US9228386B2 - Sliding door fitting - Google Patents

Sliding door fitting Download PDF

Info

Publication number
US9228386B2
US9228386B2 US14/396,797 US201314396797A US9228386B2 US 9228386 B2 US9228386 B2 US 9228386B2 US 201314396797 A US201314396797 A US 201314396797A US 9228386 B2 US9228386 B2 US 9228386B2
Authority
US
United States
Prior art keywords
sliding door
slide
door fitting
guide element
fitting according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US14/396,797
Other versions
US20150107159A1 (en
Inventor
Eduard Thielmann
Alexander Buschmann
Martin Nordieker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hettich ONI GmbH and Co KG
Original Assignee
Hettich ONI GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hettich ONI GmbH and Co KG filed Critical Hettich ONI GmbH and Co KG
Assigned to HETTICH-ONI GMBH & CO. KG reassignment HETTICH-ONI GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NORDIEKER, Martin, BUSCHMANN, ALEXANDER, THIELMANN, EDUARD
Publication of US20150107159A1 publication Critical patent/US20150107159A1/en
Application granted granted Critical
Publication of US9228386B2 publication Critical patent/US9228386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F5/00Braking devices, e.g. checks; Stops; Buffers
    • E05F5/003Braking devices, e.g. checks; Stops; Buffers for sliding wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F17/00Special devices for shifting a plurality of wings operated simultaneously
    • E05F17/002Special devices for shifting a plurality of wings operated simultaneously for wings which lie one behind the other when closed
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F5/00Braking devices, e.g. checks; Stops; Buffers
    • E05F5/02Braking devices, e.g. checks; Stops; Buffers specially for preventing the slamming of swinging wings during final closing movement, e.g. jamb stops
    • E05F5/027Braking devices, e.g. checks; Stops; Buffers specially for preventing the slamming of swinging wings during final closing movement, e.g. jamb stops with closing action
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/32Arrangements of wings characterised by the manner of movement; Arrangements of movable wings in openings; Features of wings or frames relating solely to the manner of movement of the wing
    • E06B3/34Arrangements of wings characterised by the manner of movement; Arrangements of movable wings in openings; Features of wings or frames relating solely to the manner of movement of the wing with only one kind of movement
    • E06B3/42Sliding wings; Details of frames with respect to guiding
    • E06B3/46Horizontally-sliding wings
    • E06B3/4663Horizontally-sliding wings specially adapted for furniture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/10Arrangements for mounting in particular locations, e.g. for built-in type, for corner type
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/30Application of doors, windows, wings or fittings thereof for domestic appliances
    • E05Y2900/302Application of doors, windows, wings or fittings thereof for domestic appliances for built-in appliances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers

Definitions

  • the disclosure relates to a sliding door fitting for coupling a door of an appliance, for example a refrigerating appliance, which is fastened on at least one hinge, to a door of a furniture body, in which the refrigerating appliance is installed, which is fastened on at least one further single axis or multiaxis hinge.
  • the sliding door fitting has a guide element and a slide guided by the guide element.
  • the guide element is arranged on one of the doors and the slide is arranged on the other of the doors.
  • a refrigerating appliance having a door in a furniture body having a further door wherein both doors typically have different rotational or pivot axes.
  • the door of the refrigerating appliance is referred to hereafter as the appliance door and that of the furniture body is referred to as the furniture door.
  • the term refrigerating appliance comprises freezers and also refrigerating appliance-freezer combinations.
  • it is possible to use such a sliding door fitting in conjunction with other built-in domestic appliances having appliance door for example, with microwave ovens, dishwashers, steam cookers, or baking ovens, etc.
  • such a sliding door fitting may be used in any application involving a structure having a hinged door disposed within another structure having a hinged door.
  • both doors are coupled to one another, so that opening or closing of the appliance door is performed by moving the furniture door.
  • a sliding door fitting is known, for example, from the document EP 0 565 900 A1, in which the two doors are coupled to one another with regard to their pivot movement and which balances out a displacement of the edges of the two doors opposite to the hinges, which results from the different rotational or pivot axes.
  • a refrigerating appliance and/or freezer which is suitable as a built-in appliance in a furniture body, is known from the document EP 2 314 962 A1.
  • a damping device is integrated in the refrigerating appliance door.
  • a damping device is known from the document WO 2011/101319, which is arranged in addition to a sliding door fitting between the furniture door and the device door. Because of the installation depth of this damping device, however, a recess is required in the refrigerating appliance door to enable a desired slight spacing of approximately several millimeters between refrigerating appliance door and furniture door. Therefore, this arrangement also cannot be universally used or retrofitted. In addition, the additional damping device results in increased installation effort during the installation of the refrigerating appliance in the furniture body.
  • An illustrative sliding door fitting according to the disclosure of the type mentioned at the outset is distinguished in that it has at least one damping device for damping a relative movement between the slide and the guide element over at least one defined section of the relative movement.
  • the sliding door fitting can be used or retrofitted universally in commercially-available refrigerating appliances in the same manner as known fittings, which are used only for coupling the doors.
  • the slide is guided by the guide element by means of a plain bearing guide.
  • a simple and cost-effective construction of the sliding door fitting is thus enabled.
  • multiple damping devices are provided, which are arranged adjacent to one another in or on the guide element or in or on the slide.
  • the allocation of the damping action onto multiple damping devices enables the flattest possible damping devices to be used.
  • the arrangement thereof adjacent to one another results in a sliding door fitting having correspondingly low installation height.
  • the sliding door fitting has at least one force accumulator, which is arranged so that it is tensioned upon opening and/or closing of the doors coupled by the sliding door fitting.
  • the at least one force accumulator may apply force to the slide in relation to the guide element from a specific opening or closing angle of the doors.
  • the at least one force accumulator may be directly or indirectly operationally linked to the at least one damping device and exert a force in a damping direction on the damping device.
  • the sliding door fitting has at least one carrier, which cooperates with the at least one force accumulator.
  • the carrier can be guided by a control element, wherein either the control element is implemented in or on the guide element and the carrier is engaged with the slide over at least one further section of the relative movement, or wherein the control element is implemented in or on the slide and the carrier is engaged with the guide element over the at least one further section of the relative movement.
  • the at least one carrier may be mounted so it is pivotable about an axis, which may be approximately perpendicular to a front surface of one of the doors.
  • a self-closing function of the doors may be implemented, or the closing operation of the doors may be assisted, by the force accumulator. This may simplify operation of the refrigerating appliance and ensure the proper closing of the appliance door, which is important for the function of the appliance.
  • At least one further damping device is provided for damping the relative movement between the slide and the guide element, which damps the relative movement in a direction which is opposite to the damping direction of the damping device.
  • the doors are thus damped not only during the closing movement, but rather also upon opening to a maximum opening angle. Overstretching of the hinges and also striking of the doors, for example, on a wall, inter alia, can thus be prevented.
  • the at least one damping device and/or the at least one further damping device is a linearly operating device having cylinder and lifting rod.
  • the at least one damping device and/or the further damping device is a rotational damper, wherein the slide has a push rod, which is implemented at least in sections as a toothed rod.
  • a carrier plate is arranged so it is pivotable on one end of the slide or the slide has a push rod, which is flexible and on the end of which the carrier plate is arranged at an angle. Because of the different pivot axes of the two doors, the appliance door and the furniture door, the free edges of the doors not only execute a displacement movement in relation to one another during opening or closing of the doors, but rather also a slight pivot in relation to one another. This pivot is enabled by the mentioned features of a pivotable carrier plate or a sufficiently long flexible push rod.
  • the sliding door fitting has at least one adjustment device for at least one adjustable dimension.
  • an adjustment device is, depending on the embodiment, inter alia, the dimension of the damping action and/or the dimension of the force action of the force accumulator and/or the relative position between slide and guide element, from which the damping action begins.
  • the closing and/or opening speed of the coupled doors and/or the closing and/or opening angles of the doors, from which the damping and/or a self-retraction action begins, can thus be adapted to the respective requirements or refrigerating appliances, respectively.
  • FIG. 1 a is a perspective illustration of a furniture body having a built-in refrigerating appliance and partially-installed sliding door fitting;
  • FIG. 1 b is a detail view of a portion of FIG. 1 a;
  • FIG. 2 a is a perspective view of the furniture body having built-in refrigerating appliance of FIG. 1 a with a sliding door fitting installed thereto;
  • FIG. 2 b is a detail view of a portion of FIG. 2 a ;
  • FIGS. 3 a - 3 c are top views showing a sliding door fitting with a cover removed in various slide positions.
  • FIG. 1 shows a perspective schematic view of a furniture body 10 having open furniture door 11 , which is fastened thereto, for example, via two hinges 13 on a side wall of the furniture body 10 .
  • a refrigerating appliance 20 for example, a refrigerator or a freezer, is installed in the furniture body 10 .
  • the refrigerating appliance 20 has an appliance door 21 , which is shown in the closed position.
  • a sliding door fitting according to the application is installed in the region of a free edge 12 of the furniture door 11 .
  • the sliding door fitting comprises a guide element 30 , which is fixed on an interior surface of the furniture door 11 , and also a slide 40 , which is displaceable in relation to the guide element 30 and is guided by the guide element 30 .
  • FIG. 1 a shows the sliding door fitting installed to the furniture door 11 , but not to the appliance door 21 , to more clearly illustrate the installation of the sliding door fitting on the furniture door 11 .
  • FIG. 1 b shows a detail of FIG. 1 a in the region of the sliding door fitting in an enlarged scale.
  • the guide element 30 has a cover 31 having fastening holes 32 , through which the sliding door fitting is screwed onto the furniture door 11 .
  • the guide element 30 is embodied as plate-shaped and having a substantially rectangular footprint, with which the guide element 30 rests on the surface of the furniture door 11 . Perpendicular to this footprint, the guide element 30 may have a low installation height, for example, several millimeters to approximately 10 mm.
  • the slide 40 comprises a push rod 41 aligned in parallel to the footprint of the guide element 30 , on the free end of which a carrier plate 42 , which is approximately perpendicular to the pushrod 41 , is attached.
  • the carrier plate 42 and the pushrod 41 are not rigidly connected to one another, but rather by means of a hinge, which is formed by a pin connecting the pushrod 41 and the carrier plate 42 .
  • the angle between the pushrod 41 and the carrier plate 42 can be varied within an angle range because of the hinge.
  • FIG. 2 a shows, in a similar manner as FIG. 1 a , the refrigerating appliance 20 installed in the furniture body 10 , but with the sliding door fitting attached to both the furniture door 11 and the appliance door 21 .
  • the furniture door 11 and the appliance door 21 are coupled to one another in the region of their pivotable free edges 12 or 22 , respectively, which are opposite to the hinges of the doors 11 , 21 , by the sliding door fitting.
  • both doors 11 , 21 are open.
  • the hinges bearing the appliance door 21 of the refrigerating appliance 20 which are not visible in this figure, may be pin hinges.
  • FIG. 2 b shows, in a similar manner to FIG. 1 b , a detail from FIG. 2 a in the region of the sliding door fitting.
  • the carrier plate 42 rests on the free edge 22 of the appliance door 21 and is connected thereto, for example, by a screw connection.
  • the free edges 12 or 22 , respectively, of the two doors 11 , 21 execute a relative movement in relation to one another, which results in a displacement of the two edges 12 , 22 , on the one hand, and in a slight pivot of the two edges 12 , 22 in relation to one another, on the other hand.
