bladder, a blood vessel (e.g., a vein or artery), a biliary duct, the kidney, the heart, the uterus, a fallopian tube, the epidural space, the subarchnoid space, etc.
- Balloon catheters include an inflatable balloon at or near the tip of the catheter (i.e., the “distal” end, the end of the catheter to be inserted into the body). The catheter is inserted into the body vessel or cavity with the balloon deflated.
- the balloon Upon insertion into a vessel or cavity in the body, the balloon can be inflated to remove a blockage or otherwise expand a narrow passageway in the body. The balloon can then be deflated again for removal of the catheter.
- the balloon catheter can be inserted into the body to deliver a stent.
- the stent can be placed over the balloon portion of the catheter for insertion into the body.
- the balloon When placed inside the body at the desired location (e.g., in a blocked artery), the balloon can be inflated, thereby expanding the stent. The balloon can then be deflated and the catheter removed, leaving the stent in position within the body.
- Stents are tubular, radially expandable (e.g., self-expandable or balloon expandable) articles for insertion into a narrow passage in the body to increase flow through the passage.
- the stent can be used to treat or prevent a disease-induced narrowing of a body cavity, such as, for example, to increase blood flow through an artery damaged by atherosclerosis.
- Various stents are described, for example, in U.S. Pat. No. 4,886,062, incorporated herein by reference in its entirety.
- Stents can have one or more branch points.
- stents can be y-shaped, including a central main tube portion that at one end is separated into two tubes.
- Stents can be fabricated from metal, polymers, or combinations thereof.
- the stent can include a wire mesh, a metal coil or coils, or metal rings covered by and/or connected with the presently disclosed composition.
- the stent can comprise the presently disclosed composition alone or as a covering for another polymeric material.
- FIGS. 12A-12C reproduced from U.S. Pat. No. 4,886,062 show how a balloon catheter assembly can be used to place a metallic coil stent into a vessel.
- balloon catheter 5 is shown positioned against blockage 7 in vessel 8 .
- the blockage can be a plaque in a blood vessel.
- the balloon catheter extends from a guiding catheter shown at the left-hand side of the drawing.
- FIG. 12B the balloon of balloon catheter 5 is inflated, thereby radially expanding stent 1 , compressing blockage 7 .
- FIG. 12C the balloon catheter has been removed, leaving behind expanded stent 1 , holding blockage 7 open in vessel 8 .
- FIGS. 13A-13D are reproduced from U.S. Pat. No. 7,794,491.
- balloon catheter 32 is positioned in vessel V, so that deflated balloon 30 , of balloon catheter 32 , is parallel to target site T.
- Stent I surrounds deflated balloon 30 .
- balloon 30 is inflated, radially expanding stent I so that stent I contacts the sides of vessel V at target site T.
- FIG. 13B balloon 30 is inflated, radially expanding stent I so that stent I contacts the sides of vessel V at target site T.
- FIG. 13C balloon 30 of balloon catheter 32 is deflated so that the balloon no longer contacts the inner circumference of stent I. Stent I remains in position in contact with the sides of vessel V at site T.
- FIG. 13D balloon catheter 32 has been removed from vessel V, leaving stent I at site T.
- FIG. 13D shows polymer coating C covering stent I, thereby forming a continuous surface connecting an underling metal or metallic component (e.g., a wire coil or coils or a wire mesh).
- an underling metal or metallic component e.g., a wire coil or coils or a wire mesh
- the stent can be coated with a drug-eluting coating or the thermoplastic elastomeric composition can include a therapeutic additive, which can elute from the composition upon placement in the body or upon exposure to particular conditions (e.g., heat, pH, enzymes, etc.).
- the multigraft copolymer can be blended with a biodegradable polymer having an encapsulated or otherwise complexed drug.
- U.S. Pat. No. 5,837,008; U.S. Pat. No. 5,851,217; U.S. Pat. No. 5,873,904 and U.S. Pat. No. 6,344,035 describe the incorporation of drugs in multiple layers of a single polymer on stents, wherein the drug-polymer layers are applied in one or more consecutive applications.
- a multigraft copolymer stent or multigraft copolymer covered stent can be further covered with a drug layer.
- the drug layers can be covered with a bioabsorbable polymer, such as poly (L-lactic acid), poly(lactide-co-glycolide), or poly(hydroxybutyrate-co-valerate).
- U.S. Pat. No. 5,843,172 describes a porous metallic stent in which a drug is loaded into the pores of the metal.
- the stent can also have a polymeric cover, which can contain a different drug than the drug loaded into the metal pores.
