US9681387B2 - Mobile traffic optimization and coordination and user experience enhancement - Google Patents

Mobile traffic optimization and coordination and user experience enhancement Download PDF

Info

Publication number
US9681387B2
US9681387B2 US14745796 US201514745796A US9681387B2 US 9681387 B2 US9681387 B2 US 9681387B2 US 14745796 US14745796 US 14745796 US 201514745796 A US201514745796 A US 201514745796A US 9681387 B2 US9681387 B2 US 9681387B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
mobile device
application
server
device
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14745796
Other versions
US20150365904A1 (en )
Inventor
Michael Luna
Ari Backholm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seven Networks Inc
Original Assignee
Seven Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3206Monitoring a parameter, a device or an event triggering a change in power modality
    • G06F1/3231Monitoring user presence or absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • G06F1/325Power saving in peripheral device
    • G06F1/3278Power saving in modem or I/O interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • G06F1/3287Power saving by switching off individual functional units in a computer system, i.e. selective power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor ; File system structures therefor
    • G06F17/30861Retrieval from the Internet, e.g. browsers
    • G06F17/30899Browsing optimisation
    • G06F17/30902Browsing optimisation of access to content, e.g. by caching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network-specific arrangements or communication protocols supporting networked applications
    • H04L67/22Tracking the activity of the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0222Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave in packet switched networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • Y02B60/50
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/15Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply acting upon peripherals
    • Y02D10/157Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply acting upon peripherals the peripheral being a modem
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/17Power management
    • Y02D10/171Selective power distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/17Power management
    • Y02D10/173Monitoring user presence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/122Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks
    • Y02D70/1222Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks in Global System for Mobile Communications [GSM] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/122Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks
    • Y02D70/1224Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 2nd generation [2G] networks in General Packet Radio Service [GPRS] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/124Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks
    • Y02D70/1242Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks in Universal Mobile Telecommunications Systems [UMTS] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/124Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks
    • Y02D70/1246Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 3rd generation [3G] networks in High-Speed Uplink Packet Access [HSUPA] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/126Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks
    • Y02D70/1262Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks in Long-Term Evolution [LTE] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/12Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks
    • Y02D70/126Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks
    • Y02D70/1264Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in 3rd Generation Partnership Project [3GPP] networks in 4th generation [4G] networks in Long-Term Evolution Advanced [LTE-A] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/142Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Wireless Local Area Networks [WLAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/144Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Bluetooth and Wireless Personal Area Networks [WPAN]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/14Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks
    • Y02D70/146Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in Institute of Electrical and Electronics Engineers [IEEE] networks in Worldwide Interoperability for Microwave Access [WiMAX] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/10Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT]
    • Y02D70/16Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks
    • Y02D70/164Techniques for reducing energy consumption in wireless communication networks according to the Radio Access Technology [RAT] in other wireless communication networks in Satellite Navigation receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/23Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in Voice over IP [VoIP] networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D70/00Techniques for reducing energy consumption in wireless communication networks
    • Y02D70/20Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies
    • Y02D70/26Techniques for reducing energy consumption in wireless communication networks independent of Radio Access Technologies in wearable devices, e.g. watches, glasses

Abstract

Systems and methods for prediction of activity session for mobile network use optimization and user experience enhancement are disclosed. In one aspect, embodiments of the present disclosure include a method, which may be implemented on a system for enhancing user experience with a mobile application on a mobile device including, using user activity characteristics at a mobile device and server activity characteristics of a host server to anticipate a future activity session at the mobile device and transferring impending content from the host server the mobile device to pre-cache content on the mobile device to support predicted data activity for the future activity session that has been predicted.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/178,598 filed Jul. 8, 2011, which claims the benefit of U.S. Provisional Application 61/430,828 filed Jan. 7, 2011, 61/416,033 filed Nov. 22, 2010, 61/416,020 filed Nov. 22, 2010, 61/408,846 filed Nov. 1, 2010, 61/408,854 filed Nov. 1, 2010, 61/408,858 filed Nov. 1, 2010, 61/408,829 filed Nov. 1, 2010, 61/408,826 filed Nov. 1, 2010, 61/408,820 filed Nov. 1, 2010, 61/408,839 filed Nov. 1, 2010, 61/367,870 filed Jul. 26, 2010, and 61/367,871 filed Jul. 26, 2010, each of which is incorporated herein by reference in its entirety.

BACKGROUND

When WCDMA was specified, there was little attention to requirements posed by applications whose functions are based on actions initiated by the network, in contrast to functions initiated by the user or by the device. Such applications include, for example, push email, instant messaging, visual voicemail and voice and video telephony, and others. Such applications typically require an always-on IP connection and frequent transmit of small bits of data. WCDMA networks are designed and optimized for high-throughput of large amounts of data, not for applications that require frequent, but low-throughput and/or small amounts of data. Each transaction puts the mobile device radio in a high power mode for considerable length of time—typically between 15-30 seconds. As the high power mode can consume as much as 100× the power as an idle mode, these network-initiated applications quickly drain battery in WCDMA networks. The issue has been exacerbated by the rapid increase of popularity of applications with network-initiated functionalities, such as push email.

Lack of proper support has prompted a number of vendors to provide documents to guide their operator partners and independent software vendors to configure their networks and applications to perform better in WCDMA networks. This guidance focuses on: configuring networks to go to stay on high-power radio mode as short as possible and making periodic keep alive messages that are used to maintain an always-on TCP/IP connection as infrequent as possible. Such solutions typically assume lack of coordination between the user, the application and the network.

Furthermore, application protocols may provide long-lived connections that allow servers to push updated data to a mobile device without the need of the client to periodically re-establish the connection or to periodically query for changes. However, the mobile device needs to be sure that the connection remains usable by periodically sending some data, often called a keep-alive message, to the server and making sure the server is receiving this data. While the amount of data sent for a single keep-alive is not a lot and the keep-alive interval for an individual application is not too short, the cumulative effect of multiple applications performing this individually will amount to small pieces of data being sent very frequently. Frequently sending bursts of data in a wireless network also result in high battery consumption due to the constant need of powering/re-powering the radio module.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates an example diagram of a system where a host server facilitates management of traffic between client devices and an application server or content provider in a wireless network for resource conservation.

FIG. 1B illustrates an example diagram of a proxy and cache system distributed between the host server and device which facilitates network traffic management between a device and an application server/content provider for resource conservation.

FIG. 2 depicts a block diagram illustrating an example of client-side components in a distributed proxy and cache system residing on a mobile device that manages traffic in a wireless network for resource conservation.

FIG. 3 depicts a block diagram illustrating an example of server-side components in a distributed proxy and cache system that manages traffic in a wireless network for resource conservation.

FIG. 4 depicts a diagram showing how data requests from a mobile device to an application server/content provider in a wireless network can be coordinated by a distributed proxy system in a manner such that network and battery resources are conserved through using content caching and monitoring performed by the distributed proxy system.

FIG. 5 depicts a diagram showing one example process for implementing a hybrid IP and SMS power saving mode on a mobile device using a distributed proxy and cache system (e.g., such as the distributed system shown in the example of FIG. 1B).

FIG. 6 depicts a flow chart illustrating example processes through which context awareness is used for traffic management.

FIG. 7 depicts a flow chart illustrating an example process for managing traffic in a wireless network based on user interaction with a mobile device.

FIG. 8 depicts a flow chart illustrating another example process for managing traffic in a wireless network based on user interaction with a mobile device.

FIG. 9 depicts a flow chart illustrating an example process for managing traffic initiated from a mobile device in a wireless network through batching of event transfer based on event priority.

FIG. 10 depicts a flow chart illustrating another example process for managing traffic initiated remotely from a mobile device in a wireless network through batching of event transfer based on event priority.

FIG. 11 illustrates a diagram of a power saving mode.

FIG. 12 shows a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.

DETAILED DESCRIPTION

The following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be, but not necessarily are, references to the same embodiment; and, such references mean at least one of the embodiments.

Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.

The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms may be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted. It will be appreciated that same thing can be said in more than one way.

Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification.

Without intent to limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.

Embodiments of the present disclosure include systems and methods for context aware traffic management for network and device resource conservation.

One embodiment of the disclosed technology includes, a system that optimizes multiple aspects of the connection with wired and wireless networks and devices through a comprehensive view of device and application activity including: loading, current application needs on a device, controlling the type of access (push vs. pull or hybrid), location, concentration of users in a single area, time of day, how often the user interacts with the application, content or device, and using this information to shape traffic to a cooperative client/server or simultaneously mobile devices without a cooperative client. Because the disclosed server is not tied to any specific network provider it has visibility into the network performance across all service providers. This enables optimizations to be applied to devices regardless of the operator or service provider, thereby enhancing the user experience and managing network utilization while roaming. Bandwidth has been considered a major issue in wireless networks today. More and more research has been done related to the need for additional bandwidth to solve access problems—many of the performance enhancing solutions and next generation standards, such as those commonly referred to as 4G, namely LTE, 4G, and WiMAX are focused on providing increased bandwidth. Although partially addressed by the standards a key problem that remains is lack of bandwidth on the signaling channel more so than the data channel. Embodiments of the disclosed technology includes, for example, alignment of requests from multiple applications to minimize the need for several polling requests; leverage specific content types to determine how to proxy/manage a connection/content; and apply specific heuristics associated with device, user behavioral patterns (how often they interact with the device/application) and/or network parameters.

Embodiments of the present technology can further include, moving recurring HTTP polls performed by various widgets, RSS readers, etc., to remote network node (e.g., Network operation center (NOC)), thus considerably lowering device battery/power consumption, radio channel signaling, and bandwidth usage. Additionally, the offloading can be performed transparently so that existing applications do not need to be changed.

In some embodiments, this can be implemented using a local proxy on the mobile device which automatically detects recurring requests for the same content (RSS feed, Widget data set) that matches a specific rule (e.g. happens every 15 minutes). The local proxy can automatically cache the content on the mobile device while delegating the polling to the server (e.g., a proxy server operated as an element of a communications network). The server can then notify the mobile/client proxy if the content changes, and if content has not changed (or not changed sufficiently, or in an identified manner or amount) the mobile proxy provides the latest version in its cache to the user (without need to utilize the radio at all). This way the mobile device (e.g., a mobile phone, smart phone, etc.) does not need to open up (e.g., thus powering on the radio) or use a data connection if the request is for content that is monitored and that has been not flagged as new, changed, or otherwise different.

The logic for automatically adding content sources/application servers (e.g., including URLs/content) to be monitored can also check for various factors like how often the content is the same, how often the same request is made (is there a fixed interval/pattern?), which application is requesting the data, etc. Similar rules to decide between using the cache and request the data from the original source may also be implemented and executed by the local proxy and/or server.

For example, when the request comes at an unscheduled/unexpected time (user initiated check), or after every (n) consecutive times the response has been provided from the cache, etc., or if the application is running in the background vs. in a more interactive mode of the foreground. As more and more mobile applications base their features on resources available in the network, this becomes increasingly important. In addition, the disclosed technology allows elimination of unnecessary chatter from the network, benefiting the operators trying to optimize the wireless spectrum usage.

FIG. 1A illustrates an example diagram of a system where a host server 100 facilitates management of traffic between client devices 102 and an application server or content provider 110 in a wireless network for resource conservation.

The client devices 102A-D can be any system and/or device, and/or any combination of devices/systems that is able to establish a connection, including wired, wireless, cellular connections with another device, a server and/or other systems such as host server 100 and/or application server/content provider 110. Client devices 102 will typically include a display and/or other output functionalities to present information and data exchanged between among the devices 102 and/or the host server 100 and/or application server/content provider 110.

For example, the client devices 102 can include mobile, hand held or portable devices or non-portable devices and can be any of, but not limited to, a server desktop, a desktop computer, a computer cluster, or portable devices including, a notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a smart phone, a PDA, a Blackberry device, a Palm device, a handheld tablet (e.g. an iPad or any other tablet), a hand held console, a hand held gaming device or console, any SuperPhone such as the iPhone, and/or any other portable, mobile, hand held devices, etc. In one embodiment, the client devices 102, host server 100, and app server 110 are coupled via a network 106 and/or a network 108. In some embodiments, the devices 102 and host server 100 may be directly connected to one another.

The input mechanism on client devices 102 can include touch screen keypad (including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor, proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.

Signals received or detected indicating user activity at client devices 102 through one or more of the above input mechanism, or others, can be used in the disclosed technology in acquiring context awareness at the client device 102. Context awareness at client devices 102 generally includes, by way of example but not limitation, client device 102 operation or state acknowledgement, management, user activity/behavior/interaction awareness, detection, sensing, tracking, trending, and/or application (e.g., mobile applications) type, behavior, activity, operating state, etc.

Context awareness in the present disclosure also includes knowledge and detection of network side contextual data and can include network information such as network capacity, bandwidth, traffic, type of network/connectivity, and/or any other operational state data. Network side contextual data can be received from and/or queried from network service providers (e.g., cell provider 112 and/or Internet service providers) of the network 106 and/or network 108 (e.g., by the host server and/or devices 102). In addition to application context awareness as determined from the client 102 side, the application context awareness may also be received from or obtained/queried from the respective application/service providers 110 (by the host 100 and/or client devices 102).

The host server 100 can use, for example, contextual information obtained for client devices 102, networks 106/108, applications (e.g., mobile applications), application server/provider 110, or any combination of the above, to manage the traffic in the system to satisfy data needs of the client devices 102 (e.g., to satisfy application or any other request including HTTP request). In one embodiment, the traffic is managed by the host server 100 to satisfy data requests made in response to explicit or non-explicit user 103 requests and/or device/application maintenance tasks. The traffic can be managed such that network consumption, for example, use of the cellular network is conserved for effective and efficient bandwidth utilization. In addition, the host server 100 can manage and coordinate such traffic in the system such that use of device 102 side resources (e.g., including but not limited to battery power consumption, radio use, processor/memory use) are optimized with a general philosophy for resource conservation while still optimizing performance and user experience.

For example, in context of battery conservation, the device 150 can observe user activity (for example, by observing user keystrokes, backlight status, or other signals via one or more input mechanisms, etc.) and alters device 102 behaviors. The device 150 can also request the host server 100 to alter the behavior for network resource consumption based on user activity or behavior.

In one embodiment, the traffic management for resource conservation is performed using a distributed system between the host server 100 and client device 102. The distributed system can include proxy server and cache components on the server 100 side and on the client 102 side, for example, as shown by the server cache 135 on the server 100 side and the local cache 150 on the client 102 side.

Functions and techniques disclosed for context aware traffic management for resource conservation in networks (e.g., network 106 and/or 108) and devices 102, reside in a distributed proxy and cache system. The proxy and cache system can be distributed between, and reside on, a given client device 102 in part or in whole and/or host server 100 in part or in whole. The distributed proxy and cache system are illustrated with further reference to the example diagram shown in FIG. 1B. Functions and techniques performed by the proxy and cache components in the client device 102, the host server 100, and the related components therein are described, respectively, in detail with further reference to the examples of FIG. 2-3.

In one embodiment, client devices 102 communicate with the host server 100 and/or the application server 110 over network 106, which can be a cellular network. To facilitate overall traffic management between devices 102 and various application servers/content providers 110 to implement network (bandwidth utilization) and device resource (e.g., battery consumption), the host server 100 can communicate with the application server/providers 110 over the network 108, which can include the Internet.

In general, the networks 106 and/or 108, over which the client devices 102, the host server 100, and/or application server 110 communicate, may be a cellular network, a telephonic network, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet, or any combination thereof. For example, the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging, visual voicemail, push mail, VoIP, and other services through any known or convenient protocol, such as, but is not limited to the TCP/IP protocol, UDP, HTTP, DNS, Open System Interconnections (OSI), FTP, UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc. Open System Interconnections (OSI), FTP, UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.

The networks 106 and/or 108 can be any collection of distinct networks operating wholly or partially in conjunction to provide connectivity to the client devices 102 and the host server 100 and may appear as one or more networks to the serviced systems and devices. In one embodiment, communications to and from the client devices 102 can be achieved by, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet. In one embodiment, communications can be achieved by a secure communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).

In addition, communications can be achieved via one or more networks, such as, but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network (WWAN), enabled with technologies such as, by way of example, Global System for Mobile Communications (GSM), Personal Communications Service (PCS), Digital Advanced Mobile Phone Service (D-Amps), Bluetooth, Wi-Fi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced, pre-4G, 3G LTE, 3GPP LTE, LTE Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD, 1×RTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data networks or messaging protocols.

FIG. 1B illustrates an example diagram of a proxy and cache system distributed between the host server 100 and device 150 which facilitates network traffic management between the device 150 and an application server/content provider 100 (e.g., a source server) for resource conservation.

The distributed proxy and cache system can include, for example, the proxy server 125 (e.g., remote proxy) and the server cache, 135 components on the server side. The server-side proxy 125 and cache 135 can, as illustrated, reside internal to the host server 100. In addition, the proxy server 125 and cache 135 on the server-side can be partially or wholly external to the host server 100 and in communication via one or more of the networks 106 and 108. For example, the proxy server 125 may be external to the host server and the server cache 135 may be maintained at the host server 100. Alternatively, the proxy server 125 may be within the host server 100 while the server cache is external to the host server 100. In addition, each of the proxy server 125 and the cache 135 may be partially internal to the host server 100 and partially external to the host server 100.

The distributed system can also, include, in one embodiment, client-side components, including by way of example but not limitation, a local proxy 175 (e.g., a mobile client on a mobile device) and/or a local cache 185, which can, as illustrated, reside internal to the device 150 (e.g., a mobile device).

In addition, the client-side proxy 175 and local cache 185 can be partially or wholly external to the device 150 and in communication via one or more of the networks 106 and 108. For example, the local proxy 175 may be external to the device 150 and the local cache 185 may be maintained at the device 150. Alternatively, the local proxy 175 may be within the device 150 while the local cache 185 is external to the device 150. In addition, each of the proxy 175 and the cache 185 may be partially internal to the host server 100 and partially external to the host server 100.

In one embodiment, the distributed system can include an optional caching proxy server 199. The caching proxy server 199 can be a component which is operated by the application server/content provider 110, the host server 100, or a network service provider 112, and or any combination of the above to facilitate network traffic management for network and device resource conservation. Proxy server 199 can be used, for example, for caching content to be provided to the device 150, for example, from one or more of, the application server/provider 110, host server 100, and/or a network service provider 112. Content caching can also be entirely or partially performed by the remote proxy 125 to satisfy application requests or other data requests at the device 150.

In context aware traffic management and optimization for resource conservation in a network (e.g., cellular or other wireless networks), characteristics of user activity/behavior and/or application behavior at a mobile device 150 can be tracked by the local proxy 175 and communicated, over the network 106 to the proxy server 125 component in the host server 100, for example, as connection metadata. The proxy server 125 which in turn is coupled to the application server/provider 110 provides content and data to satisfy requests made at the device 150.

In addition, the local proxy 175 can identify and retrieve mobile device properties including, one or more of, battery level, network that the device is registered on, radio state, whether the mobile device is being used (e.g., interacted with by a user). In some instances, the local proxy 175 can delay, expedite (prefetch), and/or modify data prior to transmission to the proxy server 125, when appropriate, as will be further detailed with references to the description associated with the examples of FIG. 2-3.

The local database 185 can be included in the local proxy 175 or coupled to the proxy 175 and can be queried for a locally stored response to the data request prior to the data request being forwarded on to the proxy server 125. Locally cached responses can be used by the local proxy 175 to satisfy certain application requests of the mobile device 150, by retrieving cached content stored in the cache storage 185, when the cached content is still valid.

Similarly, the proxy server 125 of the host server 100 can also delay, expedite, or modify data from the local proxy prior to transmission to the content sources (e.g., the app server/content provider 110). In addition, the proxy server 125 uses device properties and connection metadata to generate rules for satisfying request of applications on the mobile device 150. The proxy server 125 can gather real time traffic information about requests of applications for later use in optimizing similar connections with the mobile device 150 or other mobile devices.