  • FIGS. 3 a - 3 c show an illustrative sliding door fitting in greater detail. To enable a view into the internal construction of the sliding door fitting, the sliding door fitting is shown in all three cases without the cover 31 .
  • FIGS. 3 a , 3 b , and 3 c show the slide 40 in three different positions with respect to the guide element 30 .
  • FIG. 3 a shows the sliding door fitting having the slide 40 in the rest position, which is also shown in FIGS. 1 a and 1 b .
  • FIG. 3 c shows an end position of the slide 40 , in which it is maximally pushed into the guide element 30 .
  • FIG. 3 b shows a middle position of the slide 40 , which lies between the rest position of FIG. 3 a and the end position of FIG. 3 c.
  • the guide element 30 has a base plate 33 , on which the cover 31 visible in FIGS. 1 b and 2 b is placed. Accordingly, fastening holes 32 , which are embodied here as elongated holes, are provided in the base plate 33 at the same position as in the cover 31 . It can be provided that the cover 31 latches with the base plate 33 . In the installed state, it is additionally held by the shared fastening screws.
  • the base plate 33 can be manufactured in one piece, for example, as an aluminum or zinc die-cast part or plastic injection-molded part.
  • a guide 34 which is aligned in the longitudinal direction of the base plate 33 , is implemented in the base plate 33 , for example, as a dovetail or T-groove plain bearing guide.
  • the guide 34 is arranged centrally with respect to the transverse direction of the base plate 33 .
  • the slide 40 is inserted with its pushrod 41 , which is adapted in its profile to the guide 34 , into the guide 34 .
  • the pushrod 41 merges in a T-shape into a hammer-like head 43 . It interacts with this head 43 with the lifting rods 36 , which are only visible in the attachment in FIG. 3 a , of damping devices 35 .
  • the damping devices 35 can be air or fluid damping devices, for example. In the present case, four damping devices 35 are provided, which are arranged in pairs of two symmetrically in each case adjacent to the guide 34 . Fundamentally, another number of damping devices 35 is possible. Multiple damping devices 35 located adjacent to one another offer the advantage that a sufficiently large damping effect can be achieved in spite of a very low structural height of the sliding door fitting.
  • damping devices 35 known linearly operating cylinder dampers are used as the damping devices 35 , the lifting rods 36 of which press in a slightly spring-loaded manner against the head 43 , so that the head can move without damping action from the illustrated rest position in the direction of the end positions (to the left in the figures).
  • the damping action of the damping devices 35 begins when the head 43 is incident on the free ends of the lifting rods 36 .
  • the stroke of the lifting rods 36 is less in the illustrated exemplary embodiment in this case than the displacement path which the slide 40 passes through between rest position and end position.
  • damping is not provided over the entire path, but rather only over a path section lying before the rest position, which is defined by the stroke of the lifting rods 36 .
  • the pushrod 41 obtains play in a direction perpendicular to the guide direction and parallel to the plane of the base plate. If the rotational or pivot axes of the furniture door 11 and the appliance door 21 do not extend exactly in parallel to one another, this results in a displacement of the edge 22 of the appliance door 21 with respect to its height in relation to the edge 12 of the furniture door 11 during the pivoting of the doors 11 , 21 . Such a movement can be compensated for by the mentioned play of the pushrod 41 .
  • control elements are incorporated in the base plate 33 , which are implemented here as hooked curves 37 .
  • a carrier 38 moves in each of the control elements.
  • the carriers 38 have recesses facing toward one another, in which the head 43 of the slide 40 engages with extensions, referred to as activators 44 hereafter.
  • a force accumulator which is implemented here as a spring 39 , is assigned to each of the carriers 38 .
  • the springs 39 are embodied as traction springs and are each fixed with one end on the carrier 38 and with the other end on a fastening point of the base plate 33 , such that the slide 40 is drawn into the rest position via the activators 44 and the carriers 38 . In this case, a pre-tension of the springs 39 can be provided in the rest position.
  • FIG. 3 b shows the sliding door fitting in a position of the slide 40 , which corresponds to an opening angle of the doors 11 , 21 of approximately 50°, wherein an opening angle of 0° is associated with closed doors 11 , 21 and an opening angle of approximately 90° is associated with perpendicularly opened doors 11 , 21 .
  • the sliding door fitting is to be dimensioned so that the length of the displacement path permits a desired maximum opening angle of the furniture door 11 or the appliance door 21 , however. It can be provided that the maximum opening angle of the doors 11 , 21 is defined by the end position of the sliding door fitting. However, it can also be that the maximum opening position is delimited by the hinges 13 of the furniture body 10 or by the hinges of the refrigerating appliance.
  • the slide 40 firstly moves in the direction of the rest positions (to the right in FIGS. 3 a - 3 c ).
  • the carriers 38 are firstly moved out of the end position of the hooked curve 37 , whereby the traction force of the springs 39 is applied to the carriers 38 and the slide 40 , whereby a self-closing function for the doors 11 , 21 is provided.
  • the head 43 is placed on the ends of the lifting rods 36 of the damping devices 35 , so that the further closing movement occurs in a damped manner up to the rest position of the refrigerating appliance.
  • the sliding door fitting it is conceivable to provide, in addition to the damping function during the closing of the furniture door 11 or appliance door 21 , a damping during movement of the doors 11 , 21 to the maximum opening angle.
  • one or more further damping devices can be arranged in the opposite end region of the base plate 33 , against which the head 43 strikes during the movement to the end position, in the guide element 30 in addition to the damping devices 35 .
  • the further damping devices can also be implemented as an air or fluid damping device, for example. Since the path to be damped for the further damping devices during movement of the doors 11 , 21 to the maximum opening angle can be excessively small, the further damping devices can also be embodied as elastic elements.
  • the linearly operating damping devices 35 shown in FIG. 3 a - 3 c can also be provided as one or more rotation dampers.
  • the pushrod 41 can be embodied as a toothed rod, for example.
  • Rotation dampers having attached gearwheels are arranged in the base plate 33 , which cooperate with the gear teeth of the pushrod 41 . It can be provided in this case that the gear teeth are only embodied in sections on the pushrod 41 , so that damping is only provided over a predefined displacement path in the region of the rest position.
  • the pushrod 41 can be embodied as sufficiently long that the carrier plate 42 is positioned outside the footprint of the guide element 30 and is not located directly above the base plate 33 over the entire displacement path of the slide 40 .
  • the cover 31 accordingly does not need to have the cutout in its upper side, only a recess for the pushrod is to be provided in the side.
  • the guide element 30 can be installed completely concealed between the furniture door 11 and the appliance door 21 in this embodiment and is also not visible in the case of open doors 11 , 21 .
  • the pivoting ability of the carrier plate 42 in relation to the pushrod 41 can be omitted, since a pivot of the edges 12 or 22 , respectively, of the two doors 11 , 21 in relation to one another during the opening operation is compensated for by the longer and flexible pushrod 41 .
  • the carrier plate 42 can then be embodied in one piece with the pushrod 41 , for example, as a plastic injection-molded part.
  • adjustment devices can be provided, which enable the damping action of the at least one damping device 35 to be adjusted.
  • the damping device 35 is embodied as an air or fluid damping device, an adjustment of the damping action can be performed in a known manner using a throttle screw, for example. It is possible by way of this adjustment device, for example, to adjust the closing and/or opening speed of the cooperating doors 11 , 21 , which can be necessary in the case of retrofitting on an already existing built-in domestic appliance and a furniture body door.
  • adjustment devices can be provided, which enable the closing and/or opening speed to be adjusted in that the closing and/or opening force of the force accumulator acting on the at least one damping device 35 , i.e., for example, the spring 39 , is adjustable. This can be performed, for example, by length change of the spring 39 by means of an adjustment screw or a worm gear. If the force accumulator is embodied as a coiled spring, for example, the coiled spring can be wound up more or less by means of the adjustment device, to induce the force change.
  • adjustment devices can be provided which enable the closing and/or opening angle, from which the damping action of the at least one damping device 35 begins, to be varied.
  • the fastening holes 32 are embodied as elongated holes as a simple adjustment device of this type.
  • An adjustment device which can be actuated after the sliding door fitting is fixedly screwed onto one of the doors is also conceivable.
  • the at least one damping device could be displaced by means of a worm gear or an adjustment screw into the corresponding position.
  • the means which activate the at least one damping device 35 is varied in its relative position in relation to the damping device 35 within the sliding door fitting.
  • the at least one damping device 35 can be installed so it is displaceable in relation to the guide element 30 within the sliding door fitting, so that the head 43 of the slide 40 is placed on the end of the lifting rod 36 of the damping device 35 at different positions of the slide 40 .
  • the mentioned adjustment devices act on at least one adjustment dimension of the sliding door fitting.
  • These adjustment dimensions are, depending on the embodiment, inter alia, the closing and/or opening speed of the coupled doors in the case of active damping action and/or the beginning of the damping action from an adjustable closing and/or opening angle.
  • sliding door fitting is described in the present case in conjunction with a refrigerating appliance, it is apparent that it can also be used in other built-in domestic appliances with separate appliance doors, which are installed in a furniture body having a furniture door.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Refrigerator Housings (AREA)
  • Hinges (AREA)
  • Closing And Opening Devices For Wings, And Checks For Wings (AREA)

