US9698110B2 - Semiconductor device with integrated antenna - Google Patents

Semiconductor device with integrated antenna Download PDF

Info

Publication number
US9698110B2
US9698110B2 US14/296,067 US201414296067A US9698110B2 US 9698110 B2 US9698110 B2 US 9698110B2 US 201414296067 A US201414296067 A US 201414296067A US 9698110 B2 US9698110 B2 US 9698110B2
Authority
US
United States
Prior art keywords
antenna
semiconductor device
sealing body
corner
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US14/296,067
Other versions
US20140374888A1 (en
Inventor
Motoi ISHIDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Assigned to RENESAS ELECTRONICS CORPORATION reassignment RENESAS ELECTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIDA, MOTOI
Publication of US20140374888A1 publication Critical patent/US20140374888A1/en
Application granted granted Critical
Publication of US9698110B2 publication Critical patent/US9698110B2/en
Assigned to RENESAS ELECTRONICS CORPORATION reassignment RENESAS ELECTRONICS CORPORATION CHANGE OF ADDRESS Assignors: RENESAS ELECTRONICS CORPORATION
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06135Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48647Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48847Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49177Combinations of different arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85447Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a technique effectively applied to a semiconductor device having an antenna therein.
  • Japanese Unexamined Patent Application Publication No. 2005-301635 discloses a structure having a semiconductor chip, a mounting portion on which the semiconductor chip is placed, and an antenna.
  • Japanese Unexamined Patent Application Publication No. 2005-301635 also discloses a structure in which the antenna is configured by two or more coils that are arranged to overlap with each other vertically.
  • Japanese Unexamined Patent Application Publication No. 2006-221211 discloses a structure in which a wireless IC tag formation region is disposed on a semiconductor chip where a semiconductor integrated circuit is formed, a wireless IC tag is formed on the same chip, and a conductive pattern serving as an antenna is formed on the semiconductor chip, or in a package where the semiconductor chip is implemented.
  • a technique has been known in which, with the use of an electromagnetic coupling between antennas arranged in the vicinity of each other, data transmission between semiconductor chips connected to the respective antennas is conducted as a non-contact and high-speed baseband transmission.
  • high-speed transmission is enabled, and low power consumption is also effective because no modulation circuit is required.
  • the antenna is formed within a semiconductor package in applying the above communication system to the semiconductor device.
  • the antenna size must be increased for the purpose of ensuring a communication distance, but the influence of the electromagnetic field on the semiconductor chip becomes also larger as the antenna size is larger.
  • the semiconductor device can be realized as a package structure even if the antenna is supported at about five portions.
  • a semiconductor device includes a die pad, a semiconductor chip, a plurality of terminal portions, a frame body having plurality of bends arranged between a first end and a second end, three suspension leads that support the frame body, a first conductive member that connects any electrode pad of the semiconductor chip to the first end of the frame body, and a second conductive member that connects any electrode pad of the semiconductor chip to the second end of the frame body.
  • the semiconductor device includes a plurality of third conductive members that connects the electrode pads of the semiconductor chip to the plurality of terminal portions, and a sealing body that seals the semiconductor chip.
  • the frame body is arranged to be symmetrical with respect to a virtual diagonal line of a plan view of the sealing body, and any one of the three suspension leads is arranged on the virtual diagonal line.
  • the high frequency signal can be transmitted and received in the semiconductor device.
  • FIG. 1 is a plan view illustrating an example of a structure of a semiconductor device according to an embodiment
  • FIG. 2 is a plan view illustrating a structure of a semiconductor device illustrated in FIG. 1 through a sealing body;
  • FIG. 3 is a cross-sectional view illustrating a structure cut along a line A-A illustrated in FIG. 2 ;
  • FIG. 4 is a cross-sectional view illustrating a structure cut along a line B-B illustrated in FIG. 2 ;
  • FIG. 5 is a circuit configuration diagram illustrating an example of a configuration of a semiconductor chip mounted on the semiconductor device illustrated in FIG. 1 ;
  • FIG. 6 is a partial plan view illustrating an example of a pad arrangement of the semiconductor chip mounted on the semiconductor device illustrated in FIG. 1 ;
  • FIG. 7 is a partial plan view illustrating an example of an region of a main body (sealing body) of the semiconductor device illustrated in FIG. 1 ;
  • FIG. 8 is a partial plan view illustrating an example of a layout of terminal portions of the semiconductor device illustrated in FIG. 1 ;
  • FIG. 9 is a partial plan view illustrating an example of an region of an antenna (frame body) of the semiconductor device illustrated in FIG. 1 ;
  • FIG. 10 is a plan view illustrating a structure of a semiconductor device through a sealing body according to a modification of the embodiment
  • FIG. 11 is a cross-sectional view illustrating a structure cut along a line A-A illustrated in FIG. 10 ;
  • FIG. 12 is a cross-sectional view illustrating a structure cut along a line B-B illustrated in FIG. 10 .
  • FIG. 1 is a plan view illustrating an example of a structure of a semiconductor device according to an embodiment.
  • FIG. 2 is a plan view illustrating a structure of a semiconductor device illustrated in FIG. 1 through a sealing body.
  • FIG. 3 is a cross-sectional view illustrating a structure cut along a line A-A illustrated in FIG. 2 .
  • FIG. 4 is a cross-sectional view illustrating a structure cut along a line B-B illustrated in FIG. 2 .
  • FIG. 5 is a circuit configuration diagram illustrating an example of a configuration of a semiconductor chip mounted on the semiconductor device illustrated in FIG. 1 .
  • FIG. 6 is a partial plan view illustrating an example of a pad arrangement of the semiconductor chip mounted on the semiconductor device illustrated in FIG. 1 .
  • FIG. 7 is a partial plan view illustrating an example of an region of a main body (sealing body) of the semiconductor device illustrated in FIG. 1 .
  • FIG. 8 is a partial plan view illustrating an example of a layout of terminal portions of the semiconductor device illustrated in FIG. 1 .
  • FIG. 9 is a partial plan view illustrating an example of an region of an antenna (frame body) of the semiconductor device illustrated in FIG. 1 .
  • the semiconductor device according to this embodiment illustrated in FIGS. 1 and 2 is a semiconductor package of a resin seal type having an antenna (frame body) 1 b therein.
  • a QFP (quad flat package) 5 in which a plurality of, outer portions (first portions, electrode terminal portions, external connection terminals) 1 ab projected from a sealing body 3 made of a resin material toward respective four directions is bent into a gull wing shape will be described as an example.
  • the antenna 1 b is embedded within the sealing body 3 , and mounted on, for example, an in-vehicle ECU (electronic control unit).
  • the ECU is a unit used for engine control or air conditioner control, and a semiconductor device (QFP 5 ) in which the antenna 1 b is embedded according to this embodiment is mounted in the ECU to conduct a wireless communication (transmission and reception) between the semiconductor devices.
  • the QFP 5 enables transmission and reception of a high frequency signal of, for example, 5 Gbps (5 GHz) class.
  • a structure of the QFP (semiconductor device) 5 illustrated in FIGS. 1 to 4 will be described.
  • the QFP 5 includes a die pad (island, support) 1 c having an upper surface (chip mounting surface, main surface) 1 ca and a lower surface (rear surface) 1 cb opposite to the upper surface 1 ca , a semiconductor chip 2 mounted on the upper surface 1 ca of the die pad 1 c , and having a plurality of electrode pads (electrodes) 2 c disposed on a main surface 2 a , and a plurality of leads (terminal portions, electrodes) 1 a arranged around the die pad 1 c.
  • the QFP 5 is equipped with the antenna (frame body) 1 b having a front surface (main surface) 1 ba , a rear surface 1 bb opposite to the front surface 1 ba , a first end (first termination) 1 bc illustrated in FIG. 2 , which is one end thereof, a second end (second termination) 1 bd which is the other end, and a plurality of bends arranged between the first end 1 bc and the second end 1 bd .
  • the antenna 1 b is supported by three suspension leads (a first suspension lead (first support bar) 1 d , a second suspension lead (second support bar) 1 e , and a third suspension lead (third support bar) 1 f ).
  • the electrode pads 2 c of the semiconductor chip 2 and the frame body (antenna 1 b ), and the electrode pads 2 c of the semiconductor chip 2 and the terminal portions are electrically connected to each other by wires (conductive members, conductors) 4 made of metal. That is, any one of the electrode pads 2 c of the semiconductor chip 2 , and the first end 1 bc of the antenna 1 b are electrically connected to each other by a first wire (first conductive member, first conductor) 4 a .
  • any one of the plural electrode pads 2 c of the semiconductor chip 2 , and the second end 1 bd of the antenna 1 b are electrically connected to each other by a second wire (second conductive member, second conductor) 4 b .
  • any one of the plural electrode pads 2 c of the semiconductor chip 2 and any one of the plural terminal portions are electrically connected to each other by a plurality of third wires (third conductive member, third conductor) 4 c.
  • the frame body (antenna 1 b ), the first wire 4 a , and the second wire 4 b form a loop antenna through the semiconductor chip 2 .
  • the wires 4 are formed of, for example, gold (Au) lines or copper (Cu) lines.
  • the die pad 1 c , the semiconductor chip 2 , the frame body (antenna 1 b ), the three suspension leads (the first suspension lead 1 d , the second suspension lead 1 e , and the third suspension lead 1 f ), and the plural wires 4 are sealed by the sealing body 3 made of a sealing resin.
  • the sealing resin is, for example, a thermosetting epoxy resin.
  • the semiconductor chip 2 is mounted on the upper surface 1 ca of the die pad 1 c through a die bond material (adhesion layer, laminate adhesive, die bond film, DAF (die attach film)) 6 .
  • a die bond material adheresion layer, laminate adhesive, die bond film, DAF (die attach film) 6 .
  • a rear surface 2 b of the semiconductor chip 2 and the upper surface 1 ca of the die pad 1 c face each other, and are also joined together by the die bond material 6 .
  • the third suspension lead 1 f which is one of the three suspension leads that support the antenna 1 b is arranged on a first virtual diagonal line 3 k which is a diagonal line of a plan view of the sealing body 3 .
  • the antenna 1 b is arranged to be symmetrical with respect to the first virtual diagonal line 3 k of the sealing body 3 .
  • the die pad 1 c is supported by three other suspension leads except for the three suspension leads that support the antenna 1 b.
  • the die pad 1 c is supported by three suspension leads of a fourth suspension lead (fourth support bar) 1 g , a fifth suspension lead (fifth support bar) 1 h , and a sixth suspension lead (sixth support bar) 1 i.
  • both of the die pad 1 c and the antenna 1 b are supported at respective three points.
  • the antenna 1 b , and the plural terminal portions (leads 1 a ) arranged on respective four sides of the sealing body 3 disposed around the antenna 1 b are disposed at the substantially given distance.
  • the antenna 1 b , the die pad 1 c , the respective suspension leads, and the plural terminal portions (leads 1 a ) are made of an alloy material mainly containing copper.
  • the semiconductor chip 2 is mounted on the die pad 1 c , and has at least any one of a transmitter circuit and a receiver circuit for conducting a wireless baseband transmission with the other semiconductor chip 10 (refer to FIG. 5 ) of the other semiconductor device.
  • the semiconductor chip 2 includes the transmitter circuit, the receiver circuit, and a switching control circuit that switches the transmission and reception of the signal will be described.
  • FIG. 5 illustrates an antenna 1 b (one coil) disposed on the semiconductor chip 2 side, the other semiconductor chip 10 which is a communication target, and an antenna 12 (the other coil) disposed on the another semiconductor chip 10 side.
  • the semiconductor chip 2 illustrated in FIG. 5 includes a transmitter circuit Tx 1 , a receiver circuit Rx 1 , and a switching control circuit 2 d .
  • the other semiconductor chip 10 illustrated in FIG. 5 includes a transmitter circuit Tx 2 , a receiver circuit Rx 2 , and a switching control circuit 11 .
  • the antennas 1 b and 12 are an AC coupling element that transmits an AC signal from one antenna to the other antenna, or from the other antenna to one antenna. That is, the semiconductor device having the semiconductor chip 2 , and the semiconductor device having the semiconductor chip 10 are arranged to face each other without contact with each other, and conduct transmission and reception of the signal through the antennas 1 b and 12 . In this situation, the antennas 1 b and 12 are magnetically coupled with each other.
  • the switching control circuit 2 d drives the transmitter circuit Tx 1 , and stops the driving of the receiver circuit Rx 1 .
  • the transmitter circuit Tx 1 converts transmission data VIN 1 (differential signal) supplied from the external of the QFP 5 into a pulse signal, and outputs the pulse signal as a transmitted signal (differential signal).
  • the transmitted signal is converted into a magnetic signal by the antenna 1 b .
  • the antenna 12 generates a received signal (differential signal) of a voltage level corresponding to a change in magnetic field of the antenna 1 b , and delivers the received signal to the receiver circuit Rx 2 .
  • the transmitted signal output from the transmitter circuit Tx 1 is transmitted to the receiver circuit Rx 2 as the received signal through the AC coupling element configured by the antennas 1 b and 12 .
  • the receiver circuit Rx 2 reproduces the transmission data VIN 1 on the basis of the received signal received from the antenna 12 , and outputs the transmission data VIN 1 as output data VOUT 2 (differential signal).
  • the switching control circuit 2 d drives the receiver circuit Rx 1 , and stops the driving of the transmitter circuit Tx 1 .
  • the transmitter circuit Tx 2 disposed in the other semiconductor chip 10 converts transmission data VIN 2 (differential signal) into a pulse signal, and outputs the pulse signal as a transmitted signal (differential signal).
  • the transmitted signal is converted into a magnetic signal by the antenna 12 .