In general, the local proxy 175 and the proxy server 125 are transparent to the multiple applications executing on the mobile device. The local proxy 175 is generally transparent to the operating system or platform of the mobile device and may or may not be specific to device manufacturers. For example, he local proxy can be implemented without adding a TCP stack and thus act transparently to both the US and the mobile applications. In some instances, the local proxy 175 is optionally customizable in part or in whole to be device specific. In some embodiments, the local proxy 175 may be bundled into a wireless model, into a firewall, and/or a router.

In one embodiment, the host server 100 can in some instances, utilize the store and forward functions of a short message service center (SMSC) 112, such as that provided by the network service provider 112, in communicating with the device 150 in achieving network traffic management. As will be further described with reference to the example of FIG. 3, the host server 100 can forward content or HTTP responses to the SMSC 112 such that it is automatically forwarded to the device 150 if available, and for subsequent forwarding if the device 150 is not currently available.

In general, the disclosed distributed proxy and cache system allows optimization of network usage, for example, by serving requests from the local cache 185, the local proxy 175 reduces the number of requests that need to be satisfied over the network 106. Further, the local proxy 175 and the proxy server 125 may filter irrelevant data from the communicated data. In addition, the local proxy 175 and the proxy server 125 can also accumulate low priority data and send it in batches to avoid the protocol overhead of sending individual data fragments. The local proxy 175 and the proxy server 125 can also compress or transcode the traffic, reducing the amount of data sent over the network 106 and/or 108. The signaling traffic in the network 106 and/or 108 can be reduced, as the networks are now used less often and the network traffic can be synchronized among individual applications.

With respect to the battery life of the mobile device 150, by serving application or content requests from the local cache 185, the local proxy 175 can reduce the number of times the radio module is powered up. The local proxy 175 and the proxy server 125 can work in conjunction to accumulate low priority data and send it in batches to reduce the number of times and/or amount of time when the radio is powered up. The local proxy 175 can synchronize the network use by performing the batched data transfer for all connections simultaneously.

FIG. 2 depicts a block diagram illustrating an example of client-side components in a distributed proxy and cache system residing on a device 250 that manages traffic in a wireless network for resource conservation.

The device 250, which can be a portable or mobile device, such as a portable phone, generally includes, for example, a network interface 208, an operating system 204, a context API 206, and mobile applications which may be proxy unaware 210 or proxy aware 220. Note that the device 250 is specifically illustrated in the example of FIG. 2 as a mobile device, such is not a limitation and that device 250 may be any portable/mobile or non-portable device able to receive, transmit signals to satisfy data requests over a network including wired or wireless networks (e.g., WiFi, cellular, Bluetooth, etc.).

The network interface 208 can be a networking module that enables the device 250 to mediate data in a network with an entity that is external to the host server 250, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface 208 can include one or more of a network adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G, 4G, LTE, etc.), Bluetooth, or whether or not the connection is via a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.

Device 250 can further include, client-side components of the distributed proxy and cache system which can include, a local proxy 275 (e.g., a mobile client of a mobile device) and a cache 285. In one embodiment, the local proxy 275 includes a user activity module 215, a proxy API 225, a request/transaction manager 235, a caching policy manager 245, a traffic shaping engine 255, and/or a connection manager 265. The traffic shaping engine 255 may further include an alignment module 256 and/or a batching module 257, the connection manager 265 may further include a radio controller 266. The request/transaction manager 235 can further include an application behavior detector 236 and/or a prioritization engine 238, the application behavior detector 236 may further include a pattern detector 237 and/or and application profile generator 238. Additional or less components/modules/engines can be included in the local proxy 275 and each illustrated component.

As used herein, a “module,” “a manager,” a “handler,” a “detector,” an “interface,” or an “engine” includes a general purpose, dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, the module, manager, hander, or engine can be centralized or its functionality distributed. The module, manager, hander, or engine can include general or special purpose hardware, firmware, or software embodied in a computer-readable (storage) medium for execution by the processor. As used herein, a computer-readable medium or computer-readable storage medium is intended to include all mediums that are statutory (e.g., in the United States, under 35 U.S.C. 101), and to specifically exclude all mediums that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware.

In one embodiment, a portion of the distributed proxy and cache system for network traffic management resides in or is in communication with device 250, including local proxy 275 (mobile client) and/or cache 285. The local proxy 275 can provide an interface on the device 150 for users to access device applications and services including email, IM, voice mail, visual voicemail, feeds, Internet, other applications, etc.

The proxy 275 is generally application independent and can be used by applications (e.g., both proxy aware and proxy-unaware mobile applications 210 and 220) to open TCP connections to a remote server (e.g., the server 100 in the examples of FIGS. 1A-1B and/or server proxy 125/325 shown in the examples of FIG. 1B and FIG. 3). In some instances, the local proxy 275 includes a proxy API 225 which can be optionally used to interface with proxy-aware applications 220 (or mobile applications on a mobile device).

The applications 210 and 220 can generally include any user application, widgets, software, HTTP-based application, web browsers, video or other multimedia streaming or downloading application, video games, social network applications, email clients, RSS management applications, application stores, document management applications, productivity enhancement applications, etc. The applications can be provided with the device OS, by the device manufacturer, by the network service provider, downloaded by the user, or provided by others.

One embodiment of the local proxy 275 includes or is coupled to a context API 206, as shown. The context API 206 may be a part of the operating system 204 or device platform or independent of the operating system 204, as illustrated. The operating system 204 can include any operating system including but not limited to, any previous, current, and/or future versions/releases of, Windows Mobile, iOS, Android, Symbian, Palm OS, Brew MP, Java 2 Micro Edition (J2ME), Blackberry, etc.

The context API 206 may be a plug-in to the operating system 204 or a particular client application on the device 250. The context API 206 can detect signals indicative of user or device activity, for example, sensing motion, gesture, device location, changes in device location, device backlight, keystrokes, clicks, activated touch screen, mouse click or detection of other pointer devices. The context API 206 can be coupled to input devices or sensors on the device 250 to identify these signals. Such signals can generally include input received in response to explicit user input at an input device/mechanism at the device 250 and/or collected from ambient signals/contextual cues detected at or in the vicinity of the device 250 (e.g., light, motion, piezoelectric, etc.).

In one embodiment, the user activity module 215 interacts with the context API 206 to identify, determine, infer, detect, compute, predict, and/or anticipate, characteristics of user activity on the device 250. Various inputs collected by the context API 206 can be aggregated by the user activity module 215 to generate a profile for characteristics of user activity. Such a profile can be generated by the module 215 with various temporal characteristics. For instance, user activity profile can be generated in real-time for a given instant to provide a view of what the user is doing or not doing at a given time (e.g., defined by a time window, in the last minute, in the last 30 seconds, etc.), a user activity profile can also be generated for a ‘session’ defined by an application or web page that describes the characteristics of user behavior with respect to a specific task they are engaged in on the device 250, or for a specific time period (e.g., for the last 2 hours, for the last 5 hours).

Additionally, characteristic profiles can be generated by the user activity module 215 to depict a historical trend for user activity and behavior (e.g. 1 week, 1 mo, 2 mo, etc.). Such historical profiles can also be used to deduce trends of user behavior, for example, access frequency at different times of day, trends for certain days of the week (weekends or week days), user activity trends based on location data (e.g., IP address, GPS, or cell tower coordinate data) or changes in location data (e.g., user activity based on user location, or user activity based on whether the user is on the go, or traveling outside a home region, etc.) to obtain user activity characteristics.

In one embodiment, user activity module 215 can detect and track user activity with respect to applications, documents, files, windows, icons, and folders on the device 250. For example, the user activity module 215 can detect when an application or window (e.g., a web browser) has been exited, closed, minimized, maximized, opened, moved into the foreground, or into the background, multimedia content playback, etc.

In one embodiment, characteristics of the user activity on the device 250 can be used to locally adjust behavior of the device (e.g., mobile device) to optimize its resource consumption such as battery/power consumption and more generally, consumption of other device resources including memory, storage, and processing power. In one embodiment, the use of a radio on a device can be adjusted based on characteristics of user behavior (e.g., by the radio controller 266 of the connection manager 265) coupled to the user activity module 215. For example, the radio controller 266 can turn the radio on or off, based on characteristics of the user activity on the device 250. In addition, the radio controller 266 can adjust the power mode of the radio (e.g., to be in a higher power mode or lower power mode) depending on characteristics of user activity.

In one embodiment, characteristics of the user activity on device 250 can also be used to cause another device (e.g., other computers, a mobile device, or a non-portable device) or server (e.g., host server 100 and 300 in the examples of FIG. 1A-B and FIG. 3) which can communicate (e.g., via a cellular or other network) with the device 250 to modify its communication frequency with the device 250. The local proxy 275 can use the characteristics information of user behavior determined by the user activity module 215 to instruct the remote device as to how to modulate its communication frequency (e.g., decreasing communication frequency, such as data push frequency if the user is idle, requesting that the remote device notify the device 250 if new data, changed data, different data, or data of a certain level of importance becomes available, etc.).

In one embodiment, the user activity module 215 can, in response to determining that user activity characteristics indicate that a user is active after a period of inactivity, request that a remote device (e.g., server host server 100 and 300 in the examples of FIG. 1A-B and FIG. 3) send the data that was buffered as a result of the previously decreased communication frequency.

In addition, or in alternative, the local proxy 275 can communicate the characteristics of user activity at the device 250 to the remote device (e.g., host server 100 and 300 in the examples of FIG. 1A-B and FIG. 3) and the remote device determines how to alter its own communication frequency with the device 250 for network resource conservation and conservation of device 250 resources.

One embodiment of the local proxy 275 further includes a request/transaction manager 235, which can detect, identify, intercept, process, manage, data requests initiated on the device 250, for example, by applications 210 and/or 220, and/or directly/indirectly by a user request. The request/transaction manager 235 can determine how and when to process a given request or transaction, or a set of requests/transactions, based on transaction characteristics.

The request/transaction manager 235 can prioritize requests or transactions made by applications and/or users at the device 250, for example by the prioritization engine 238. Importance or priority of requests/transactions can be determined by the manager 235 by applying a rule set, for example, according to time sensitivity of the transaction, time sensitivity of the content in the transaction, time criticality of the transaction, time criticality of the data transmitted in the transaction, and/or time criticality or importance of an application making the request.

In addition, transaction characteristics can also depend on whether the transaction was a result of user-interaction or other user initiated action on the device (e.g., user interaction with a mobile application). In general, a time critical transaction can include a transaction resulting from a user-initiated data transfer, and can be prioritized as such. Transaction characteristics can also depend on the amount of data that will be transferred or is anticipated to be transferred as a result of the request/requested transaction. For example, the connection manager 265, can adjust the radio mode (e.g., high power or low power mode via the radio controller 266) based on the amount of data that will need to be transferred.

In addition, the radio controller 266/connection manager 265 can adjust the radio power mode (high or low) based on time criticality/sensitivity of the transaction. The radio controller 266 can trigger the use of high power radio mode when a time-critical transaction (e.g., a transaction resulting from a user-initiated data transfer, an application running in the foreground, any other event meeting a certain criteria) is initiated or detected.

In general, the priorities can be set by default, for example, based on device platform, device manufacturer, operating system, etc. Priorities can alternatively or in additionally be set by the particular application; for example, the Facebook mobile application can set its own priorities for various transactions (e.g., a status update can be of higher priority than an add friend request or a poke request, a message send request can be of higher priority than a message delete request, for example), an email client or IM chat client may have its own configurations for priority. The prioritization engine 238 may include set of rules for assigning priority.

The priority engine 238 can also track network provider limitations or specifications on application or transaction priority in determining an overall priority status for a request/transaction. Furthermore, priority can in part or in whole be determined by user preferences, either explicit or implicit. A user, can in general, set priorities at different tiers, such as, specific priorities for sessions, or types, or applications (e.g., a browsing session, a gaming session, versus an IM chat session, the user may set a gaming session to always have higher priority than an IM chat session, which may have higher priority than web-browsing session). A user can set application-specific priorities, (e.g., a user may set Facebook related transactions to have a higher priority than LinkedIn related transactions), for specific transaction types (e.g., for all send message requests across all applications to have higher priority than message delete requests, for all calendar-related events to have a high priority, etc.), and/or for specific folders.

The priority engine 238 can track and resolve conflicts in priorities set by different entities. For example, manual settings specified by the user may take precedence over device OS settings, network provider parameters/limitations (e.g., set in default for a network service area, geographic locale, set for a specific time of day, or set based on service/fee type) may limit any user-specified settings and/or application-set priorities. In some instances, a manual sync request received from a user can override some, most, or all priority settings in that the requested synchronization is performed when requested, regardless of the individually assigned priority or an overall priority ranking for the requested action.

Priority can be specified and tracked internally in any known and/or convenient manner, including but not limited to, a binary representation, a multi-valued representation, a graded representation and all are considered to be within the scope of the disclosed technology.

TABLE I
Change Change
(initiated on device) Priority (initiated on server) Priority
Send email High Receive email High
Delete email Low Edit email Often not
(Un)read email Low possible to
sync (Low if
possible)
Move message Low New email in Low
Read more High deleted items
Down load High Delete an email Low
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change Calendar High Any calendar change High
event Any contact change High
Add a contact High Wipe/lock device High
Edit a contact High Settings change High
Search contacts High Any folder change High
Change a setting High Connector restart High (if no
Manual send/receive High changes
nothing
is sent)
IM status change Medium Social Network Medium
Status Updates
Auction outbid or High Sever Weather High
change notification Alerts
Weather Updates Low News Updates Low

Table I above shows, for illustration purposes, some examples of transactions with examples of assigned priorities in a binary representation scheme. Additional assignments are possible for additional types of events, requests, transactions, and as previously described, priority assignments can be made at more or less granular levels, e.g., at the session level or at the application level, etc.

As shown by way of example in the above table, in general, lower priority requests/transactions can include, updating message status as being read, unread, deleting of messages, deletion of contacts; higher priority requests/transactions, can in some instances include, status updates, new IM chat message, new email, calendar event update/cancellation/deletion, an event in a mobile gaming session, or other entertainment related events, a purchase confirmation through a web purchase or online, request to load additional or download content, contact book related events, a transaction to change a device setting, location-aware or location-based events/transactions, or any other events/request/transactions initiated by a user or where the user is known to be, expected to be, or suspected to be waiting for a response, etc.

Inbox pruning events (e.g., email, or any other types of messages), are generally considered low priority and absent other impending events, generally will not trigger use of the radio on the device 250. Specifically, pruning events to remove old email or other content can be ‘piggy backed’ with other communications if the radio is not otherwise on, at the time of a scheduled pruning event. For example, if the user has preferences set to ‘keep messages for 7 days old,’ then instead of powering on the device radio to initiate a message delete from the device 250 the moment that the message has exceeded 7 days old, the message is deleted when the radio is powered on next. If the radio is already on, then pruning may occur as regularly scheduled.

The request/transaction manager 235, can use the priorities for requests (e.g., by the prioritization engine 238) to manage outgoing traffic from the device 250 for resource optimization (e.g., to utilize the device radio more efficiently for battery conservation). For example, transactions/requests below a certain priority ranking may not trigger use of the radio on the device 250 if the radio is not already switched on, as controlled by the connection manager 265. In contrast, the radio controller 266 can turn on the radio such a request can be sent when a request for a transaction is detected to be over a certain priority level.

In one embodiment, priority assignments (such as that determined by the local proxy 275 or another device/entity) can be used cause a remote device to modify its communication with the frequency with the mobile device. For example, the remote device can be configured to send notifications to the device 250 when data of higher importance is available to be sent to the mobile device.

In one embodiment, transaction priority can be used in conjunction with characteristics of user activity in shaping or managing traffic, for example, by the traffic shaping engine 255. For example, the traffic shaping engine 255 can, in response to detecting that a user is dormant or inactive, wait to send low priority transactions from the device 250, for a period of time. In addition, the traffic shaping engine 255 can allow multiple low priority transactions to accumulate for batch transferring from the device 250 (e.g., via the batching module 257). In one embodiment, the priorities can be set, configured, or readjusted by a user. For example, content depicted in Table I in the same or similar form can be accessible in a user interface on the device 250 and for example, used by the user to adjust or view the priorities.

The batching module 257 can initiate batch transfer based on certain criteria. For example, batch transfer (e.g., of multiple occurrences of events, some of which occurred at different instances in time) may occur after a certain number of low priority events have been detected, or after an amount of time elapsed after the first of the low priority event was initiated. In addition, the batching module 257 can initiate batch transfer of the cumulated low priority events when a higher priority event is initiated or detected at the device 250. Batch transfer can otherwise be initiated when radio use is triggered for another reason (e.g., to receive data from a remote device such as host server 100 or 300). In one embodiment, an impending pruning event (pruning of an inbox), or any other low priority events, can be executed when a batch transfer occurs.

In general, the batching capability can be disabled or enabled at the event/transaction level, application level, or session level, based on any one or combination of the following: user configuration, device limitations/settings, manufacturer specification, network provider parameters/limitations, platform specific limitations/settings, device OS settings, etc. In one embodiment, batch transfer can be initiated when an application/window/file is closed out, exited, or moved into the background; users can optionally be prompted before initiating a batch transfer; users can also manually trigger batch transfers.

In one embodiment, the local proxy 275 locally adjusts radio use on the device 250 by caching data in the cache 285. When requests or transactions from the device 250 can be satisfied by content stored in the cache 285, the radio controller 266 need not activate the radio to send the request to a remote entity (e.g., the host server 100, 300, as shown in FIG. 1 and FIG. 3 or a content provider/application server such as the server/provider 110 shown in the examples of FIG. 1A and FIG. 1B). As such, the local proxy 275 can use the local cache 285 and the cache policy manager 245 to locally store data for satisfying data requests to eliminate or reduce the use of the device radio for conservation of network resources and device battery consumption.

In leveraging the local cache, once the request/transaction manager 225 intercepts a data request by an application on the device 250, the local repository 285 can be queried to determine if there is any locally stored response, and also determine whether the response is valid. When a valid response is available in the local cache 285, the response can be provided to the application on the device 250 without the device 250 needing to access the cellular network.

If a valid response is not available, the local proxy 275 can query a remote proxy (e.g., the server proxy 325 of FIG. 3) to determine whether a remotely stored response is valid. If so, the remotely stored response (e.g., which may be stored on the server cache 135 or optional caching server 199 shown in the example of FIG. 1B) can be provided to the mobile device, possibly without the mobile device 250 needing to access the cellular network, thus relieving consumption of network resources.

If a valid cache response is not available, or if cache responses are unavailable for the intercepted data request, the local proxy 275, for example, the caching policy manager 245, can send the data request to a remote proxy (e.g., server proxy 325 of FIG. 3) which forwards the data request to a content source (e.g., application server/content provider 110 of FIG. 1) and a response from the content source can be provided through the remote proxy, as will be further described in the description associated with the example host server 300 of FIG. 3. The cache policy manager 245 can manage or process requests that use a variety of protocols, including but not limited to HTTP, HTTPS, IMAP, POP, SMTP and/or ActiveSync. The caching policy manager 245 can locally store responses for data requests in the local database 285 as cache entries, for subsequent use in satisfying same or similar data requests. The manager 245 can request that the remote proxy monitor responses for the data request, and the remote proxy can notify the device 250 when an unexpected response to the data request is detected. In such an event, the cache policy manager 245 can erase or replace the locally stored response(s) on the device 250 when notified of the unexpected response (e.g., new data, changed data, additional data, different response, etc.) to the data request. In one embodiment, the caching policy manager 245 is able to detect or identify the protocol used for a specific request, including but not limited to HTTP, HTTPS, IMAP, POP, SMTP and/or ActiveSync. In one embodiment, application specific handlers (e.g., via the application protocol module 246 of the manager 245) on the local proxy 275 allows for optimization of any protocol that can be port mapped to a handler in the distributed proxy (e.g., port mapped on the proxy server 325 in the example of FIG. 3).