- the drug can also be provided in the form of drug-eluting polymeric components located along the inner wall of the stent.
- U.S. Pat. Nos. 7,163,555, and 7,435,255 describe drug eluting stents and stent frameworks comprising a plurality of drug eluting reservoirs.
- the drug in the drug-eluting coating or the therapeutic agent added as an additive to the thermoplastic elastomer composition can be a therapeutic that prevents thrombus formation or restenosis.
- the drug or therapeutic agent is selected from the group consisting of a carcinostatic, an immunosuppressive, an antibiotic, an antirheumatic, an antithrombotic, an antihyperlipidemic, an ACE inhibitor, a calcium antagonist, an integrin inhibitor, an antiallergic, an antioxidant, a GPIIb/IIIa antagonist, a retinoid, a flavonoid, a carotenoid, a lipid improving agent, a DNA synthesis inhibitor, a tyrosine kinase inhibitor, an antiplatelet, a vascular smooth muscle antiproliferative agent, an antiinflammatory agent, a biological material, an interferon, and a NO production accelerator, such as those described hereinbelow.
- the presently disclosed compositions are provided for use as adhesive materials.
- the presently disclosed subject matter provides an adhesive comprising:
- a random multigraft copolymer comprising a rubbery polymeric backbone and a plurality of glassy or semi-crystalline polymeric grafts, wherein each of the plurality of glassy or semi-crystalline polymeric grafts is attached to the rubbery polymeric backbone at one of a plurality of randomly spaced branch points; and a tackifier.
- the adhesive can be a pressure sensitive adhesive or a hot melt adhesive and can be used, for example, to adhere plastics to other plastics or to other materials (e.g., paper, wood, metal, glass, etc.).
- the tackifier can be any suitable tackifier as described hereinabove.
- the adhesive can further comprise one or more other additives, such as, but not limited to, waxes, plasticizers, anti-oxidants, UV-stabilizers, decorative agents, biocides, flame retardants, anti-static agents, and fillers.
- the adhesive can be formulated to provide either temporary or permanent adhesion.
- the presently disclosed adhesive compositions can be used, for example, to act as a releasable adhesive for holding gift cards or other plastic cards onto paper or other backings for temporary display or presentation purposes.
- the adhesive can be present as a strip mounted between and in contact with a gift card and a gift card holder. When the gift card is pulled away from the holder, the adhesive releases from the gift card or the holder. The strip of adhesive can then be pulled off either the gift card or the holder, if desired, manually.
- the presently disclosed adhesive compositions can also be provided in the form of adhesive tapes, comprising one or more releasable backing components that can be easily removed just prior to use of the adhesive.
- the compositions can further be provided as adhesive backings on other materials, e.g., labels, stamps, automotive trim, bandages or other wound care items, drug patches, diapers, etc.
- the adhesive compositions can be provided in the form of spheres, bars or rods suitable for use as hot-melt adhesives, in the home, e.g., for various arts or crafts projects, or in industry, e.g., for the construction of cardboard boxes or for the fabrication of sporting equipment or toys.
- compositions are also useful as elastic or flexible coating layers over other objects, particularly for “soft-touch” applications.
- Soft touch applications include those, for instance, for which one or more of a soft texture, shock absorption, ergonomic comfort, slip resistance, and flexibility, are desirable.
- the presently disclosed subject matter provides a coated object comprising a coating layer comprising a random graft copolymer, wherein the random multigraft copolymer comprises a rubbery polymeric backbone and a plurality of glassy or semi-crystalline polymeric grafts, wherein each of the plurality of glassy or semi-crystalline polymeric grafts is attached to the rubbery polymeric backbone at one of a plurality of randomly spaced branch points, wherein the coating layer covers at least a portion of a surface of a wood, ceramic, glass, carbon fiber, metal, metallic, leather, fabric, stone, or plastic object.
- the object is selected from the group comprising an article of clothing (e.g., a shoe or a portion of a shoe, such as a shoe sole, for orthopedic, athletic, or children's shoes or for work boots), an eating or cooking utensil (e.g., baby spoons or other infant feeding tools where a soft mouth feel might be needed, knives, tongs, vegetable peelers, etc), tools (e.g., hammers, wrenches, screwdrivers, saws, etc.), medical implants (e.g., stents, pacemakers, cochlear implants), medical/surgical tools (e.g., retractors, scalpels, clamps, etc.) and wiring and electronic devices (e.g., electronic wiring or fiber optic wiring, materials in ear buds).
- an article of clothing e.g., a shoe or a portion of a shoe, such as a shoe sole, for orthopedic, athletic, or children's shoes or for work boots
- an eating or cooking utensil e.g.