Abstract

The invention relates to a sliding door fitting for the coupling of a door, which is fastened to at least one hinge, of a refrigerator to a door, which is fastened to at least one further single- or multi-axis hinge, of a furniture carcass in which the refrigerator is installed, wherein the sliding door fitting has a guide element and a slider guided by the guide element, and wherein the guide element can be arranged on one of the doors and the slider can be arranged on the other of the doors. The sliding door fitting is distinguished by having at least one damping device for damping a relative movement between the slider and the guide element over at least one defined portion of the relative movement.

Description

The disclosure relates to a sliding door fitting for coupling a door of an appliance, for example a refrigerating appliance, which is fastened on at least one hinge, to a door of a furniture body, in which the refrigerating appliance is installed, which is fastened on at least one further single axis or multiaxis hinge. The sliding door fitting has a guide element and a slide guided by the guide element. The guide element is arranged on one of the doors and the slide is arranged on the other of the doors.
To be able to design a kitchen having uniform furniture fronts, installing a refrigerating appliance having a door in a furniture body having a further door is known, wherein both doors typically have different rotational or pivot axes. The door of the refrigerating appliance is referred to hereafter as the appliance door and that of the furniture body is referred to as the furniture door. In the scope of the application, the term refrigerating appliance comprises freezers and also refrigerating appliance-freezer combinations. Furthermore, it is possible to use such a sliding door fitting in conjunction with other built-in domestic appliances having appliance door, for example, with microwave ovens, dishwashers, steam cookers, or baking ovens, etc. Moreover, such a sliding door fitting may be used in any application involving a structure having a hinged door disposed within another structure having a hinged door.
For more convenient operation, both doors are coupled to one another, so that opening or closing of the appliance door is performed by moving the furniture door. For this purpose, a sliding door fitting is known, for example, from the document EP 0 565 900 A1, in which the two doors are coupled to one another with regard to their pivot movement and which balances out a displacement of the edges of the two doors opposite to the hinges, which results from the different rotational or pivot axes.
As in other kitchen furniture doors, it is also desirable for the door of such a built-in refrigerating appliance to damp the closing movement and optionally also the opening movement of the doors. Damping of furniture doors is frequently performed via damping devices, which are integrated in the hinge. Such a type of damping is disadvantageous in the case of the furniture doors of a furniture body for a built-in refrigerating appliance, since such a hinge having integrated damping device usually protrudes relatively far into the interior of the furniture body, whereby the installation width available for the refrigerating appliance in the furniture body would be decreased.
A refrigerating appliance and/or freezer, which is suitable as a built-in appliance in a furniture body, is known from the document EP 2 314 962 A1. In this appliance, a damping device is integrated in the refrigerating appliance door. However, it is also desirable to provide a damping capability for refrigerating appliances which do not have such an integrated damping device.
A damping device is known from the document WO 2011/101319, which is arranged in addition to a sliding door fitting between the furniture door and the device door. Because of the installation depth of this damping device, however, a recess is required in the refrigerating appliance door to enable a desired slight spacing of approximately several millimeters between refrigerating appliance door and furniture door. Therefore, this arrangement also cannot be universally used or retrofitted. In addition, the additional damping device results in increased installation effort during the installation of the refrigerating appliance in the furniture body.
It is therefore an object of the present disclosure to specify an arrangement of a refrigerating appliance in a furniture body, in which the door of the furniture body and that of the refrigerating appliance are coupled to one another and in which a damped movement of both doors is achieved, without the refrigerating appliance having to be designed in a special manner, and without the installation space available for the refrigerating appliance within the furniture body being reduced by the damping function.
An illustrative sliding door fitting according to the disclosure of the type mentioned at the outset is distinguished in that it has at least one damping device for damping a relative movement between the slide and the guide element over at least one defined section of the relative movement.
Due to the integration of the damping device in the sliding door fitting, a compact arrangement for the coupling of the two doors is provided with simultaneous damping of the opening and/or closing movement. The sliding door fitting can be used or retrofitted universally in commercially-available refrigerating appliances in the same manner as known fittings, which are used only for coupling the doors.
In an illustrative embodiment of the sliding door fitting, the slide is guided by the guide element by means of a plain bearing guide. A simple and cost-effective construction of the sliding door fitting is thus enabled.
In a further illustrative embodiment of the sliding door fitting, multiple damping devices are provided, which are arranged adjacent to one another in or on the guide element or in or on the slide. The allocation of the damping action onto multiple damping devices enables the flattest possible damping devices to be used. The arrangement thereof adjacent to one another results in a sliding door fitting having correspondingly low installation height.
In a further illustrative embodiment, the sliding door fitting has at least one force accumulator, which is arranged so that it is tensioned upon opening and/or closing of the doors coupled by the sliding door fitting. The at least one force accumulator may apply force to the slide in relation to the guide element from a specific opening or closing angle of the doors. Furthermore, the at least one force accumulator may be directly or indirectly operationally linked to the at least one damping device and exert a force in a damping direction on the damping device.
In a further illustrative embodiment, the sliding door fitting has at least one carrier, which cooperates with the at least one force accumulator. In this case, the carrier can be guided by a control element, wherein either the control element is implemented in or on the guide element and the carrier is engaged with the slide over at least one further section of the relative movement, or wherein the control element is implemented in or on the slide and the carrier is engaged with the guide element over the at least one further section of the relative movement. The at least one carrier may be mounted so it is pivotable about an axis, which may be approximately perpendicular to a front surface of one of the doors.
A self-closing function of the doors may be implemented, or the closing operation of the doors may be assisted, by the force accumulator. This may simplify operation of the refrigerating appliance and ensure the proper closing of the appliance door, which is important for the function of the appliance.
In a further illustrative embodiment of the sliding door fitting, at least one further damping device is provided for damping the relative movement between the slide and the guide element, which damps the relative movement in a direction which is opposite to the damping direction of the damping device. The doors are thus damped not only during the closing movement, but rather also upon opening to a maximum opening angle. Overstretching of the hinges and also striking of the doors, for example, on a wall, inter alia, can thus be prevented.
In a further illustrative embodiment of the sliding door fitting, the at least one damping device and/or the at least one further damping device is a linearly operating device having cylinder and lifting rod. In a further illustrative embodiment, the at least one damping device and/or the further damping device is a rotational damper, wherein the slide has a push rod, which is implemented at least in sections as a toothed rod. In both mentioned constructions, a damping of the linear displacement movement of the slide in relation to the guide element is possible. In both forms of construction, a flat construction of the damping device is also possible.
In further illustrative embodiments of the sliding door fitting, a carrier plate is arranged so it is pivotable on one end of the slide or the slide has a push rod, which is flexible and on the end of which the carrier plate is arranged at an angle. Because of the different pivot axes of the two doors, the appliance door and the furniture door, the free edges of the doors not only execute a displacement movement in relation to one another during opening or closing of the doors, but rather also a slight pivot in relation to one another. This pivot is enabled by the mentioned features of a pivotable carrier plate or a sufficiently long flexible push rod.
In a further illustrative embodiment, the sliding door fitting has at least one adjustment device for at least one adjustable dimension. Such an adjustment device is, depending on the embodiment, inter alia, the dimension of the damping action and/or the dimension of the force action of the force accumulator and/or the relative position between slide and guide element, from which the damping action begins. The closing and/or opening speed of the coupled doors and/or the closing and/or opening angles of the doors, from which the damping and/or a self-retraction action begins, can thus be adapted to the respective requirements or refrigerating appliances, respectively.
The invention will be explained in greater detail hereafter on the basis of exemplary embodiments with the aid of figures. In the figures:
FIG. 1 a is a perspective illustration of a furniture body having a built-in refrigerating appliance and partially-installed sliding door fitting;
FIG. 1 b is a detail view of a portion of FIG. 1 a;
FIG. 2 a is a perspective view of the furniture body having built-in refrigerating appliance of FIG. 1 a with a sliding door fitting installed thereto;
FIG. 2 b is a detail view of a portion of FIG. 2 a; and
FIGS. 3 a-3 c are top views showing a sliding door fitting with a cover removed in various slide positions.
FIG. 1 shows a perspective schematic view of a furniture body 10 having open furniture door 11, which is fastened thereto, for example, via two hinges 13 on a side wall of the furniture body 10. A refrigerating appliance 20, for example, a refrigerator or a freezer, is installed in the furniture body 10. The refrigerating appliance 20 has an appliance door 21, which is shown in the closed position.
A sliding door fitting according to the application is installed in the region of a free edge 12 of the furniture door 11. The sliding door fitting comprises a guide element 30, which is fixed on an interior surface of the furniture door 11, and also a slide 40, which is displaceable in relation to the guide element 30 and is guided by the guide element 30. FIG. 1 a shows the sliding door fitting installed to the furniture door 11, but not to the appliance door 21, to more clearly illustrate the installation of the sliding door fitting on the furniture door 11.
FIG. 1 b shows a detail of FIG. 1 a in the region of the sliding door fitting in an enlarged scale. The guide element 30 has a cover 31 having fastening holes 32, through which the sliding door fitting is screwed onto the furniture door 11. The guide element 30 is embodied as plate-shaped and having a substantially rectangular footprint, with which the guide element 30 rests on the surface of the furniture door 11. Perpendicular to this footprint, the guide element 30 may have a low installation height, for example, several millimeters to approximately 10 mm.
The slide 40 comprises a push rod 41 aligned in parallel to the footprint of the guide element 30, on the free end of which a carrier plate 42, which is approximately perpendicular to the pushrod 41, is attached. The carrier plate 42 and the pushrod 41 are not rigidly connected to one another, but rather by means of a hinge, which is formed by a pin connecting the pushrod 41 and the carrier plate 42. The angle between the pushrod 41 and the carrier plate 42 can be varied within an angle range because of the hinge.
FIG. 2 a shows, in a similar manner as FIG. 1 a, the refrigerating appliance 20 installed in the furniture body 10, but with the sliding door fitting attached to both the furniture door 11 and the appliance door 21. The furniture door 11 and the appliance door 21 are coupled to one another in the region of their pivotable free edges 12 or 22, respectively, which are opposite to the hinges of the doors 11, 21, by the sliding door fitting. In the illustrated example, both doors 11, 21 are open. The hinges bearing the appliance door 21 of the refrigerating appliance 20, which are not visible in this figure, may be pin hinges.