In one embodiment, the local proxy 275 notifies the remote proxy such that the remote proxy can monitor responses received for the data request from the content source for changed results prior to returning the result to the device 250, for example, when the data request to the content source has yielded same results to be returned to the mobile device. In general, the local proxy 275 can simulate application server responses for applications on the device 250, using locally cached content. This can prevent utilization of the cellular network for transactions where new/changed/different data is not available, thus freeing up network resources and preventing network congestion.

In one embodiment, the local proxy 275 includes an application behavior detector 236 to track, detect, observe, monitor, applications (e.g., proxy aware and/or unaware applications 210 and 220) accessed or installed on the device 250. Application behaviors, or patterns in detected behaviors (e.g., via the pattern detector 237) of one or more applications accessed on the device 250 can be used by the local proxy 275 to optimize traffic in a wireless network needed to satisfy the data needs of these applications.

For example, based on detected behavior of multiple applications, the traffic shaping engine 255 can align content requests made by at least some of the applications over the network (wireless network) (e.g., via the alignment module 256). The alignment module can delay or expedite some earlier received requests to achieve alignment. When requests are aligned, the traffic shaping engine 255 can utilize the connection manager to poll over the network to satisfy application data requests. Content requests for multiple applications can be aligned based on behavior patterns or rules/settings including, for example, content types requested by the multiple applications (audio, video, text, etc.), mobile device parameters, and/or network parameters/traffic conditions, network service provider constraints/specifications, etc.

In one embodiment, the pattern detector 237 can detect recurrences in application requests made by the multiple applications, for example, by tracking patterns in application behavior. A tracked pattern can include, detecting that certain applications, as a background process, poll an application server regularly, at certain times of day, on certain days of the week, periodically in a predictable fashion, with a certain frequency, with a certain frequency in response to a certain type of event, in response to a certain type user query, frequency that requested content is the same, frequency with which a same request is made, interval between requests, applications making a request, or any combination of the above, for example.

Such recurrences can be used by traffic shaping engine 255 to offload polling of content from a content source (e.g., from an application server/content provider 110 of FIG. 1) that would result from the application requests that would be performed at the mobile device 250 to be performed instead, by a proxy server (e.g., proxy server 125 of FIG. 1B or proxy server 325 of FIG. 3) remote from the device 250. Traffic engine 255 can decide to offload the polling when the recurrences match a rule. For example, there are multiple occurrences or requests for the same resource that have exactly the same content, or returned value, or based on detection of repeatable time periods between requests and responses such as a resource that is requested at specific times during the day. The offloading of the polling can decrease the amount of bandwidth consumption needed by the mobile device 250 to establish a wireless (cellular) connection with the content source for repetitive content polls.

As a result of the offloading of the polling, locally cached content stored in the local cache 285 can be provided to satisfy data requests at the device 250, when content change is not detected in the polling of the content sources. As such, when data has not changed, application data needs can be satisfied without needing to enable radio use or occupying cellular bandwidth in a wireless network. When data has changed, or when data is different, and/or new data has been received, the remote entity to which polling is offloaded, can notify the device 250. The remote entity may be the host server 300 as shown in the example of FIG. 3.

In one embodiment, the local proxy 275 can mitigate the need/use of periodic keep alive messages (heartbeat messages) to maintain TCP/IP connections, which can consume significant amounts of power thus having detrimental impacts on mobile device battery life. The connection manager 265 in the local proxy (e.g., the heartbeat manager 267) can detect, identify, and intercept any or all heartbeat (keep-alive) messages being sent from applications.

The heartbeat manager 267 can prevent any or all of these heartbeat messages from being sent over the cellular, or other network, and instead rely on the server component of the distributed proxy system (e.g., shown in FIG. 1B) to generate the and send the heartbeat messages to maintain a connection with the backend (e.g., app server/provider 110 in the example of FIG. 1).

The local proxy 275 generally represents any one or a portion of the functions described for the individual managers, modules, and/or engines. The local proxy 275 and device 250 can include additional or less components; more or less functions can be included, in whole or in part, without deviating from the novel art of the disclosure.

FIG. 3 depicts a block diagram illustrating an example of server-side components in a distributed proxy and cache system residing on a host server 300 that manages traffic in a wireless network for resource conservation.

The host server 300 generally includes, for example, a network interface 308 and/or one or more repositories 312, 314, 316. Note that server 300 may be any portable/mobile or non-portable device, server, cluster of computers and/or other types of processing units (e.g., any number of a machine shown in the example of FIG. 11) able to receive, transmit signals to satisfy data requests over a network including any wired or wireless networks (e.g., WiFi, cellular, Bluetooth, etc.).

The network interface 308 can include networking module(s) or devices(s) that enable the server 300 to mediate data in a network with an entity that is external to the host server 300, through any known and/or convenient communications protocol supported by the host and the external entity. Specifically, the network interface 308 allows the server 308 to communicate with multiple devices including mobile phone devices 350, and/or one or more application servers/content providers 310.

The host server 300 can store information about connections (e.g., network characteristics, conditions, types of connections, etc.) with devices in the connection metadata repository 312. Additionally, any information about third party application or content providers can also be stored in 312. The host server 300 can store information about devices (e.g., hardware capability, properties, device settings, device language, network capability, manufacturer, device model, OS, OS version, etc.) in the device information repository 314. Additionally, the host server 300 can store information about network providers and the various network service areas in the network service provider repository 316.

The communication enabled by 308 allows for simultaneous connections (e.g., including cellular connections) with devices 350 and/or connections (e.g., including wired/wireless, HTTP, Internet connections, LAN, Wifi, etc.) with content servers/providers 310, to manage the traffic between devices 350 and content providers 310, for optimizing network resource utilization and/or to conserver power (battery) consumption on the serviced devices 350. The host server 300 can communicate with mobile devices 350 serviced by different network service providers and/or in the same/different network service areas. The host server 300 can operate and is compatible with devices 350 with varying types or levels of mobile capabilities, including by way of example but not limitation, 1G, 2G, 2G transitional (2.5G, 2.75G), 3G (IMT-2000), 3G transitional (3.5G, 3.75G, 3.9G), 4G (IMT-advanced), etc.

In general, the network interface 308 can include one or more of a network adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G, 4G type networks such as, LTE, WiMAX, etc.), Bluetooth, WiFi, or any other network whether or not connected via a a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.

The host server 300 can further include, server-side components of the distributed proxy and cache system which can include, a proxy server 325 and a server cache 335. In one embodiment, the server proxy 325 can include an HTTP access engine 345, a caching policy manager 355, a proxy controller 365, a traffic shaping engine 375, a new data detector 386, and/or a connection manager 395.

The HTTP access engine 345 may further include a heartbeat manager 346, the proxy controller 365 may further include a data invalidator module 366, the traffic shaping engine 375 may further include a control protocol 276 and a batching module 377. Additional or less components/modules/engines can be included in the proxy server 325 and each illustrated component.

As used herein, a “module,” “a manager,” a “handler,” a “detector,” an “interface,” a “controller,” or an “engine” includes a general purpose, dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, the module, manager, handler, or engine can be centralized or its functionality distributed. The module, manager, handler, or engine can include general or special purpose hardware, firmware, or software embodied in a computer-readable (storage) medium for execution by the processor. As used herein, a computer-readable medium or computer-readable storage medium is intended to include all mediums that are statutory (e.g., in the United States, under 35 U.S.C. 101), and to specifically exclude all mediums that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware.

In the example of a device (e.g., mobile device 350) making an application or content request to an app server or content provider 310, the request may be intercepted and routed to the proxy server 325, which is coupled to the device 350 and the provider 310. Specifically, the proxy server is able to communicate with the local proxy (e.g., proxy 175 and 275 of the examples of FIG. 1 and FIG. 2 respectively) of the device 350, the local proxy forwards the data request to the proxy server 325 for, in some instances, further processing, and if needed, for transmission to the content server 310 for a response to the data request.

In such a configuration, the host 300, or the proxy server 325 in the host server 300 can utilize intelligent information provided by the local proxy in adjusting its communication with the device in such a manner that optimizes use of network and device resources. For example, the proxy server 325 can identify characteristics of user activity on the device 350 to modify its communication frequency. The characteristics of user activity can be determined by, for example, the activity/behavior awareness module 366 in the proxy controller 365, via information collected by the local proxy on the device 350.

In one embodiment, communication frequency can be controlled by the connection manager 396 of the proxy server 325, for example, to adjust push frequency of content or updates to the device 350. For instance, push frequency can be decreased by the connection manager 396 when characteristics of the user activity indicate that the user is inactive. In one embodiment, when the characteristics of the user activity indicate that the user is subsequently active after a period of inactivity, the connection manager 396 can adjust the communication frequency with the device 350 to send data that was buffered as a result of decreased communication frequency, to the device 350.

In addition, the proxy server 325 includes priority awareness of various requests, transactions, sessions, applications, and/or specific events. Such awareness can be determined by the local proxy on the device 350 and provided to the proxy server 325. The priority awareness module 367 of the proxy server 325 can generally assess the priority (e.g., including time-criticality, time-sensitivity, etc.) of various events or applications; additionally, the priority awareness module 367 can track priorities determined by local proxies of devices 350.

In one embodiment, through priority awareness, the connection manager 395 can further modify communication frequency (e.g., use or radio as controlled by the radio controller 396) of the server 300 with the devices 350. For example, the server 300 can notify the device 350, thus requesting use of the radio if it is not already in use, when data or updates of an importance/priority level which meets a criteria becomes available to be sent.

In one embodiment, the proxy server 325 can detect multiple occurrences of events (e.g., transactions, content, data received from server/provider 310) and allow the events to accumulate for batch transfer to device 350. Batch transfer can be cumulated and transfer of events can be delayed based on priority awareness and/or user activity/application behavior awareness, as tracked by modules 366 and/or 367. For example, batch transfer of multiple events (of a lower priority) to the device 350 can be initiated by the batching module 377 when an event of a higher priority (meeting a threshold or criteria) is detected at the server 300. In addition, batch transfer from the server 300 can be triggered when the server receives data from the device 350, indicating that the device radio is already in use and is thus on. In one embodiment, the proxy server 324 can order the each messages/packets in a batch for transmission based on event/transaction priority, such that higher priority content can be sent first, in case connection is lost or the battery dies, etc.

In one embodiment, the server 300 caches data (e.g., as managed by the caching policy manager 355) such that communication frequency over a network (e.g., cellular network) with the device 350 can be modified (e.g., decreased). The data can be cached, for example in the server cache 335, for subsequent retrieval or batch sending to the device 350 to potentially decrease the need to turn on the device 350 radio. The server cache 335 can be partially or wholly internal to the host server 300, although in the example of FIG. 3, it is shown as being external to the host 300. In some instances, the server cache 335 may be the same as and/or integrated in part or in whole with another cache managed by another entity (e.g., the optional caching proxy server 199 shown in the example of FIG. 1B), such as being managed by an application server/content provider 110, a network service provider, or another third party.

In one embodiment, content caching is performed locally on the device 350 with the assistance of host server 300. For example, proxy server 325 in the host server 300 can query the application server/provider 310 with requests and monitor changes in responses. When changed, different or new responses are detected (e.g., by the new data detector 347), the proxy server 325 can notify the mobile device 350, such that the local proxy on the device 350 can make the decision to invalidate (e.g., indicated as out-dated) the relevant cache entries stored as any responses in its local cache. Alternatively, the data invalidator module 368 can automatically instruct the local proxy of the device 350 to invalidate certain cached data, based on received responses from the app application server/provider 310. The cached data is marked as invalid, and can get replaced or deleted when new content is received from the content server 310.

Note that data change can be detected by the detector 347 in one or more ways. For example, the server/provider 310 can notify the host server 300 upon a change. The change can also be detected at the host server 300 in response to a direct poll of the source server/provider 310. In some instances, the proxy server 325 can in addition, pre-load the local cache on the device 350 with the new/updated/changed/different data. This can be performed when the host server 300 detects that the radio on the mobile device is already in use, or when the server 300 has additional content/data to be sent to the device 350.

One or more the above mechanisms can be implemented simultaneously or adjusted/configured based on application (e.g., different policies for different servers/providers 310). In some instances, the source provider/server 310 may notify the host 300 for certain types of events (e.g., events meeting a priority threshold level). In addition, the provider/server 310 may be configured to notify the host 300 at specific time intervals, regardless of event priority.

In one embodiment, the proxy server 325 of the host 300 can monitor/track responses received for the data request from the content source for changed results prior to returning the result to the mobile device, such monitoring may be suitable when data request to the content source has yielded same results to be returned to the mobile device, thus preventing network/power consumption from being used when no new/changes are made to a particular requested. The local proxy of the device 350 can instruct the proxy server 325 to perform such monitoring or the proxy server 325 can automatically initiate such a process upon receiving a certain number of the same responses (e.g., or a number of the same responses in a period of time) for a particular request.

In one embodiment, the server 300, for example, through the activity/behavior awareness module 366, is able to identify or detect user activity, at a device that is separate from the mobile device 350. For example, the module 366 may detect that a user's message inbox (e.g., email or types of inbox) is being accessed. This can indicate that the user is interacting with his/her application using a device other than the mobile device 350 and may not need frequent updates, if at all.

The server 300, in this instance, can thus decrease the frequency with which new, different, changed, or updated content is sent to the mobile device 350, or eliminate all communication for as long as the user is detected to be using another device for access. Such frequency decrease may be application specific (e.g., for the application with which the user is interacting with on another device), or it may be a general frequency decrease (e.g., since the user is detected to be interacting with one server or one application via another device, he/she could also use it to access other services) to the mobile device 350.

In one embodiment, the host server 300 is able to poll content sources 310 on behalf of devices 350 to conserve power or battery consumption on devices 350. For example, certain applications on the mobile device 350 can poll its respective server 310 in a predictable recurring fashion. Such recurrence or other types of application behaviors can be tracked by the activity/behavior module 366 in the proxy controller 365. The host server 300 can thus poll content sources 310 for applications on the mobile device 350, that would otherwise be performed by the device 350 through a wireless (e.g., including cellular connectivity). The host server can poll the sources 310 for new, different, updated, or changed data by way of the HTTP access engine 345 to establish HTTP connection or by way of radio controller 396 to connect to the source 310 over the cellular network. When new, different, updated, or changed data is detected, the new data detector can notify the device 350 that such data is available and/or provide the new/changed data to the device 350.

In one embodiment, the connection manager 395 determines that the mobile device 350 is unavailable (e.g., the radio is turned off) and utilizes SMS to transmit content to the device 350, for instance via the SMSC shown in the example of FIG. 1B. SMS is used to transmit invalidation messages, batches of invalidation messages, or even content in the case the content is small enough to fit into just a few (usually one or two) SMS messages. This avoids the need to access the radio channel to send overhead information. The host server 300 can use SMS for certain transactions or responses having a priority level above a threshold or otherwise meeting a criteria. The server 300 can also utilize SMS as an out-of-band trigger to maintain or wake-up an IP connection as an alternative to maintaining an always-on IP connection.

In one embodiment, the connection manager 395 in the proxy server 325 (e.g., the heartbeat manager 398) can generate and/or transmit heartbeat messages on behalf of connected devices 350, to maintain a backend connection with a provider 310 for applications running on devices 350.

For example, in the distributed proxy system, local cache on the device 350 can prevent any or all heartbeat messages needed to maintain TCP/IP connections required for applications, from being sent over the cellular, or other network, and instead rely on the proxy server 325 on the host server 300 to generate and/or send the heartbeat messages to maintain a connection with the backend (e.g., app server/provider 110 in the example of FIG. 1). The proxy server can generate the keep-alive (heartbeat) messages independent of the operations of the local proxy on the mobile device.

The repositories 312, 314, and/or 316 can additionally store software, descriptive data, images, system information, drivers, and/or any other data item utilized by other components of the host server 300 and/or any other servers for operation. The repositories may be managed by a database management system (DBMS), for example but not limited to, Oracle, DB2, Microsoft Access, Microsoft SQL Server, PostgreSQL, MySQL, FileMaker, etc.

The repositories can be implemented via object-oriented technology and/or via text files, and can be managed by a distributed database management system, an object-oriented database management system (OODBMS) (e.g., ConceptBase, FastDB Main Memory Database Management System, JDOInstruments, ObjectDB, etc.), an object-relational database management system (ORDBMS) (e.g., Informix, OpenLink Virtuoso, VMDS, etc.), a file system, and/or any other convenient or known database management package.

FIG. 4 depicts a diagram showing how data requests from a mobile device 450 to an application server/content provider 496 in a wireless network can be coordinated by a distributed proxy system 460 in a manner such that network and battery resources are conserved through using content caching and monitoring performed by the distributed proxy system 460.

In satisfying application or client requests on a mobile device 450 without the distributed proxy system 460, the mobile device 450, or the software widget executing on the device 450 performs a data request 402 (e.g., an HTTP GET, POST, or other request) directly to the application server 495 and receives a response 404 directly from the server/provider 495. If the data has been updated, the widget on the mobile device 450 can refreshes itself to reflect the update and waits for small period of time and initiates another data request to the server/provider 495.

In one embodiment, the requesting client or software widget 455 on the device 450 can utilize the distributed proxy system 460 in handling the data request made to server/provider 495. In general, the distributed proxy system 460 can include a local proxy 465 (which is typically considered a client-side component of the system 460 and can reside on the mobile device 450), a caching proxy (475, considered a server-side component 470 of the system 460 and can reside on the host server 485 or be wholly or partially external to the host server 485), a host server 485. The local proxy 465 can be connected to the proxy 475 and host server 485 via any network or combination of networks.

When the distributed proxy system 460 is used for data/application requests, the widget 455 can perform the data request 406 via the local proxy 465. The local proxy 465, can intercept the requests made by device applications, and can identify the connection type of the request (e.g., an HTTP get request or other types of requests). The local proxy 465 can then query the local cache for any previous information about the request (e.g., to determine whether a locally stored response is available and/or still valid). If a locally stored response is not available or if there is an invalid response stored, the local proxy 465 can update or store information about the request, the time it was made, and any additional data, in the local cache. The information can be updated for use in potentially satisfying subsequent requests.

The local proxy 465 can then send the request to the host server 485 and the server 485 can perform the request 406 and returns the results in response 408. The local proxy 465 can store the result and in addition, information about the result and returns the result to the requesting widget 455.

In one embodiment, if the same request has occurred multiple times (within a certain time period) and it has often yielded same results, the local proxy 465 can notify 410 the server 485 that the request should be monitored (e.g., steps 412 and 414) for result changes prior to returning a result to the local proxy 465 or requesting widget 455.

In one embodiment, if a request is marked for monitoring, the local proxy 465 can now store the results into the local cache. Now, when the data request 416, for which a locally response is available, is made by the widget 455 and intercepted at the local proxy 465, the proxy 465 can return the response 418 from the local cache without needing to establish a connection communication over the wireless network. In one embodiment, the response is stored at the server proxy in the server cache for subsequent use in satisfying same or similar data requests. The response can be stored in lieu of or in addition to storage on the local cache on the mobile device.

In addition, the server proxy performs the requests marked for monitoring 420 to determine whether the response 422 for the given request has changed. In general, the host server 485 can perform this monitoring independently of the widget 455 or local proxy 465 operations. Whenever an unexpected response 422 is received for a request, the server 485 can notify the local proxy 465 that the response has changed (e.g., the invalidate notification in step 424) and that the locally stored response on the client should be erased or replaced with a new (e.g., changed or different) response.

In this case, a subsequent data request 426 by the widget 455 from the device 450 results in the data being returned from host server 485 (e.g., via the caching proxy 475). Thus, through utilizing the distributed proxy system 460 the wireless (cellular) network is intelligently used when the content/data for the widget or software application 455 on the mobile device 450 has actually changed. As such, the traffic needed to check for the changes to application data is not performed over the wireless (cellular) network. This reduces the amount of generated network traffic and shortens the total time and the number of times the radio module is powered up on the mobile device 450, thus reducing battery consumption, and in addition, frees up network bandwidth.