- the coated object comprises a stent, wherein the stent comprises metal or metallic wire mesh or coil(s) having a cylindrical shape, covered by the coating layer.
- Suitable metals and metallic materials for forming the stent framework, such as the mesh or coil(s) include, but are not limited to, stainless steel, platinum, titanium, tantalum, nickel-titanium, cobalt, chromium, and alloys thereof.
- the composition can include a therapeutic agent, such as but not limited to, a carcinostatic, an immunosuppressive, an antibiotic, an antirheumatic, an antithrombotic, an antihyperlipidemic, an ACE inhibitor, a calcium antagonist, an integrin inhibitor, an antiallergic, an antioxidant, a GPIIb/IIIa antagonist, a retinoid, a flavonoid, a carotenoid, a lipid improving agent, a DNA synthesis inhibitor, a tyrosine kinase inhibitor, an antiplatelet, a vascular smooth muscle antiproliferative agent, an antiinflammatory agent, a biological material, an interferon, and a NO production accelerator.
- a therapeutic agent such as but not limited to, a carcinostatic, an immunosuppressive, an antibiotic, an antirheumatic, an antithrombotic, an antihyperlipidemic, an ACE inhibitor, a calcium antagonist, an integrin inhibitor, an antiallergic, an antioxidant, a GPII
- Carcinostatics can include, but are not limited to, vincristine sulfate, vinblastine sulfate, vindesine sulfate, irinotecan hydrochloride, paclitaxel, docetaxel hydrate, methotrexate and cyclophosphamid.
- Immunosuppressives can include, but are not limited to, sirolimus, tacrolimus hydrate, azathioprine, cyclosporin, mycophenolatemofetil, gusperimus hydrochloride, and mizoribine.
- Antibiotics include, but are not limited to, mitomycin C, doxorubicin hydrochloride, actinomycin D, daunorubicin hydrochloride, idarubicin hydrochloride, pirarubicin hydrochloride, aclarubicin hydrochloride, epirubicin hydrochloride, peplomycin sulfate, and zinostatin stimalamer.
- Antirheumatics can include, but are not limited to, sodium aurothiomalate, penicillamine, and lobenzarit disodium.
- Aantithrombotics can include, but are not limited to, heparin, ticlopidine hydrochloride, and hirudin.
- Antihyperlipidemics can include HMG-CoA reductase inhibitors and probucol.
- HMG-CoA reductase inhibitors can include, but are not limited to, serivastatin sodium, atolvastatin, nisvastatin, pitavastatin, fluvastatin sodium, simvastatin, lovastatin, and pravastatin potassium.
- ACE inhibitors include, but are not limited to, quinapril hydrochloride, perindopril erbumine, trandolapril, cilazapril, temocapril hydrochloride, delapril hydrochloride, enalapril maleate, lisinopril, and captopril.
- Calcium antagonists can include, but are not limited to, nifedipine, nilvadipine, diltiazem hydrochloride, benidipine hydrochloride, and nisoldipine.
- Antiallergics include, but are not limited to, tranilast.
- Retinoids can include, but are not limited to, all-trans retinoic acid.
- Antioxidants include catechines (e.g., epigallocatechin gallate), anthocyanine, proanthocyanidin, lycopene, and ⁇ -carotene.
- Tyrosine kinase inhibitors include, but are not limited to, genistein, tyrphostin, and apstatin.
- Antiinflammatories include, but are not limited to, dexamethasone, prednisolone, and other steroids, and aspirin.
- the therapeutic agent can also include a therapeutic biological material, such as, but not limited to, EGF (epidermal growth factor), VEGF (vascular endothelial growth factor), HGF (hepatocyte growth factor), PDGF (platelet derived growth factor), and BFGF (basic fibroblast growth factor).
- the presently disclosed subject matter provides an object for implantation (e.g., a stent) in a subject, either permanently or temporarily.
- the subject is desirably a human subject, although it is to be understood that all vertebrate species are intended to be included in the term “subject.”
- the presently disclosed subject matter described herein provides articles particularly useful in the treatment and/or prevention of diseases or during surgical intervention in warm-blooded vertebrates.
- the presently disclosed articles can be used for the treatment of mammals and birds.
- mammals such as humans, as well as those mammals of importance due to being endangered (such as Siberian tigers), of economical importance (animals raised on farms for consumption by humans) and/or social importance (animals kept as pets or in zoos) to humans, for instance, carnivores other than humans (such as cats and dogs), swine (pigs, hogs, and wild boars), ruminants (such as cattle, oxen, sheep, llamas, giraffes, deer, goats, bison, and camels), and horses.