FIG. 2 b shows, in a similar manner to FIG. 1 b, a detail from FIG. 2 a in the region of the sliding door fitting. The carrier plate 42 rests on the free edge 22 of the appliance door 21 and is connected thereto, for example, by a screw connection. Upon opening of the furniture door 11 or the appliance door 21, the free edges 12 or 22, respectively, of the two doors 11, 21 execute a relative movement in relation to one another, which results in a displacement of the two edges 12, 22, on the one hand, and in a slight pivot of the two edges 12, 22 in relation to one another, on the other hand. The pivot of the two edges 12, 22 in relation to one another is compensated for by the tilting capability of the carrier plate 42 in relation to the pushrod 41. The displacement of the edges 12, 22 in relation to one another results in a displacement of the slide 40 in relation to the guide element 30. Accordingly, in FIG. 2 b, the slide 40 is pushed into the guide element 30 out of its rest position, which is apparent in FIGS. 1 a and 1 b. Such a movement into the guide element 30 is possible in spite of the angled protruding carrier plate 42 by way of a corresponding recess in the cover 31.
FIGS. 3 a-3 c show an illustrative sliding door fitting in greater detail. To enable a view into the internal construction of the sliding door fitting, the sliding door fitting is shown in all three cases without the cover 31.
FIGS. 3 a, 3 b, and 3 c show the slide 40 in three different positions with respect to the guide element 30. FIG. 3 a shows the sliding door fitting having the slide 40 in the rest position, which is also shown in FIGS. 1 a and 1 b. FIG. 3 c shows an end position of the slide 40, in which it is maximally pushed into the guide element 30. FIG. 3 b shows a middle position of the slide 40, which lies between the rest position of FIG. 3 a and the end position of FIG. 3 c.
The guide element 30 has a base plate 33, on which the cover 31 visible in FIGS. 1 b and 2 b is placed. Accordingly, fastening holes 32, which are embodied here as elongated holes, are provided in the base plate 33 at the same position as in the cover 31. It can be provided that the cover 31 latches with the base plate 33. In the installed state, it is additionally held by the shared fastening screws. The base plate 33 can be manufactured in one piece, for example, as an aluminum or zinc die-cast part or plastic injection-molded part.
A guide 34, which is aligned in the longitudinal direction of the base plate 33, is implemented in the base plate 33, for example, as a dovetail or T-groove plain bearing guide. The guide 34 is arranged centrally with respect to the transverse direction of the base plate 33. The slide 40 is inserted with its pushrod 41, which is adapted in its profile to the guide 34, into the guide 34.
At its opposite end in the interior of the guide element 30 and the carrier plate 42, the pushrod 41 merges in a T-shape into a hammer-like head 43. It interacts with this head 43 with the lifting rods 36, which are only visible in the attachment in FIG. 3 a, of damping devices 35. The damping devices 35 can be air or fluid damping devices, for example. In the present case, four damping devices 35 are provided, which are arranged in pairs of two symmetrically in each case adjacent to the guide 34. Fundamentally, another number of damping devices 35 is possible. Multiple damping devices 35 located adjacent to one another offer the advantage that a sufficiently large damping effect can be achieved in spite of a very low structural height of the sliding door fitting.
In the illustrated exemplary embodiment, known linearly operating cylinder dampers are used as the damping devices 35, the lifting rods 36 of which press in a slightly spring-loaded manner against the head 43, so that the head can move without damping action from the illustrated rest position in the direction of the end positions (to the left in the figures). During a reverse movement into the rest position, the damping action of the damping devices 35 begins when the head 43 is incident on the free ends of the lifting rods 36. The stroke of the lifting rods 36 is less in the illustrated exemplary embodiment in this case than the displacement path which the slide 40 passes through between rest position and end position. Correspondingly, damping is not provided over the entire path, but rather only over a path section lying before the rest position, which is defined by the stroke of the lifting rods 36.
In the guide 34, a certain amount of guide play can be provided, which additionally becomes greater toward the edge region of the base plate 33. In this manner, the pushrod 41 obtains play in a direction perpendicular to the guide direction and parallel to the plane of the base plate. If the rotational or pivot axes of the furniture door 11 and the appliance door 21 do not extend exactly in parallel to one another, this results in a displacement of the edge 22 of the appliance door 21 with respect to its height in relation to the edge 12 of the furniture door 11 during the pivoting of the doors 11, 21. Such a movement can be compensated for by the mentioned play of the pushrod 41.
Furthermore, two control elements are incorporated in the base plate 33, which are implemented here as hooked curves 37. A carrier 38 moves in each of the control elements. The carriers 38 have recesses facing toward one another, in which the head 43 of the slide 40 engages with extensions, referred to as activators 44 hereafter. In addition, a force accumulator, which is implemented here as a spring 39, is assigned to each of the carriers 38. The springs 39 are embodied as traction springs and are each fixed with one end on the carrier 38 and with the other end on a fastening point of the base plate 33, such that the slide 40 is drawn into the rest position via the activators 44 and the carriers 38. In this case, a pre-tension of the springs 39 can be provided in the rest position.
FIG. 3 b shows the sliding door fitting in a position of the slide 40, which corresponds to an opening angle of the doors 11, 21 of approximately 50°, wherein an opening angle of 0° is associated with closed doors 11, 21 and an opening angle of approximately 90° is associated with perpendicularly opened doors 11, 21.
On the one hand, it can be seen in FIG. 3 b that the lifting rods 36 of the dampers 35 are already completely extended and no longer press against the head 43. On the other hand, it can be seen that the guide heads of the carriers 38 have nearly reached the end of the hooked curve, whereby the left ends of the receptacle openings in the figure, which cooperate with the activators 44, have already moved away from one another enough that they are no longer engaged with the activators 44. A further movement of the slide 40 in the direction of the end position is therefore possible, without the traction springs 39 being tensioned further.
Because of the shape of the hooked curves 37 and the force engagement points of the springs 39 on cantilever arms of the carriers 38, these remain in the ends of the hooked curves 37. This is apparent in FIG. 3 c, in which the slide 40 is located in the end position.
This end position is not necessarily reached during use of the sliding door fitting. The sliding door fitting is to be dimensioned so that the length of the displacement path permits a desired maximum opening angle of the furniture door 11 or the appliance door 21, however. It can be provided that the maximum opening angle of the doors 11, 21 is defined by the end position of the sliding door fitting. However, it can also be that the maximum opening position is delimited by the hinges 13 of the furniture body 10 or by the hinges of the refrigerating appliance.
During a closing operation of the doors 11, 21, the slide 40 firstly moves in the direction of the rest positions (to the right in FIGS. 3 a-3 c). When passing over the middle position shown in FIG. 3 b, the carriers 38 are firstly moved out of the end position of the hooked curve 37, whereby the traction force of the springs 39 is applied to the carriers 38 and the slide 40, whereby a self-closing function for the doors 11, 21 is provided. During the further closing operation, the head 43 is placed on the ends of the lifting rods 36 of the damping devices 35, so that the further closing movement occurs in a damped manner up to the rest position of the refrigerating appliance.
In alternative embodiments of the sliding door fitting, it is conceivable to provide, in addition to the damping function during the closing of the furniture door 11 or appliance door 21, a damping during movement of the doors 11, 21 to the maximum opening angle. For this purpose, one or more further damping devices can be arranged in the opposite end region of the base plate 33, against which the head 43 strikes during the movement to the end position, in the guide element 30 in addition to the damping devices 35. The further damping devices can also be implemented as an air or fluid damping device, for example. Since the path to be damped for the further damping devices during movement of the doors 11, 21 to the maximum opening angle can be excessively small, the further damping devices can also be embodied as elastic elements.
In a further embodiment of the sliding door fitting, the linearly operating damping devices 35 shown in FIG. 3 a-3 c can also be provided as one or more rotation dampers. For this purpose, the pushrod 41 can be embodied as a toothed rod, for example. Rotation dampers having attached gearwheels are arranged in the base plate 33, which cooperate with the gear teeth of the pushrod 41. It can be provided in this case that the gear teeth are only embodied in sections on the pushrod 41, so that damping is only provided over a predefined displacement path in the region of the rest position.
In a further embodiment of the sliding door fitting, the pushrod 41 can be embodied as sufficiently long that the carrier plate 42 is positioned outside the footprint of the guide element 30 and is not located directly above the base plate 33 over the entire displacement path of the slide 40. The cover 31 accordingly does not need to have the cutout in its upper side, only a recess for the pushrod is to be provided in the side. The guide element 30 can be installed completely concealed between the furniture door 11 and the appliance door 21 in this embodiment and is also not visible in the case of open doors 11, 21. If the pushrod 41 is additionally implemented as slightly flexible, the pivoting ability of the carrier plate 42 in relation to the pushrod 41 can be omitted, since a pivot of the edges 12 or 22, respectively, of the two doors 11, 21 in relation to one another during the opening operation is compensated for by the longer and flexible pushrod 41. The carrier plate 42 can then be embodied in one piece with the pushrod 41, for example, as a plastic injection-molded part.
In a further embodiment of the sliding door fitting, adjustment devices can be provided, which enable the damping action of the at least one damping device 35 to be adjusted. If the damping device 35 is embodied as an air or fluid damping device, an adjustment of the damping action can be performed in a known manner using a throttle screw, for example. It is possible by way of this adjustment device, for example, to adjust the closing and/or opening speed of the cooperating doors 11, 21, which can be necessary in the case of retrofitting on an already existing built-in domestic appliance and a furniture body door.
In a further embodiment of the sliding door fitting, adjustment devices can be provided, which enable the closing and/or opening speed to be adjusted in that the closing and/or opening force of the force accumulator acting on the at least one damping device 35, i.e., for example, the spring 39, is adjustable. This can be performed, for example, by length change of the spring 39 by means of an adjustment screw or a worm gear. If the force accumulator is embodied as a coiled spring, for example, the coiled spring can be wound up more or less by means of the adjustment device, to induce the force change.
In a further embodiment of the sliding door fitting, adjustment devices can be provided which enable the closing and/or opening angle, from which the damping action of the at least one damping device 35 begins, to be varied. In the exemplary embodiment shown, the fastening holes 32 are embodied as elongated holes as a simple adjustment device of this type. An adjustment device which can be actuated after the sliding door fitting is fixedly screwed onto one of the doors is also conceivable. For example, the at least one damping device could be displaced by means of a worm gear or an adjustment screw into the corresponding position. It can be alternatively or additionally provided that the means which activate the at least one damping device 35, for example, the head 43 of the slide 40, is varied in its relative position in relation to the damping device 35 within the sliding door fitting. For this purpose, for example, the at least one damping device 35 can be installed so it is displaceable in relation to the guide element 30 within the sliding door fitting, so that the head 43 of the slide 40 is placed on the end of the lifting rod 36 of the damping device 35 at different positions of the slide 40.
The mentioned adjustment devices act on at least one adjustment dimension of the sliding door fitting. These adjustment dimensions are, depending on the embodiment, inter alia, the closing and/or opening speed of the coupled doors in the case of active damping action and/or the beginning of the damping action from an adjustable closing and/or opening angle.
Although the sliding door fitting is described in the present case in conjunction with a refrigerating appliance, it is apparent that it can also be used in other built-in domestic appliances with separate appliance doors, which are installed in a furniture body having a furniture door.