FIG. 5 depicts a diagram showing one example process for implementing a hybrid IP and SMS power saving mode on a mobile device 550 using a distributed proxy and cache system (e.g., such as the distributed system shown in the example of FIG. 1B).

In step 502, the local proxy (e.g., proxy 175 in the example of FIG. 1B) monitors the device for user activity. When the user is determined to be active, server push is active. For example, always-on-push IP connection can be maintained and if available, SMS triggers can be immediately sent to the mobile device 550 as it becomes available.

In process 504, after the user has been detected to be inactive or idle over a period of time (e.g., the example is shown for a period of inactivity of 20 min.), the local proxy can adjust the device to go into the power saving mode. In the power saving mode, when the local proxy receives a message or a correspondence from a remote proxy (e.g., the server proxy 135 in the example of FIG. 1B) on the server-side of the distributed proxy and cache system, the local proxy can respond with a call indicating that the device 550 is currently in power save mode (e.g., via a power save remote procedure call). In some instances, the local proxy can take the opportunity to notify multiple accounts or providers (e.g., 510A, and 510B) of the current power save status (e.g., timed to use the same radio power-on event).

In one embodiment, the response from the local proxy can include a time (e.g., the power save period) indicating to the remote proxy (e.g., server proxy 135) and/or the app server/providers 510A/B when the device 550 is next able to receive changes or additional data. A default power savings period can be set by the local proxy.

In one embodiment, if new, change, or different data or event is received before the end of any one power saving period, then the wait period communicated to the servers 510A/B can be the existing period, rather than an incremented time period. In response, the remote proxy server, upon receipt of power save notification from the device 550, can stop sending changes (data or SMSs) for the period of time requested (the wait period). At the end of the wait period, any notifications received can be acted upon and changes sent to the device 550, for example, as a single batched event or as individual events. If no notifications come in, then push can be resumed with the data or an SMS being sent to the device 550. The proxy server can time the poll or data collect event to optimize batch sending content to the mobile device 550 to increase the chance that the client will receive data at the next radio power on event.

Note that the wait period can be updated in operation in real time to accommodate operating conditions. For example, the local proxy can adjust the wait period on the fly to accommodate the different delays that occur in the system.

Detection of user activity 512 at the device 550 causes the power save mode to be exited. When the device 550 exits power save mode, it can begin to receive any changes associated with any pending notifications. If a power saving period has expired, then no power save cancel call may be needed as the proxy server will already be in traditional push operation mode.

In one embodiment, power save mode is not applied when the device 550 is plugged into a charger. This setting can be reconfigured or adjusted by the user or another party. In general, the power save mode can be turned on and off, for example, by the user via a user interface on device 550. In general, timing of power events to receive data can be synced with any power save calls to optimize radio use.

FIG. 6 depicts a flow chart illustrating example processes through which context awareness is used for traffic management.

In process 602, characteristics of user activity on the mobile device are detected. In process 604, behavior of the mobile device is adjusted to optimize battery consumption on the mobile device. The adjustment of the behavior of the mobile device can include, for example, adjusting the use of radio on the mobile device, as in process 606. In addition, in process 608, the radio can be switched on/off. Further, the radio can also be placed in low power or high power radio mode in process 612.

In addition, data can be cached at the mobile device in process 610 to adjust radio use. Data may also be cached at the server in wireless communication with the mobile device to in order to modify communication frequency with the mobile device. In one embodiment, in response to detection of user activities on the mobile device, the characteristics of the user activity can be communicated from the mobile device to the server, in process 614.

Similarly, based on the user activity characteristics, communication frequency of a server with the mobile device can be adjusted in process 616. For example, data push frequency from the server to the mobile device is decreased, in process 618. Similarly, data can be cached at the server in process 620 to adjust communication frequency.

In addition, characteristics of transactions occurring at the mobile device can also be used to locally adjust radio use on the mobile device. For example, characteristics of transactions include time criticality of the transactions and that a low power radio mode or a high power radio mode can be selected for use on the mobile device based on the time criticality of the transactions. Additionally, a low power radio mode or a high power radio mode is selected for use on the mobile device based on amount of data to be transferred in the transactions.

FIG. 7 depicts a flow chart illustrating an example process for managing traffic in a wireless network based on user interaction with a mobile device.

In process 702, it is determined if the user actively interacting with the mobile device. If the user is actively interacting with the mobile device, the mobile device 714 can be notified, as in process 714, of new data or changes in data.

If not, in process 704, device can wait to send low priority transactions until after the user activity has been dormant for a period of time, for example, low priority transactions include, one or more of, updating message status as being read, unread, and deleting of messages. In addition, low priority transactions can be sent when a higher priority transaction needs to be sent, thus utilizing the same radio power-up event. Low priority transactions can generally include application maintenance events, events not requested by a user, events scheduled to be in the future, such as, by way of example but not limitation, one or more of, updating message status as being read, unread, and deleting of messages.

Similarly, if the user is not active, data push frequency from the server can be decreased in process 706. In process 708, if the user is detected to be subsequently active after being inactive, then data buffered as a result of decreased communication frequency can be sent to the mobile device, in process 710.

Alternatively, even if the user is not actively interacting with the mobile device, an assessment can be made as to whether high importance data (e.g., data importance or priority meeting a threshold level) is pending to be sent to the mobile device, in process 712. If so, the mobile device is notified, in process 714. As a result of the notification, the mobile device radio can be enabled such that the high importance data can be sent to the mobile device. In general, the importance of data can be determined based on one or more of several criteria including but not limited to, application to which the data is relevant, time criticality, and time sensitivity, etc. An example of a time critical transaction includes a transaction resulting from a user-initiated data transfer.

FIG. 8 depicts a flow chart illustrating another example process for managing traffic in a wireless network based on user interaction with a mobile device.

In process 802, user activity is detected at a device separate from a mobile device. In process 804, it is determined whether the user activity at the device is able to access the same data, content, or application, which is also setup to be delivered to or accessed at the mobile device. For example, user activity at the device separate from the mobile device can include user access of an email inbox or other types applications via an interface other than that accessed from the mobile device (e.g., from a laptop or desktop computer). Since the user is now accessing the client from another device, the user now may not need content to be updated as frequently on the mobile device. Thus, in process 806, communication frequency from a server to the mobile device is decreased.

FIG. 9 depicts a flow chart illustrating an example process for managing traffic initiated from a mobile device in a wireless network through batching of event transfer based on event priority.

In process 902, multiple occurrences of events having a first priority type initiated on the mobile device are detected.

In process 904, the mobile device cumulates multiple occurrences of events having a first priority type initiated on the mobile device, before transfer over the wireless network. The first priority type can be a generally low priority type indicating a request or update which is not time critical or time sensitive. Thus, if the device radio is currently off, the radio may not be immediately turned on to transmit individual events which are not time critical, until other triggering events occur or other criteria is met.

For example, in process 906, occurrence of an event of a second priority type is detected, which can trigger batch transfer of the cumulated events to a server in wireless communication with the mobile device, in process 916, where the second priority type is of a higher priority than the first priority type.

In another example, in process 908, data transfer from the server can trigger the radio use on the mobile device, which can trigger batch transfer of the cumulated events to a server in wireless communication with the mobile device, in process 916. Alternatively, in process 910, after a period of time elapses, batch transfer of the cumulated events to a server in wireless communication with the mobile device can be triggered, in process 916.

In one embodiment, in process 912, a user trigger (e.g., a manual sync request) or in response to a user prompt, batch transfer of the cumulated events to a server in wireless communication with the mobile device can be triggered, in process 916. In process 914, when it is detected that an application is exited and/or moved into the background, batch transfer of the cumulated events to a server in wireless communication with the mobile device can be triggered, in process 916.

FIG. 10 depicts a flow chart illustrating another example process for managing traffic initiated remotely from a mobile device in a wireless network through batching of event transfer based on event priority.

In process 1002, multiple occurrences of events having a first priority type are detected at a server wirelessly coupled to a mobile device. In process 1004, the server cumulates the multiple occurrences of events having a first priority type, before transfer over the wireless network. The first priority type may not be of a high priority type or having a priority exceeding a certain threshold level indicating a level or time criticality or urgency. Thus, such events, upon occurrence, may not be immediately transferred to the mobile device, until certain criterion is met, or until one or more triggering events occur.

For example, in process 1006, occurrence of an event of a second priority type is detected at the server, which can trigger batch transfer of the cumulated events to the mobile device, in process 1016, when the second priority type is of a higher priority than the first priority type. In another example, in process 1008, data transfer from the mobile device indicates the radio use on the mobile device, which can trigger batch transfer of the cumulated events to the mobile device, in process 1016.

Alternatively, in process 1010, after a period of time elapses, batch transfer of the cumulated events to the mobile device can be triggered, in process 1016. In process 1012, a user trigger or in response to a user prompt, batch transfer of the cumulated events to the mobile device can be triggered, in process 1016. In process 1014, when it is detected that an application is exited and/or moved into the background, batch transfer of the cumulated events to the mobile device can be triggered, in process 1016. In general, manual overrides or manual syncs can cause batch transfers to occur, either from the mobile device to the server or vice versa.

Sensing User Activity

In order to minimize the negative battery drain, there is a process for collecting large numbers of new emails (or high priority changes) and syncing them in batches rather than individually. This is achieved by introducing a ‘power save’ mode. This change is targeted at improving the power performance especially for users who receive a large number of emails during the day.

The proposed changes affect all accounts/products and are fundamental changes to the ‘always in sync’ nature.

Power Save Mode (IP & Hybrid SMS Mode)

The over view of this mode is as follows:

    • 1. The client monitors user activity on the device (see section below). Each platform will do this in their own way but is it usually done with a backlight state API or monitoring keyboard clicks. If the user is active on the device, push behavior is as currently implemented. In IP only mode always-on-push is maintained in hybrid mode SMS triggers are immediately sent and responded too.
    • 2. After @client.inactivity_power_save_secs@ set to 1200 (20 mins) by default time has expired since the last end user device activity then the device goes into power saving mode.
    • 3. The client waits for the next new email to be delivered by the server (Connect to receive email etc) and responds with a power save RPC call to all the account end points it currently has registered. NOTE this requires a new Sync layer RPC. NOTE this may require multiple RPC calls (one per registered account) but they should be timed to use the same high power radio event, as each other and the reason for the power event in the first place (receiving an email), for example, timed within milliseconds of each other.
    • 4. The power save RPC call will include a time (power save period) indicating to the connectors when the client next wants to receive any changes.
    • 5. The 1st, N power saving periods in a single power save event will be @client.push_batch_period_one_power_save_secs@ set to 900 (15 mins) by default long
      • any additional consecutive power saving periods will be @client.push_batch_period_two_power_save_secs@ set to 3600 (1 hour) by default
      • N=@server.push_batch_period_one_repeat_power_save_secs@ set to 4 by default
      • Any activity on the device takes the client out of power saving mode and end that particular power save event.
      • If additional data is received before the end of any one power saving period, then the wait period communicated to the connectors will be the existing period—elapsed time since the power save RPC was sent.
    • 6. When a connector receives a power save notification from a device it stops sending changes (data or SMS's) for the period of time requested (the wait period). At the end of the wait period any notifications received will be acted upon and changes sent to the device as a single event if no notifications come in then true push will resume with the data or an SMS being sent immediately to the device.
    • 7. The wait period must be able to be updated as the client may send additional power saving RPCs (with updated wait times) if multi accounts respond to the end of a wait period with different delays.
    • 8. Coordinating all connectors for a particular device (7TP) address to reach the end of a wait period together would be ideal but is not easily possible and will not be done at this time. This maximizes the chance that any change batches sent to the client from multiple accounts will arrive at the device at the same time and will only cause one power event by strictly adhering the to the wait periods send from the client unless the connector knows that it is ‘running’ slow or always takes x more seconds to complete than our standard WE/EE backend. In this case the connector may start the poll or data collect event x seconds early in order to increase the chance that the client will receive data at their specified time. NOTE this is at best going to increase chances of hitting the powered up window.
    • 9. Whenever new email comes into the client while it is in a power saving mode it responds with the power saving RPC to all end points currently registered. The next power save period will be communicated based on the logic in point 5 above.
    • 10. If the client needs to send a keep-alive while it is in power saving mode then it sends the keep-alive and reconnects if necessary.—optimizing the keep-alive and reconnection logic during power saving mode is an area we will improve on in the future.
    • 11. Whenever the device detects user activity (key press' or backlight on) then it exits' power saving mode, if a power saving period is currently in progress then the client sends a power save cancel RPC to its backend connectors and immediately receives any changes associated with any pending notifications. This may require a poll to be run by the connector after receiving the power saving cancel RPC. If the latest power saving period has expired then no power save cancel RPC is required as the connectors will already be in normal true push operational mode.
    • 12. Devices should come out of and not go into power save mode if they are ‘plugged in’ to charge.
    • 13. Quiet time hours should not affect the calculation of entering power save mode. However we should still respect the quiet time hours and disconnect during them. At the end of a quiet time the client should reconnect and receive any data waiting on the connector but should then immediately send another power save RPC if the device has not shown any end user activity. Note the timing here is critical so that the power event that receives the data should also cover the power save RPC.
    • 14. Power save RPCs should not be retried. We should just wait for the next new mail and send another power save RPC if appropriate.
    • 15. There needs to be a brandable parameter to turn support for power save mode on and off. The default for this parameter should be ‘on’. Off may be needed for automated testing and load testing. Future requirements may need this on/off control to be visible in the client UI.
    • 16. Currently the CE server optimizes load by only polling a CE account once even if a user is accessing that account with two devices. We will poll the account any time either device/account require us too but will only send data to devices who want it (ie are not in power save mode).
    • 17. Calendar and contact changes will continue to be delivered as soon as they are discovered. They will also not trigger a power save response from the client. If sending calendar or contact data. any pending email data is sent.

The end result of these changes is that a user that receives multiple emails while not interacting with their phone will have a significantly prolonged battery life. The more emails a user receives the greater the power savings for their phone.

The two user cases that have driven the default parameter settings are the 1-2 hour lunch or meeting—where the system now moves into power saving mode after 30 minutes and then only sync 4 times even if a user received 35 emails in that hour. The other is leaving a phone on over night but with quiet hours set poorly (for example, only quiet for 4 hours 00:00 to 04:0). In this case, a once an hour sync state is provided to thereby preserve your battery despite the short quiet time you have set.

In the initial implementation power saving mode will not be respected by the CE connector for accounts that are activated on more than one device. This is because the CE account manager combines accounts into a single poll request for the same account if it is activated on more than one device. The complexity of supporting two polls at different times due to different power saving status of two or more devices is not wanted for the initial implementation.

Various platforms implement detection of device activity differently. In one embodiment, the system forms a plug-in to the base Operating System in this platform. One method for monitoring the user device activity is to request the device to notify us when the backlight turns off. The user idle logic is thus:

    • 1. Enter power saving mode:
      • device screen goes idle and stays idle for @client.inactivity_power_save_secs@ set to 1200 by default
    • 2. Exit power saving mode:
      • device screen turns on

Another embodiment forms a plug-in to the base Operating System in this platform. One method for monitoring the user device activity is to use a device API that returns the ‘time since last user activity’ (usually a key press). The user idle logic is thus:

    • 1. Enter power saving mode:
      • device screen goes idle and stays idle for @client.inactivity_power_save_secs@ set to 1200 by default
      • Detect this by calling the last user activity API and then waiting until the timer might be up and calling it again to see if the user has remained inactive.
    • 2. Exit power saving mode:
      • Detect activity by calling the last user activity API regularly—every 5 mins.

In another embodiment, one method for monitoring the user device activity is to periodically poll the device to identify if the backlight is off. This is similar to our current polling for battery level. The user idle logic is therefor:

    • 1. Enter power saving mode:
      • device screen goes idle and stays idle for @client.inactivity_power_save_secs@ set to 1200 by default
      • We will need to detect this by calling the last user activity API and then waiting until our timer might be up and calling it again to see if the user has remained inactive.
    • 2. Exit power saving mode:
      • Detect activity by calling the last user activity API regularly, such as every 5 mins.

In another embodiment, one method for monitoring the user device activity is to watch for key press′. The user idle logic therefore needs to be:

    • 1. Enter power saving mode:
      • if no keys are pressed for @client.inactivity_power_save_secs@ set to 1200 by default
    • 2. Exit power saving mode:
      • on first device key press.

Provided herein is an email application that is limited to working within the Java Platform (“J2ME”) ‘sand box’ on the device. Two ‘styles’ of J2ME exist on phones, one that supports a background mode and one that does not. J2ME can detect key strokes while we are in the foreground mode but not in background. One method is to query the device screen and find out if the last screen load that was sent is still being shown. The J2ME client also has to deal with the red key which acts as an immediate ‘kill’. The user logic therefore needs to be:

    • 1. If the application is exited then no changes—there is provided a “would you like to sync?” screen shown on client launch.
    • 2. Enter power saving mode:
      • enters background mode and has been in it for at least @client.inactivity_power_save_secs@ set to 1200 by default OR we are in foreground mode and no keys have been pressed for that amount of time
    • 3. Exit power saving mode: This may be done by going from background mode into foreground mode. OR a key is pressed while we are in foreground mode.
    • 4. All connection errors and retries should apply in the same way that they currently do to any device data sends.

FIG. 11 shows a diagrammatic representation of a power saving mode disclosed herein to accompany the prior description.

FIG. 12 shows a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.

In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.

The machine may be a server computer, a client computer, a personal computer (PC), a user device, a tablet PC, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a telephone, a web appliance, a network router, switch or bridge, a console, a hand-held console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held device, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.

While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.

In general, the routines executed to implement the embodiments of the disclosure, may be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.

Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.

Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include, but are not limited to, recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.

The network interface device enables the machine 1100 to mediate data in a network with an entity that is external to the host server, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface device can include one or more of a network adaptor card, a wireless network interface card, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, bridge router, a hub, a digital media receiver, and/or a repeater.

The network interface device can include a firewall which can, in some embodiments, govern and/or manage permission to access/proxy data in a computer network, and track varying levels of trust between different machines and/or applications. The firewall can be any number of modules having any combination of hardware and/or software components able to enforce a predetermined set of access rights between a particular set of machines and applications, machines and machines, and/or applications and applications, for example, to regulate the flow of traffic and resource sharing between these varying entities. The firewall may additionally manage and/or have access to an access control list which details permissions including for example, the access and operation rights of an object by an individual, a machine, and/or an application, and the circumstances under which the permission rights stand.

Other network security functions can be performed or included in the functions of the firewall, can be, for example, but are not limited to, intrusion-prevention, intrusion detection, next-generation firewall, personal firewall, etc. without deviating from the novel art of this disclosure.

Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.

The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. Further, any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.

The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.

Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.

These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.

While certain aspects of the disclosure are presented below in certain claim forms, the inventors contemplate the various aspects of the disclosure in any number of claim forms. For example, while only one aspect of the disclosure is recited as a means-plus-function claim under 35 U.S.C. §112, ¶6, other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims intended to be treated under 35 U.S.C. §112, ¶6 will begin with the words “means for”.) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the disclosure.