- endangered such as Siberian tigers
- social importance animals kept as pets or in zoos
- carnivores other than humans such as cats and dogs
- swine pigs, hogs, and wild boars
- ruminants such as cattle, oxen, sheep, llamas, giraffes, deer, goats, bison, and camels
- kits for the treatment of birds including the treatment of those kinds of birds that are endangered, kept in zoos or as pets (e.g., parrots), as well as fowl, and more particularly domesticated fowl, i.e., poultry, such as turkeys, chickens, ducks, geese, guinea fowl, and the like, as they also are of economical importance to humans.
- domesticated fowl i.e., poultry, such as turkeys, chickens, ducks, geese, guinea fowl, and the like
- livestock including, but not limited to, domesticated swine (pigs and hogs), ruminants, horses, poultry, and the like.
- random multigraft copolymers comprising, for example, PS side chains and a PI backbone
- synthesis of random multigraft copolymers can be based on the use of macromonomers bearing one or more PS side chains, prepared by anionic polymerization or other polymerization methods, followed by the living anionic copolymerization of the macromonomer with isoprene to create the graft copolymer.
- macromonomers bearing one or more PS side chains prepared by anionic polymerization or other polymerization methods, followed by the living anionic copolymerization of the macromonomer with isoprene to create the graft copolymer.
- isoprene to create the graft copolymer.
- the random placement of the grafts can be achieved by the use of a potassium alkoxide as an additive during the anionic copolymerization of the styrene-based macromonomer and the isoprene.
- a potassium alkoxide as an additive during the anionic copolymerization of the styrene-based macromonomer and the isoprene.
- Polymers can be prepared having 15 weight % PS side chains.
- the branch molecular weight can be about 32,000 and for the tetrafunctional centipede polymers the branch molecular weight can be 16,000.
- the total molecular weight can be about 400,000 or about 600,000.
- the multigraft copolymers can be characterized, for example, by SEC with light scattering detection, differential refractometry, and NMR. Morphology of pressed polymer sheets can be performed via SAXS and synchrotron SAXS. Additional studies including mechanical testing, modeling, hysteresis and softening characterization can be performed by methods known in the art. See, e.g., Schlegel, et al., Polymer, 50, 6297-6304 (2009); Thunga et al., KGK, 9, 597-605 (2008); Staudinger et al., Eur. Polym. J., 44, 3790-3796 (2008); Duan et al., Macromolecules, 42, 4155-4164 (2009).
- the following procedure is a representative method by which the morphology of a block or graft copolymer is evaluated.
- This procedure is the same general approach that has been employed in previous block copolymer research on PS-polydiene materials to produce a sample representative of the equilibrium morphology, and to evaluate that morphology. See Gido, S. P., et al., Macromolecules, 29, 7022 (1996); Gido, S. P., et al., Macromolecules, 30, 6771 (1997); Pochan, D. J., et al., Macromolecules, 29, 5091 (1996); Pochan, D. J., et al., J.
- Solid films of the block or graft copolymer material are cast from solution.
- Toluene is the standard non-preferential solvent for polystyrene (PS) and polyisoprene (PI). Casting from other solvents that are selective for either PS or PI can result in shifts in morphology away from that which the molecule itself would prefer.
- the degree of long-range order in the samples can then be increased by thermal annealing at about 120° C.
- SAXS Small angle X-ray scattering
- SANS small angle neutron scattering
- Each polymer synthesis was based from about 240 ⁇ mol DCMSS (480 ⁇ mol Si—Cl), which was titrated with poly(styryllithium) (PSLi) of the desired molecular weight, previously end-capped with 3-4 units of butadiene, to the 2-equiv point, which was 480 ⁇ mol anion, monitored by aliquots and the use of gel permeation chromatography monitoring, on the order of 5 g PSLi for each one depending on the molecular weight (M W ) and everything diluted at this point with about 300-400 ml benzene in the reactor.
- PSLi poly(styryllithium)
- Dog bone shaped specimen (according to DIN EN ISO 527/type 5B) were stamped from the films, which obtain a thickness of about 0.4-0.7 mm.
- Tensile and hysteresis tests were carried out on a Zwick/Roell universal testing machine equipped with a 100 N load cell.
- the strain was measured using an extensometer (Zwick/Roell MultiXtens). This strain sensor shows extremely low contract force and enables strain measurements at deformations larger than 1000%.
- the contact points of the extensometer and the clamping device were covered by tape to prevent the sample from damage and slippage.