  • the antenna 1 b generates a received signal (differential signal) of a voltage level corresponding to a change in magnetic field of the antenna 12 , and delivers the received signal to the receiver circuit Rx 1 .
  • the transmitted signal output from the transmitter circuit Tx 2 is transmitted to the receiver circuit Rx 1 as the received signal through the AC coupling element configured by the antennas 1 b and 12 .
  • the receiver circuit Rx 1 reproduces the transmission data VIN 2 on the basis of the received signal received from the antenna 1 b , and outputs the transmission data VIN 2 as output data VOUT 1 (differential signal).
  • the semiconductor chip 2 can be appropriately changed into a circuit configuration provided in only the transmitter circuit Tx 1 or the receiver circuit Rx 1 in the transmitter circuit Tx 1 and the receiver circuit Rx 1 .
  • the electrode pads 2 c of the semiconductor chip 2 and the layout configuration of the circuit will be described with reference to FIG. 6 .
  • the transmitter circuit Tx 1 , the receiver circuit Rx 1 , and the switching control circuit 2 d are arranged in the center of the semiconductor chip 2 .
  • the plural electrode pads 2 c are arranged to surround the transmitter circuit Tx 1 , the receiver circuit Rx 1 , and the switching control circuit 2 d in the periphery of the semiconductor chip 2 .
  • the electrode pad 2 c (first electrode pad PD 1 ) connected to each of one output terminal of the transmitter circuit Tx 1 and one input terminal of the receiver circuit Rx 1 in the semiconductor chip 2 is arranged along any one of two sides arranged on the opposite side of the sixth suspension lead 1 i that supports the die pad 1 c among four sides of the semiconductor chip 2 .
  • the first electrode pad PD 1 is arranged in the vicinity of a corner on the opposite side of the sixth suspension lead 1 i among four corners of the semiconductor chip 2 .
  • the electrode pad 2 c (second electrode pad PD 2 ) connected to each of the other output terminal of the transmitter circuit Tx 1 and the other input terminal of the receiver circuit Rx 1 is arranged along any one of two sides arranged on the opposite side of the sixth suspension lead 1 i among four sides of the semiconductor chip 2 .
  • the second electrode pad PD 2 is arranged in the vicinity of the corner on the opposite side of the sixth suspension lead 1 i among the four corners of the semiconductor chip 2 .
  • the first electrode pad PD 1 and the second electrode pad PD 2 are arranged adjacent to each other.
  • first electrode pad PD 1 and one end (second end 1 bd ) of the antenna 1 b are electrically connected to each other through the second wire 4 b (one of the plural wires 4 ).
  • second electrode pad PD 2 and the other end (first end 1 bc ) of the antenna 1 b are electrically connected to each other through the first wire 4 a (one of the plural wires 4 ).
  • the first electrode pad PD 1 , the second electrode pad PD 2 , and one end and the other end of the antenna 1 b are arranged in the vicinity of each other. Therefore, lengths of the first wire 4 a and the second wire 4 b are relatively short. As a result, in the wireless baseband transmission, the signal bandwidth is presented from being narrowed.
  • a third electrode pad PD 3 connected to each of one input terminal of the transmitter circuit Tx 1 and one output terminal of the receiver circuit Rx 1 is arranged along at least any one of two sides closer to the sixth suspension lead 1 i among four sides of the semiconductor chip 2 .
  • a fourth electrode pad PD 4 connected to each of the other input terminal of the transmitter circuit Tx 1 and the other output terminal of the receiver circuit Rx 1 is arranged along at least any one of two sides closer to the sixth suspension lead 1 i among the four sides of the semiconductor chip 2 .
  • the third electrode pad PD 3 and the fourth electrode pad PD 4 are arranged along the same side of the semiconductor chip 2 , and also arranged in the vicinity of each other.
  • the electrode pads 2 c for supplying a control signal to the switching control circuit 2 d from the external, and the electrode pads 2 c for inputting and outputting a signal to another internal circuit from the external are also arranged along two sides closer to the sixth suspension lead 1 i among the four sides of the semiconductor chip 2 .
  • Those electrode pads (including the third electrode pad PD 3 and the fourth electrode pad PD 4 ) other than the first electrode pad PD 1 and the second electrode pad PD 2 are connected to the respective terminal portions (leads 1 a ) close to each other through the wires 4 .
  • the sealing body 3 has a front surface (main surface) 3 i , and a rear surface (mounting surface) 3 j on the opposite side of the front surface 3 i .
  • the sealing body 3 has a first side 3 a on the front surface 3 i (refer to FIG. 3 ), a second side 3 b on the opposite side of the first side 3 a , a third side 3 c intersecting with the first side 3 a , and a fourth side 3 d on the opposite side of the third side 3 c , in a plan view.
  • the third suspension lead 1 f arranged to overlap with the first virtual diagonal line 3 k which is one of the virtual diagonal lines extends toward a first corner 3 e formed by the first side 3 a and the fourth side 3 d .
  • the first corner 3 e is a portion where an extension of the first side 3 a of the sealing body 3 intersects with an extension of the fourth side 3 d.
  • a second corner 3 f on the opposite side of the first side 3 a from the first corner 3 e is formed by the first side 3 a and the third side 3 c .
  • the second corner 3 f is a portion where an extension of the first side 3 a of the sealing body 3 intersects with an extension of the third side 3 c.
  • a third corner 3 g on the opposite side of the third side 3 c from the second corner 3 f is formed by the second side 3 b and the third side 3 c .
  • the third corner 3 g is a portion where an extension of the third side 3 c of the sealing body 3 intersects with an extension of the second side 3 b.
  • a fourth corner 3 h on the opposite side of the fourth side 3 d from the first corner 3 e is formed by the second side 3 b and the fourth side 3 d .
  • the fourth corner 3 h is a portion where an extension of the second side 3 b of the sealing body 3 intersects with an extension of the fourth side 3 d.
  • a diagonal line that passes through the first corner 3 e and the third corner 3 g in the two diagonal lines is the first virtual diagonal line 3 k
  • a diagonal line that passes through the second corner 3 f and the fourth corner 3 h is a second virtual diagonal line 3 m.
  • the sealing body 3 has a first region 3 q surrounded by the first side 3 a , the fourth side 3 d , the first virtual line 3 n , and the second virtual line 3 p.
  • the sealing body 3 has a second region 3 r surrounded by the first side 3 a , the third side 3 c , the first virtual diagonal line 3 n , and the second virtual line 3 p . Also, the sealing body 3 has a third region 3 s surrounded by the second side 3 b , the third side 3 c , the first virtual line 3 n , and the second virtual line 3 p . Also, the sealing body 3 has a fourth region 3 t surrounded by the second side 3 b , the fourth side 3 d , the first virtual line 3 n , and the second virtual line 3 p.
  • the die pad 1 c is arranged within the sealing body 3 , and has a first side 1 cc on the upper surface (chip mounting surface, main surface, front surface (refer to FIG. 3 )) 1 ca , a second side 1 cd opposite to the first side 1 cc , a third side 1 ce that intersects with the second side 1 cd , and a fourth side 1 cf opposite to the third side ice, in a plan view of FIG. 9 .
  • the semiconductor chip 2 is arranged within the sealing body 3 , and has a first side 2 aa on the main surface 2 a , a second side 2 ab located opposite to the first side 2 aa , a third side 2 ac that intersects with the first side 2 aa and the second side 2 ab , and a fourth side 2 ad located opposite to the third side 2 ac , in the plan view.
  • the main surface 2 a is formed with the plurality of electrode pads 2 c (refer to FIG. 7 ).
  • the plural electrode pads 2 c of the semiconductor chip 2 include a plurality of first electrode pads 2 ca arranged along the first side 2 aa of the semiconductor chip 2 , a plurality of second electrode pads 2 cb arranged along the second side 2 ab , a plurality of third electrode pads 2 cc arranged along the third side 2 ac , and a plurality of fourth electrode pads 2 cd arranged along the fourth side 2 ad.
  • the QFP 5 includes a plurality of first leads (first terminal portions, first electrodes) 1 ac each having an inner portion (first portion) 1 aa which is arranged along the first side 3 a of the sealing body 3 , and sealed by the sealing body 3 , and an outer portion (second portion) 1 ab that is exposed from the sealing body 3 , in the plan view.
  • the QFP 5 includes a plurality of second leads (second terminal portions, second electrodes) 1 ad each having the inner portion (first portion) 1 aa which is arranged along the second side 3 b of the sealing body 3 , and sealed by the sealing body 3 , and the outer portion (second portion) 1 ab that is exposed from the sealing body 3 .
  • the QFP 5 includes a plurality of third leads (third terminal portions, third electrodes) 1 ae each having the inner portion (first portion) 1 aa which is arranged along the third side 3 c of the sealing body 3 , and sealed by the sealing body 3 , and the outer portion (second portion) 1 ab that is exposed from the sealing body 3 .
  • the QFP 5 includes a plurality of fourth leads (fourth terminal portions, fourth electrodes) 1 af each having the inner portion (first portion) 1 aa which is arranged along the fourth side 3 d of the sealing body 3 , and sealed by the sealing body 3 , and the outer portion (second portion) 1 ab that is exposed from the sealing body 3 .
  • the plurality of second leads 1 ad arranged along the second side 3 b of the sealing body 3 includes a plurality of first electrode terminals 1 ag , a plurality of second electrode terminals 1 ah , a plurality of third electrode terminals 1 ai , and a plurality of fourth electrode terminals 1 aj.
  • the plurality of third leads 1 ae arranged along the third side 3 c of the sealing body 3 includes a plurality of fifth electrode terminals 1 ak , a plurality of sixth electrode terminals 1 am , a plurality of seventh electrode terminals 1 an , and a plurality of eighth electrode terminals 1 ap.
  • the antenna (frame body) 1 b is supported by the first suspension lead 1 d connected with the plural second electrode terminals 1 ah , a second suspension lead 1 e connected with the plural seventh electrode terminals 1 an , and a third suspension lead 1 f extending to the first corner 3 e from the antenna 1 b along the first virtual diagonal line 3 k in the first region 3 q illustrated in FIG. 7 .
  • first end 1 bc and the second end 1 bd in the antenna 1 b are arranged in the third region 3 s illustrated in FIG. 7 so as to face each other.
  • the die pad 1 c is supported by the fourth suspension lead 1 g connected with a ninth electrode terminal 1 aq located between the plural third electrode terminals 1 ai and the plural fourth electrode terminals 1 aj , the fifth suspension lead 1 h connected with a tenth electrode terminal 1 ar located between the plural fifth electrode terminals 1 ak and the plural sixth electrode terminals 1 am , and the sixth suspension lead 1 i extending toward the third corner 3 g in the above third region 3 s .
  • the sixth suspension lead 1 i extends from the die pad 1 c toward the third corner 3 g along the first virtual diagonal line 3 k.
  • the die pad 1 c is supported at three points by the fourth suspension lead 1 g extending toward the second side 3 b of the sealing body 3 , the fifth suspension lead 1 h extending toward the third side 3 c of the sealing body 3 , and the sixth suspension lead 1 i extending toward the third corner 3 g of the sealing body 3 .
  • the die pad 1 c and the semiconductor chip 2 are arranged in the above third region 3 s of the sealing body 3 .
  • the first electrode pads 2 ca are electrically connected to the sixth electrode terminals 1 am through fourth wires (fourth conductive members, fourth conductors) 4 d .
  • the second electrode pads 2 cb are electrically connected to the fourth electrode terminals 1 aj through fifth wires (fifth conductive members, fifth conductors) 4 e .
  • the third electrode pads 2 cc are electrically connected to the fifth electrode terminals 1 ak through sixth wires (sixth conductive members, sixth conductors) 4 f .
  • the fourth electrode pads 2 cd are electrically connected to the third electrode terminals 1 ai through the third wires (third conductive members, third conductors) 4 c .
  • the fourth electrode pads 2 cd is also electrically connected to the first end (first termination) 1 bc of the antenna 1 b through the first wire (first conductive member, first conductor) 4 a .
  • the fourth electrode pads 2 cd is further electrically connected to the second end (second termination) 1 bd of the antenna 1 b through the second wire (second conductive member, second conductor) 4 b.
  • the first suspension lead 1 d among the three suspension leads that support the antenna 1 b extends toward the second side 3 b of the sealing body 3 , and is connected to the second electrode terminals 1 ah arranged on the second side 3 b .
  • the second suspension lead 1 e among the three suspension leads that support the antenna 1 b extends toward the third side 3 c of the sealing body 3 , and is connected to the seventh electrode terminals 1 an arranged on the third side 3 c.
  • the QFP 5 is equipped with a first bar lead (suspension lead, support bar) 1 j having one end extended toward the second corner 3 f of the sealing body 3 along the second virtual diagonal line 3 m , and the other end connected to the first leads 1 ac and the eighth electrode terminals 1 ap of the third leads 1 ae , in the second region 3 r of the sealing body 3 in the plan view.
  • a first bar lead suspension lead, support bar
  • the first bar lead 1 j extended toward the second corner 3 f of the sealing body 3 is located outside of the antenna 1 b in the second region 3 r .
  • the first bar lead 1 j is biforked toward the outside of the sealing body 3 , and also connected to the first leads 1 ac and the third leads 1 ae which are arranged on ends of the respective terminal portion arrays of the first side 3 a and the third side 3 c of the sealing body 3 .
  • the QFP 5 is equipped with a second bar lead (suspension lead, support bar) 1 k having one end extended toward the fourth corner 3 h of the sealing body 3 , along the second virtual diagonal line 3 m , and the other end connected to the fourth leads 1 af and the first electrode terminals 1 ag of the second leads 1 ad , in the fourth region 3 t of the sealing body 3 in the plan view.
  • a second bar lead suspension lead, support bar
  • the second bar lead 1 k extended toward the fourth corner 3 h of the sealing body 3 is located outside of the antenna 1 b in the fourth region 3 t .
  • the second bar lead 1 k is also biforked toward the outside of the sealing body 3 , and also connected to the second leads 1 ad and the fourth leads 1 af which are arranged on ends of the respective terminal portion arrays of the second side 3 b and the fourth side 3 d of the sealing body 3 .