Claims (27)

The invention claimed is:
1. A method of conserving battery consumption on a mobile device, the method, comprising:
monitoring at least one characteristic of user activity on the mobile device, wherein one of the at least one characteristic of user activity is a determined inactivity of the user;
locally adjusting behavior of the mobile device to optimize battery consumption on the mobile device by entering the mobile device into a power save mode, wherein entry into the power save mode occurs in response to a duration of determined inactivity of the user exceeding a first predetermined amount of time;
when in the power save mode:
suppressing outgoing network communications to a first application server from the mobile device for a first suppression period for a first application while user activity is not detected;
suppressing outgoing network communications to a second application server from the mobile device for the first suppression period for a second application while user activity is not detected;
receiving a message during the first suppression period directed towards the first application, wherein the message is received from a remote server distinct from the first application server, wherein the message contains data from the first application server;
transmitting communications after expiration of the first suppression period while user activity is not detected;
when user activity is detected after entry into the power save mode, exiting the power save mode and transmitting outgoing network communications from the first application to the first application server and from the second application to the second application server.
2. The method of claim 1, wherein monitoring at least one characteristic includes monitoring a backlight status of the mobile device.
3. The method of claim 1, wherein monitoring at least one characteristic includes monitoring a duration since last key press.
4. The method of claim 1, wherein monitoring at least one characteristic includes monitoring key presses on the mobile device.
5. The method of claim 1, further comprising, when in the power save mode, suppressing outgoing network communications from the mobile device for a second suppression period while user activity is not detected.
6. The method of claim 1, wherein the first application server delays sending communications to the mobile device during the first suppression period.
7. The method of claim 1, wherein the method includes not placing the mobile device in the power save mode if the mobile device is plugged in to a power source.
8. The method of claim 1, further including exiting the power save mode when any one of each of the following conditions occur:
the mobile device is plugged into a power source;
a backlight of the mobile device is on; and
it is detected that keys are being pressed on the mobile device.
9. The method of claim 1, wherein transmitting communications after expiration of the first suppression period is transmitted during a transmission period, wherein receipt of the message during the first suppression period directed to the first application does not alter an initiation timing of the transmission period that follows expiration of the first suppression period.
10. The method of claim 9, wherein a connection is maintained for receipt of the message.
11. The method of claim 9, further comprising suppressing outgoing network communications from the mobile device for a second suppression period.
12. The method of claim 11, where the second suppression period is longer than the first suppression period.
13. The method of claim 1, wherein monitoring at least one characteristic of user activity on the mobile device comprises sensing motion of the mobile device.
14. The method of claim 13, wherein sensed motion is indicative of user activity of the mobile device.
15. The method of claim 1, wherein an outgoing network communication is allowed in response to receipt of the message during the first suppression period.
16. A mobile device comprising:
a radio;
a memory; and
a processor configured to allow the mobile device to:
monitor at least one characteristic of user activity on the mobile device, wherein one of the at least one characteristic of user activity is a determined inactivity of the user; and
locally adjust behavior of the mobile device to optimize battery consumption on the mobile device by entering the mobile device into a power save mode, wherein entry into the power save mode occurs in response to a duration of determined inactivity of the user exceeding a first predetermined amount of time,
when in the power save mode:
suppress outgoing network communications to a first application server from the mobile device for a first suppression period for a first application while user activity is not detected,
suppress outgoing network communications to a second application server from the mobile device for the first suppression period for a second application while user activity is not detected, and
receive a message during the first suppression period directed towards the first application, wherein the message is received from a remote server distinct from the first application server, wherein the message contains data from the first application server,
transmit communications after expiration of the first suppression period while user activity is not detected;
when user activity is detected after entry into the power save mode, exit the power save mode and transmit communications.
17. The mobile device of claim 16, wherein the monitored at least one characteristic includes a monitored backlight status of the mobile device.
18. The mobile device of claim 16, wherein the monitored at least one characteristic includes a monitored duration since last key press.
19. The mobile device of claim 16, wherein the monitored at least one characteristic includes monitored key presses on the mobile device.
20. The mobile device of claim 16, wherein the monitored at least one characteristic includes a monitored duration since a last key press; and the locally adjusted behavior of the mobile device further allows the mobile device to suppress outgoing network communications from the mobile device for the first suppression period, when a duration of user inactivity exceeds a second predetermined amount of time.
21. The mobile device of claim 20, wherein the processor is further configured to allow the mobile device to, when in the power save mode: suppress outgoing network communications from the mobile device for a second suppression period while user activity is not detected.
22. The mobile device of claim 20, wherein the first application server delays sending communications to the mobile device during the first suppression period.
23. The mobile device of claim 16, wherein the processor is configured to not place the mobile device into the power save mode if the mobile device is plugged into a power source.
24. The mobile device of claim 16, wherein the processor is configured to allow the mobile device to:
detect that the mobile device is plugged into a power source;
detect that a screen of the mobile device transitions from off to on;
detect key presses on the mobile device; and
exit the power save mode when any one of the following occurs:
the mobile device is plugged into the power source;
the screen of the mobile device transitions from off to on;
key presses are detected on the mobile device.
25. The mobile device of claim 16, wherein, when in the power save mode, an outgoing network communication is allowed in response to receipt of the message during the first suppression period.
26. A method of conserving battery consumption on a mobile device, the method, comprising:
monitoring at least one characteristic of user activity on the mobile device, wherein one of the at least one characteristic of user activity is a determined inactivity of the user;
locally adjusting behavior of the mobile device to optimize battery consumption on the mobile device by entering the mobile device into a power save mode, wherein entry into the power save mode occurs in response to a duration of determined inactivity of the user exceeding a first predetermined amount of time;
while in the power save mode:
suppressing outgoing network communications to a first application server from the mobile device for a first suppression period for a first application while user activity is not detected;
suppressing outgoing network communications to a second application server from the mobile device for the first suppression period for a second application while user activity is not detected;
receiving a message during the first suppression period directed towards the first application, wherein the message is received from a remote server distinct from the first application server, wherein the message contains data from the first application server,
allowing transmission of communications for the second application from the mobile device at expiration of a first suppression period having a second predetermined amount of time,
wherein receipt of the message directed towards the first application during the first suppression period does not alter a timing of the expiration of the first suppression period.
27. A mobile device comprising:
a radio;
a memory; and
a processor configured to allow the mobile device to:
monitor at least one characteristic of user activity on the mobile device, wherein one of the at least one characteristic of user activity is a determined inactivity of the user;
locally adjust behavior of the mobile device to optimize battery consumption on the mobile device by entering the mobile device into a power save mode, wherein entry into the power save mode occurs in response to a duration of determined inactivity of the user exceeding a first predetermined amount of time;
while in the power save mode:
suppressing outgoing network communications to a first application server from the mobile device for a first suppression period for a first application while user activity is not detected;
suppressing outgoing network communications to a second application server from the mobile device for the first suppression period for a second application while user activity is not detected;
receiving a message during the first suppression period directed towards the first application, wherein the message is received from a remote server distinct from the first application server, wherein the message contains data from the first application server,
allowing transmission of communications for the second application from the mobile device at expiration of a first suppression period having a second predetermined amount of time,
wherein receipt of the message directed towards the first application during the first suppression period does not alter a timing of the expiration of the first suppression period.
US14745796 2010-07-26 2015-06-22 Mobile traffic optimization and coordination and user experience enhancement Active US9681387B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
US36787110 true 2010-07-26 2010-07-26
US36787010 true 2010-07-26 2010-07-26
US40882910 true 2010-11-01 2010-11-01
US40884610 true 2010-11-01 2010-11-01
US40885410 true 2010-11-01 2010-11-01
US40885810 true 2010-11-01 2010-11-01
US40882610 true 2010-11-01 2010-11-01
US40882010 true 2010-11-01 2010-11-01
US40883910 true 2010-11-01 2010-11-01
US41603310 true 2010-11-22 2010-11-22
US41602010 true 2010-11-22 2010-11-22
US201161430828 true 2011-01-07 2011-01-07
US13178598 US20120149352A1 (en) 2010-07-26 2011-07-08 Context aware traffic management for resource conservation in a wireless network
US14745796 US9681387B2 (en) 2010-07-26 2015-06-22 Mobile traffic optimization and coordination and user experience enhancement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14745796 US9681387B2 (en) 2010-07-26 2015-06-22 Mobile traffic optimization and coordination and user experience enhancement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13178598 Continuation US20120149352A1 (en) 2010-07-26 2011-07-08 Context aware traffic management for resource conservation in a wireless network

Publications (2)

Publication Number Publication Date
US20150365904A1 true US20150365904A1 (en) 2015-12-17
US9681387B2 true US9681387B2 (en) 2017-06-13

Family

ID=45607442

Family Applications (6)

Application Number Title Priority Date Filing Date
US13178598 Abandoned US20120149352A1 (en) 2010-07-26 2011-07-08 Context aware traffic management for resource conservation in a wireless network
US13407406 Abandoned US20120157170A1 (en) 2010-07-26 2012-02-28 Mobile device radio use optimization by batching low priority requests
US13477625 Abandoned US20130012180A1 (en) 2010-07-26 2012-05-22 Mobile device radio use optimization by batching low priority requests
US14710167 Active US9671851B2 (en) 2010-07-26 2015-05-12 Optimizing mobile network traffic coordination across multiple applications running on a mobile device
US14745796 Active US9681387B2 (en) 2010-07-26 2015-06-22 Mobile traffic optimization and coordination and user experience enhancement
US15595104 Active US10091734B2 (en) 2010-07-26 2017-05-15 Optimizing mobile network traffic coordination across multiple applications running on a mobile device

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US13178598 Abandoned US20120149352A1 (en) 2010-07-26 2011-07-08 Context aware traffic management for resource conservation in a wireless network
US13407406 Abandoned US20120157170A1 (en) 2010-07-26 2012-02-28 Mobile device radio use optimization by batching low priority requests
US13477625 Abandoned US20130012180A1 (en) 2010-07-26 2012-05-22 Mobile device radio use optimization by batching low priority requests
US14710167 Active US9671851B2 (en) 2010-07-26 2015-05-12 Optimizing mobile network traffic coordination across multiple applications running on a mobile device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15595104 Active US10091734B2 (en) 2010-07-26 2017-05-15 Optimizing mobile network traffic coordination across multiple applications running on a mobile device

Country Status (7)

Country Link
US (6) US20120149352A1 (en)
EP (2) EP3367252A1 (en)
JP (1) JP2013539258A (en)
CA (1) CA2806549C (en)
FI (1) FI20125094A (en)
GB (1) GB2495058B (en)
WO (1) WO2012024030A3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180024619A1 (en) * 2016-07-21 2018-01-25 Casio Computer Co., Ltd. Display device, display control method, and computer-readable storage medium

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6874029B2 (en) * 2000-11-22 2005-03-29 Leap Wireless International, Inc. Method and system for mediating interactive services over a wireless communications network
US8010082B2 (en) 2004-10-20 2011-08-30 Seven Networks, Inc. Flexible billing architecture
WO2006045102A3 (en) 2004-10-20 2008-11-13 Seven Networks Inc Method and apparatus for intercepting events in a communication system
US7706781B2 (en) 2004-11-22 2010-04-27 Seven Networks International Oy Data security in a mobile e-mail service
FI117152B (en) 2004-12-03 2006-06-30 Seven Networks Internat Oy The introduction of mobile e-mail settings
US7752633B1 (en) 2005-03-14 2010-07-06 Seven Networks, Inc. Cross-platform event engine
US8438633B1 (en) 2005-04-21 2013-05-07 Seven Networks, Inc. Flexible real-time inbox access
WO2006136660A1 (en) 2005-06-21 2006-12-28 Seven Networks International Oy Maintaining an ip connection in a mobile network
US7917468B2 (en) 2005-08-01 2011-03-29 Seven Networks, Inc. Linking of personal information management data
US8468126B2 (en) 2005-08-01 2013-06-18 Seven Networks, Inc. Publishing data in an information community
US7853563B2 (en) 2005-08-01 2010-12-14 Seven Networks, Inc. Universal data aggregation
US8069166B2 (en) * 2005-08-01 2011-11-29 Seven Networks, Inc. Managing user-to-user contact with inferred presence information
US7769395B2 (en) 2006-06-20 2010-08-03 Seven Networks, Inc. Location-based operations and messaging
EP2127296B1 (en) * 2007-01-05 2018-07-18 Thomson Licensing Method and apparatus for customizing syndicated data feeds
US8805425B2 (en) 2007-06-01 2014-08-12 Seven Networks, Inc. Integrated messaging
US8693494B2 (en) 2007-06-01 2014-04-08 Seven Networks, Inc. Polling
US8364181B2 (en) 2007-12-10 2013-01-29 Seven Networks, Inc. Electronic-mail filtering for mobile devices
US8793305B2 (en) 2007-12-13 2014-07-29 Seven Networks, Inc. Content delivery to a mobile device from a content service
US9002828B2 (en) 2007-12-13 2015-04-07 Seven Networks, Inc. Predictive content delivery
US8107921B2 (en) 2008-01-11 2012-01-31 Seven Networks, Inc. Mobile virtual network operator
US8862657B2 (en) 2008-01-25 2014-10-14 Seven Networks, Inc. Policy based content service
US20090193338A1 (en) 2008-01-28 2009-07-30 Trevor Fiatal Reducing network and battery consumption during content delivery and playback
US8787947B2 (en) 2008-06-18 2014-07-22 Seven Networks, Inc. Application discovery on mobile devices
US8078158B2 (en) 2008-06-26 2011-12-13 Seven Networks, Inc. Provisioning applications for a mobile device
US8909759B2 (en) 2008-10-10 2014-12-09 Seven Networks, Inc. Bandwidth measurement
WO2013015835A1 (en) 2011-07-22 2013-01-31 Seven Networks, Inc. Mobile application traffic optimization
US9043433B2 (en) 2010-07-26 2015-05-26 Seven Networks, Inc. Mobile network traffic coordination across multiple applications
EP3367252A1 (en) 2010-07-26 2018-08-29 Seven Networks, LLC Context aware traffic management for resource conservation in a wireless network
WO2012018556A3 (en) 2010-07-26 2012-08-09 Michael Luna Mobile application traffic optimization
US8838783B2 (en) 2010-07-26 2014-09-16 Seven Networks, Inc. Distributed caching for resource and mobile network traffic management
US9077630B2 (en) 2010-07-26 2015-07-07 Seven Networks, Inc. Distributed implementation of dynamic wireless traffic policy
WO2012060997A3 (en) 2010-11-01 2012-07-19 Michael Luna Application and network-based long poll request detection and cacheability assessment therefor
US8843153B2 (en) 2010-11-01 2014-09-23 Seven Networks, Inc. Mobile traffic categorization and policy for network use optimization while preserving user experience
WO2012061437A1 (en) 2010-11-01 2012-05-10 Michael Luna Cache defeat detection and caching of content addressed by identifiers intended to defeat cache
GB2499534B (en) 2010-11-01 2018-09-19 Seven Networks Llc Caching adapted for mobile application behavior and network conditions
US9060032B2 (en) 2010-11-01 2015-06-16 Seven Networks, Inc. Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic
US8484314B2 (en) 2010-11-01 2013-07-09 Seven Networks, Inc. Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
WO2012060995A3 (en) 2010-11-01 2012-07-12 Michael Luna Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
US9330196B2 (en) 2010-11-01 2016-05-03 Seven Networks, Llc Wireless traffic management system cache optimization using http headers
WO2012061430A3 (en) 2010-11-01 2012-06-28 Michael Luna Distributed management of keep-alive message signaling for mobile network resource conservation and optimization
GB2500327A (en) 2010-11-22 2013-09-18 Seven Networks Inc Optimization of resource polling intervals to satisfy mobile device requests
WO2012071283A1 (en) 2010-11-22 2012-05-31 Michael Luna Aligning data transfer to optimize connections established for transmission over a wireless network
GB2501416B (en) 2011-01-07 2018-03-21 Seven Networks Llc System and method for reduction of mobile network traffic used for domain name system (DNS) queries
US8856364B2 (en) * 2011-03-11 2014-10-07 Google Inc. Conducting opportunistic network updates on a mobile device
EP2700019A4 (en) 2011-04-19 2015-01-28 Seven Networks Inc Social caching for device resource sharing and management
US8832228B2 (en) 2011-04-27 2014-09-09 Seven Networks, Inc. System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
WO2012149434A3 (en) 2011-04-27 2013-01-24 Seven Networks, Inc. Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US9239800B2 (en) 2011-07-27 2016-01-19 Seven Networks, Llc Automatic generation and distribution of policy information regarding malicious mobile traffic in a wireless network
CN103092834A (en) * 2011-10-27 2013-05-08 腾讯科技(深圳)有限公司 Method and client-side device for browsing pictures of web pages
US9819753B2 (en) 2011-12-02 2017-11-14 Location Labs, Inc. System and method for logging and reporting mobile device activity information
US8934414B2 (en) 2011-12-06 2015-01-13 Seven Networks, Inc. Cellular or WiFi mobile traffic optimization based on public or private network destination
US8868753B2 (en) 2011-12-06 2014-10-21 Seven Networks, Inc. System of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation
GB2498064A (en) 2011-12-07 2013-07-03 Seven Networks Inc Distributed content caching mechanism using a network operator proxy
US9277443B2 (en) 2011-12-07 2016-03-01 Seven Networks, Llc Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
WO2013090834A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic
GB2499089B (en) * 2011-12-14 2017-01-04 Seven Networks Llc Mobile network reporting and usage analytics system and method aggregated using a distributed traffic optimization system
US20130159511A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. System and method for generating a report to a network operator by distributing aggregation of data
WO2013090821A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization
EP2801236A4 (en) 2012-01-05 2015-10-21 Seven Networks Inc Detection and management of user interactions with foreground applications on a mobile device in distributed caching
US8954571B2 (en) * 2012-01-13 2015-02-10 Wavemarket, Inc. System and method for implementing histogram controlled mobile devices
US9749435B2 (en) 2012-01-20 2017-08-29 Apple Inc. Proxy-based push service
WO2013116856A1 (en) 2012-02-02 2013-08-08 Seven Networks, Inc. Dynamic categorization of applications for network access in a mobile network
WO2013116852A1 (en) * 2012-02-03 2013-08-08 Seven Networks, Inc. User as an end point for profiling and optimizing the delivery of content and data in a wireless network
US8812695B2 (en) 2012-04-09 2014-08-19 Seven Networks, Inc. Method and system for management of a virtual network connection without heartbeat messages
JP5646534B2 (en) * 2012-04-19 2014-12-24 ヤフー株式会社 Mobile terminal, information processing method and program
US20130316675A1 (en) * 2012-05-24 2013-11-28 Seven Networks, Inc. Facilitation of mobile operator billing based on wireless network traffic management and tracking of destination address in conjunction with billing policies
US8825753B2 (en) * 2012-06-14 2014-09-02 Cellco Partnership Methods and systems to provide dynamic content and device panel management
US20140006620A1 (en) * 2012-06-27 2014-01-02 International Business Machines Corporation System, method and program product for local client device context-aware shared resource and service management
US9183540B2 (en) * 2012-07-03 2015-11-10 Sap Se Mobile device analytics engine
US8775631B2 (en) 2012-07-13 2014-07-08 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
US9161258B2 (en) 2012-10-24 2015-10-13 Seven Networks, Llc Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion
GB2510556A (en) 2012-12-12 2014-08-13 Microsoft Corp Aggregating data prior to transmission using timer events
US9307493B2 (en) 2012-12-20 2016-04-05 Seven Networks, Llc Systems and methods for application management of mobile device radio state promotion and demotion
US9026820B2 (en) * 2012-12-29 2015-05-05 Intel Corporation Communication link and network connectivity management in low power mode
US9191777B2 (en) * 2013-01-22 2015-11-17 Airsense Wireless Ltd. Clientless method for context driven wireless interactions
US9241314B2 (en) 2013-01-23 2016-01-19 Seven Networks, Llc Mobile device with application or context aware fast dormancy
US8874761B2 (en) 2013-01-25 2014-10-28 Seven Networks, Inc. Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
US9519490B2 (en) 2013-03-07 2016-12-13 Microsoft Technology Licensing, Llc Adaptive data synchronization
US8750123B1 (en) 2013-03-11 2014-06-10 Seven Networks, Inc. Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network
US9769675B2 (en) 2013-03-15 2017-09-19 Hewlett Packard Enterprise Development Lp Cloud-based connectivity
US8977746B2 (en) * 2013-03-20 2015-03-10 Watchguard Technologies, Inc. Systems and methods for scalable network monitoring
CN105637919A (en) 2013-06-11 2016-06-01 七网络有限责任公司 Optimizing keepalive and other background traffic in a wireless network
US9047089B2 (en) * 2013-05-20 2015-06-02 Rovi Guides, Inc. Energy-saving systems and methods for updating media information
WO2014197521A1 (en) 2013-06-03 2014-12-11 Seven Networks, Inc. Blocking/unblocking algorithms for signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
US9420056B2 (en) * 2013-06-26 2016-08-16 International Business Machines Corporation Analytics caching based on users connected
US9973965B2 (en) 2013-07-12 2018-05-15 Seven Networks, Llc Transport protocol layer optimization for managing signaling and power consumption
US20150023161A1 (en) 2013-07-22 2015-01-22 Seven Networks, Inc. Modifying system timers for optimizing mobile traffic management
US9065765B2 (en) * 2013-07-22 2015-06-23 Seven Networks, Inc. Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
GB2516511B (en) * 2013-07-22 2016-02-17 Seven Networks Llc A proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
EP2860943A1 (en) * 2013-10-10 2015-04-15 Deutsche Telekom AG Push-Protocol Messaging System
CN103828446A (en) 2013-10-11 2014-05-28 华为终端有限公司 Method for processing data, modem and temrinal
US9588983B2 (en) * 2013-10-17 2017-03-07 Microsoft Technology Licensing, Llc Data classification for adaptive synchronization
CN103546876B (en) * 2013-10-28 2017-03-29 深圳全智达通信股份有限公司 A method for sending messages, the terminal device, and the application server system
CN103561392A (en) * 2013-10-31 2014-02-05 宇龙计算机通信科技(深圳)有限公司 Method for sending information and terminal
CN103731323B (en) * 2014-01-23 2017-09-19 中国联合网络通信集团有限公司 A method and apparatus for monitoring traffic flows of mobile Internet
KR20150119720A (en) * 2014-04-16 2015-10-26 삼성전자주식회사 Wearable device, master device operating with the wearable device, and control method for wearable device
US20170118709A1 (en) * 2014-06-18 2017-04-27 Huawei Technologies Co., Ltd. Heartbeat adjustment method, apparatus, and terminal
US9979796B1 (en) 2014-07-16 2018-05-22 Tensera Networks Ltd. Efficient pre-fetching notifications
EP3170335A4 (en) * 2014-07-16 2018-01-10 Tensera Networks Ltd. Efficient content delivery over wireless networks using guaranteed prefetching at selected times-of-day
US20160028648A1 (en) * 2014-07-25 2016-01-28 At&T Intellectual Property I, L.P. Resource Management Service
EP2985731A1 (en) * 2014-08-11 2016-02-17 Siemens Aktiengesellschaft Method, assembly, use of the method and computer program product for an evaluation of energy technology data
WO2016059479A1 (en) * 2014-10-13 2016-04-21 Yandex Europe Ag Method of processing system requests in a wireless communication device
JP2016131312A (en) * 2015-01-14 2016-07-21 国立大学法人京都大学 Communication control method and communication apparatus
US20160234563A1 (en) * 2015-02-06 2016-08-11 Jamdeo Canada Ltd. Methods and devices for display device notifications and key handling
US9723470B1 (en) 2015-04-30 2017-08-01 Tensera Networks Ltd. Selective enabling of data services to roaming wireless terminals
US20170026414A1 (en) * 2015-05-07 2017-01-26 Saguna Networks Ltd. Methods Circuits Devices Systems and Functionally Associated Computer Executable Code for Managing a Data Access Network
US10057811B2 (en) 2015-07-22 2018-08-21 Microsoft Technology Licensing, Llc Hierarchical spectrum offload
CN105183132A (en) * 2015-08-18 2015-12-23 小米科技有限责任公司 Energy conservation mode starting method and apparatus
WO2018170194A1 (en) * 2017-03-15 2018-09-20 Carrier Corporation A wireless event notification system having a wireless device configured to communicate at dynamically configurable frequencies
WO2018170191A1 (en) * 2017-03-15 2018-09-20 Carrier Corporation A wireless event notification system