- the three random multigraft copolymers were deformed by a cross head speed of 33 mm/min resulting in a strain rate of 0.023 s ⁇ 1 .
- MG-4-15-7/8 obtains the lowest residual strain ( ⁇ res ) in the hysteresis test after deformation up to ⁇ max .
- the dissipation hysteresis in the first cycle is quite large (62% for MG-4-15-4/5 and MG-4-20-6). In the second cycle, this parameter is decreasing to about 10-12% for all investigated materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Polymers & Plastics (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Materials For Medical Uses (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/877,229 US9708434B2 (en) | 2010-10-01 | 2011-09-30 | Multigraft copolymers as superelastomers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38902510P | 2010-10-01 | 2010-10-01 | |
US13/877,229 US9708434B2 (en) | 2010-10-01 | 2011-09-30 | Multigraft copolymers as superelastomers |
PCT/US2011/054345 WO2012045006A1 (en) | 2010-10-01 | 2011-09-30 | Multigraft copolymers as superelastomers |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140161858A1 US20140161858A1 (en) | 2014-06-12 |
US9708434B2 true US9708434B2 (en) | 2017-07-18 |
Family
ID=45893544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/877,229 Active US9708434B2 (en) | 2010-10-01 | 2011-09-30 | Multigraft copolymers as superelastomers |
Country Status (5)
Country | Link |
---|---|
US (1) | US9708434B2 (de) |
EP (1) | EP2622015B1 (de) |
CA (1) | CA2813249A1 (de) |
SG (2) | SG10201508163UA (de) |
WO (1) | WO2012045006A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10202478B2 (en) * | 2014-06-20 | 2019-02-12 | University Of Tennessee Research Foundation | Multigraft copolymer superelastomers by emulsion polymerization |
US11325991B2 (en) | 2017-04-25 | 2022-05-10 | University Of Tennessee Research Foundation | All-acrylic multigraft copolymer superelastomers |
US11517151B2 (en) | 2020-10-27 | 2022-12-06 | Sam J. ACHILLI | Heat resistant cooking apparatus |
US12004602B2 (en) | 2019-12-16 | 2024-06-11 | Converse Inc. | Components with embedded particles and methods of making same |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9708434B2 (en) | 2010-10-01 | 2017-07-18 | University Of Tennessee Research Foundation | Multigraft copolymers as superelastomers |
US9181432B2 (en) | 2012-05-10 | 2015-11-10 | The United States Of America As Represented By The Secretary Of The Army | Branched additives for polymer toughening |
US11078335B2 (en) | 2017-07-25 | 2021-08-03 | Dow Silicones Corporation | Method for preparing a graft copolymer with a polyolefin backbone and polyorganosiloxane pendant groups |
WO2019182718A1 (en) | 2018-03-19 | 2019-09-26 | Dow Silicones Corporation | Hot melt adhesive composition containing a polyolefin - polydiorganosiloxane copolymer and methods for the preparation and use thereof |
CN111868196B (zh) | 2018-03-19 | 2022-08-30 | 美国陶氏有机硅公司 | 含有聚烯烃-聚二有机硅氧烷共聚物的聚有机硅氧烷热熔胶组合物和其制备和使用方法 |
JP7378411B2 (ja) | 2018-03-19 | 2023-11-13 | ダウ シリコーンズ コーポレーション | ポリオレフィン-ポリジオルガノシロキサンブロックコポリマーおよびその合成のための加水分解反応方法 |
US12037462B2 (en) | 2018-03-19 | 2024-07-16 | Dow Global Technologies Llc | Polyolefin-polydiorganosiloxane block copolymer and method for the synthesis thereof |
DE102018113642B4 (de) * | 2018-06-07 | 2020-05-28 | Christian-Albrechts-Universität Zu Kiel | Progressives Auslenkungselement, Herstellungsverfahren dazu sowie Verwendung |
CN112334515B (zh) | 2018-07-17 | 2022-08-09 | 美国陶氏有机硅公司 | 聚硅氧烷树脂-聚烯烃共聚物及其制备和使用方法 |
CN110041636B (zh) * | 2019-04-24 | 2022-04-26 | 安徽大学 | 一种无卤阻燃抗静电木塑复合材料及其制备方法 |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2008140A (en) | 1977-11-21 | 1979-05-31 | Baxter Travenol Lab | Catheters and block polymer compositions for producing them |
SU712027A3 (ru) | 1973-11-27 | 1980-01-25 | Спс Интернэшнл Инк (Фирма) | Способ получени привитых сополимеров |
US4335723A (en) | 1976-11-26 | 1982-06-22 | The Kendall Company | Catheter having inflatable retention means |