Claims (17)

The invention claimed is:
1. A sliding door fitting for coupling a first door of an appliance to a second door of a furniture body in which the appliance is installed, the first door fastened to the appliance by at least one first hinge having a first hinge axis and the second door being fastened to the furniture body by at least one second single axis or multiaxis hinge having at least a second hinge axis not coaxial with the first hinge axis, the sliding door fitting having a guide element (30) and a slide guided by the guide element, wherein the guide element is to be arranged on one of the first and second doors and the slide is to be arranged on the other of the first and second doors, wherein the sliding door fitting has at least one damping device for damping a relative movement between the slide and the guide element over at least one defined section of the relative movement; and
wherein (1) a carrier plate is pivotally connected to one end of the slide, or (2) the slide has a flexible pushrod and a carrier plate is arranged at an angle at the end of the flexible pushrod.
2. The sliding door fitting according to claim 1, wherein the slide is guided by the guide element by means of a bearing guide.
3. The sliding door fitting according to claim 1, wherein multiple damping devices are provided, which multiple damping devices are arranged adjacent to one another in the guide element, on the guide element, in the slide or on the slide.
4. The sliding door fitting according to claim 1, having at least one force accumulator, the force accumulator arranged so that it is tensioned during one or both of the opening and closing of the doors coupled by the sliding door fitting.
5. The sliding door fitting according to claim 4, wherein the at least one force accumulator applies a force to the slide in relation to the guide element from a specific opening or closing angle of the doors.
6. The sliding door fitting according to claim 4, wherein the at least one force accumulator is directly or indirectly operationally linked to the at least one damping device and exerts a force in a damping direction on the damping device.
7. The sliding door fitting according to claim 4, having at least one carrier which interacts with the at least one force accumulator.
8. The sliding door fitting according to claim 7, wherein the at least one carrier is guided by a control element.
9. The sliding door fitting according to claim 8, wherein the control element is integrated with the guide element and wherein the at least one carrier is engaged with the slide over at least a portion of the movement with the slide relative to the guide element.
10. The sliding door fitting according to claim 8, wherein the control element is integrated with the slide and wherein the at least one carrier is engaged with the guide element over at least a portion of the movement of the slide relative to the guide element.
11. The sliding door fitting according to claim 7, wherein the at least one carrier is mounted so that it is pivotable about an axis which is approximately perpendicular to a front surface of one of the doors.
12. The sliding door fitting according to claim 1, wherein at least one further damping device is provided for damping the relative movement between the slide and the guide element, which damps the relative movement in a direction which is opposite to the damping direction of the damping device.
13. The sliding door fitting according to claim 1, wherein one or both of the at least one damping device and the at least one further damping device is a linearly operating device having cylinder and lifting rod.
14. The sliding door fitting according to claim 1, wherein one or both of the at least one damping device and the at least one further damping device is a rotation damper, wherein the slide has a pushrod.
15. The sliding door fitting according to claim 1, wherein a carrier plate is pivotally connected to one end of the slide.
16. The sliding door fitting according to claim 1, wherein the slide has a flexible pushrod and a carrier plate is arranged at an angle at the end of the flexible pushrod.
17. The sliding door fitting according to claim 1, wherein the sliding door fitting has at least one adjustment device for at least one adjustment dimension.
US14/396,797 2012-04-25 2013-04-22 Sliding door fitting Expired - Fee Related US9228386B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012103629.2 2012-04-25
DE102012103629 2012-04-25
DE201210103629 DE102012103629A1 (en) 2012-04-25 2012-04-25 Towing door fittings
PCT/EP2013/058247 WO2013160221A1 (en) 2012-04-25 2013-04-22 Sliding door fitting

Publications (2)

Publication Number Publication Date
US20150107159A1 US20150107159A1 (en) 2015-04-23
US9228386B2 true US9228386B2 (en) 2016-01-05