Citations (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980836A (en) 1988-10-14 1990-12-25 Compaq Computer Corporation Apparatus for reducing computer system power consumption
US5355501A (en) 1990-03-09 1994-10-11 Novell, Inc. Idle detection system
US5617572A (en) 1995-01-31 1997-04-01 Dell Usa, L.P. System for reducing power consumption in computers
US5710929A (en) 1990-06-01 1998-01-20 Vadem Corporation Multi-state power management for computer systems
US5944829A (en) 1996-09-30 1999-08-31 Intel Corporation Adjusting software characteristics by user interface based upon battery level and the amount of time the user wants the battery to last
US5954820A (en) 1997-09-26 1999-09-21 International Business Machines Corporation Portable computer with adaptive demand-driven power management
US6118771A (en) 1996-03-14 2000-09-12 Kabushiki Kaisha Toshiba System and method for controlling communication
EP1063837A2 (en) 1999-06-25 2000-12-27 Lucent Technologies Inc. Accelerometer influenced communication device.
US6278887B1 (en) 1999-02-05 2001-08-21 Neopoint, Inc. System and method for power conservation in a wireless communication handset
US20010036822A1 (en) 2000-04-10 2001-11-01 Mead Stephen E. In-flight e-mail system
US20020107042A1 (en) 2001-02-08 2002-08-08 Murnaghan Matthew J. Handheld wireless communication device
US20020108121A1 (en) 2001-02-02 2002-08-08 Rachad Alao Service gateway for interactive television
US20020156921A1 (en) 2001-04-19 2002-10-24 International Business Machines Corporation Automatic backup of wireless mobile device data onto gateway server while device is idle
US20030009571A1 (en) 2001-06-28 2003-01-09 Bavadekar Shailesh S. System and method for providing tunnel connections between entities in a messaging system
US20030046433A1 (en) 2001-07-25 2003-03-06 Omer Luzzatti Method to synchronize information between online devices
US20030055555A1 (en) 1997-08-19 2003-03-20 Siemens Automotive Corporation, A Delaware Corporation Vehicle information system
US20030148760A1 (en) * 2001-07-23 2003-08-07 Nec Corporation Mobile station having short-range radio function and power consumption reduction method therefor
US20040081088A1 (en) 2002-10-25 2004-04-29 Schinner Charles Edward Data transfer time arbitration
US20040125800A1 (en) 1997-07-30 2004-07-01 Sam Zellner Associated systems and methods for providing data services using idle cell resources
US20040219940A1 (en) 2003-04-30 2004-11-04 Dong-Koon Kong Call setup method and system for push-to-talk service in a cellular mobile communication system
US20040259542A1 (en) 2003-05-02 2004-12-23 Nokia Corporation Method for saving power in a wireless terminal and a terminal
US20040264396A1 (en) * 2003-06-30 2004-12-30 Boris Ginzburg Method for power saving in a wireless LAN
US20050136882A1 (en) 2003-12-18 2005-06-23 Boulton Philip A. Method and system for maintaining synchronization in low-power mode over a frequency hopping radio link
US6934267B1 (en) 1999-10-13 2005-08-23 Telefonaktiebolaget L M Ericsson (Publ) Time slot allocation control based on temperature in a radio transceiver
US20050216844A1 (en) 2004-03-03 2005-09-29 Error Brett M Delayed transmission of website usage data
US20050221758A1 (en) 2002-06-18 2005-10-06 Thomas Busse Touch-entry user input device
US20050239518A1 (en) 2004-04-21 2005-10-27 D Agostino Anthony Systems and methods that provide enhanced state machine power management
US6981041B2 (en) 2000-04-13 2005-12-27 Aep Networks, Inc. Apparatus and accompanying methods for providing, through a centralized server site, an integrated virtual office environment, remotely accessible via a network-connected web browser, with remote network monitoring and management capabilities
EP1617315A1 (en) 2004-07-13 2006-01-18 Harman Becker Automotive Systems GmbH Adaptive time-out system
US20060052109A1 (en) 2004-09-07 2006-03-09 Ashman William C Jr Motion-based user input for a wireless communication device
US7035914B1 (en) 1996-01-26 2006-04-25 Simpleair Holdings, Inc. System and method for transmission of data
US7062567B2 (en) 2000-11-06 2006-06-13 Endeavors Technology, Inc. Intelligent network streaming and execution system for conventionally coded applications
WO2006103681A2 (en) 2005-04-01 2006-10-05 Ixi Mobile (R & D) Ltd. Content delivery system and method for a mobile communication device
US20060240805A1 (en) 2004-11-22 2006-10-26 Seven Networks International Oy E-mail messaging to/from a mobile terminal
US7145454B2 (en) 2004-01-26 2006-12-05 Nokia Corporation Method, apparatus and computer program product for intuitive energy management of a short-range communication transceiver associated with a mobile terminal
US7152172B2 (en) 1999-12-27 2006-12-19 Intel Corporation Method and apparatus for real time monitoring of user presence to prolong a portable computer battery operation time
US20060294388A1 (en) 2005-06-22 2006-12-28 International Business Machines Corporation Method and system for enhancing user security and session persistence
US20070021065A1 (en) 2005-07-22 2007-01-25 Sengupta Uttam K Methods and apparatus for operating an ensemble of wireless electronic devices based on user activity
US20070073766A1 (en) 2005-09-28 2007-03-29 Diversified Multimedia, Llc System, Method, and Computer-Readable Medium for Mobile Media Management
US7254130B1 (en) 1999-06-11 2007-08-07 British Telecommunications Public Limited Company Predictively allocated bandwidth in a communications network
US20070202850A1 (en) 2006-02-27 2007-08-30 Sony Ericsson Mobile Communications Ab Cost estimation in messaging application for a mobile communication device
US20070260718A1 (en) 2006-05-02 2007-11-08 Research In Motion Limited Method and system for optimizing metadata passing in a push content processing protocol
US7302280B2 (en) 2000-07-17 2007-11-27 Microsoft Corporation Mobile phone operation based upon context sensing
US20080005599A1 (en) 2006-06-30 2008-01-03 Theocharous Georgios N Method and apparatus for user-activity-based dynamic power management and policy creation for mobile platforms
US20080008313A1 (en) 2004-11-24 2008-01-10 Research In Motion Limited System and method for selectively activating a communication device
US20080045253A1 (en) 2004-07-16 2008-02-21 Research In Motion Limited System and Method for Pushing Information from a Host System to a Mobile Data Communication Device
JP2008113366A (en) 2006-10-31 2008-05-15 Csc:Kk Mobile communication terminal device
WO2008061042A2 (en) 2006-11-10 2008-05-22 Pelago, Inc. Managing aggregation and sending of communications
US20080140794A1 (en) 2006-12-06 2008-06-12 Research In Motion Limited Method and apparatus for deriving presence information using message traffic analysis
US20080242370A1 (en) 2006-03-31 2008-10-02 Ixi Mobile (R&D) Ltd. Efficient server polling system and method
US20080279212A1 (en) 2007-05-09 2008-11-13 Sony Corporation Communnication system, information management apparatus, information management method, information processing apparatus, and information processing method
US20080278312A1 (en) * 2007-05-09 2008-11-13 Sony Ericsson Mobile Communications Ab Methods, electronic devices, and computer program products for generating presence information associated with a user of an electronic device based on environmental information
US20080305839A1 (en) 2002-08-12 2008-12-11 Broadcom Corporation Selective power management for a hand held host
US20090011791A1 (en) 2006-03-03 2009-01-08 Yuko Tashiro Mobile Telephone and Application Program
US20090028084A1 (en) 2007-07-25 2009-01-29 High Tech Computer, Corp. Method for reducing user equipment power consumption under a communication network
US20090049482A1 (en) 2007-08-13 2009-02-19 Auerbach Bradford C System and method for rejoining retransmissions of broadcast media
US20090055467A1 (en) 2007-05-29 2009-02-26 Concert Technology Corporation System and method for increasing data availability on a mobile device based on operating mode
US7505795B1 (en) 2004-07-07 2009-03-17 Advanced Micro Devices, Inc. Power save management with customized range for user configuration and tuning value based upon recent usage
US7505448B2 (en) 2003-11-27 2009-03-17 Utstarcom (China) Co. Ltd. Method of wireless channel resource allocation and rate control in a cdma communication system
US7539497B2 (en) 2003-08-20 2009-05-26 Ipwireless, Inc. Obtaining channel quality information in a wireless communication network
WO2009070415A1 (en) 2007-11-27 2009-06-04 Motorola, Inc. A wireless communication device and method op disabling an idle of one operational mode
US7587510B1 (en) 2003-04-21 2009-09-08 Charles Schwab & Co., Inc. System and method for transferring data between a user space and a kernel space in a server associated with a distributed network environment
US20090227251A1 (en) 2008-03-05 2009-09-10 Huawei Technologies Co., Inc. System and method for automatically monitoring and managing wireless network performance
US20090239581A1 (en) 2008-03-24 2009-09-24 Shu Muk Lee Accelerometer-controlled mobile handheld device
US20090239574A1 (en) 2008-03-18 2009-09-24 Hussain Farooq S Power management for multimode wireless communication device
US20090275349A1 (en) 2006-03-24 2009-11-05 Ktreetel Co., Ltd. Method and apparatus for providing idle mode service
US20090305721A1 (en) 2008-06-04 2009-12-10 Sony Ericsson Mobile Communications Ab Method and apparatus for conveying location of lost or motionless mobile communication devices
US20090327491A1 (en) 2008-06-27 2009-12-31 Microsoft Corporation Scheduling data delivery to manage device resources
JP2010061644A (en) 2008-07-29 2010-03-18 Nvidia Corp Platform-based idle-time processing
US20100077035A1 (en) 2008-09-23 2010-03-25 Nokia Corporation Optimized Polling in Low Resource Devices
US20100083255A1 (en) * 2008-09-26 2010-04-01 Microsoft Corporation Notification batching based on user state
US20100093273A1 (en) 2008-10-09 2010-04-15 Sony Corporation Wireless transfer of data from a mobile device to a server
US7786623B2 (en) 2005-09-07 2010-08-31 Amx Llc Power management for electronic devices
US7801959B1 (en) 2001-05-31 2010-09-21 Palmsource, Inc. Method and system for pushing electronic messages to a wireless portable device using a standard mail server interface
US20100241312A1 (en) 2001-04-24 2010-09-23 Medius, Inc. Wireless telecommunications method
US20100250695A1 (en) 2005-10-13 2010-09-30 Michael Shenfield System and method for providing asynchronous notifications using synchronous data sources
US20110019555A1 (en) 2006-09-13 2011-01-27 Yukie Gotoh Communication apparatus
US20110045847A1 (en) 2009-08-20 2011-02-24 E-View Connections LLC Digital content distribution system for delivering location specific content to an ad hoc group of mobile subscribers
US7974194B2 (en) 2008-12-12 2011-07-05 Microsoft Corporation Optimizing data traffic and power consumption in mobile unified communication applications
US20110177847A1 (en) * 2010-01-18 2011-07-21 Chien-Jen Huang Power-saving Method for Mobile Communication Device
US20110194539A1 (en) 2010-02-11 2011-08-11 Cellco Partnership Access window envelope controller in wireless network
US20110216681A1 (en) * 2010-03-05 2011-09-08 Industrial Technology Research Systems and Methods for Operation Mode Transition In Wireless Communications
US20110255444A1 (en) 2010-04-14 2011-10-20 Qualcomm Incorporated Power savings through cooperative operation of multiradio devices
US20110275321A1 (en) 2008-10-31 2011-11-10 Xuesong Zhou Integrated Vehicle Key and Mobile Phone System for Preventing Mobile Phone Use While Driving
US8078896B2 (en) 2009-03-12 2011-12-13 Sony Ericsson Mobile Communications Ab Adaptive power saving
US8176027B1 (en) 2005-07-06 2012-05-08 Navteq B.V. Spatial index for data files
US20120112908A1 (en) 2010-11-05 2012-05-10 Nokia Corporation Method and Apparatus for Managing Notifications
US8180407B1 (en) 2007-05-23 2012-05-15 Sprint Spectrum L.P. Automatic reduction of background wireless communication in a media player mode
US8181211B2 (en) 2009-03-30 2012-05-15 John Mezzalingua Associates, Inc. Total bandwidth conditioning device
US20120131095A1 (en) 2010-11-22 2012-05-24 Michael Luna Optimization of resource polling intervals to satisfy mobile device requests
US20120155348A1 (en) 2010-12-16 2012-06-21 Palo Alto Research Center Incorporated Energy-efficient content retrieval in content-centric networks
US20120155398A1 (en) 2010-12-20 2012-06-21 Ozgur Oyman Signaling techniques for a multimedia-aware radio and network adaptation
US8259738B2 (en) 2007-05-01 2012-09-04 Net Navigation Systems, Llc Channel service manager with priority queuing
US8271057B2 (en) 2009-03-16 2012-09-18 Waze Mobile Ltd. Condition-based activation, shut-down and management of applications of mobile devices
WO2012128792A1 (en) 2011-03-18 2012-09-27 Qualcomm Incorporated Management of network access requests
US20120260118A1 (en) 2011-04-11 2012-10-11 Microsoft Corporation Management of background tasks
US8417823B2 (en) 2010-11-22 2013-04-09 Seven Network, Inc. Aligning data transfer to optimize connections established for transmission over a wireless network
US20130163431A1 (en) 2011-12-07 2013-06-27 Seven Networks, Inc. Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
US8509159B2 (en) 2007-01-19 2013-08-13 Samsung Electronics Co., Ltd. Method and system for wireless communication using out-of-band channels
US20130272227A1 (en) 2011-12-23 2013-10-17 Timothy Gallagher Method and system for channel allocation and bandwidth management in a wifi device that utilizes full spectrum capture
US20140051485A1 (en) 2011-03-07 2014-02-20 Intel Corporation Techniques for managing idle state activity in mobile devices
US8762546B2 (en) 2011-12-13 2014-06-24 Motorola Mobility Llc Method and apparatus for adaptive network heartbeat message for TCP channel
US8811903B2 (en) 2009-05-28 2014-08-19 Microsoft Corporation Spectrum assignment for networks over white spaces and other portions of the spectrum
CN104010349A (en) 2013-02-21 2014-08-27 中兴通讯股份有限公司 Method for performing information push by using WLAN function of terminal, and mobile terminal
US8826308B1 (en) 2013-07-09 2014-09-02 Sap Ag Programming language conditional event dispatcher
US8861445B2 (en) 2009-03-11 2014-10-14 Sony Cororation Multi-channel single radio communication in home mesh network
US8873580B2 (en) 2008-10-10 2014-10-28 The Trustees Of The Stevens Institute Of Technology Method and apparatus for dynamic spectrum access
US8879389B2 (en) 2009-11-12 2014-11-04 Oracle International Corporation Traffic handling for mobile communication-based advertisements
US8886176B2 (en) 2010-07-26 2014-11-11 Seven Networks, Inc. Mobile application traffic optimization
US8904206B2 (en) 2010-01-26 2014-12-02 Motorola Mobility Llc Mobile computing device and method for maintaining application continuity
US8902862B2 (en) 2008-08-20 2014-12-02 Qualcomm Incorporated Method and apparatus for sharing signals on a single channel
US20150085729A1 (en) 2013-09-25 2015-03-26 Apple Inc. Transport Block Size and Channel Condition Assessment Based Power Consumption Reduction for Cellular Communication
US20150131453A1 (en) 2012-10-29 2015-05-14 At&T Intellectual Property I, L.P. Controlling wireless transition timers based on application and content
US20150181617A1 (en) 2010-11-01 2015-06-25 Seven Networks, Inc. Optimization of resource polling intervals to satisfy mobile device requests
US9088622B2 (en) 2012-07-05 2015-07-21 Sap Se Dynamic client registration for server push events in long polling scenarios
US20150241941A1 (en) 2010-07-26 2015-08-27 Seven Networks, Inc. Mobile traffic optimization and coordination and user experience enhancement
US9125158B2 (en) 2012-02-06 2015-09-01 Qualcomm Incorporated Wideband detection of narrowband trigger signals
US9173197B2 (en) 2008-09-12 2015-10-27 Qualcomm Incorporated Method and apparatus for signaling to a mobile device which set of training sequence codes to use for a communication link
US9185697B2 (en) 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9237453B2 (en) 2013-03-14 2016-01-12 Blackberry Limited Spectrum channel sharing system
US9256484B2 (en) 2013-06-09 2016-02-09 Apple Inc. Dynamic adjustment of mobile device based on user activity
US9276917B2 (en) 2012-09-11 2016-03-01 Blackberry Limited Systems, devices and methods for authorizing endpoints of a push pathway
US9277499B2 (en) 2009-02-25 2016-03-01 Broadcom Corporation Idle mode power consumption reduction in wireless communications
US9392393B2 (en) 2013-06-09 2016-07-12 Apple Inc. Push notification initiated background updates
US9408187B2 (en) 2010-08-18 2016-08-02 Nokia Technologies Oy Method and apparatus for wireless networks
US9430941B2 (en) 2012-06-10 2016-08-30 Apple Inc. Harvesting traffic information from mobile devices
US9467483B2 (en) 2012-12-20 2016-10-11 Sap Se ABAP channels for event signaling
US9503544B2 (en) 2010-07-26 2016-11-22 Seven Networks, Llc Mobile application traffic optimization
US9510132B2 (en) 2012-05-11 2016-11-29 Qualcomm Incorporation Methods and apparatus for managing machine-type communications