  • the antenna (frame body) 1 b includes a first frame portion 1 be disposed along (disposed in parallel to) the second side 3 b of the sealing body 3 (refer to FIG. 8 ), and a second frame portion 1 bf disposed along (disposed in parallel to) the fourth side 3 d of the sealing body 3 , which is connected to the first frame portion 1 be through a first bend 1 bk .
  • the antenna 1 b includes a third frame portion 1 bg disposed along (disposed in parallel to) the first side 3 a of the sealing body 3 , which is connected to the second frame portion 1 bf through a second bend 1 bm , and a fourth frame portion 1 bh disposed along (disposed in parallel to) the third side 3 c of the sealing body 3 , which is connected to the third frame portion 1 bg through a third bend 1 bn.
  • first frame portion 1 be of the antenna 1 b has one end and the other end. One end of the first frame portion 1 be is connected to the first bend 1 bk . On the other hand, the other end of the first frame portion 1 be is connected to a fifth frame portion 1 bi along (parallel to) the second virtual diagonal line 3 m through a fourth bend 1 bp.
  • the fifth frame portion 1 bi of the antenna 1 b has one end and the other end. One end of the fifth frame portion 1 bi is connected to the fourth bend 1 bp . On the other hand, the other end of the fifth frame portion 1 bi is connected to the first end (first termination) 1 bc.
  • the fourth frame portion 1 bh of the antenna 1 b has one end and the other end. One end of the fourth frame portion 1 bh is connected to the third bend 1 bn . On the other hand, the other end of the fourth frame portion 1 bh is connected to a sixth frame portion 1 bj along (parallel to) the second virtual diagonal line 3 m through a fifth bend 1 bq.
  • the sixth frame portion 1 bj of the antenna 1 b has one end and the other end. One end of the sixth frame portion 1 bj is connected to the fifth bend 1 bq . On the other hand, the other end of the sixth frame portion 1 bj is connected to the second end (second termination) 1 bd.
  • the antenna 1 b , the first wire 4 a , and the second wire 4 b form a loop antenna through the semiconductor chip 2 , and the directivity can be enhanced with the application of the loop antenna.
  • the loop shape of the loop antenna can be square or hexagon, but a circular shape of the loop antenna has the largest gain. That is, the loop shape is substantially shaped into a circle, and a size (diameter) of the loop is increased as large as possible, thereby leading to the large gain.
  • a size of an annular portion of the antenna (frame body) 1 b is set to be as large as possible in an region inside of the plural inner portions 1 aa arranged in the periphery of the sealing body 3 , in the plan view, thereby being capable of increasing the gain of the loop antenna.
  • the antenna (frame body) 1 b in the above loop antenna of the QFP 5 is shaped to be symmetrical with respect to the first virtual diagonal line 3 k as a center line in the plan view. That is, as illustrated in FIG. 8 , the third suspension lead 1 f is arranged on the first virtual diagonal line 3 k in FIG. 7 so that the first suspension lead 1 d and the second suspension lead 1 e are further located symmetrically with respect to the third suspension lead 1 f.
  • the discontinuities of the wave of the signal caused by the third suspension lead 1 f can be arranged substantially in the vicinity of a center of the loop shape of the antenna 1 b , and the wave is shaped to be symmetrical with respect to a line so that a waveform of one wave of the high frequency signal can be shaped into a pure mountain.
  • a distance between the first frame portion 1 be and the plural first electrode terminals 1 ag is L1 in a direction along (parallel to) the fourth side 3 d of the sealing body 3 in FIG. 8 in the plan view of the QFP 5
  • a distance between the second frame portion 1 bf and the plural fourth leads (fourth electrodes) 1 af is L2 in a direction along (parallel to) the first side 3 a of the sealing body 3 in the plan view.
  • a distance between the third frame portion 1 bg and the plural first leads (first electrodes) 1 ac is L3 in a direction along (parallel to) the fourth side 3 d of the sealing body 3 in the plan view
  • a distance between the fourth frame portion 1 bh and the plural eighth electrode terminals 1 ap is L4 in a direction along (parallel to) the first side 3 a of the sealing body 3 in the plan view.
  • a distance between the plural first leads (first terminal portions, first electrodes) 1 ac arranged on the first side 3 a in the direction along (parallel to) the fourth side 3 d of the sealing body 3 , and the third frame portion (frame body) 1 bg is L3
  • a distance between the first electrode terminals 1 ag among the plural second leads 1 ad arranged on the second side 3 b in the direction along the fourth side 3 d , and the first frame portion (frame body) 1 be is L1.
  • a distance between the plural fourth leads 1 af arranged on the fourth side 3 d in the direction along (parallel to) the first side 3 a of the sealing body 3 , and the second frame portion 1 bf is L2
  • a distance between the eighth electrode terminals 1 ap among the plural third leads 1 ae arranged on the third side 3 c in the direction along the first side 3 a , and the fourth frame portion (frame body) 1 bh is L4.
  • distances between the antenna 1 b and the plural leads 1 a arranged around the antenna 1 b are substantially equal to each other in the plan view.
  • the respective distances between a portion extended from the first suspension lead 1 d to the second suspension lead 1 e through the third suspension lead 1 f in the antenna 1 b , and the plural first electrode terminals 1 ag , the fourth leads 1 af , the first leads 1 ac , and the eighth electrode terminals 1 ap which are arranged around that portion, are equal to each other, and also set to a desired distance or longer.
  • the antenna 1 b is not also connected to the die pad 1 c , and independent from the die pad 1 c.
  • the plural first leads 1 ac arranged on the first side 3 a of the sealing body 3 , and the plural fourth leads 1 af arranged on the fourth side 3 d of the sealing body 3 are dummy electrodes (dummy leads).
  • the dummy electrodes are not particularly electrically connected, and apparently provided for the purpose of stabilizing the mounting of the QFP 5 .
  • the first electrode terminals 1 ag which are parts of the terminal portions among the plural second leads 1 ad arranged on the second side 3 b of the sealing body 3
  • the eighth electrode terminals 1 ap which are parts of the terminal portions among the plural third leads 1 ae arranged on the third side 3 c of the sealing body 3 are also dummy electrodes.
  • the third electrode terminals 1 ai not connected with the wires 4 , and the ninth electrode terminal 1 aq connected to the fourth suspension lead 1 g that support the die pad 1 c are also dummy electrodes.
  • the tenth electrode terminal 1 ar connected to the fifth suspension lead 1 h that supports the die pad 1 c is also the dummy electrode.
  • the die pad 1 c and the antenna 1 b are arranged at the same height H1 in a cross-sectional view taken along the same direction as the thickness direction of the sealing body 3 .
  • the die pad 1 c and the antenna 1 b are flush with each other in the cross-sectional view taken along the same direction as the thickness direction of the sealing body 3 .
  • the antenna 1 b , the respective suspension leads that support the antenna 1 b , the die pad 1 c , the respective suspension leads that support the die pad 1 c , and all of the leads 1 a arranged in the periphery of the sealing body 3 , which are disposed in the QFP 5 are not subjected to bending work at all. That is, in the QFP 5 according to this embodiment, all of the respective suspension leads and the respective leads 1 a are flushed with each other.
  • the antenna (frame body) 1 b is supported by the three suspension leads, and any one of those three suspension leads is arranged on the virtual diagonal line, and the antenna 1 b is arranged to be symmetrical with respect to the virtual diagonal line in the plan view of the sealing body 3 .
  • the discontinuities of the wave of the high frequency signal in the antenna 1 b can be reduced.
  • the wave of the high frequency signal is discontinuous at the support portions, and a reflected wave is generated in the support portions. Also, a resistance value of the frame is changed at the portions for supporting the antenna 1 b . Those factors cause noise to be generated.
  • the number of suspension leads that support the antenna 1 b is reduced to three with the result that the discontinuities of the wave of the high frequency signal can be reduced.
  • the third suspension lead 1 f among the three suspension leads that support the antenna 1 b is arranged on the first virtual diagonal line 3 k , and the antenna 1 b is arranged to be symmetrical with respect to the first virtual diagonal line 3 k in the plan view of the sealing body 3 .
  • the discontinuities caused by the third suspension lead 1 f can be arranged in the vicinity of the center of the loop shape of the antenna 1 b.
  • the antenna 1 b is arranged to be symmetrical with respect to the first virtual diagonal line 3 k with the result that the shape of the waveform of the high frequency signal for one wavelength can be shaped into a pure mountain.
  • the antenna 1 b is supported by the three suspension leads taking the symmetry of the shape of the antenna 1 b into account with the results that the distortion of the receiving waveform can be suppressed, and the baseband transmission in the QFP 5 can be conducted.
  • the high frequency signal of 5 Gbps class can be transmitted and received in the QFP 5 .
  • the respective distances between a portion extending from the first suspension lead 1 d to the second suspension lead 1 e through the third suspension lead 1 f in the antenna 1 b , and the plural first electrode terminals 1 ag , the fourth leads 1 af , the first leads 1 ac , and the eighth electrode terminals 1 ap , which are arranged around that portion, are equal (kept constant) to each other, and set to a desired distance or longer.
  • the antenna 1 b is not connected to the die pad 1 c , and independent from the die pad 1 c.
  • the high frequency signal can be prevented from interfering with the plural leads 1 a (dummy electrodes) and the die pad 1 c which are disposed around the antenna 1 b .
  • the high frequency signal can be stabilized to enhance the quality of the high frequency signal.
  • each of the first bar lead 1 j extending toward the second corner 3 f of the sealing body 3 , and the second bar lead 1 k extending toward the fourth corner 3 h is biforked into toward the outside of the sealing body 3 .
  • inflow of a sealing resin into upper and lower molds in a resin mold process for assembling the semiconductor device can be improved.
  • each of the first bar lead 1 j and the second bar lead 1 k is biforked toward the outside, thereby enabling the sealing resin to pass through the biforked portion.
  • the sealing resin can pass through the biforked portion, the flow of the sealing resin into the upper and lower molds can be improved.
  • the first bar lead 1 j and the second bar lead 1 k are each not limited to the biforked shape, but may be configured by a single shape.
  • first bar lead 1 j is connected to the first lead 1 ac and the third lead 1 ae arranged on ends of the respective terminal portion arrays of the first side 3 a and the third side 3 c of the sealing body 3 .
  • second bar lead 1 k is connected to the second lead 1 ad and the fourth lead 1 af arranged on ends of the respective terminal portion arrays of the second side 3 b and the fourth side 3 d of the sealing body 3 .
  • each of the two bar leads is connected to the leads 1 a arranged adjacent to both sides of each bar lead within the sealing body 3 .
  • the bar lead is pulled outside by a cutting blade, and projected from the sealing body 3 at the time of cutting the leads, thereby being capable of preventing a problem that a gap is formed in the sealing body 3 from being generated.
  • the degradation of the quality of the QFP 5 and a reduction in the reliability can be suppressed.
  • the bar leads (first bar lead 1 j , second bar lead 1 k ) are provided in each of the second corner 3 f and the fourth corner 3 h in the sealing body 3 , as a result of which the sealing resin can be prevented from being leaked from the mold in the resin mold process for assembling the semiconductor device.
  • the bar leads are disposed in each of the second corner 3 f and the fourth corner 3 h in the sealing body 3 with the result that the QFP 5 has the same structure as that of a standard package. For that reason, the QFP 5 can be assembled with the use of the same facility as that used for assembling the standard package, and the QFP 5 can be assembled in the same assembling method as that of the standard package.
  • FIG. 10 is a plan view illustrating a structure of a semiconductor device through a sealing body according to a modification of the embodiment.
  • FIG. 11 is a cross-sectional view illustrating a structure cut along a line A-A illustrated in FIG. 10 .
  • FIG. 12 is a cross-sectional view illustrating a structure cut along a line B-B illustrated in FIG. 10 .
  • the semiconductor device illustrated in FIG. 10 is a QFN (quad flat non-leaded package) 7 in which the plural leads (terminal portions) 1 a are arranged on each of four sides of the sealing body 3 .
  • the plural leads 1 a are arranged in the periphery of the rear surface 3 j of the sealing body 3 , and portions (outer portions ab) in which those respective leads 1 a are exposed to the rear surface 3 j of the sealing body 3 configure external connection terminals of the QFN 7 .
  • a rear surface side of ends of the respective leads 1 a on the die pad 1 c side is half-etched, and a thickness of the respective ends is about 1 ⁇ 2 of the lead portions.
  • the lower surface 1 cb side of the die pad 1 c is also half-etched, and thinned.
  • the sealing resin comes around the rear surface of the lower surface 1 cb as much as the rear surface side is half-etched and thinned.
  • the QFN 7 is a compact package having a structure in which the die pad 1 c is embedded within the sealing body 3 .
  • the antenna (frame body) 1 b is disposed within the sealing body 3 as illustrated in FIG. 10 , and a loop antenna is formed by the antenna 1 b , the first wire 4 a , the second wire 4 b , and the semiconductor chip 2 .
  • the structure of the interior of the sealing body 3 in the QFN 7 in the plan view is identical with the structure of the QFP 5 illustrated in FIGS. 7 to 9 , and therefore a repetitive description will be omitted.
  • the die pad 1 c and the antenna 1 b are arranged at the same height H2. That is, the die pad 1 c and the antenna 1 b are flush with each other in the cross-sectional view taken along the same direction as the thickness direction of the sealing body 3 .
  • the antenna 1 b the respective suspension leads that support the antenna 1 b as well as the die pad 1 c
  • the respective suspension leads that support the die pad 1 c and all of the leads 1 a arranged in the periphery of the sealing body 3 in the QFN 7 , are not also subjected to bending work at all.
  • the suspension leads (first bar lead 1 j , second bar lead 1 k ) that do not support the antenna 1 b are disposed in the corners of the sealing body 3 .
  • the suspension leads (first bar lead 1 j , second bar lead 1 k ) that do not support the antenna 1 b may not always been provided.