Family

ID=48170473

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/396,797 Expired - Fee Related US9228386B2 (en) 2012-04-25 2013-04-22 Sliding door fitting

Country Status (9)

Country Link
US (1) US9228386B2 (en)
EP (1) EP2841668B1 (en)
JP (1) JP6295246B2 (en)
KR (1) KR102029694B1 (en)
CN (1) CN104364457B (en)
DE (1) DE102012103629A1 (en)
ES (1) ES2637480T3 (en)
PL (1) PL2841668T3 (en)
WO (1) WO2013160221A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD816771S1 (en) * 2016-03-23 2018-05-01 Eight Inc. Design Singapore Pte. Ltd. Digital parcel vending machine
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US20180318823A1 (en) * 2017-04-28 2018-11-08 Binder Gmbh Laboratory Cabinet
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10386112B2 (en) 2014-01-24 2019-08-20 Hettich-Oni Gmbh & Co. Kg Method and assembly aid tool for assembling a sliding door fitting
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10427149B2 (en) * 2017-04-28 2019-10-01 Binder Gmbh Laboratory cabinet
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US20200165846A1 (en) * 2016-04-15 2020-05-28 Larson Manufacturing Company Of South Dakota, Inc. Door assembly for selectively interlocking opposing doors
US10677512B1 (en) * 2019-01-31 2020-06-09 Whirlpool Corporation Appliance push-to-open system and method of installing the push-to-open system
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10828844B2 (en) 2014-02-24 2020-11-10 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11098522B1 (en) * 2020-05-12 2021-08-24 Brett Fugate Solid transparent health gate
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US11421471B2 (en) * 2019-02-20 2022-08-23 Philippe Roe Safety gate closure preventer
US20220404089A1 (en) * 2021-06-18 2022-12-22 Whirlpool Corporation Built-in refrigerator
US11905740B2 (en) 2019-10-01 2024-02-20 Larson Manufacturing Company Of South Dakota, Inc. Deadbolt assembly for simultaneously securing co-mounted doors together and actuating at least one deadbolt
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop
US12070924B2 (en) 2020-07-27 2024-08-27 Whirlpool Corporation Appliance liner having natural fibers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2840336B1 (en) * 2013-08-22 2019-11-20 Electrolux Appliances Aktiebolag Built-in kitchen appliance
KR101657430B1 (en) 2016-01-11 2016-09-19 박덕교 Rotary damper
GB2563672A (en) * 2017-06-23 2018-12-26 Titus D O O Dekani Improvements in damped closure mechanisms
KR20230174619A (en) 2022-06-21 2023-12-28 (주)스페이스엔지니어링 A slide for starting
KR20240083522A (en) 2022-12-05 2024-06-12 (주)스페이스엔지니어링 Slide equipped with safe arrival system

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1686819A (en) * 1927-05-26 1928-10-09 Kirschbaum Albert Door
US2129923A (en) * 1936-11-18 1938-09-13 Fairbanks Morse & Co Refrigerator cabinet
US2233699A (en) * 1940-10-31 1941-03-04 Battle Creek Sanitarium And Be Safety lock means for cabinets
US2444226A (en) * 1946-01-17 1948-06-29 Hamelin Arthur Double sash sliding and swinging window
US3287079A (en) * 1965-04-28 1966-11-22 Westinghouse Electric Corp Refrigerated vending cabinet
US4302907A (en) * 1978-10-13 1981-12-01 Canals Jose M Selectively interlocked double security doors
US4389817A (en) * 1981-06-01 1983-06-28 Olberding Leonard E Double door assembly
US4771269A (en) * 1986-03-18 1988-09-13 Jouan System for detecting the incomplete closure of the doors of a chamber having at least two superposed doors
US4912877A (en) * 1988-02-19 1990-04-03 Strydom Nicolaas J H Security door
US5143430A (en) * 1990-09-06 1992-09-01 The Vendo Company Inner door latch
EP0565900A1 (en) 1992-04-08 1993-10-20 Zanussi Elettrodomestici S.p.A. Hinge for refrigeration appliances, in particular built-in refrigerators and the like
US6371581B1 (en) * 2000-04-05 2002-04-16 Royla Vendors, Inc. Vending machine with quick release door
US20070113478A1 (en) * 2005-11-22 2007-05-24 Chu Fung S Emergency exit security gate
WO2009011891A2 (en) 2007-07-18 2009-01-22 Accuride International, Inc. Self closing mechanism for drawer slides
US20090033187A1 (en) 2007-07-30 2009-02-05 Chin-Hsiang Chung Auto-returning assembly with mechanical damper
DE202009013715U1 (en) 2009-09-16 2010-05-12 Lautenschläger, Horst Damper device for movable furniture parts
US20110043087A1 (en) 2009-08-19 2011-02-24 Hui-Chu Shih Slide rail buffering structure
EP2314962A2 (en) 2009-10-19 2011-04-27 Liebherr-Hausgeräte Lienz GmbH Domestic appliance
WO2011101319A2 (en) 2010-02-16 2011-08-25 Hettich-Oni Gmbh & Co. Kg Domestic appliance
DE102010016592A1 (en) 2010-04-22 2011-10-27 Paul Hettich Gmbh & Co. Kg Damping system for fittings
US20140182208A1 (en) * 2012-12-27 2014-07-03 Hon Hai Precision Industry Co., Ltd. Automatic vending machine
US8770682B2 (en) * 2010-02-01 2014-07-08 Lg Electronics Inc. Refrigerator
US8801124B2 (en) * 2012-01-03 2014-08-12 Lg Electronics Inc. Refrigerator having storage container
US20150033631A1 (en) * 2013-08-02 2015-02-05 Asselin Woodwork bearing a stained glass window and an insulating glazing with an air gap between them, allowing the air gap to communicate with the outside free air

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2626353B2 (en) * 1991-01-28 1997-07-02 三菱電機株式会社 Refrigerator storage furniture
JPWO2006006707A1 (en) * 2004-07-09 2008-05-01 松下電器産業株式会社 Door device and refrigerator
JP5093881B2 (en) * 2006-11-13 2012-12-12 株式会社ニフコ Sliding assist mechanism and pull-in unit
CH700979A1 (en) * 2009-05-08 2010-11-15 Eku Ag Device to take with a sliding door and for cushioning the door.
WO2011000020A1 (en) 2009-06-12 2011-01-06 Sbc Research Pty Ltd Enhanced method of detection
DE102013104420A1 (en) * 2013-04-30 2014-10-30 Hettich-Heinze Gmbh & Co. Kg Guide arrangement of a sliding door, sliding door and furniture
DE102013109710A1 (en) * 2013-09-05 2015-03-05 Hettich-Heinze Gmbh & Co. Kg Fitting for a sliding door
DE102013111482A1 (en) * 2013-10-17 2015-04-23 Hettich-Heinze Gmbh & Co. Kg Guide mechanism for a sliding door and method for mounting a sliding door