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856153B2 (en) * 1996-06-07 1999-02-10 日本電気株式会社 Discontinuous reception scheme and a mobile communication station
US6539011B1 (en) 1998-06-10 2003-03-25 Merlot Communications, Inc. Method for initializing and allocating bandwidth in a permanent virtual connection for the transmission and control of audio, video, and computer data over a single network fabric
US6209038B1 (en) 1999-01-13 2001-03-27 International Business Machines Corporation Technique for aggregate transaction scope across multiple independent web requests
JP2001160041A (en) * 1999-12-03 2001-06-12 Hitachi Ltd System for reducing cpu load of on-line system
JP2001265681A (en) * 2000-03-16 2001-09-28 Toshiba Corp Information terminal, information equipment and communication control method
US6799209B1 (en) 2000-05-25 2004-09-28 Citrix Systems, Inc. Activity monitor and resource manager in a network environment
GB2366163A (en) 2000-08-14 2002-02-27 Global Knowledge Network Ltd Inter-network connection through intermediary server
US6895425B1 (en) 2000-10-06 2005-05-17 Microsoft Corporation Using an expert proxy server as an agent for wireless devices
JP2002351905A (en) * 2001-05-22 2002-12-06 Location Agent Inc Service system and distribution method for location information and its program
KR100417407B1 (en) * 2001-05-25 2004-02-05 엘지전자 주식회사 Power saving method of mobile communication terminal
US20030032433A1 (en) 2001-07-26 2003-02-13 Yoaz Daniel Resource management in cellular networks
CN1572099A (en) * 2001-10-19 2005-01-26 松下电器产业株式会社 Device authentication system and device authentication method
FR2837042B1 (en) 2002-03-05 2005-04-08 Cegetel Groupe Method for optimization of network traffic and implement device associates
ES2317348T3 (en) 2002-04-05 2009-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Transfer priorities object in a communications network.
US8036718B2 (en) 2002-06-17 2011-10-11 Nokia Corporation Power management profile on a mobile device
US6973052B2 (en) * 2003-12-19 2005-12-06 Motorola, Inc. Hybrid power save delivery method in a wireless local area network for real time communication
US8036710B2 (en) * 2004-05-07 2011-10-11 Qualcomm, Incorporated Power-efficient multi-antenna wireless device
US8190680B2 (en) 2004-07-01 2012-05-29 Netgear, Inc. Method and system for synchronization of digital media playback
EP1806658B1 (en) 2004-10-28 2016-04-13 Fujitsu Limited Analyzing method and device
US7613111B2 (en) 2005-04-18 2009-11-03 Santera Systems, Llc Methods, systems, and computer program products for dynamic blocking an unblocking of media over packet resources
US7995034B2 (en) * 2006-06-22 2011-08-09 Microsoft Corporation Input device having a presence sensor
US8315616B2 (en) * 2006-10-24 2012-11-20 International Business Machines Corporation Mobile device solution that provides enhanced user control for outgoing data handling
US20080103977A1 (en) * 2006-10-31 2008-05-01 Microsoft Corporation Digital rights management for distributed devices
KR101430442B1 (en) * 2007-01-08 2014-08-14 엘지전자 주식회사 Method for updating session using network-based management of capability of terminal
US7916676B2 (en) * 2007-03-23 2011-03-29 Broadcom Corporation Method and system for holistic energy management in ethernet networks
WO2008149598A1 (en) * 2007-06-04 2008-12-11 Sony Corporation Communication system, communication device, communication method, and computer program
US7721032B2 (en) 2007-06-28 2010-05-18 Apple Inc. Method and apparatus for mediating among media applications
US7974574B2 (en) 2007-07-25 2011-07-05 Microsoft Corporation Base station initiated proximity service discovery and connection establishment
US7957335B2 (en) * 2007-08-23 2011-06-07 Cisco Technology, Inc. Dynamic power usage management based on historical traffic pattern data for network devices
US8284706B2 (en) 2007-09-20 2012-10-09 Qualcomm Incorporated Semi-connected operations for wireless communications
US20090093281A1 (en) * 2007-10-07 2009-04-09 Mustafa Demirhan Device, system, and method of power saving in wireless communication
US20090124284A1 (en) 2007-11-14 2009-05-14 Shimon Scherzer System and method for providing seamless broadband internet access to web applications
US8635361B2 (en) 2007-12-03 2014-01-21 Riverbed Technology, Inc. Transaction acceleration using application-specific locking
WO2009101487A1 (en) 2008-02-13 2009-08-20 Freescale Semiconductor, Inc. Reducing power consumption in a portable electronic device with a luminescent element
US8099505B2 (en) 2008-03-26 2012-01-17 Microsoft Corporation Aggregating connection maintenance to optimize resource consumption
US8289891B2 (en) 2008-05-09 2012-10-16 Samsung Electronics Co., Ltd. Flexible sleep mode for advanced wireless systems
US8098590B2 (en) * 2008-06-13 2012-01-17 Qualcomm Incorporated Apparatus and method for generating performance measurements in wireless networks
JP4726938B2 (en) * 2008-09-22 2011-07-20 京セラ株式会社 The mobile station
US9407694B2 (en) * 2008-10-30 2016-08-02 Dell Products, Lp System and method of polling with an information handling system
GB2466196B8 (en) 2008-12-09 2012-09-12 Aircom Internat Ltd Communications system and method
US9369516B2 (en) 2009-01-13 2016-06-14 Viasat, Inc. Deltacasting
US9392462B2 (en) 2009-01-28 2016-07-12 Headwater Partners I Llc Mobile end-user device with agent limiting wireless data communication for specified background applications based on a stored policy
KR101308679B1 (en) * 2009-02-19 2013-09-13 주식회사 팬택 Special character input apparatus and method for a device had a touch screen
US8060154B1 (en) 2009-03-26 2011-11-15 Sprint Communications Company L.P. Conserving power on a mobile device
US20100250986A1 (en) 2009-03-27 2010-09-30 Motorola, Inc. Method and Device for Improving Battery Life of a Mobile Computing Device
US8429236B2 (en) * 2009-04-08 2013-04-23 Research In Motion Limited Transmission of status updates responsive to status of recipient application
US8862416B2 (en) 2009-04-27 2014-10-14 Motorola Mobility Llc Method and device for improving battery life of a mobile computing device
US20100299455A1 (en) 2009-05-21 2010-11-25 Motorola, Inc. Mobile Computing Device and Method with Enhanced Poling Management
US8185165B2 (en) 2009-06-01 2012-05-22 Hewlett-Packard Development Company, L.P. Method and apparatus for adaptive power saving in a mobile computing device
US8635468B2 (en) * 2009-06-05 2014-01-21 Apple Inc. Sleep wake event logging
US8688826B2 (en) 2009-11-30 2014-04-01 Motorola Mobility Llc Mobile computing device and method with intelligent pushing management
US8606290B2 (en) * 2010-09-02 2013-12-10 At&T Intellectual Property I, L.P. Method and apparatus for performing a demotion in a cellular communications network
US9270603B2 (en) 2011-11-02 2016-02-23 Wichorus, Inc. Methods and apparatus for improving idle mode performance using deep packet inspection (DPI) idle mode agent
US9380125B2 (en) 2012-09-11 2016-06-28 Qualcomm Incorporated Apparatus and method for delivery control of application data to a mobile device in a communication network
US8750123B1 (en) 2013-03-11 2014-06-10 Seven Networks, Inc. Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network

Patent Citations (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980836A (en) 1988-10-14 1990-12-25 Compaq Computer Corporation Apparatus for reducing computer system power consumption
US5355501A (en) 1990-03-09 1994-10-11 Novell, Inc. Idle detection system
US5710929A (en) 1990-06-01 1998-01-20 Vadem Corporation Multi-state power management for computer systems
US5617572A (en) 1995-01-31 1997-04-01 Dell Usa, L.P. System for reducing power consumption in computers
US7035914B1 (en) 1996-01-26 2006-04-25 Simpleair Holdings, Inc. System and method for transmission of data
US6118771A (en) 1996-03-14 2000-09-12 Kabushiki Kaisha Toshiba System and method for controlling communication
US5944829A (en) 1996-09-30 1999-08-31 Intel Corporation Adjusting software characteristics by user interface based upon battery level and the amount of time the user wants the battery to last
US20040125800A1 (en) 1997-07-30 2004-07-01 Sam Zellner Associated systems and methods for providing data services using idle cell resources
US20030055555A1 (en) 1997-08-19 2003-03-20 Siemens Automotive Corporation, A Delaware Corporation Vehicle information system
US5954820A (en) 1997-09-26 1999-09-21 International Business Machines Corporation Portable computer with adaptive demand-driven power management
US6278887B1 (en) 1999-02-05 2001-08-21 Neopoint, Inc. System and method for power conservation in a wireless communication handset
US7254130B1 (en) 1999-06-11 2007-08-07 British Telecommunications Public Limited Company Predictively allocated bandwidth in a communications network
EP1063837A2 (en) 1999-06-25 2000-12-27 Lucent Technologies Inc. Accelerometer influenced communication device.
US6934267B1 (en) 1999-10-13 2005-08-23 Telefonaktiebolaget L M Ericsson (Publ) Time slot allocation control based on temperature in a radio transceiver
US7152172B2 (en) 1999-12-27 2006-12-19 Intel Corporation Method and apparatus for real time monitoring of user presence to prolong a portable computer battery operation time
US20010036822A1 (en) 2000-04-10 2001-11-01 Mead Stephen E. In-flight e-mail system
US6981041B2 (en) 2000-04-13 2005-12-27 Aep Networks, Inc. Apparatus and accompanying methods for providing, through a centralized server site, an integrated virtual office environment, remotely accessible via a network-connected web browser, with remote network monitoring and management capabilities
US7302280B2 (en) 2000-07-17 2007-11-27 Microsoft Corporation Mobile phone operation based upon context sensing
US7062567B2 (en) 2000-11-06 2006-06-13 Endeavors Technology, Inc. Intelligent network streaming and execution system for conventionally coded applications
US20020108121A1 (en) 2001-02-02 2002-08-08 Rachad Alao Service gateway for interactive television
US20020107042A1 (en) 2001-02-08 2002-08-08 Murnaghan Matthew J. Handheld wireless communication device
US20020156921A1 (en) 2001-04-19 2002-10-24 International Business Machines Corporation Automatic backup of wireless mobile device data onto gateway server while device is idle
US20100241312A1 (en) 2001-04-24 2010-09-23 Medius, Inc. Wireless telecommunications method
US7801959B1 (en) 2001-05-31 2010-09-21 Palmsource, Inc. Method and system for pushing electronic messages to a wireless portable device using a standard mail server interface
US20030009571A1 (en) 2001-06-28 2003-01-09 Bavadekar Shailesh S. System and method for providing tunnel connections between entities in a messaging system
US20030148760A1 (en) * 2001-07-23 2003-08-07 Nec Corporation Mobile station having short-range radio function and power consumption reduction method therefor
US20030046433A1 (en) 2001-07-25 2003-03-06 Omer Luzzatti Method to synchronize information between online devices
US20050221758A1 (en) 2002-06-18 2005-10-06 Thomas Busse Touch-entry user input device
US20080305839A1 (en) 2002-08-12 2008-12-11 Broadcom Corporation Selective power management for a hand held host
US20040081088A1 (en) 2002-10-25 2004-04-29 Schinner Charles Edward Data transfer time arbitration
US7587510B1 (en) 2003-04-21 2009-09-08 Charles Schwab & Co., Inc. System and method for transferring data between a user space and a kernel space in a server associated with a distributed network environment
US20040219940A1 (en) 2003-04-30 2004-11-04 Dong-Koon Kong Call setup method and system for push-to-talk service in a cellular mobile communication system
US20040259542A1 (en) 2003-05-02 2004-12-23 Nokia Corporation Method for saving power in a wireless terminal and a terminal
US20040264396A1 (en) * 2003-06-30 2004-12-30 Boris Ginzburg Method for power saving in a wireless LAN
US7539497B2 (en) 2003-08-20 2009-05-26 Ipwireless, Inc. Obtaining channel quality information in a wireless communication network
US7505448B2 (en) 2003-11-27 2009-03-17 Utstarcom (China) Co. Ltd. Method of wireless channel resource allocation and rate control in a cdma communication system
US20050136882A1 (en) 2003-12-18 2005-06-23 Boulton Philip A. Method and system for maintaining synchronization in low-power mode over a frequency hopping radio link
US7145454B2 (en) 2004-01-26 2006-12-05 Nokia Corporation Method, apparatus and computer program product for intuitive energy management of a short-range communication transceiver associated with a mobile terminal
US20050216844A1 (en) 2004-03-03 2005-09-29 Error Brett M Delayed transmission of website usage data
US20050239518A1 (en) 2004-04-21 2005-10-27 D Agostino Anthony Systems and methods that provide enhanced state machine power management
US7505795B1 (en) 2004-07-07 2009-03-17 Advanced Micro Devices, Inc. Power save management with customized range for user configuration and tuning value based upon recent usage
EP1617315A1 (en) 2004-07-13 2006-01-18 Harman Becker Automotive Systems GmbH Adaptive time-out system
US20080045253A1 (en) 2004-07-16 2008-02-21 Research In Motion Limited System and Method for Pushing Information from a Host System to a Mobile Data Communication Device
US20060052109A1 (en) 2004-09-07 2006-03-09 Ashman William C Jr Motion-based user input for a wireless communication device
US20060240805A1 (en) 2004-11-22 2006-10-26 Seven Networks International Oy E-mail messaging to/from a mobile terminal
US20080008313A1 (en) 2004-11-24 2008-01-10 Research In Motion Limited System and method for selectively activating a communication device
WO2006103681A2 (en) 2005-04-01 2006-10-05 Ixi Mobile (R & D) Ltd. Content delivery system and method for a mobile communication device
US20060294388A1 (en) 2005-06-22 2006-12-28 International Business Machines Corporation Method and system for enhancing user security and session persistence
US8176027B1 (en) 2005-07-06 2012-05-08 Navteq B.V. Spatial index for data files
US20070021065A1 (en) 2005-07-22 2007-01-25 Sengupta Uttam K Methods and apparatus for operating an ensemble of wireless electronic devices based on user activity
US7786623B2 (en) 2005-09-07 2010-08-31 Amx Llc Power management for electronic devices
US20070073766A1 (en) 2005-09-28 2007-03-29 Diversified Multimedia, Llc System, Method, and Computer-Readable Medium for Mobile Media Management
US20100250695A1 (en) 2005-10-13 2010-09-30 Michael Shenfield System and method for providing asynchronous notifications using synchronous data sources
US20070202850A1 (en) 2006-02-27 2007-08-30 Sony Ericsson Mobile Communications Ab Cost estimation in messaging application for a mobile communication device
US20090011791A1 (en) 2006-03-03 2009-01-08 Yuko Tashiro Mobile Telephone and Application Program
US20090275349A1 (en) 2006-03-24 2009-11-05 Ktreetel Co., Ltd. Method and apparatus for providing idle mode service
US20080242370A1 (en) 2006-03-31 2008-10-02 Ixi Mobile (R&D) Ltd. Efficient server polling system and method
US20070260718A1 (en) 2006-05-02 2007-11-08 Research In Motion Limited Method and system for optimizing metadata passing in a push content processing protocol
US20080005599A1 (en) 2006-06-30 2008-01-03 Theocharous Georgios N Method and apparatus for user-activity-based dynamic power management and policy creation for mobile platforms
US20110019555A1 (en) 2006-09-13 2011-01-27 Yukie Gotoh Communication apparatus
JP2008113366A (en) 2006-10-31 2008-05-15 Csc:Kk Mobile communication terminal device
WO2008061042A2 (en) 2006-11-10 2008-05-22 Pelago, Inc. Managing aggregation and sending of communications
US20080140794A1 (en) 2006-12-06 2008-06-12 Research In Motion Limited Method and apparatus for deriving presence information using message traffic analysis
US8509159B2 (en) 2007-01-19 2013-08-13 Samsung Electronics Co., Ltd. Method and system for wireless communication using out-of-band channels
US8259738B2 (en) 2007-05-01 2012-09-04 Net Navigation Systems, Llc Channel service manager with priority queuing
US20080279212A1 (en) 2007-05-09 2008-11-13 Sony Corporation Communnication system, information management apparatus, information management method, information processing apparatus, and information processing method
US20080278312A1 (en) * 2007-05-09 2008-11-13 Sony Ericsson Mobile Communications Ab Methods, electronic devices, and computer program products for generating presence information associated with a user of an electronic device based on environmental information
US8180407B1 (en) 2007-05-23 2012-05-15 Sprint Spectrum L.P. Automatic reduction of background wireless communication in a media player mode
US20090055467A1 (en) 2007-05-29 2009-02-26 Concert Technology Corporation System and method for increasing data availability on a mobile device based on operating mode
US20090028084A1 (en) 2007-07-25 2009-01-29 High Tech Computer, Corp. Method for reducing user equipment power consumption under a communication network
US20090049482A1 (en) 2007-08-13 2009-02-19 Auerbach Bradford C System and method for rejoining retransmissions of broadcast media
WO2009070415A1 (en) 2007-11-27 2009-06-04 Motorola, Inc. A wireless communication device and method op disabling an idle of one operational mode
US20090227251A1 (en) 2008-03-05 2009-09-10 Huawei Technologies Co., Inc. System and method for automatically monitoring and managing wireless network performance
US20090239574A1 (en) 2008-03-18 2009-09-24 Hussain Farooq S Power management for multimode wireless communication device
US20090239581A1 (en) 2008-03-24 2009-09-24 Shu Muk Lee Accelerometer-controlled mobile handheld device
US20090305721A1 (en) 2008-06-04 2009-12-10 Sony Ericsson Mobile Communications Ab Method and apparatus for conveying location of lost or motionless mobile communication devices
US20090327491A1 (en) 2008-06-27 2009-12-31 Microsoft Corporation Scheduling data delivery to manage device resources
JP2010061644A (en) 2008-07-29 2010-03-18 Nvidia Corp Platform-based idle-time processing
US8902862B2 (en) 2008-08-20 2014-12-02 Qualcomm Incorporated Method and apparatus for sharing signals on a single channel
US9173197B2 (en) 2008-09-12 2015-10-27 Qualcomm Incorporated Method and apparatus for signaling to a mobile device which set of training sequence codes to use for a communication link
US20100077035A1 (en) 2008-09-23 2010-03-25 Nokia Corporation Optimized Polling in Low Resource Devices
US20100083255A1 (en) * 2008-09-26 2010-04-01 Microsoft Corporation Notification batching based on user state
US20100093273A1 (en) 2008-10-09 2010-04-15 Sony Corporation Wireless transfer of data from a mobile device to a server
US8873580B2 (en) 2008-10-10 2014-10-28 The Trustees Of The Stevens Institute Of Technology Method and apparatus for dynamic spectrum access
US20110275321A1 (en) 2008-10-31 2011-11-10 Xuesong Zhou Integrated Vehicle Key and Mobile Phone System for Preventing Mobile Phone Use While Driving
US7974194B2 (en) 2008-12-12 2011-07-05 Microsoft Corporation Optimizing data traffic and power consumption in mobile unified communication applications
US9277499B2 (en) 2009-02-25 2016-03-01 Broadcom Corporation Idle mode power consumption reduction in wireless communications
US8861445B2 (en) 2009-03-11 2014-10-14 Sony Cororation Multi-channel single radio communication in home mesh network
US8078896B2 (en) 2009-03-12 2011-12-13 Sony Ericsson Mobile Communications Ab Adaptive power saving
US8271057B2 (en) 2009-03-16 2012-09-18 Waze Mobile Ltd. Condition-based activation, shut-down and management of applications of mobile devices
US8181211B2 (en) 2009-03-30 2012-05-15 John Mezzalingua Associates, Inc. Total bandwidth conditioning device
US8811903B2 (en) 2009-05-28 2014-08-19 Microsoft Corporation Spectrum assignment for networks over white spaces and other portions of the spectrum
US20110045847A1 (en) 2009-08-20 2011-02-24 E-View Connections LLC Digital content distribution system for delivering location specific content to an ad hoc group of mobile subscribers
US8879389B2 (en) 2009-11-12 2014-11-04 Oracle International Corporation Traffic handling for mobile communication-based advertisements
US20110177847A1 (en) * 2010-01-18 2011-07-21 Chien-Jen Huang Power-saving Method for Mobile Communication Device
US8904206B2 (en) 2010-01-26 2014-12-02 Motorola Mobility Llc Mobile computing device and method for maintaining application continuity
US20110194539A1 (en) 2010-02-11 2011-08-11 Cellco Partnership Access window envelope controller in wireless network
US20110216681A1 (en) * 2010-03-05 2011-09-08 Industrial Technology Research Systems and Methods for Operation Mode Transition In Wireless Communications
US20110255444A1 (en) 2010-04-14 2011-10-20 Qualcomm Incorporated Power savings through cooperative operation of multiradio devices
US9247019B2 (en) 2010-07-26 2016-01-26 Seven Networks, Llc Mobile application traffic optimization
US8886176B2 (en) 2010-07-26 2014-11-11 Seven Networks, Inc. Mobile application traffic optimization
US20150241941A1 (en) 2010-07-26 2015-08-27 Seven Networks, Inc. Mobile traffic optimization and coordination and user experience enhancement
US9407713B2 (en) 2010-07-26 2016-08-02 Seven Networks, Llc Mobile application traffic optimization
US9503544B2 (en) 2010-07-26 2016-11-22 Seven Networks, Llc Mobile application traffic optimization
US9408187B2 (en) 2010-08-18 2016-08-02 Nokia Technologies Oy Method and apparatus for wireless networks
US20150181617A1 (en) 2010-11-01 2015-06-25 Seven Networks, Inc. Optimization of resource polling intervals to satisfy mobile device requests
US20120112908A1 (en) 2010-11-05 2012-05-10 Nokia Corporation Method and Apparatus for Managing Notifications
US20120131095A1 (en) 2010-11-22 2012-05-24 Michael Luna Optimization of resource polling intervals to satisfy mobile device requests
US9100873B2 (en) 2010-11-22 2015-08-04 Seven Networks, Inc. Mobile network background traffic data management
US8539040B2 (en) 2010-11-22 2013-09-17 Seven Networks, Inc. Mobile network background traffic data management with optimized polling intervals
US8417823B2 (en) 2010-11-22 2013-04-09 Seven Network, Inc. Aligning data transfer to optimize connections established for transmission over a wireless network
US8903954B2 (en) 2010-11-22 2014-12-02 Seven Networks, Inc. Optimization of resource polling intervals to satisfy mobile device requests
US20120155348A1 (en) 2010-12-16 2012-06-21 Palo Alto Research Center Incorporated Energy-efficient content retrieval in content-centric networks
US20120155398A1 (en) 2010-12-20 2012-06-21 Ozgur Oyman Signaling techniques for a multimedia-aware radio and network adaptation
US20140051485A1 (en) 2011-03-07 2014-02-20 Intel Corporation Techniques for managing idle state activity in mobile devices
WO2012128792A1 (en) 2011-03-18 2012-09-27 Qualcomm Incorporated Management of network access requests
US20120260118A1 (en) 2011-04-11 2012-10-11 Microsoft Corporation Management of background tasks
US20130163431A1 (en) 2011-12-07 2013-06-27 Seven Networks, Inc. Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
US8762546B2 (en) 2011-12-13 2014-06-24 Motorola Mobility Llc Method and apparatus for adaptive network heartbeat message for TCP channel
US20130272227A1 (en) 2011-12-23 2013-10-17 Timothy Gallagher Method and system for channel allocation and bandwidth management in a wifi device that utilizes full spectrum capture
US9125158B2 (en) 2012-02-06 2015-09-01 Qualcomm Incorporated Wideband detection of narrowband trigger signals
US9510132B2 (en) 2012-05-11 2016-11-29 Qualcomm Incorporation Methods and apparatus for managing machine-type communications
US9430941B2 (en) 2012-06-10 2016-08-30 Apple Inc. Harvesting traffic information from mobile devices
US9088622B2 (en) 2012-07-05 2015-07-21 Sap Se Dynamic client registration for server push events in long polling scenarios
US9276917B2 (en) 2012-09-11 2016-03-01 Blackberry Limited Systems, devices and methods for authorizing endpoints of a push pathway
US20150131453A1 (en) 2012-10-29 2015-05-14 At&T Intellectual Property I, L.P. Controlling wireless transition timers based on application and content
US9467483B2 (en) 2012-12-20 2016-10-11 Sap Se ABAP channels for event signaling
US9185697B2 (en) 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
CN104010349A (en) 2013-02-21 2014-08-27 中兴通讯股份有限公司 Method for performing information push by using WLAN function of terminal, and mobile terminal
US9237453B2 (en) 2013-03-14 2016-01-12 Blackberry Limited Spectrum channel sharing system
US9392393B2 (en) 2013-06-09 2016-07-12 Apple Inc. Push notification initiated background updates
US9256484B2 (en) 2013-06-09 2016-02-09 Apple Inc. Dynamic adjustment of mobile device based on user activity
US8826308B1 (en) 2013-07-09 2014-09-02 Sap Ag Programming language conditional event dispatcher
US20150085729A1 (en) 2013-09-25 2015-03-26 Apple Inc. Transport Block Size and Channel Condition Assessment Based Power Consumption Reduction for Cellular Communication