Abstract

A high frequency signal can be transmitted and received in a semiconductor device. In a QFP, an antenna (frame body) is supported by three suspension leads. The antenna is arranged to be symmetrical with respect to a first virtual diagonal line of a plan view of a sealing body. One of the three suspension leads is arranged on the first virtual diagonal line. With this configuration, discontinuities of a wave of a signal in the antenna can be reduced, as a result of which the high frequency signal of 5 Gbps class can be transmitted and received in the QFP.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
The disclosure of Japanese Patent Application No. 2013-129464 filed on Jun. 20, 2013 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
BACKGROUND
The present invention relates to a semiconductor device, and more particularly to a technique effectively applied to a semiconductor device having an antenna therein.
Japanese Unexamined Patent Application Publication No. 2005-301635 discloses a structure having a semiconductor chip, a mounting portion on which the semiconductor chip is placed, and an antenna. Japanese Unexamined Patent Application Publication No. 2005-301635 also discloses a structure in which the antenna is configured by two or more coils that are arranged to overlap with each other vertically.
Also, Japanese Unexamined Patent Application Publication No. 2006-221211 discloses a structure in which a wireless IC tag formation region is disposed on a semiconductor chip where a semiconductor integrated circuit is formed, a wireless IC tag is formed on the same chip, and a conductive pattern serving as an antenna is formed on the semiconductor chip, or in a package where the semiconductor chip is implemented.
SUMMARY
A technique has been known in which, with the use of an electromagnetic coupling between antennas arranged in the vicinity of each other, data transmission between semiconductor chips connected to the respective antennas is conducted as a non-contact and high-speed baseband transmission. In this communication system, high-speed transmission is enabled, and low power consumption is also effective because no modulation circuit is required.
There is a technique in which the antenna is formed within a semiconductor package in applying the above communication system to the semiconductor device. However, it is difficult to increase a size (increase an inductance) of the antenna while suppressing an influence of an electromagnetic field on the semiconductor chip by the antenna.
That is, the antenna size must be increased for the purpose of ensuring a communication distance, but the influence of the electromagnetic field on the semiconductor chip becomes also larger as the antenna size is larger.
Therefore, it is desirable to establish the technique of the semiconductor device including the antenna, which can conduct a communication without degrading the performance of the semiconductor chip.
If the data transmission has a communication speed of about 1 Gbps, the semiconductor device can be realized as a package structure even if the antenna is supported at about five portions.
However, when the data transmission has the communication speed of 5 Gbps class, if the antenna is supported at five portions, because a frequency of the signal is high (high frequency signal), noise increases due to the generation of reflected waves at the support portions (discontinuities of a wave of the signal), thereby making it difficult to transmit and receive a high frequency signal of 5 Gps class.
None of Japanese Unexamined Patent Application Publication Nos. 2005-301635 and 2006-221211 discloses an antenna (support) structure that takes a treatment of the high frequency signal of 5 Gbps class into consideration.
The other problems and novel features will become apparent from the description of the present specification and the attached drawings.
According to one aspect of the present invention, a semiconductor device includes a die pad, a semiconductor chip, a plurality of terminal portions, a frame body having plurality of bends arranged between a first end and a second end, three suspension leads that support the frame body, a first conductive member that connects any electrode pad of the semiconductor chip to the first end of the frame body, and a second conductive member that connects any electrode pad of the semiconductor chip to the second end of the frame body. Further, the semiconductor device includes a plurality of third conductive members that connects the electrode pads of the semiconductor chip to the plurality of terminal portions, and a sealing body that seals the semiconductor chip. The frame body is arranged to be symmetrical with respect to a virtual diagonal line of a plan view of the sealing body, and any one of the three suspension leads is arranged on the virtual diagonal line.
According to the aspect of the invention, the high frequency signal can be transmitted and received in the semiconductor device.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a plan view illustrating an example of a structure of a semiconductor device according to an embodiment;
FIG. 2 is a plan view illustrating a structure of a semiconductor device illustrated in FIG. 1 through a sealing body;
FIG. 3 is a cross-sectional view illustrating a structure cut along a line A-A illustrated in FIG. 2;
FIG. 4 is a cross-sectional view illustrating a structure cut along a line B-B illustrated in FIG. 2;
FIG. 5 is a circuit configuration diagram illustrating an example of a configuration of a semiconductor chip mounted on the semiconductor device illustrated in FIG. 1;
FIG. 6 is a partial plan view illustrating an example of a pad arrangement of the semiconductor chip mounted on the semiconductor device illustrated in FIG. 1;
FIG. 7 is a partial plan view illustrating an example of an region of a main body (sealing body) of the semiconductor device illustrated in FIG. 1;
FIG. 8 is a partial plan view illustrating an example of a layout of terminal portions of the semiconductor device illustrated in FIG. 1;
FIG. 9 is a partial plan view illustrating an example of an region of an antenna (frame body) of the semiconductor device illustrated in FIG. 1;
FIG. 10 is a plan view illustrating a structure of a semiconductor device through a sealing body according to a modification of the embodiment;
FIG. 11 is a cross-sectional view illustrating a structure cut along a line A-A illustrated in FIG. 10; and
FIG. 12 is a cross-sectional view illustrating a structure cut along a line B-B illustrated in FIG. 10.
DETAILED DESCRIPTION
In the following embodiments, a description of identical or similar members is not repeated in principle unless explicitly state otherwise.
The following embodiments are divided into a plurality of sections and embodiments, when necessary for the sake of convenience. Therefore, unless clearly indicated otherwise, the divided sections or embodiments are not irrelevant to one another, but one section or embodiment has a relation of modifications, details and supplementary explanations to some or all of the other embodiments.
Furthermore, there is no need to say that, in the following embodiments, the components (including component steps, etc.) are not always essential, unless clearly specified otherwise and considered to be definitely essential in principle.
Furthermore, there is no need to say that, in the following embodiments, the components (including component steps, etc.) are not always essential, unless clearly specified otherwise and considered to be definitely essential in principle.
Also, when that the components “are formed of A”, “are configured by A”, “have A”, and “include A” are mentioned in the following embodiments, it is needless to say that the other components are not excluded, particularly unless clearly stating only the components. Similarly, when shapes and positional relationships, etc. of the components are mentioned in the following embodiments, the components will have shapes substantially analogous or similar to their shapes or the like, unless clearly defined otherwise and considered not to be definite in principle. This is applied likewise to the above-described numerical values and ranges as well.
Hereinafter, the embodiments will be described in detail with reference to the accompanying drawings. In addition, in all the drawings for explaining the embodiments, the same components are indicated by the same reference numerals in principle, and so a repeated description thereof will be omitted. Also, hatching may be used even in plan views to make it easy to read the drawings.
Embodiment
FIG. 1 is a plan view illustrating an example of a structure of a semiconductor device according to an embodiment. FIG. 2 is a plan view illustrating a structure of a semiconductor device illustrated in FIG. 1 through a sealing body. FIG. 3 is a cross-sectional view illustrating a structure cut along a line A-A illustrated in FIG. 2. FIG. 4 is a cross-sectional view illustrating a structure cut along a line B-B illustrated in FIG. 2. FIG. 5 is a circuit configuration diagram illustrating an example of a configuration of a semiconductor chip mounted on the semiconductor device illustrated in FIG. 1. FIG. 6 is a partial plan view illustrating an example of a pad arrangement of the semiconductor chip mounted on the semiconductor device illustrated in FIG. 1. FIG. 7 is a partial plan view illustrating an example of an region of a main body (sealing body) of the semiconductor device illustrated in FIG. 1. FIG. 8 is a partial plan view illustrating an example of a layout of terminal portions of the semiconductor device illustrated in FIG. 1. FIG. 9 is a partial plan view illustrating an example of an region of an antenna (frame body) of the semiconductor device illustrated in FIG. 1.
The semiconductor device according to this embodiment illustrated in FIGS. 1 and 2 is a semiconductor package of a resin seal type having an antenna (frame body) 1 b therein. In this example, a QFP (quad flat package) 5 in which a plurality of, outer portions (first portions, electrode terminal portions, external connection terminals) 1 ab projected from a sealing body 3 made of a resin material toward respective four directions is bent into a gull wing shape will be described as an example.
That is, the antenna 1 b is embedded within the sealing body 3, and mounted on, for example, an in-vehicle ECU (electronic control unit). The ECU is a unit used for engine control or air conditioner control, and a semiconductor device (QFP 5) in which the antenna 1 b is embedded according to this embodiment is mounted in the ECU to conduct a wireless communication (transmission and reception) between the semiconductor devices.
The QFP 5 according to this embodiment enables transmission and reception of a high frequency signal of, for example, 5 Gbps (5 GHz) class.
A structure of the QFP (semiconductor device) 5 illustrated in FIGS. 1 to 4 will be described.
The QFP 5 includes a die pad (island, support) 1 c having an upper surface (chip mounting surface, main surface) 1 ca and a lower surface (rear surface) 1 cb opposite to the upper surface 1 ca, a semiconductor chip 2 mounted on the upper surface 1 ca of the die pad 1 c, and having a plurality of electrode pads (electrodes) 2 c disposed on a main surface 2 a, and a plurality of leads (terminal portions, electrodes) 1 a arranged around the die pad 1 c.
Further, the QFP 5 is equipped with the antenna (frame body) 1 b having a front surface (main surface) 1 ba, a rear surface 1 bb opposite to the front surface 1 ba, a first end (first termination) 1 bc illustrated in FIG. 2, which is one end thereof, a second end (second termination) 1 bd which is the other end, and a plurality of bends arranged between the first end 1 bc and the second end 1 bd. The antenna 1 b is supported by three suspension leads (a first suspension lead (first support bar) 1 d, a second suspension lead (second support bar) 1 e, and a third suspension lead (third support bar) 1 f).
Also, in the QFP 5, the electrode pads 2 c of the semiconductor chip 2 and the frame body (antenna 1 b), and the electrode pads 2 c of the semiconductor chip 2 and the terminal portions are electrically connected to each other by wires (conductive members, conductors) 4 made of metal. That is, any one of the electrode pads 2 c of the semiconductor chip 2, and the first end 1 bc of the antenna 1 b are electrically connected to each other by a first wire (first conductive member, first conductor) 4 a. On the other hand, any one of the plural electrode pads 2 c of the semiconductor chip 2, and the second end 1 bd of the antenna 1 b are electrically connected to each other by a second wire (second conductive member, second conductor) 4 b. Also, any one of the plural electrode pads 2 c of the semiconductor chip 2 and any one of the plural terminal portions are electrically connected to each other by a plurality of third wires (third conductive member, third conductor) 4 c.
With the above configuration, the frame body (antenna 1 b), the first wire 4 a, and the second wire 4 b form a loop antenna through the semiconductor chip 2.
The wires 4 are formed of, for example, gold (Au) lines or copper (Cu) lines.