US4481323A (en) | 1980-05-07 | 1984-11-06 | Medical Research Associates, Ltd. #2 | Hydrocarbon block copolymer with dispersed polysiloxane |
EP0235482A1 (de) | 1985-12-28 | 1987-09-09 | TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION | Antithrombogene medizinische Materialien und intravaskulärer Katheter daraus |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5079090A (en) * | 1987-10-09 | 1992-01-07 | Minnesota Mining And Manufacturing Company | Adhesive compositions made with condensed phase polymers and sheet materials coated therewith |
US5210147A (en) * | 1991-05-20 | 1993-05-11 | Shell Oil Company | 100% Triblock hydrogenated styrene-isoprene-styrene block copolymer adhesive composition |
US5741857A (en) | 1996-10-15 | 1998-04-21 | The Dow Chemical Company | Blends of elastomer block copolymer and aliphatic α-olefin/monovinylidene aromatic monomer and/or hindered aliphatic vinylidene monomer interpolymer |
US5837008A (en) | 1993-04-26 | 1998-11-17 | Medtronic, Inc. | Intravascular stent and method |
US5843172A (en) | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US5851217A (en) | 1990-02-28 | 1998-12-22 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US5873904A (en) | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
US6344035B1 (en) | 1998-04-27 | 2002-02-05 | Surmodics, Inc. | Bioactive agent release coating |
US6368658B1 (en) * | 1999-04-19 | 2002-04-09 | Scimed Life Systems, Inc. | Coating medical devices using air suspension |
US20020103295A1 (en) | 2000-12-05 | 2002-08-01 | Herbert Eichenauer | Thermoplastic molding compositions |
US20030180488A1 (en) | 2002-03-21 | 2003-09-25 | Florencia Lim | Catheter balloon formed of ePTFE and a diene polymer |
US20050245645A1 (en) | 2004-05-03 | 2005-11-03 | General Electric Company | Special visual effect thermoplastic compositions, articles made therefrom, and method |
US7049373B2 (en) | 1999-08-06 | 2006-05-23 | Carnegie Mellon University | Process for preparation of graft polymers |
US7163555B2 (en) | 2003-04-08 | 2007-01-16 | Medtronic Vascular, Inc. | Drug-eluting stent for controlled drug delivery |
US20080194716A1 (en) | 2002-06-27 | 2008-08-14 | Asahi Kasei Chemicals Corporation | Hydrogenated copolymer and composition containing the same |
US20080193818A1 (en) | 2004-03-19 | 2008-08-14 | University Of Tennessee Research Foundation | Copolymers of fluorinated polydienes and sulfonated polystyrene |
US7435255B1 (en) | 2002-11-13 | 2008-10-14 | Advnaced Cardiovascular Systems, Inc. | Drug-eluting stent and methods of making |
US20090028356A1 (en) | 2007-07-23 | 2009-01-29 | Asius Technologies, Llc | Diaphonic acoustic transduction coupler and ear bud |
US7619036B2 (en) | 2004-03-19 | 2009-11-17 | University Of Tennessee Research Foundation | Copolymers of fluorinated polydienes and sulfonated polystyrene |
US20090285974A1 (en) | 2008-05-15 | 2009-11-19 | Kerrigan Cameron K | Method for electrostatic coating of a medical device |
US20100190671A1 (en) | 2007-07-09 | 2010-07-29 | Evonik Rohmax Additives Gmbh | Use of comb polymers for reducing fuel consumption |
EP2218753A1 (de) | 2007-11-09 | 2010-08-18 | Asahi Kasei Chemicals Corporation | Thermoplastische harzzusammensetzung und formkörper und platte aus der zusammensetzung |
US20100210745A1 (en) | 2002-09-09 | 2010-08-19 | Reactive Surfaces, Ltd. | Molecular Healing of Polymeric Materials, Coatings, Plastics, Elastomers, Composites, Laminates, Adhesives, and Sealants by Active Enzymes |
US7794491B2 (en) | 1998-09-05 | 2010-09-14 | Abbott Laboratories Vascular Enterprises Limited | Apparatus for a stent having an expandable web structure and delivery system |
US8061533B2 (en) | 2004-03-19 | 2011-11-22 | University Of Tennessee Research Foundation | Materials comprising polydienes and hydrophilic polymers and related methods |
WO2012045006A1 (en) | 2010-10-01 | 2012-04-05 | University Of Tennessee Research Foundation | Multigraft copolymers as superelastomers |