Non-Patent Citations (76)

* Cited by examiner, † Cited by third party
Title
Canadian Patent Office, Application No. 2798523, File history from Nov. 18, 2011 to Apr. 7, 2016.
Canadian Patent Office, Application No. 2806529, File history from May 25, 2011 to Apr. 7, 2016.
Canadian Patent Office, Application No. 2806549, File history from Jul. 8, 2011 to Apr. 7, 2016.
Canadian Patent Office, Application No. 2806557, file history from Jul. 22, 2011 to Apr. 7, 2016.
Canadian Patent Office, Application No. 2857458, File history from Jul. 22, 2011 to Apr. 7, 2016.
CIPO, Commissioner's Decision for Canadian Patent Application No. 2,806,527, dated Jul. 20, 2016.
CIPO, Letter from Patent Appeal Board for Canadian Patent Application No. 2,806,527, mailed on Mar. 30, 2016.
EPO Exam Report dated Feb. 29, 2016 for EP Patent Application No. 11818512.3.
EPO exam report mailed Jul. 14, 2015 for international application No. 11818512.3.
EPO, Application No. 11748780.1, File history from Jul. 22, 2011 to Apr. 7, 2016.
EPO, Application No. 11814939.2, File history from May 25, 2011 to Apr. 7, 2016.
EPO, Application No. 11814940, File history from May 25, 2011 to Apr. 7, 2016.
EPO, Application No. 11814971.5, File history from Jul. 8, 2011 to Apr. 7, 2016.
EPO, Application No. 11814973.1, File history from Jul. 8, 2011 to Apr. 7, 2016.
EPO, Application No. 11818512.3, File history from Jul. 8, 2011 to Apr. 7, 2016.
EPO, Application No. 11838705.9, File history from Nov. 1, 2011 to Apr. 7, 2016.
EPO, Application No. 11842623.8, File history from Nov. 22, 2011 to Apr. 7, 2016.
EPO, Application No. 11843111.3, File history from Nov. 18, 2011 to Apr. 7, 2016.
EPO, Examination Report for European Patent Application No. 11748780.1, dated Feb. 14, 2017.
European Patent Office, Examination Report in Application No. 11842623.8-1853 dated Nov. 10, 2016.
Final rejection for U.S. Appl. No. 13/477,625 mailed on Aug. 20, 2015.
Final rejection for U.S. Appl. No. 14/494,526 mailed on Nov. 13, 2015.
Final Rejection mailed Aug. 20, 2015 for U.S. Appl. No. 13/477,625.
Final Rejection mailed Aug. 7, 2015 for U.S. Appl. No. 14/050,211.
Gigaom: "How to Stretch Battery Life on the HTV EVO 4G", Jun. 10, 2010, https://gigaom.com/2010/06/10/how-to-stretch-battery-life-on-the-htc-evo-4g/.
Great Britain Property Office, Application No. GB1301258.8, File history from Jul. 8, 2011 to Apr. 7, 2016.
Great Britain Property Office, Application No. GB1307573.4, File history from Nov. 1, 2011 to Apr. 7, 2016.
Great Britain Property Office, Application No. GB1309234.1, File history from Nov. 22, 2011 to Apr. 7, 2016.
Great Britain Property Office, Application No. GB1309373.7, File history from May 25, 2044 to Apr. 7, 2016.
Great Britain Property Office, Application No. GB1310340.3, File history from Jul. 22, 2011 to Apr. 7, 2016.
Great Britain Property Office, Application No. GB1316847.1, File history from Nov. 1, 2011 to Apr. 7, 2016.
Great Britain Property Office, Application No. GB1400059, File history from Jul. 22, 2011 to Apr. 4, 2016.
IEEE Xplore Search Results: Search results of "Mobile traffic optimization and coordination and user experience enhancement", May 30, 2016, http://ieeexplore.ieee.org/search.
IEEE Xplore Search Results: Search results of "Optimizing Mobile Network Traffic Across Multiple Application Running on a Mobile Device", May 30, 2016, http://ieeexplore.ieee.org/search.
IEEE Xplore Search Results: Search results of "Optimizing mobile network traffic across multiple application to save power on the battery and refined by", Sep. 2, 2016, http://ieeexplore.ieee.org/search.
InnovationQ-IP.com: Search results of "Mobile traffic optimization and coordination and . . . ", May 30, 2016, https://iq.ip.com/discover.
InnovationQ-IP.com: Search results of "Optimizing Mobile Network Traffic Across . . . ", May 30, 2016, https://iq.ip.com/discover.
InnovationQ-IP.com: Search results of "Optimizing mobile network traffic across multiple . . . ", Sep. 2, 2016, https://iq.ip.com/discover.
InnovationQ—IP.com: Search results of "Mobile traffic optimization and coordination and . . . ", May 30, 2016, https://iq.ip.com/discover.
InnovationQ—IP.com: Search results of "Optimizing Mobile Network Traffic Across . . . ", May 30, 2016, https://iq.ip.com/discover.
InnovationQ—IP.com: Search results of "Optimizing mobile network traffic across multiple . . . ", Sep. 2, 2016, https://iq.ip.com/discover.
Joyce Ho and Stephen S. Intille; "Using Context-Aware Computing to Reduce the Perceived Burden of Interruptions from Mobile Devices", Massachusetts Institute of Technology, Cambridge, MA. (Jan. 18, 2005).
Mirco Musolesi et al.; "Supporting Energy-Efficient Uploading Strategies for Continuous Sensing Applications on Mobile Phones", 1. School of Computer Science, University of St. Andrews, U.K.; 2. DEIS, University of Bologna, IT; 3. Ericsson Research, Hungary; 4. Department of Computer Science, Dartmouth College, NH, USA. (May 17, 2010).
Non-final rejection for U.S. Appl. No. 13/407,406 mailed on Sep. 9, 2015.
Patent Office of the People's Republic of China, Second Office Action in Chinese Patent Application No. 201180063972.X dated Nov. 14, 2016.
Quintana, D.: "Mobile Multitasking", Apr. 14, 2010, http://davidquintana.com/entry/mobile-multitasking/.
Search result of Jan. 6, 2017, performed by the Examiner on http://ieeexplore.ieee.org/search (IEEE Xplore Search Results) and attached to the Notice of Allowance for U.S. Appl. No. 14/710,167, dated Feb. 8, 2017.
Search result of Jan. 6, 2017, performed by the Examiner on https://iq.ip.com/discover (InnovationQ-IP.com) and attached to the Notice of Allowance for U.S. Appl. No. 14/710,167, dated Feb. 8, 2017.
Search result of Jan. 6, 2017, performed by the Examiner on https://iq.ip.com/discover (InnovationQ—IP.com) and attached to the Notice of Allowance for U.S. Appl. No. 14/710,167, dated Feb. 8, 2017.
USPTO, Advisory Action for U.S. Appl. No. 14/748,218, mailed on Jun. 7, 2016.
USPTO, corrected Notice of Allowance for U.S. Appl. No. 13/351,176, mailed on Apr. 13, 2016.
USPTO, Final Rejection for U.S. Appl. No. 13/178,598, Jan. 4, 2016.
USPTO, Final Rejection for U.S. Appl. No. 13/407,406, mailed on Feb. 26, 2016.
USPTO, Final Rejection for U.S. Appl. No. 14/748,218, mailed on May 6, 2016.
USPTO, Final Rejection for U.S. Appl. No. 14/872,009, mailed on Apr. 15, 2016.
USPTO, Non-Final Office Action for U.S. Appl. No. 14/872,009 dated Jan. 13, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 13/477,625, mailed on Mar. 23, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 14/147,434, mailed on Jul. 11, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 14/147,468, mailed on Jul. 13, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 14/551,107, Feb. 4, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 14/710,167, mailed on Jun. 6, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 14/872,009, Jan. 13, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 14/872,009, mailed on Jun. 29, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 14/873,143, Feb. 11, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 15/077,370, mailed on Jun. 10, 2016.
USPTO, Non-Final Rejection for U.S. Appl. No. 15/133,208, mailed on Jul. 29, 2016.
USPTO, Notice of Allowance for U.S. Appl. No. 13/351,176, mailed on Mar. 25, 2016.
USPTO, Notice of Allowance for U.S. Appl. No. 14/467,838, mailed on Jul. 15, 2016.
USPTO, Notice of Allowance for U.S. Appl. No. 14/467,881, mailed on Apr. 11, 2016.
USPTO, Notice of Allowance for U.S. Appl. No. 14/629,520, dated Jan. 11, 2017.
USPTO, Notice of Allowance for U.S. Appl. No. 14/710,167, dated Feb. 8, 2017.
USPTO, Notice of Allowance for U.S. Appl. No. 15/077,370, mailed Sep. 14, 2016.
USPTO, Notice of Allowance for U.S. Appl. No. 15/099,254, mailed Dec. 19, 2016.
USPTO, Notice of Allowance for U.S. Appl. No. 15/132,400, mailed on Jul. 14, 2016.
USPTO, Notice of Allowance for U.S. Appl. No. 15/205,036, mailed Nov. 17, 2016.
USPTO, Supplemental Notice of Allowance in U.S. Appl. No. 14/629,520 mailed Apr. 4, 2017.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180024619A1 (en) * 2016-07-21 2018-01-25 Casio Computer Co., Ltd. Display device, display control method, and computer-readable storage medium

Also Published As

Publication number Publication date Type
US20120149352A1 (en) 2012-06-14 application
FI20125094A (en) 2012-01-30 application
JP2013539258A (en) 2013-10-17 application
US20120157170A1 (en) 2012-06-21 application
US20150241941A1 (en) 2015-08-27 application
US20150365904A1 (en) 2015-12-17 application
US9671851B2 (en) 2017-06-06 grant
WO2012024030A3 (en) 2012-04-12 application
GB2495058A (en) 2013-03-27 application
EP2599363A4 (en) 2014-09-10 application
CA2806549C (en) 2014-10-28 grant
GB2495058B (en) 2014-03-05 grant
EP2599363A2 (en) 2013-06-05 application
EP3367252A1 (en) 2018-08-29 application
EP2599363B1 (en) 2018-02-07 grant
US20130012180A1 (en) 2013-01-10 application
US20170251434A1 (en) 2017-08-31 application
GB201301258D0 (en) 2013-03-06 application
US10091734B2 (en) 2018-10-02 grant
CA2806549A1 (en) 2012-02-23 application
WO2012024030A2 (en) 2012-02-23 application

Similar Documents

Publication Publication Date Title
US7486930B2 (en) Method and apparatus for preconditioning mobile devices for network and other operations
US20120008536A1 (en) Dynamic adjustment of keep-alive message intervals in a mobile network
KR101227821B1 (en) System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
US20140362713A1 (en) Quality of experience enhancement for wireless networks based on received signal strength at a mobile device
US20130229976A1 (en) Mobile device which hands over connectivity from one network connection to another network connection without interruption in application data flow and methods therefor
KR101227769B1 (en) Mobile network background traffic data management with optimized polling intervals
US20130031600A1 (en) Automatic generation and distribution of policy information regarding malicious mobile traffic in a wireless network
US20130110637A1 (en) Strategically timed delivery of advertisements or electronic coupons to a mobile device in a mobile network
FI123227B (en) Application and network-based, long poll request detection and assessment of its mid-term recording
US20130031191A1 (en) Mobile device usage control in a mobile network by a distributed proxy system
US8750123B1 (en) Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network
US20120278886A1 (en) Detection and filtering of malware based on traffic observations made in a distributed mobile traffic management system
US20120284356A1 (en) Wireless traffic management system cache optimization using http headers
US8326985B2 (en) Distributed management of keep-alive message signaling for mobile network resource conservation and optimization
US20120131095A1 (en) Optimization of resource polling intervals to satisfy mobile device requests
US20130151709A1 (en) System of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation
US20130159511A1 (en) System and method for generating a report to a network operator by distributing aggregation of data
US8356080B2 (en) System and method for a mobile device to use physical storage of another device for caching
US8621075B2 (en) Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US20120254417A1 (en) Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic
US20130205366A1 (en) Dynamic categorization of applications for network access in a mobile network
US20120179801A1 (en) System and method for reduction of mobile network traffic used for domain name system (dns) queries
US20130170348A1 (en) Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization
US20120278432A1 (en) System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
US20150019686A1 (en) Distributed caching systems with configurable extended caching optimization

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEVEN NETWORKS, INC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUNA, MICHAEL;BACKHOLM, ARI;SIGNING DATES FROM 20140825 TO 20140905;REEL/FRAME:036301/0112

AS Assignment

Owner name: SEVEN NETWORKS, LLC, CALIFORNIA

Free format text: ENTITY CONVERSION;ASSIGNOR:SEVEN NETWORKS, INC.;REEL/FRAME:036485/0059

Effective date: 20150714

CC Certificate of correction