Also, the die pad 1 c, the semiconductor chip 2, the frame body (antenna 1 b), the three suspension leads (the first suspension lead 1 d, the second suspension lead 1 e, and the third suspension lead 1 f), and the plural wires 4 are sealed by the sealing body 3 made of a sealing resin. The sealing resin is, for example, a thermosetting epoxy resin.
Also, as illustrated in FIG. 3, the semiconductor chip 2 is mounted on the upper surface 1 ca of the die pad 1 c through a die bond material (adhesion layer, laminate adhesive, die bond film, DAF (die attach film)) 6.
That is, a rear surface 2 b of the semiconductor chip 2 and the upper surface 1 ca of the die pad 1 c face each other, and are also joined together by the die bond material 6.
Also, as illustrated in FIG. 2, in the QFP 5, the third suspension lead 1 f which is one of the three suspension leads that support the antenna 1 b is arranged on a first virtual diagonal line 3 k which is a diagonal line of a plan view of the sealing body 3.
Therefore, the antenna 1 b is arranged to be symmetrical with respect to the first virtual diagonal line 3 k of the sealing body 3.
The die pad 1 c is supported by three other suspension leads except for the three suspension leads that support the antenna 1 b.
That is, the die pad 1 c is supported by three suspension leads of a fourth suspension lead (fourth support bar) 1 g, a fifth suspension lead (fifth support bar) 1 h, and a sixth suspension lead (sixth support bar) 1 i.
Therefore, in the QFP 5, both of the die pad 1 c and the antenna 1 b are supported at respective three points.
Also, in the QFP 5, the antenna 1 b, and the plural terminal portions (leads 1 a) arranged on respective four sides of the sealing body 3 disposed around the antenna 1 b are disposed at the substantially given distance.
The antenna 1 b, the die pad 1 c, the respective suspension leads, and the plural terminal portions (leads 1 a) are made of an alloy material mainly containing copper.
Subsequently, the semiconductor chip 2 mounted on the QFP 5 according to this embodiment will be described.
As illustrated in FIGS. 2 and 3, the semiconductor chip 2 is mounted on the die pad 1 c, and has at least any one of a transmitter circuit and a receiver circuit for conducting a wireless baseband transmission with the other semiconductor chip 10 (refer to FIG. 5) of the other semiconductor device. In this embodiment, an example in which the semiconductor chip 2 includes the transmitter circuit, the receiver circuit, and a switching control circuit that switches the transmission and reception of the signal will be described.
FIG. 5 illustrates an antenna 1 b (one coil) disposed on the semiconductor chip 2 side, the other semiconductor chip 10 which is a communication target, and an antenna 12 (the other coil) disposed on the another semiconductor chip 10 side.
The semiconductor chip 2 illustrated in FIG. 5 includes a transmitter circuit Tx1, a receiver circuit Rx1, and a switching control circuit 2 d. The other semiconductor chip 10 illustrated in FIG. 5 includes a transmitter circuit Tx2, a receiver circuit Rx2, and a switching control circuit 11. The antennas 1 b and 12 (a pair of coils) are an AC coupling element that transmits an AC signal from one antenna to the other antenna, or from the other antenna to one antenna. That is, the semiconductor device having the semiconductor chip 2, and the semiconductor device having the semiconductor chip 10 are arranged to face each other without contact with each other, and conduct transmission and reception of the signal through the antennas 1 b and 12. In this situation, the antennas 1 b and 12 are magnetically coupled with each other.
First, a case in which the semiconductor, chip 2 transmits data to the semiconductor chip 10 will be described. In this case, the switching control circuit 2 d drives the transmitter circuit Tx1, and stops the driving of the receiver circuit Rx1.
The transmitter circuit Tx1 converts transmission data VIN1 (differential signal) supplied from the external of the QFP 5 into a pulse signal, and outputs the pulse signal as a transmitted signal (differential signal). The transmitted signal is converted into a magnetic signal by the antenna 1 b. The antenna 12 generates a received signal (differential signal) of a voltage level corresponding to a change in magnetic field of the antenna 1 b, and delivers the received signal to the receiver circuit Rx2.
In this way, the transmitted signal output from the transmitter circuit Tx1 is transmitted to the receiver circuit Rx2 as the received signal through the AC coupling element configured by the antennas 1 b and 12. The receiver circuit Rx2 reproduces the transmission data VIN1 on the basis of the received signal received from the antenna 12, and outputs the transmission data VIN1 as output data VOUT2 (differential signal).
Subsequently, a case in which the semiconductor chip 2 receives data transmitted from the semiconductor chip 10 will be described. In this case, the switching control circuit 2 d drives the receiver circuit Rx1, and stops the driving of the transmitter circuit Tx1.
On the other hand, the transmitter circuit Tx2 disposed in the other semiconductor chip 10 converts transmission data VIN2 (differential signal) into a pulse signal, and outputs the pulse signal as a transmitted signal (differential signal). The transmitted signal is converted into a magnetic signal by the antenna 12. The antenna 1 b generates a received signal (differential signal) of a voltage level corresponding to a change in magnetic field of the antenna 12, and delivers the received signal to the receiver circuit Rx1.
In this way, the transmitted signal output from the transmitter circuit Tx2 is transmitted to the receiver circuit Rx1 as the received signal through the AC coupling element configured by the antennas 1 b and 12. The receiver circuit Rx1 reproduces the transmission data VIN2 on the basis of the received signal received from the antenna 1 b, and outputs the transmission data VIN2 as output data VOUT1 (differential signal).
The semiconductor chip 2 can be appropriately changed into a circuit configuration provided in only the transmitter circuit Tx1 or the receiver circuit Rx1 in the transmitter circuit Tx1 and the receiver circuit Rx1.
Subsequently, the electrode pads 2 c of the semiconductor chip 2 and the layout configuration of the circuit will be described with reference to FIG. 6. In an example illustrated in FIG. 6, the transmitter circuit Tx1, the receiver circuit Rx1, and the switching control circuit 2 d are arranged in the center of the semiconductor chip 2. Also, the plural electrode pads 2 c are arranged to surround the transmitter circuit Tx1, the receiver circuit Rx1, and the switching control circuit 2 d in the periphery of the semiconductor chip 2.
The electrode pad 2 c (first electrode pad PD1) connected to each of one output terminal of the transmitter circuit Tx1 and one input terminal of the receiver circuit Rx1 in the semiconductor chip 2 is arranged along any one of two sides arranged on the opposite side of the sixth suspension lead 1 i that supports the die pad 1 c among four sides of the semiconductor chip 2. In the example illustrated in FIG. 6, the first electrode pad PD1 is arranged in the vicinity of a corner on the opposite side of the sixth suspension lead 1 i among four corners of the semiconductor chip 2.
Like the first electrode pad PD1, the electrode pad 2 c (second electrode pad PD2) connected to each of the other output terminal of the transmitter circuit Tx1 and the other input terminal of the receiver circuit Rx1 is arranged along any one of two sides arranged on the opposite side of the sixth suspension lead 1 i among four sides of the semiconductor chip 2. In the example illustrated in FIG. 6, the second electrode pad PD2 is arranged in the vicinity of the corner on the opposite side of the sixth suspension lead 1 i among the four corners of the semiconductor chip 2. The first electrode pad PD1 and the second electrode pad PD2 are arranged adjacent to each other.
Also, the first electrode pad PD1 and one end (second end 1 bd) of the antenna 1 b (refer to FIG. 2) are electrically connected to each other through the second wire 4 b (one of the plural wires 4). On the other hand, the second electrode pad PD2 and the other end (first end 1 bc) of the antenna 1 b are electrically connected to each other through the first wire 4 a (one of the plural wires 4).
In this example, the first electrode pad PD1, the second electrode pad PD2, and one end and the other end of the antenna 1 b are arranged in the vicinity of each other. Therefore, lengths of the first wire 4 a and the second wire 4 b are relatively short. As a result, in the wireless baseband transmission, the signal bandwidth is presented from being narrowed.
A third electrode pad PD3 connected to each of one input terminal of the transmitter circuit Tx1 and one output terminal of the receiver circuit Rx1 is arranged along at least any one of two sides closer to the sixth suspension lead 1 i among four sides of the semiconductor chip 2.
Like the third electrode pad PD3, a fourth electrode pad PD4 connected to each of the other input terminal of the transmitter circuit Tx1 and the other output terminal of the receiver circuit Rx1 is arranged along at least any one of two sides closer to the sixth suspension lead 1 i among the four sides of the semiconductor chip 2. In the example illustrated in FIG. 6, the third electrode pad PD3 and the fourth electrode pad PD4 are arranged along the same side of the semiconductor chip 2, and also arranged in the vicinity of each other.
In addition, like the third electrode pad PD3 and the fourth electrode pad PD4, the electrode pads 2 c for supplying a control signal to the switching control circuit 2 d from the external, and the electrode pads 2 c for inputting and outputting a signal to another internal circuit from the external are also arranged along two sides closer to the sixth suspension lead 1 i among the four sides of the semiconductor chip 2. Those electrode pads (including the third electrode pad PD3 and the fourth electrode pad PD4) other than the first electrode pad PD1 and the second electrode pad PD2 are connected to the respective terminal portions (leads 1 a) close to each other through the wires 4.
Subsequently, the features of a structure of the QFP 5 according to this embodiment will be described in detail.
First, the sealing body 3 has a front surface (main surface) 3 i, and a rear surface (mounting surface) 3 j on the opposite side of the front surface 3 i. As illustrated in FIG. 7, the sealing body 3 has a first side 3 a on the front surface 3 i (refer to FIG. 3), a second side 3 b on the opposite side of the first side 3 a, a third side 3 c intersecting with the first side 3 a, and a fourth side 3 d on the opposite side of the third side 3 c, in a plan view.
Also, the third suspension lead 1 f arranged to overlap with the first virtual diagonal line 3 k which is one of the virtual diagonal lines extends toward a first corner 3 e formed by the first side 3 a and the fourth side 3 d. In detail, the first corner 3 e is a portion where an extension of the first side 3 a of the sealing body 3 intersects with an extension of the fourth side 3 d.
Also, a second corner 3 f on the opposite side of the first side 3 a from the first corner 3 e is formed by the first side 3 a and the third side 3 c. In detail, the second corner 3 f is a portion where an extension of the first side 3 a of the sealing body 3 intersects with an extension of the third side 3 c.
Also, a third corner 3 g on the opposite side of the third side 3 c from the second corner 3 f is formed by the second side 3 b and the third side 3 c. In detail, the third corner 3 g is a portion where an extension of the third side 3 c of the sealing body 3 intersects with an extension of the second side 3 b.
Also, a fourth corner 3 h on the opposite side of the fourth side 3 d from the first corner 3 e is formed by the second side 3 b and the fourth side 3 d. In detail, the fourth corner 3 h is a portion where an extension of the second side 3 b of the sealing body 3 intersects with an extension of the fourth side 3 d.
Therefore, in the plan view of the sealing body 3, a diagonal line that passes through the first corner 3 e and the third corner 3 g in the two diagonal lines is the first virtual diagonal line 3 k, and a diagonal line that passes through the second corner 3 f and the fourth corner 3 h is a second virtual diagonal line 3 m.
Also, in the plan view of the sealing body 3, when it is assumed that a line that divides each of the first side 3 a and the second side 3 b into two equal parts is a first virtual line 3 n, and a line that divides each of the third side 3 c and the fourth side 3 d into two equal parts is a second virtual line 3 p, the sealing body 3 has a first region 3 q surrounded by the first side 3 a, the fourth side 3 d, the first virtual line 3 n, and the second virtual line 3 p.
Further, the sealing body 3 has a second region 3 r surrounded by the first side 3 a, the third side 3 c, the first virtual diagonal line 3 n, and the second virtual line 3 p. Also, the sealing body 3 has a third region 3 s surrounded by the second side 3 b, the third side 3 c, the first virtual line 3 n, and the second virtual line 3 p. Also, the sealing body 3 has a fourth region 3 t surrounded by the second side 3 b, the fourth side 3 d, the first virtual line 3 n, and the second virtual line 3 p.