WO2015196093A1 (en) | 2014-06-20 | 2015-12-23 | University Of Tennessee Research Foundation | Multigraft copolymer superelastomers by emulsion polymerization |
-
2011
- 2011-09-30 US US13/877,229 patent/US9708434B2/en active Active
- 2011-09-30 WO PCT/US2011/054345 patent/WO2012045006A1/en active Application Filing
- 2011-09-30 EP EP11830015.1A patent/EP2622015B1/de active Active
- 2011-09-30 SG SG10201508163UA patent/SG10201508163UA/en unknown
- 2011-09-30 CA CA2813249A patent/CA2813249A1/en not_active Abandoned
- 2011-09-30 SG SG2013021464A patent/SG188636A1/en unknown
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU712027A3 (ru) | 1973-11-27 | 1980-01-25 | Спс Интернэшнл Инк (Фирма) | Способ получени привитых сополимеров |
US4335723A (en) | 1976-11-26 | 1982-06-22 | The Kendall Company | Catheter having inflatable retention means |
GB2008140A (en) | 1977-11-21 | 1979-05-31 | Baxter Travenol Lab | Catheters and block polymer compositions for producing them |
US4481323A (en) | 1980-05-07 | 1984-11-06 | Medical Research Associates, Ltd. #2 | Hydrocarbon block copolymer with dispersed polysiloxane |
EP0235482A1 (de) | 1985-12-28 | 1987-09-09 | TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION | Antithrombogene medizinische Materialien und intravaskulärer Katheter daraus |
US5079090A (en) * | 1987-10-09 | 1992-01-07 | Minnesota Mining And Manufacturing Company | Adhesive compositions made with condensed phase polymers and sheet materials coated therewith |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5851217A (en) | 1990-02-28 | 1998-12-22 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US5210147A (en) * | 1991-05-20 | 1993-05-11 | Shell Oil Company | 100% Triblock hydrogenated styrene-isoprene-styrene block copolymer adhesive composition |
US5837008A (en) | 1993-04-26 | 1998-11-17 | Medtronic, Inc. | Intravascular stent and method |
US5873904A (en) | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
US5741857A (en) | 1996-10-15 | 1998-04-21 | The Dow Chemical Company | Blends of elastomer block copolymer and aliphatic α-olefin/monovinylidene aromatic monomer and/or hindered aliphatic vinylidene monomer interpolymer |
US5843172A (en) | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US6344035B1 (en) | 1998-04-27 | 2002-02-05 | Surmodics, Inc. | Bioactive agent release coating |
US7794491B2 (en) | 1998-09-05 | 2010-09-14 | Abbott Laboratories Vascular Enterprises Limited | Apparatus for a stent having an expandable web structure and delivery system |
US6368658B1 (en) * | 1999-04-19 | 2002-04-09 | Scimed Life Systems, Inc. | Coating medical devices using air suspension |
US7049373B2 (en) | 1999-08-06 | 2006-05-23 | Carnegie Mellon University | Process for preparation of graft polymers |
US20020103295A1 (en) | 2000-12-05 | 2002-08-01 | Herbert Eichenauer | Thermoplastic molding compositions |
US20030180488A1 (en) | 2002-03-21 | 2003-09-25 | Florencia Lim | Catheter balloon formed of ePTFE and a diene polymer |
US20080194716A1 (en) | 2002-06-27 | 2008-08-14 | Asahi Kasei Chemicals Corporation | Hydrogenated copolymer and composition containing the same |
US20100210745A1 (en) | 2002-09-09 | 2010-08-19 | Reactive Surfaces, Ltd. | Molecular Healing of Polymeric Materials, Coatings, Plastics, Elastomers, Composites, Laminates, Adhesives, and Sealants by Active Enzymes |
US7435255B1 (en) | 2002-11-13 | 2008-10-14 | Advnaced Cardiovascular Systems, Inc. | Drug-eluting stent and methods of making |
US7163555B2 (en) | 2003-04-08 | 2007-01-16 | Medtronic Vascular, Inc. | Drug-eluting stent for controlled drug delivery |
US7619036B2 (en) | 2004-03-19 | 2009-11-17 | University Of Tennessee Research Foundation | Copolymers of fluorinated polydienes and sulfonated polystyrene |
US20080193818A1 (en) | 2004-03-19 | 2008-08-14 | University Of Tennessee Research Foundation | Copolymers of fluorinated polydienes and sulfonated polystyrene |
US8061533B2 (en) | 2004-03-19 | 2011-11-22 | University Of Tennessee Research Foundation | Materials comprising polydienes and hydrophilic polymers and related methods |