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1686819A (en) * 1927-05-26 1928-10-09 Kirschbaum Albert Door
US2129923A (en) * 1936-11-18 1938-09-13 Fairbanks Morse & Co Refrigerator cabinet
US2233699A (en) * 1940-10-31 1941-03-04 Battle Creek Sanitarium And Be Safety lock means for cabinets
US2444226A (en) * 1946-01-17 1948-06-29 Hamelin Arthur Double sash sliding and swinging window
US3287079A (en) * 1965-04-28 1966-11-22 Westinghouse Electric Corp Refrigerated vending cabinet
US4302907A (en) * 1978-10-13 1981-12-01 Canals Jose M Selectively interlocked double security doors
US4389817A (en) * 1981-06-01 1983-06-28 Olberding Leonard E Double door assembly
US4771269A (en) * 1986-03-18 1988-09-13 Jouan System for detecting the incomplete closure of the doors of a chamber having at least two superposed doors
US4912877A (en) * 1988-02-19 1990-04-03 Strydom Nicolaas J H Security door
US5143430A (en) * 1990-09-06 1992-09-01 The Vendo Company Inner door latch
EP0565900A1 (en) 1992-04-08 1993-10-20 Zanussi Elettrodomestici S.p.A. Hinge for refrigeration appliances, in particular built-in refrigerators and the like
US6371581B1 (en) * 2000-04-05 2002-04-16 Royla Vendors, Inc. Vending machine with quick release door
US20070113478A1 (en) * 2005-11-22 2007-05-24 Chu Fung S Emergency exit security gate
WO2009011891A2 (en) 2007-07-18 2009-01-22 Accuride International, Inc. Self closing mechanism for drawer slides
US20090033187A1 (en) 2007-07-30 2009-02-05 Chin-Hsiang Chung Auto-returning assembly with mechanical damper
US20110043087A1 (en) 2009-08-19 2011-02-24 Hui-Chu Shih Slide rail buffering structure
DE202009013715U1 (en) 2009-09-16 2010-05-12 Lautenschläger, Horst Damper device for movable furniture parts
EP2314962A2 (en) 2009-10-19 2011-04-27 Liebherr-Hausgeräte Lienz GmbH Domestic appliance
US8770682B2 (en) * 2010-02-01 2014-07-08 Lg Electronics Inc. Refrigerator
WO2011101319A2 (en) 2010-02-16 2011-08-25 Hettich-Oni Gmbh & Co. Kg Domestic appliance
DE102010016592A1 (en) 2010-04-22 2011-10-27 Paul Hettich Gmbh & Co. Kg Damping system for fittings
US20130064482A1 (en) 2010-04-22 2013-03-14 Pater Jaehrling Damping system for fittings
US8801124B2 (en) * 2012-01-03 2014-08-12 Lg Electronics Inc. Refrigerator having storage container
US20140182208A1 (en) * 2012-12-27 2014-07-03 Hon Hai Precision Industry Co., Ltd. Automatic vending machine
US20150033631A1 (en) * 2013-08-02 2015-02-05 Asselin Woodwork bearing a stained glass window and an insulating glazing with an air gap between them, allowing the air gap to communicate with the outside free air

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Search Report issued in German App. No. Oct. 2013-103629.2 (Apr. 25, 2012).
Search Report issued in Int'l App. No. PCT/EP2013/058247 (2013).

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10386112B2 (en) 2014-01-24 2019-08-20 Hettich-Oni Gmbh & Co. Kg Method and assembly aid tool for assembling a sliding door fitting
US10828844B2 (en) 2014-02-24 2020-11-10 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10605519B2 (en) 2015-12-08 2020-03-31 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10907886B2 (en) 2015-12-08 2021-02-02 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11555643B2 (en) 2015-12-09 2023-01-17 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11994337B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
USD816771S1 (en) * 2016-03-23 2018-05-01 Eight Inc. Design Singapore Pte. Ltd. Digital parcel vending machine
US11952814B2 (en) 2016-04-15 2024-04-09 Larson Manufacturing Company Of South Dakota, Llc Door assembly for selectively interlocking opposing doors
US20200165846A1 (en) * 2016-04-15 2020-05-28 Larson Manufacturing Company Of South Dakota, Inc. Door assembly for selectively interlocking opposing doors
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10808438B2 (en) * 2016-04-15 2020-10-20 Larson Manufacturing Company Of South Dakota, Inc. Door assembly for selectively interlocking opposing doors
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11542733B2 (en) * 2016-04-15 2023-01-03 Larson Manufacturing Company Of South Dakota, Llc Door assembly for selectively interlocking opposing doors
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US11867452B2 (en) 2016-12-05 2024-01-09 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US10427149B2 (en) * 2017-04-28 2019-10-01 Binder Gmbh Laboratory cabinet
US20180318823A1 (en) * 2017-04-28 2018-11-08 Binder Gmbh Laboratory Cabinet
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10677512B1 (en) * 2019-01-31 2020-06-09 Whirlpool Corporation Appliance push-to-open system and method of installing the push-to-open system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US20220396994A1 (en) * 2019-02-20 2022-12-15 Philippe Roe Safety Gate Closure Preventer
US11421471B2 (en) * 2019-02-20 2022-08-23 Philippe Roe Safety gate closure preventer
US11885176B2 (en) * 2019-02-20 2024-01-30 Philippe Roe Safety gate closure preventer
US11905740B2 (en) 2019-10-01 2024-02-20 Larson Manufacturing Company Of South Dakota, Inc. Deadbolt assembly for simultaneously securing co-mounted doors together and actuating at least one deadbolt
US11098522B1 (en) * 2020-05-12 2021-08-24 Brett Fugate Solid transparent health gate
US12070924B2 (en) 2020-07-27 2024-08-27 Whirlpool Corporation Appliance liner having natural fibers
US11927385B2 (en) 2021-06-18 2024-03-12 Whirlpool Corporation Built-in refrigerator
US11635248B2 (en) * 2021-06-18 2023-04-25 Whirlpool Corporation Built-in refrigerator
US20220404089A1 (en) * 2021-06-18 2022-12-22 Whirlpool Corporation Built-in refrigerator

Also Published As

Publication number Publication date
EP2841668A1 (en) 2015-03-04
JP6295246B2 (en) 2018-03-14
KR102029694B1 (en) 2019-11-08
JP2015515564A (en) 2015-05-28
DE102012103629A1 (en) 2013-10-31
WO2013160221A1 (en) 2013-10-31
ES2637480T3 (en) 2017-10-13
US20150107159A1 (en) 2015-04-23
PL2841668T3 (en) 2017-11-30
CN104364457A (en) 2015-02-18
CN104364457B (en) 2016-08-24
KR20150016258A (en) 2015-02-11
EP2841668B1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
US9228386B2 (en) Sliding door fitting
US11248406B2 (en) Flap fitting for a piece of furniture, side wall of a body of a piece of furniture and piece of furniture comprising a side wall
US9125546B2 (en) Domestic appliance
US9080365B2 (en) Appliance lid hinge assembly
RU2674189C2 (en) Refrigerator or freezer cabinet
JP7174725B2 (en) Hinges and methods for opening and closing hinges
US8572811B2 (en) Furniture hinge
SI2235310T1 (en) Damping mechanism for cabinet hinge assembly
AU2009235933A1 (en) Damping device for damping an opening and/or closing motion of a furniture fitting
WO2015024740A1 (en) Built-in kitchen appliance
AU2015261478A1 (en) Hinge
US20120126677A1 (en) Device for movable furniture part, and piece of furniture
KR20170125041A (en) Hinges for household appliances and appliances
US20150047149A1 (en) Pull-closed device for a movably mounted furniture part
AU2016254655A1 (en) Ejection device for a movable furniture part
CN111344472B (en) Opening and closing device fitting for furniture, side wall of furniture body and furniture with side wall
US9885205B2 (en) Damping device for the damping of the opening movement of a moveable furniture part
WO2000023683A1 (en) Storage bin with counterbalanced door
CN110678114A (en) Hinge for household appliances
US11885165B2 (en) Furniture board having a hinge, and furniture item having such a furniture board
RU2468171C2 (en) Furniture hinge
AU2018292955A1 (en) Hinge
ES2746906T3 (en) Hinge, particularly for a household appliance
CN118441956A (en) Hinge and cooking utensil

Legal Events

Date Code Title Description
AS Assignment

Owner name: HETTICH-ONI GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THIELMANN, EDUARD;BUSCHMANN, ALEXANDER;NORDIEKER, MARTIN;SIGNING DATES FROM 20141008 TO 20141020;REEL/FRAME:034137/0510

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20240105