The die pad 1 c is arranged within the sealing body 3, and has a first side 1 cc on the upper surface (chip mounting surface, main surface, front surface (refer to FIG. 3)) 1 ca, a second side 1 cd opposite to the first side 1 cc, a third side 1 ce that intersects with the second side 1 cd, and a fourth side 1 cf opposite to the third side ice, in a plan view of FIG. 9.
Likewise, the semiconductor chip 2 is arranged within the sealing body 3, and has a first side 2 aa on the main surface 2 a, a second side 2 ab located opposite to the first side 2 aa, a third side 2 ac that intersects with the first side 2 aa and the second side 2 ab, and a fourth side 2 ad located opposite to the third side 2 ac, in the plan view. Further, the main surface 2 a is formed with the plurality of electrode pads 2 c (refer to FIG. 7).
The plural electrode pads 2 c of the semiconductor chip 2 include a plurality of first electrode pads 2 ca arranged along the first side 2 aa of the semiconductor chip 2, a plurality of second electrode pads 2 cb arranged along the second side 2 ab, a plurality of third electrode pads 2 cc arranged along the third side 2 ac, and a plurality of fourth electrode pads 2 cd arranged along the fourth side 2 ad.
Also, as illustrated in FIG. 8, the QFP 5 according to this embodiment includes a plurality of first leads (first terminal portions, first electrodes) 1 ac each having an inner portion (first portion) 1 aa which is arranged along the first side 3 a of the sealing body 3, and sealed by the sealing body 3, and an outer portion (second portion) 1 ab that is exposed from the sealing body 3, in the plan view.
Further, the QFP 5 includes a plurality of second leads (second terminal portions, second electrodes) 1 ad each having the inner portion (first portion) 1 aa which is arranged along the second side 3 b of the sealing body 3, and sealed by the sealing body 3, and the outer portion (second portion) 1 ab that is exposed from the sealing body 3.
Also, the QFP 5 includes a plurality of third leads (third terminal portions, third electrodes) 1 ae each having the inner portion (first portion) 1 aa which is arranged along the third side 3 c of the sealing body 3, and sealed by the sealing body 3, and the outer portion (second portion) 1 ab that is exposed from the sealing body 3.
Further, the QFP 5 includes a plurality of fourth leads (fourth terminal portions, fourth electrodes) 1 af each having the inner portion (first portion) 1 aa which is arranged along the fourth side 3 d of the sealing body 3, and sealed by the sealing body 3, and the outer portion (second portion) 1 ab that is exposed from the sealing body 3.
The plurality of second leads 1 ad arranged along the second side 3 b of the sealing body 3 includes a plurality of first electrode terminals 1 ag, a plurality of second electrode terminals 1 ah, a plurality of third electrode terminals 1 ai, and a plurality of fourth electrode terminals 1 aj.
Also, the plurality of third leads 1 ae arranged along the third side 3 c of the sealing body 3 includes a plurality of fifth electrode terminals 1 ak, a plurality of sixth electrode terminals 1 am, a plurality of seventh electrode terminals 1 an, and a plurality of eighth electrode terminals 1 ap.
The antenna (frame body) 1 b is supported by the first suspension lead 1 d connected with the plural second electrode terminals 1 ah, a second suspension lead 1 e connected with the plural seventh electrode terminals 1 an, and a third suspension lead 1 f extending to the first corner 3 e from the antenna 1 b along the first virtual diagonal line 3 k in the first region 3 q illustrated in FIG. 7.
Also, the first end 1 bc and the second end 1 bd in the antenna 1 b are arranged in the third region 3 s illustrated in FIG. 7 so as to face each other.
Also, the die pad 1 c is supported by the fourth suspension lead 1 g connected with a ninth electrode terminal 1 aq located between the plural third electrode terminals 1 ai and the plural fourth electrode terminals 1 aj, the fifth suspension lead 1 h connected with a tenth electrode terminal 1 ar located between the plural fifth electrode terminals 1 ak and the plural sixth electrode terminals 1 am, and the sixth suspension lead 1 i extending toward the third corner 3 g in the above third region 3 s. The sixth suspension lead 1 i extends from the die pad 1 c toward the third corner 3 g along the first virtual diagonal line 3 k.
In other words, the die pad 1 c is supported at three points by the fourth suspension lead 1 g extending toward the second side 3 b of the sealing body 3, the fifth suspension lead 1 h extending toward the third side 3 c of the sealing body 3, and the sixth suspension lead 1 i extending toward the third corner 3 g of the sealing body 3.
Also, in the plan view, the die pad 1 c and the semiconductor chip 2 are arranged in the above third region 3 s of the sealing body 3.
As illustrated in FIG. 8, among the plural electrode pads 2 c (refer to FIG. 7) disposed in the semiconductor chip 2, the first electrode pads 2 ca are electrically connected to the sixth electrode terminals 1 am through fourth wires (fourth conductive members, fourth conductors) 4 d. Further, the second electrode pads 2 cb are electrically connected to the fourth electrode terminals 1 aj through fifth wires (fifth conductive members, fifth conductors) 4 e. Also, the third electrode pads 2 cc are electrically connected to the fifth electrode terminals 1 ak through sixth wires (sixth conductive members, sixth conductors) 4 f. Further, the fourth electrode pads 2 cd are electrically connected to the third electrode terminals 1 ai through the third wires (third conductive members, third conductors) 4 c. The fourth electrode pads 2 cd is also electrically connected to the first end (first termination) 1 bc of the antenna 1 b through the first wire (first conductive member, first conductor) 4 a. The fourth electrode pads 2 cd is further electrically connected to the second end (second termination) 1 bd of the antenna 1 b through the second wire (second conductive member, second conductor) 4 b.
Also, the first suspension lead 1 d among the three suspension leads that support the antenna 1 b extends toward the second side 3 b of the sealing body 3, and is connected to the second electrode terminals 1 ah arranged on the second side 3 b. On the other hand, the second suspension lead 1 e among the three suspension leads that support the antenna 1 b extends toward the third side 3 c of the sealing body 3, and is connected to the seventh electrode terminals 1 an arranged on the third side 3 c.
Also, as illustrated in FIGS. 7 and 8, the QFP 5 is equipped with a first bar lead (suspension lead, support bar) 1 j having one end extended toward the second corner 3 f of the sealing body 3 along the second virtual diagonal line 3 m, and the other end connected to the first leads 1 ac and the eighth electrode terminals 1 ap of the third leads 1 ae, in the second region 3 r of the sealing body 3 in the plan view.
That is, the first bar lead 1 j extended toward the second corner 3 f of the sealing body 3 is located outside of the antenna 1 b in the second region 3 r. The first bar lead 1 j is biforked toward the outside of the sealing body 3, and also connected to the first leads 1 ac and the third leads 1 ae which are arranged on ends of the respective terminal portion arrays of the first side 3 a and the third side 3 c of the sealing body 3.
Likewise, the QFP 5 is equipped with a second bar lead (suspension lead, support bar) 1 k having one end extended toward the fourth corner 3 h of the sealing body 3, along the second virtual diagonal line 3 m, and the other end connected to the fourth leads 1 af and the first electrode terminals 1 ag of the second leads 1 ad, in the fourth region 3 t of the sealing body 3 in the plan view.
That is, the second bar lead 1 k extended toward the fourth corner 3 h of the sealing body 3 is located outside of the antenna 1 b in the fourth region 3 t. The second bar lead 1 k is also biforked toward the outside of the sealing body 3, and also connected to the second leads 1 ad and the fourth leads 1 af which are arranged on ends of the respective terminal portion arrays of the second side 3 b and the fourth side 3 d of the sealing body 3.
Also, as illustrated in FIG. 9, the antenna (frame body) 1 b includes a first frame portion 1 be disposed along (disposed in parallel to) the second side 3 b of the sealing body 3 (refer to FIG. 8), and a second frame portion 1 bf disposed along (disposed in parallel to) the fourth side 3 d of the sealing body 3, which is connected to the first frame portion 1 be through a first bend 1 bk. Further, the antenna 1 b includes a third frame portion 1 bg disposed along (disposed in parallel to) the first side 3 a of the sealing body 3, which is connected to the second frame portion 1 bf through a second bend 1 bm, and a fourth frame portion 1 bh disposed along (disposed in parallel to) the third side 3 c of the sealing body 3, which is connected to the third frame portion 1 bg through a third bend 1 bn.
Further, the first frame portion 1 be of the antenna 1 b has one end and the other end. One end of the first frame portion 1 be is connected to the first bend 1 bk. On the other hand, the other end of the first frame portion 1 be is connected to a fifth frame portion 1 bi along (parallel to) the second virtual diagonal line 3 m through a fourth bend 1 bp.
Likewise, the fifth frame portion 1 bi of the antenna 1 b has one end and the other end. One end of the fifth frame portion 1 bi is connected to the fourth bend 1 bp. On the other hand, the other end of the fifth frame portion 1 bi is connected to the first end (first termination) 1 bc.
Likewise, the fourth frame portion 1 bh of the antenna 1 b has one end and the other end. One end of the fourth frame portion 1 bh is connected to the third bend 1 bn. On the other hand, the other end of the fourth frame portion 1 bh is connected to a sixth frame portion 1 bj along (parallel to) the second virtual diagonal line 3 m through a fifth bend 1 bq.
Likewise, the sixth frame portion 1 bj of the antenna 1 b has one end and the other end. One end of the sixth frame portion 1 bj is connected to the fifth bend 1 bq. On the other hand, the other end of the sixth frame portion 1 bj is connected to the second end (second termination) 1 bd.
The antenna 1 b, the first wire 4 a, and the second wire 4 b form a loop antenna through the semiconductor chip 2, and the directivity can be enhanced with the application of the loop antenna. The loop shape of the loop antenna can be square or hexagon, but a circular shape of the loop antenna has the largest gain. That is, the loop shape is substantially shaped into a circle, and a size (diameter) of the loop is increased as large as possible, thereby leading to the large gain.
Under the circumstances, in the QFP 5 according to this embodiment, a size of an annular portion of the antenna (frame body) 1 b is set to be as large as possible in an region inside of the plural inner portions 1 aa arranged in the periphery of the sealing body 3, in the plan view, thereby being capable of increasing the gain of the loop antenna.
Also, the antenna (frame body) 1 b in the above loop antenna of the QFP 5 is shaped to be symmetrical with respect to the first virtual diagonal line 3 k as a center line in the plan view. That is, as illustrated in FIG. 8, the third suspension lead 1 f is arranged on the first virtual diagonal line 3 k in FIG. 7 so that the first suspension lead 1 d and the second suspension lead 1 e are further located symmetrically with respect to the third suspension lead 1 f.
With the above configuration, the discontinuities of the wave of the signal caused by the third suspension lead 1 f can be arranged substantially in the vicinity of a center of the loop shape of the antenna 1 b, and the wave is shaped to be symmetrical with respect to a line so that a waveform of one wave of the high frequency signal can be shaped into a pure mountain.
This can make it difficult to generate noise, and the high frequency signal can be stabilized to enhance the quality of the signal.
Also, it is assumed that a distance between the first frame portion 1 be and the plural first electrode terminals 1 ag is L1 in a direction along (parallel to) the fourth side 3 d of the sealing body 3 in FIG. 8 in the plan view of the QFP 5, and also a distance between the second frame portion 1 bf and the plural fourth leads (fourth electrodes) 1 af is L2 in a direction along (parallel to) the first side 3 a of the sealing body 3 in the plan view. Further, it is assumed that a distance between the third frame portion 1 bg and the plural first leads (first electrodes) 1 ac is L3 in a direction along (parallel to) the fourth side 3 d of the sealing body 3 in the plan view, and also a distance between the fourth frame portion 1 bh and the plural eighth electrode terminals 1 ap is L4 in a direction along (parallel to) the first side 3 a of the sealing body 3 in the plan view. Then, L1=L2=L3=L4 is satisfied.
Stated another way, it is assumed that a distance between the plural first leads (first terminal portions, first electrodes) 1 ac arranged on the first side 3 a in the direction along (parallel to) the fourth side 3 d of the sealing body 3, and the third frame portion (frame body) 1 bg is L3, and a distance between the first electrode terminals 1 ag among the plural second leads 1 ad arranged on the second side 3 b in the direction along the fourth side 3 d, and the first frame portion (frame body) 1 be is L1.
Further, it is assumed that a distance between the plural fourth leads 1 af arranged on the fourth side 3 d in the direction along (parallel to) the first side 3 a of the sealing body 3, and the second frame portion 1 bf is L2, and a distance between the eighth electrode terminals 1 ap among the plural third leads 1 ae arranged on the third side 3 c in the direction along the first side 3 a, and the fourth frame portion (frame body) 1 bh is L4. Then, L3, L1, L2, and L4 become equal to one another.
That is, in the QFP 5, distances between the antenna 1 b and the plural leads 1 a arranged around the antenna 1 b are substantially equal to each other in the plan view. In detail, the respective distances between a portion extended from the first suspension lead 1 d to the second suspension lead 1 e through the third suspension lead 1 f in the antenna 1 b, and the plural first electrode terminals 1 ag, the fourth leads 1 af, the first leads 1 ac, and the eighth electrode terminals 1 ap, which are arranged around that portion, are equal to each other, and also set to a desired distance or longer. Further, the antenna 1 b is not also connected to the die pad 1 c, and independent from the die pad 1 c.
In the QFP 5 according to this embodiment, as illustrated in FIG. 8, the plural first leads 1 ac arranged on the first side 3 a of the sealing body 3, and the plural fourth leads 1 af arranged on the fourth side 3 d of the sealing body 3 are dummy electrodes (dummy leads). The dummy electrodes are not particularly electrically connected, and apparently provided for the purpose of stabilizing the mounting of the QFP 5.
Also, the first electrode terminals 1 ag which are parts of the terminal portions among the plural second leads 1 ad arranged on the second side 3 b of the sealing body 3, and the eighth electrode terminals 1 ap which are parts of the terminal portions among the plural third leads 1 ae arranged on the third side 3 c of the sealing body 3 are also dummy electrodes.
Further, in the second side 3 b of the sealing body 3, the third electrode terminals 1 ai not connected with the wires 4, and the ninth electrode terminal 1 aq connected to the fourth suspension lead 1 g that support the die pad 1 c are also dummy electrodes. Also, in the third side 3 c of the sealing body 3, the tenth electrode terminal 1 ar connected to the fifth suspension lead 1 h that supports the die pad 1 c is also the dummy electrode.
That is, in the QFP 5, all of the plural leads 1 a not connected with the wires 4, and the plural leads 1 a not involved in the antenna 1 b are dummy electrodes. Those dummy electrodes are leads necessary only for mounting the QFP 5.
Also, in the QFP 5 according to this embodiment, as illustrated in FIGS. 3 and 4, the die pad 1 c and the antenna 1 b are arranged at the same height H1 in a cross-sectional view taken along the same direction as the thickness direction of the sealing body 3.
That is, the die pad 1 c and the antenna 1 b are flush with each other in the cross-sectional view taken along the same direction as the thickness direction of the sealing body 3. This is because the antenna 1 b, the respective suspension leads that support the antenna 1 b, the die pad 1 c, the respective suspension leads that support the die pad 1 c, and all of the leads 1 a arranged in the periphery of the sealing body 3, which are disposed in the QFP 5, are not subjected to bending work at all. That is, in the QFP 5 according to this embodiment, all of the respective suspension leads and the respective leads 1 a are flushed with each other.
In the QFP 5 according to this embodiment, the antenna (frame body) 1 b is supported by the three suspension leads, and any one of those three suspension leads is arranged on the virtual diagonal line, and the antenna 1 b is arranged to be symmetrical with respect to the virtual diagonal line in the plan view of the sealing body 3. As a result, the discontinuities of the wave of the high frequency signal in the antenna 1 b can be reduced.
That is, when the number of portions (for example, suspension leads) at which antenna 1 b is supported is larger, the wave of the high frequency signal is discontinuous at the support portions, and a reflected wave is generated in the support portions. Also, a resistance value of the frame is changed at the portions for supporting the antenna 1 b. Those factors cause noise to be generated.
Under the circumstances, in the QFP 5 according to this embodiment, the number of suspension leads that support the antenna 1 b is reduced to three with the result that the discontinuities of the wave of the high frequency signal can be reduced.
With the above configuration, the generation of noise can be reduced, and the degradation of the quality of the high frequency signal can be suppressed.
Also, the third suspension lead 1 f among the three suspension leads that support the antenna 1 b is arranged on the first virtual diagonal line 3 k, and the antenna 1 b is arranged to be symmetrical with respect to the first virtual diagonal line 3 k in the plan view of the sealing body 3. As a result, the discontinuities caused by the third suspension lead 1 f can be arranged in the vicinity of the center of the loop shape of the antenna 1 b.
Further, the antenna 1 b is arranged to be symmetrical with respect to the first virtual diagonal line 3 k with the result that the shape of the waveform of the high frequency signal for one wavelength can be shaped into a pure mountain.
That is, the antenna 1 b is supported by the three suspension leads taking the symmetry of the shape of the antenna 1 b into account with the results that the distortion of the receiving waveform can be suppressed, and the baseband transmission in the QFP 5 can be conducted.
As a result, noise can be difficult to generate, and the high frequency signal can be stabilized to enhance the quality of the high frequency signal. With the above configuration, the high frequency signal of 5 Gbps class can be transmitted and received in the QFP 5.
Also, the respective distances between a portion extending from the first suspension lead 1 d to the second suspension lead 1 e through the third suspension lead 1 f in the antenna 1 b, and the plural first electrode terminals 1 ag, the fourth leads 1 af, the first leads 1 ac, and the eighth electrode terminals 1 ap, which are arranged around that portion, are equal (kept constant) to each other, and set to a desired distance or longer. Further, the antenna 1 b is not connected to the die pad 1 c, and independent from the die pad 1 c.
With the above configuration, the high frequency signal can be prevented from interfering with the plural leads 1 a (dummy electrodes) and the die pad 1 c which are disposed around the antenna 1 b. As a result, the high frequency signal can be stabilized to enhance the quality of the high frequency signal.
Also, each of the first bar lead 1 j extending toward the second corner 3 f of the sealing body 3, and the second bar lead 1 k extending toward the fourth corner 3 h is biforked into toward the outside of the sealing body 3. As a result, inflow of a sealing resin into upper and lower molds in a resin mold process for assembling the semiconductor device can be improved.
That is, each of the first bar lead 1 j and the second bar lead 1 k is biforked toward the outside, thereby enabling the sealing resin to pass through the biforked portion. As a result, because the sealing resin can pass through the biforked portion, the flow of the sealing resin into the upper and lower molds can be improved.
The first bar lead 1 j and the second bar lead 1 k are each not limited to the biforked shape, but may be configured by a single shape.
Also, the first bar lead 1 j is connected to the first lead 1 ac and the third lead 1 ae arranged on ends of the respective terminal portion arrays of the first side 3 a and the third side 3 c of the sealing body 3. Likewise, the second bar lead 1 k is connected to the second lead 1 ad and the fourth lead 1 af arranged on ends of the respective terminal portion arrays of the second side 3 b and the fourth side 3 d of the sealing body 3.
That is, each of the two bar leads is connected to the leads 1 a arranged adjacent to both sides of each bar lead within the sealing body 3. In a package singulation process for assembling the semiconductor device, the bar lead is pulled outside by a cutting blade, and projected from the sealing body 3 at the time of cutting the leads, thereby being capable of preventing a problem that a gap is formed in the sealing body 3 from being generated. As a result, the degradation of the quality of the QFP 5 and a reduction in the reliability can be suppressed.
Also, the bar leads (first bar lead 1 j, second bar lead 1 k) are provided in each of the second corner 3 f and the fourth corner 3 h in the sealing body 3, as a result of which the sealing resin can be prevented from being leaked from the mold in the resin mold process for assembling the semiconductor device.
Further, the bar leads are disposed in each of the second corner 3 f and the fourth corner 3 h in the sealing body 3 with the result that the QFP 5 has the same structure as that of a standard package. For that reason, the QFP 5 can be assembled with the use of the same facility as that used for assembling the standard package, and the QFP 5 can be assembled in the same assembling method as that of the standard package.
Subsequently, a modification will be described.
FIG. 10 is a plan view illustrating a structure of a semiconductor device through a sealing body according to a modification of the embodiment. FIG. 11 is a cross-sectional view illustrating a structure cut along a line A-A illustrated in FIG. 10. FIG. 12 is a cross-sectional view illustrating a structure cut along a line B-B illustrated in FIG. 10.
The semiconductor device illustrated in FIG. 10 is a QFN (quad flat non-leaded package) 7 in which the plural leads (terminal portions) 1 a are arranged on each of four sides of the sealing body 3. In the QFN 7, as illustrated in FIG. 11, the plural leads 1 a are arranged in the periphery of the rear surface 3 j of the sealing body 3, and portions (outer portions ab) in which those respective leads 1 a are exposed to the rear surface 3 j of the sealing body 3 configure external connection terminals of the QFN 7.
Also, in the QFN 7, a rear surface side of ends of the respective leads 1 a on the die pad 1 c side is half-etched, and a thickness of the respective ends is about ½ of the lead portions. Further, the lower surface 1 cb side of the die pad 1 c is also half-etched, and thinned. The sealing resin comes around the rear surface of the lower surface 1 cb as much as the rear surface side is half-etched and thinned.
That is, the QFN 7 is a compact package having a structure in which the die pad 1 c is embedded within the sealing body 3.
Like the QFP 5 in the embodiment, in the QFN 7, the antenna (frame body) 1 b is disposed within the sealing body 3 as illustrated in FIG. 10, and a loop antenna is formed by the antenna 1 b, the first wire 4 a, the second wire 4 b, and the semiconductor chip 2.
In this example, the structure of the interior of the sealing body 3 in the QFN 7 in the plan view is identical with the structure of the QFP 5 illustrated in FIGS. 7 to 9, and therefore a repetitive description will be omitted.
That is, also in the QFN 7, the same advantages as those in the QFP 5 can be obtained.
Also, as illustrated in FIGS. 11 and 12, in a cross-sectional structure taken along a direction along the thickness direction of the QFN 7, the die pad 1 c and the antenna 1 b are arranged at the same height H2. That is, the die pad 1 c and the antenna 1 b are flush with each other in the cross-sectional view taken along the same direction as the thickness direction of the sealing body 3. This is because the antenna 1 b, the respective suspension leads that support the antenna 1 b as well as the die pad 1 c, the respective suspension leads that support the die pad 1 c, and all of the leads 1 a arranged in the periphery of the sealing body 3 in the QFN 7, are not also subjected to bending work at all.
The invention made by the present inventors has been described above on the basis of the embodiments of the invention. However, the present invention is not limited to the embodiments of the present invention, but can be variously changed without departing from the spirit of the invention.
For example, in the above embodiments and the modifications, in the semiconductor device (QFP 5, QFN 7), the suspension leads (first bar lead 1 j, second bar lead 1 k) that do not support the antenna 1 b are disposed in the corners of the sealing body 3. However, the suspension leads (first bar lead 1 j, second bar lead 1 k) that do not support the antenna 1 b may not always been provided.

Claims (19)

What is claimed is:
1. A semiconductor device, comprising:
a die pad having a chip mounting surface;
a semiconductor chip that is mounted on the chip mounting surface, and having a plurality of electrode pads disposed on a main surface thereof;
a plurality of terminal portions that are arranged around the die pad;
an antenna having a front surface, a rear surface, a first end which is one end, a second end which is another end, and a plurality of bends arranged between the first end and the second end;
three suspension leads that support the antenna;
a first conductive member that electrically connects any one of the electrode pads of the semiconductor chip to the first end of the antenna;
a second conductive member that electrically connects any one of the electrode pads of the semiconductor chip to the second end of the antenna;
a plurality of third conductive members that electrically connects any one of the electrode pads of the semiconductor chip to any one of the terminal portions; and
a sealing body that seals the die pad, the semiconductor chip, the antenna, the three suspension leads, and the first, second, and third conductive members,
wherein the antenna is separated from the die pad and is arranged to be completely symmetrical with respect to a virtual diagonal line of a plan view of the sealing body; wherein in the plan view of the sealing body, the antenna is arranged on the virtual diagonal line in a corner portion of the sealing body, and the semiconductor chip is arranged on the virtual diagonal line in another corner portion of the sealing body different from the corner portion in which the antenna is arranged; and
wherein any one of the three suspension leads is arranged on the virtual diagonal line.
2. The semiconductor device according to claim 1,
wherein the sealing body includes a first side, a second side opposite to the first side, a third side intersecting with the first side, and a fourth side opposite to the third side in a plan view;
wherein the virtual diagonal line on which the any one of the three suspension leads arranged is a first virtual diagonal line, and the suspension leads on the first virtual diagonal line extend toward a first corner formed by the first side and the fourth side,
wherein a second corner on the opposite side of the first side from the first corner is formed by the first side and the third side,
wherein a third corner on the opposite side of the third side from the second corner is formed by the second side and the third side, and
wherein a fourth corner on the opposite end of the fourth side from the first corner is formed by the second side and the fourth side.
3. The semiconductor device according to claim 2,
wherein the three suspension leads include a first suspension lead, a second suspension lead, and a third suspension lead,
wherein the any one of the three suspension leads arranged on the first virtual diagonal line is the third suspension lead,
wherein the first suspension lead extends toward the second side, and
wherein the second suspension lead extends toward the third side.
4. The semiconductor device according to claim 3,
wherein the first suspension lead is connected to the terminal portion arranged on the second side, and
wherein the second suspension lead is connected to the terminal portion arranged on the third side.
5. The semiconductor device according to claim 4,
wherein a first bar lead that extends toward the second corner, and a second bar lead that extends toward the fourth corner are located outside of the antenna.
6. The semiconductor device according to claim 5,
wherein the first bar lead is connected to the respective terminal portions arranged on the first side and the third side, and
wherein the second bar lead is connected to the respective terminal portions arranged on the second side and the fourth side.
7. The semiconductor device according to claim 2,
wherein the sealing body includes:
a second virtual diagonal line that intersects with the first virtual diagonal line in a plan view;
a first virtual line that divides the first side and the second side into respective two equal parts in the plan view;
a second virtual line that divides the third side and the fourth side into respective two equal parts in the plan view;
a first region that is surrounded by the first side and the fourth side, and the first virtual line and the second virtual line in the plan view;
a second region that is surrounded by the first side and the third side, and the first virtual line and the second virtual line in the plan view;
a third region that is surrounded by the second side and the third side, and the first virtual line and the second virtual line in the plan view; and
a fourth region that is surrounded by the second side, the fourth side, the first virtual line, and the second virtual line in the plan view.
8. The semiconductor device according to claim 7,
wherein the first end and the second end of the antenna are arranged in the third region so as to face each other.
9. The semiconductor device according to claim 8,
wherein the die pad and the semiconductor chip are arranged in the third region.
10. The semiconductor device according to claim 9,
wherein the die pad is supported by a fourth lead extending toward the second side, a fifth lead extending toward the third side, and a sixth lead extending along the first virtual diagonal line toward the third corner.
11. The semiconductor device according to claim 10,
wherein a first bar lead having one end extended toward the second corner is disposed in the second region, and
wherein a second bar lead having one end extended toward the fourth corner is disposed in the fourth region.
12. The semiconductor device according to claim 11,
wherein the antenna, the first conductive member, and the second conductive member form a loop antenna through the semiconductor chip.
13. The semiconductor device according to claim 12,
wherein the loop antenna is bilaterally symmetrical with respect to the first virtual diagonal line as a center line in the plan view.
14. The semiconductor device according to claim 13,
wherein a distance between the terminal portions arranged on the first side in a direction along the fourth side, and the antenna, a distance between a part of the terminal portions arranged on the second side in a direction along the fourth side, and the antenna, a distance between the terminal portions arranged on the fourth side in a direction along the first side, and the antenna, and a distance between a part of the terminal portions arranged on the third side in a direction along the first side, and the antenna, are equal to one another.
15. The semiconductor device according to claim 14,
wherein the terminal portions arranged on the first side, and the terminal portions arranged on the fourth side are dummy electrodes.
16. The semiconductor device according to claim 15,
wherein a part of the terminal portions arranged on the second side and a part of the terminal portions arranged on the third side are dummy electrodes.
17. The semiconductor device according to claim 16,
wherein the die pad and the antenna are arranged at the same height in a cross-sectional view taken along the same direction as a thickness direction of the sealing body.
18. The semiconductor device according to claim 17,
wherein the semiconductor device is one of a quad flat package (QFP) and a quad flat non-leaded package (QFN) in which the terminal portions are arranged on each of the four sides of the sealing body.
19. The semiconductor device according to claim 1, wherein the any one of the three suspension leads that is arranged on the virtual diagonal line also extends in parallel with the virtual diagonal line.
US14/296,067 2013-06-20 2014-06-04 Semiconductor device with integrated antenna Expired - Fee Related US9698110B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-129464 2013-06-20
JP2013129464A JP6129657B2 (en) 2013-06-20 2013-06-20 Semiconductor device

Publications (2)

Publication Number Publication Date
US20140374888A1 US20140374888A1 (en) 2014-12-25
US9698110B2 true US9698110B2 (en) 2017-07-04

Family

ID=52110225

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/296,067 Expired - Fee Related US9698110B2 (en) 2013-06-20 2014-06-04 Semiconductor device with integrated antenna

Country Status (4)

Country Link
US (1) US9698110B2 (en)
JP (1) JP6129657B2 (en)
CN (1) CN104241254B (en)
HK (1) HK1202185A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015208845B3 (en) * 2015-05-13 2016-08-11 Sivantos Pte. Ltd. hearing Aid
JP7057727B2 (en) * 2018-07-12 2022-04-20 株式会社三井ハイテック Lead frames and semiconductor devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054980A1 (en) * 2000-06-27 2001-12-27 Katsuro Nakamura Plane antenna
JP2005038232A (en) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Integrated circuit device and contactless ic card using it
JP2005182330A (en) * 2003-12-18 2005-07-07 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing semiconductor device
JP2005301635A (en) 2004-04-12 2005-10-27 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US20060033664A1 (en) * 2002-11-07 2006-02-16 Jordi Soler Castany Integrated circuit package including miniature antenna
JP2006221211A (en) 2005-02-08 2006-08-24 Renesas Technology Corp Semiconductor device
US20080073758A1 (en) * 2006-09-25 2008-03-27 Micron Technology, Inc. Method and apparatus for directing molding compound flow and resulting semiconductor device packages
US7425756B2 (en) * 2002-04-30 2008-09-16 Renesas Technology Corp. Semiconductor device and electronic device
US8188582B2 (en) * 2007-04-19 2012-05-29 Samsung Electronics Co., Ltd. Lead frame, semiconductor device using the lead frame, and methods of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771158A (en) * 1980-10-22 1982-05-01 Toshiba Corp Frame for semiconductor device
JP3566869B2 (en) * 1998-12-16 2004-09-15 株式会社ルネサステクノロジ Semiconductor device and method of manufacturing semiconductor device
JP3571999B2 (en) * 2000-06-27 2004-09-29 東光株式会社 Planar antenna
US20060276157A1 (en) * 2005-06-03 2006-12-07 Chen Zhi N Apparatus and methods for packaging antennas with integrated circuit chips for millimeter wave applications
JP5291381B2 (en) * 2008-05-19 2013-09-18 ルネサスエレクトロニクス株式会社 Semiconductor package
JP5734217B2 (en) * 2012-02-03 2015-06-17 ルネサスエレクトロニクス株式会社 Semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054980A1 (en) * 2000-06-27 2001-12-27 Katsuro Nakamura Plane antenna
US7425756B2 (en) * 2002-04-30 2008-09-16 Renesas Technology Corp. Semiconductor device and electronic device
US20060033664A1 (en) * 2002-11-07 2006-02-16 Jordi Soler Castany Integrated circuit package including miniature antenna
JP2005038232A (en) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd Integrated circuit device and contactless ic card using it
JP2005182330A (en) * 2003-12-18 2005-07-07 Matsushita Electric Ind Co Ltd Semiconductor device and method for manufacturing semiconductor device
JP2005301635A (en) 2004-04-12 2005-10-27 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2006221211A (en) 2005-02-08 2006-08-24 Renesas Technology Corp Semiconductor device
US20080073758A1 (en) * 2006-09-25 2008-03-27 Micron Technology, Inc. Method and apparatus for directing molding compound flow and resulting semiconductor device packages
US8188582B2 (en) * 2007-04-19 2012-05-29 Samsung Electronics Co., Ltd. Lead frame, semiconductor device using the lead frame, and methods of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine translation of the foreign Reference JP 2005-038232, pp. 1-16. *

Also Published As

Publication number Publication date
JP2015005599A (en) 2015-01-08
US20140374888A1 (en) 2014-12-25
CN104241254B (en) 2018-02-27
HK1202185A1 (en) 2015-09-18
JP6129657B2 (en) 2017-05-17
CN104241254A (en) 2014-12-24

Similar Documents

Publication Publication Date Title
CN108233974B (en) Transceiver module
JP6129659B2 (en) Semiconductor device and manufacturing method thereof
US7768456B2 (en) Antenna device and radio communication device
TWI631834B (en) Integrated circuit with electromagnetic communication
US9984959B2 (en) Semiconductor device and manufacturing method thereof
US8897832B2 (en) Semiconductor device and communication system including the same
JP2000124388A (en) Combined induction coil in single lead frame package, integrated circuit semiconductor chip, and combining method
US8928136B2 (en) Lead frame semiconductor device
TWI594380B (en) Package structure and three dimensional package structure
US10396039B2 (en) Semiconductor package
US9698110B2 (en) Semiconductor device with integrated antenna
JP2009111010A (en) Semiconductor device and method of manufacturing the same
US10923444B1 (en) Semiconductor device
US10290577B2 (en) Semiconductor device
US8981549B2 (en) Multi chip package
JP3417388B2 (en) Semiconductor device
US11335661B2 (en) Wire bonding structure
CN1290185C (en) Integrated circuit package device and its manufacturing method
US9105462B2 (en) Semiconductor apparatus
JP2006066640A (en) Multichip ic module, packaging board, and electronic apparatus
CN111048477A (en) Integrated circuit package with antenna
KR20150029818A (en) Semiconductor package and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ISHIDA, MOTOI;REEL/FRAME:033029/0932

Effective date: 20140213

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:RENESAS ELECTRONICS CORPORATION;REEL/FRAME:044928/0001

Effective date: 20150806

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210704