US20050245645A1 (en) | 2004-05-03 | 2005-11-03 | General Electric Company | Special visual effect thermoplastic compositions, articles made therefrom, and method |
US20100190671A1 (en) | 2007-07-09 | 2010-07-29 | Evonik Rohmax Additives Gmbh | Use of comb polymers for reducing fuel consumption |
RU2483083C2 (ru) | 2007-07-09 | 2013-05-27 | Эвоник РоМакс Эддитивс ГмбХ | Применение гребенчатых полимеров для снижения расхода горючего |
US20090028356A1 (en) | 2007-07-23 | 2009-01-29 | Asius Technologies, Llc | Diaphonic acoustic transduction coupler and ear bud |
EP2218753A1 (de) | 2007-11-09 | 2010-08-18 | Asahi Kasei Chemicals Corporation | Thermoplastische harzzusammensetzung und formkörper und platte aus der zusammensetzung |
US20090285974A1 (en) | 2008-05-15 | 2009-11-19 | Kerrigan Cameron K | Method for electrostatic coating of a medical device |
WO2012045006A1 (en) | 2010-10-01 | 2012-04-05 | University Of Tennessee Research Foundation | Multigraft copolymers as superelastomers |
WO2015196093A1 (en) | 2014-06-20 | 2015-12-23 | University Of Tennessee Research Foundation | Multigraft copolymer superelastomers by emulsion polymerization |
Non-Patent Citations (133)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10202478B2 (en) * | 2014-06-20 | 2019-02-12 | University Of Tennessee Research Foundation | Multigraft copolymer superelastomers by emulsion polymerization |
US11325991B2 (en) | 2017-04-25 | 2022-05-10 | University Of Tennessee Research Foundation | All-acrylic multigraft copolymer superelastomers |
US12004602B2 (en) | 2019-12-16 | 2024-06-11 | Converse Inc. | Components with embedded particles and methods of making same |
US11517151B2 (en) | 2020-10-27 | 2022-12-06 | Sam J. ACHILLI | Heat resistant cooking apparatus |
Also Published As
Publication number | Publication date |
---|---|
CA2813249A1 (en) | 2012-04-05 |
EP2622015A4 (de) | 2014-07-30 |
EP2622015B1 (de) | 2015-12-16 |
SG10201508163UA (en) | 2015-11-27 |
WO2012045006A1 (en) | 2012-04-05 |
EP2622015A1 (de) | 2013-08-07 |
SG188636A1 (en) | 2013-05-31 |
US20140161858A1 (en) | 2014-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9708434B2 (en) | Multigraft copolymers as superelastomers | |
Maji et al. | Styrenic Block copolymer‐based thermoplastic elastomers in smart applications: Advances in synthesis, microstructure, and structure–property relationships—a review | |
JP5122569B2 (ja) | 改善された力学的性能を有する医療デバイス | |
CN101631576B (zh) | 由聚(环氧乙烷)和含光引发剂的支架材料制备的涂料 | |
US7713539B2 (en) | Medical devices containing radiation resistant block copolymer | |
US7767726B2 (en) | Medical devices having crosslinked polymeric surfaces | |
US10202478B2 (en) | Multigraft copolymer superelastomers by emulsion polymerization | |
KR20170121181A (ko) | 수첨 블록 공중합체, 수지 조성물, 점착제, 접착제, 성형체, 액체 포장 용기, 의료용구, 의료용 튜브, 웨더 시일용 코너 부재 및 웨더 시일 | |
EP2237810B1 (de) | Biologisch abbaubare polymere | |
WO2006062975A2 (en) | Orienting polymer domains for controlled drug delivery | |
WO1999045980A1 (fr) | Substance et fourniture a usage medical | |
US7897171B2 (en) | Medical devices having improved mechanical performance | |
US20190055337A1 (en) | Low-cost synthesis of macromonomers | |
CN103468108B (zh) | 涂料组合物 | |
JP4000314B2 (ja) | 積層体および該積層体からなる医療用具 | |
WO2009006538A2 (en) | Modified polymers and methods for making and using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF MASSACHUSETTS, MASSACHUSETTS Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:GIDO, SAMUEL P.;REEL/FRAME:028550/0991 Effective date: 20120710 Owner name: UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION, TENNE Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:MAYS, JIMMY W.;REEL/FRAME:028550/0988 Effective date: 20120709 |
|
AS | Assignment |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNORS:WEIDISCH, LIANE;WEIDISCH, CHRISTINA;REEL/FRAME:032064/0013 Effective date: 20131101 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR) |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |