US9220619B2 - Stent delivery system - Google Patents
Stent delivery system Download PDFInfo
- Publication number
- US9220619B2 US9220619B2 US13/240,765 US201113240765A US9220619B2 US 9220619 B2 US9220619 B2 US 9220619B2 US 201113240765 A US201113240765 A US 201113240765A US 9220619 B2 US9220619 B2 US 9220619B2
- Authority
- US
- United States
- Prior art keywords
- inner member
- gear rack
- rack assembly
- stent
- delivery system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/962—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
- A61F2/966—Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/9517—Instruments specially adapted for placement or removal of stents or stent-grafts handle assemblies therefor
-
- A61F2002/9517—
Definitions
- the present invention pertains to medical devices and methods for making and using medical devices. More particularly, the present invention pertains to stent delivery systems.
- intracorporeal medical devices have been developed for medical use, for example, intravascular use. Some of these devices include stent delivery systems. These devices are manufactured by any one of a variety of different manufacturing methods and may be used according to any one of a variety of methods. Of the known stent delivery devices and methods for making and using the same, each has certain advantages and disadvantages. There is an ongoing need to provide alternative stent delivery devices as well as alternative methods for making and using stent delivery devices.
- An example stent delivery system may include an inner member having a proximal end.
- a sleeve may be coupled to the inner member adjacent to the proximal end.
- a deployment sheath may be disposed about the inner member.
- a gear rack assembly may be coupled to the deployment sheath.
- a stent may be disposed between the inner member and the deployment sheath.
- a handle may be coupled to the inner member and to the deployment sheath. The handle may include an actuation member.
- the actuation member may be coupled to the gear rack assembly so that actuation of the actuation member shifts the longitudinal position of the gear rack assembly and the deployment sheath.
- An engagement mechanism may be coupled to the gear rack assembly. The engagement mechanism may be configured to engage the sleeve of the inner member so that proximal retraction of the gear rack assembly results in proximal retraction of the inner shaft.
- Another example stent delivery system may include an inner member having an enlarged proximal end and an atraumatic distal tip.
- a stent may be disposed about the inner member.
- a deployment sheath may be disposed about the inner member and the stent.
- a gear rack assembly may be coupled to the deployment sheath.
- a handle may be coupled to the inner member and to the deployment sheath.
- the handle may include a thumbwheel that is coupled to the gear rack assembly so that rotation of the thumbwheel proximally retracts the gear rack assembly and the deployment sheath.
- An engagement mechanism may be coupled to the gear rack assembly. The engagement mechanism may be configured to catch on the enlarged proximal end of the inner member after the deployment sheath is proximally retracted a distance, and proximally retract the inner member.
- An example method for deploying a stent may include providing a stent delivery system.
- the stent delivery system may include an inner member having an enlarged proximal end and an atraumatic distal tip.
- a stent may be disposed about the inner member.
- a deployment sheath may be disposed about the inner member and the stent.
- a gear rack assembly may be coupled to the deployment sheath.
- a handle may be coupled to the inner member and to the deployment sheath.
- the handle may include a thumbwheel that is coupled to the gear rack assembly so that rotation of the thumbwheel proximally retracts the gear rack assembly and the deployment sheath.
- An engagement mechanism may be coupled to the gear rack assembly.
- the engagement mechanism may be configured to catch on the enlarged proximal end of the inner member, after the deployment sheath is proximally retracted a first distance, and proximally retract the inner member.
- the method may also include advancing the stent delivery system through a body lumen to a position adjacent to an area of interest and rotating the thumbwheel to proximally retract the gear rack assembly the first distance. Retraction of the gear rack assembly the first distance may result in the engagement mechanism catching on the enlarged proximal end of the inner member.
- the method may also include further rotating the thumbwheel to further proximally retract the gear rack assembly and to proximally retract the inner member.
- FIG. 1 is a partial cross-sectional side view of an example stent delivery system
- FIG. 2 is a side view of a portion of the example stent delivery system shown in FIG. 1 ;
- FIG. 3 is a side view of another portion of the example stent delivery system shown in FIG. 1 ;
- FIG. 4 is a side view of another portion of the example stent delivery system shown in FIG. 1 ;
- FIG. 5 is a side view of another portion of the example stent delivery system shown in FIG. 1 ;
- FIG. 6 is a side view of another portion of the example stent delivery system shown in FIG. 1 ;
- FIG. 7 is a perspective view of another portion of the example stent delivery system shown in FIG. 1 ;
- FIG. 8 is a side view of another portion of the example stent delivery system shown in FIG. 1 ;
- FIGS. 9-13 illustrate the use of the stent delivery system illustrated in FIG. 1 ;
- FIG. 14 is a side view of a portion of another example stent delivery system
- FIG. 15 is a side view of a portion of another example stent delivery system.
- FIG. 16 is a side view of a portion of another example stent delivery system.
- FIG. 1 illustrates an example stent delivery system 10 .
- System 10 may include an elongate shaft 12 and a handle 14 coupled to shaft 12 .
- system 10 may be used to deliver a suitable stent, graft, endoprosthesis or the like to an area of interest within a body lumen of a patient.
- the body lumen may be a blood vessel located near the heart (e.g., within or near a cardiac vessel), within a peripheral vessel, within a neurological vessel, or at any other suitable location.
- Deployment of the stent may include the proximal retraction of a retraction sheath 16 , which overlies the stent.
- Retraction of sheath 16 may include the actuation of an actuation member 18 generally disposed at handle 14 .
- actuation member 18 is a thumb wheel that can be rotated by a clinician in order to accomplish proximal retraction of deployment sheath 16 .
- Numerous other actuation members are contemplated.
- a number of other structures and features of system 10 can be seen in FIG. 1 and are labeled with reference numbers. Additional discussion of these structures can be found below.
- FIGS. 2-6 illustrate at least some of the structural components that may be included as a part of system 10 .
- system 10 may include an inner shaft or member 20 as illustrated in FIG. 2 .
- inner member 20 may be a tubular structure and, thus, may include a lumen (not shown).
- the lumen may be a guidewire lumen that extends along at least a portion of the length of inner member 20 . Accordingly, system 10 may be advanced over a guidewire to the desired target location in the vasculature.
- the lumen may be a perfusion/aspiration lumen that allows portions, components, or all of system 10 to be flushed, perfused, aspirated, or the like.
- Inner member 20 may include a stent receiving region 22 about which a stent (not shown, can be seen in FIGS. 3-4 ) may be disposed.
- the length and/or configuration of stent receiving region 22 may vary.
- stent receiving region 22 may have a length sufficient for the stent to be disposed thereon. It can be appreciated that as the length of the stent utilized for system 10 increases, the length of stent receiving region 22 also increases.
- Ports 24 may extend through the wall of inner member 20 such that fluid may be infused through the lumen of inner member 20 and may be flushed through ports 24 . This may be desirable for a number of reasons. For example, ports 24 may allow a clinician to evacuate air bubbles that may be trapped adjacent the stent by perfusing fluid through ports 24 . In addition, ports 24 may be used to aspirate fluid that may be disposed along inner member 20 . Ports 24 may also aid in sterilization and/or other preparatory processing steps that may be involved in preparing system 10 for sale.
- a tip 26 may be attached to or otherwise disposed at the distal end of inner member 20 .
- Tip 26 may generally have a rounded or smooth shape that provides a generally atraumatic distal end to system 10 .
- tip 26 may have a smooth tapered distal portion 28 that gently tapers.
- Tip may also include a proximal ridge 30 that is configured so that sheath 16 can abut therewith.
- Tip 26 may also include a tapered proximal portion 33 . Numerous other shapes and/or configurations are contemplated for tip 26 .
- Tip 26 may also include one or more cutouts or flats 32 formed therein.
- flats 32 are understood to be cutouts or flattened portions of tip 26 where the outer dimension or profile of tip 26 is reduced.
- the name “flats” comes from the fact that these regions may have a somewhat “flat” appearance when compared to the remainder of tip 26 , which generally may have a rounded profile.
- the shape, however, of flats 32 is not meant to be limited to being flat or planar as numerous shapes are contemplated.
- Flats 32 may allow for a gap or space to be defined between inner member 20 and deployment sheath 16 when sheath 16 abuts proximal ridge 30 of tip 26 . This gap may allow for fluid, for example perfusion fluid passed through ports 24 , to flow out from sheath 16 .
- flats 32 may be used in conjunction with ports 24 to allow portions or all of system 10 to be flushed or otherwise evacuated of air bubbles.
- FIG. 3 illustrates inner member 20 with some additional structure of system 10 .
- a stent 34 is disposed about inner member 20 (e.g., about stent receiving region 22 of inner member 20 ).
- stent 34 is a self-expanding stent. Accordingly, stent 34 may be biased to outwardly expand. Because of this, stent 34 may not be “loaded onto” inner member 20 in a strict sense but rather may be thought of as being disposed about or surrounding inner member 20 . Stent 34 may then be restrained within deployment sheath 16 . In alternative embodiments, however, stent 34 may be directly loaded onto inner member 20 via crimping or any other suitable mechanical holding mechanism.
- An intermediate tube 36 may also be disposed over inner member 20 .
- intermediate tube 36 may extend from a position adjacent to the proximal end of inner member 20 to a position proximal of the distal end of inner member 20 .
- Intermediate tube 36 may include a bumper 38 .
- bumper 38 may function by preventing any unwanted proximal movement of stent 14 during navigation and/or deployment of stent 38 .
- Bumper 38 may have any suitable form.
- bumper 38 may be defined by a relatively short tube or sleeve that is disposed about intermediate tube 36 .
- the material utilized for the sleeve may be the same or different from that of intermediate tube 36 .
- Intermediate tube 36 may have a tapered or otherwise smooth transition in outer diameter adjacent bumper 38 .
- polymeric material may be disposed or reflowed adjacent bumper 38 (which may include disposing the polymeric material about a portion or all of bumper 38 ) so as to define a gentle transition in outer diameter at bumper 38 .
- Other configurations are contemplated and may be utilized in alternative embodiments.
- FIG. 4 illustrates additional structure of system 10 .
- deployment sheath 16 can be seen disposed over inner member 20 , intermediate tube 36 , and stent 34 .
- sheath 16 is configured to shift between a first position, for example as shown in FIG. 4 , where sheath 16 overlies stent 34 and a second position where sheath 16 is proximally retracted to a position substantially proximal of stent 34 .
- the first position may be utilized during navigation of system 10 to the appropriate location within a body lumen and the second position may be used to deploy stent 34 .
- Sheath 16 may include a flared portion 40 where the outer diameter of sheath 16 is increased. In portion 40 , the thickness of the tubular wall of sheath 16 may or may not be increased. Flared portion 40 may be desirable for a number of reasons. For example, flared portion 40 may allow sheath 16 to have an adequate inner dimension that is suitable so that sheath 16 may be disposed about stent 34 and bumper 38 .
- sheath 16 may include a reinforcing member 42 embedded or otherwise included therewith.
- Reinforcing member 42 may have any number of a variety of different configurations.
- reinforcing member 42 may include a braid, coil, mesh, combinations thereof, or the like, or any other suitable configuration.
- reinforcing member 42 may extend along the entire length of sheath 16 .
- reinforcing member 42 may extend along one or more portions of the length of sheath 16 .
- reinforcing member 42 may extend along flared portion 40 .
- Sheath 16 may also include a radiopaque marker or band 44 .
- marker band 44 may be disposed adjacent to the distal end 46 of sheath 16 .
- One or more additional marker bands 44 may be disposed along other portions of sheath 16 or other portions of system 10 .
- Marker band 44 may allow the distal end 46 of sheath 16 to be fluoroscopically visualized during advancement of system 10 and/or deployment of stent 34 .
- FIG. 4 also illustrates the distal end 46 of sheath 16 abutting proximal ridge 30 .
- stent 34 can be flushed (e.g., to remove air bubbles) by infusing fluid through inner member 20 and through ports 24 . Because of flats 32 , fluid may be allowed to be flushed out of sheath 16 by passing through the gaps formed between inner member 20 and sheath 16 at flats 32 .
- FIG. 5 illustrates a distal portion 48 of handle 14 .
- handle 14 is attached to an outer member 50 .
- Outer member 50 may be disposed about sheath 16 and extend along a portion of the length of sheath 16 .
- system 10 may include four tubular structures that may be coaxially arranged—namely outer member 50 , deployment sheath 16 , intermediate tube 36 , and inner member 20 .
- outer member 50 may provide system 10 with a number of desirable benefits.
- outer member 50 may include or otherwise be formed from a lubricious material that can reduce friction that may be associated with proximally retracting sheath 16 .
- outer member 50 may comprise a surface that can be clamped or otherwise locked so that the position of system 10 can be maintained without negatively impacting the refraction of sheath 16 (which might otherwise be impacted if sheath 16 was to be clamped). Numerous other desirable benefits may also be achieved through the use of outer member 50 .
- Sheath 16 may pass proximally through outer member 50 and extend proximally back within handle 14 . Intermediate tube 36 and inner member 20 both also extend back within handle 14 and are disposed within sheath 14 .
- the proximal end of sheath 16 may be attached to a gear rack assembly 52 with a fastener or clip 54 as illustrated in FIG. 6 .
- Gear rack assembly 52 may include a plurality of teeth or gears 56 . In practice, teeth 56 may be configured to engage with corresponding teeth or gears (not shown) on thumbwheel 18 .
- thumbwheel 18 via gearing thereof with gears 56 , can be utilized to proximally retract gear rack assembly 52 and, thus, sheath 16 .
- Other structural arrangements may be utilized to accomplish proximal retraction of gear rack assembly 52 through the actuation of thumbwheel 18 or any other suitable actuation member.
- Gear rack assembly 52 may also include a flared proximal end 58 .
- the main body of gear rack assembly 52 may be disposed within handle 14 and proximal end 58 may be disposed along the exterior of handle 14 .
- Gear rack assembly 52 may have a slot or groove 68 formed therein (not shown in FIG. 6 , can be seen in FIG. 8 ). Groove 68 may extend the length of gear rack assembly 52 , including extending along proximal end 58 .
- proximal end 58 may be generally located near the proximal end of inner member 20 , the flared shape of proximal end 58 and the orientation of groove 68 may allow proximal end 58 to function as a guidewire introducer or funnel that may assist a clinician in placing, holding, removing, and/or exchanging a guidewire extending through inner member 20 .
- intermediate tube 36 may need to be configured so as to provide the desired longitudinal support necessary to limit proximal movement of stent 34 .
- the proper configuration of these structures may be maintained, at least in part, through the use of a clip member 60 as illustrated in FIG. 7 .
- clip member 60 is disposed within handle 14 and is configured to be secured along the interior of handle 14 . Accordingly, clip member 60 allows the longitudinal position of one or more portions of system 10 to be fixed relative to handle 14 .
- clip member 60 may include one or more fasteners or legs 62 a / 62 b .
- handle 14 may have one or more slots, grooves, openings, or the like that are configured to seat legs 62 a / 62 b such that the relative position of clip member 60 relative to handle 14 is fixed.
- clip member 60 may be configured to “snap in” to handle 14 . This may desirably simplify manufacturing.
- clip member 60 may be such that it is positioned near one or more structures of system 10 .
- clip member 60 may be configured so that at least a portion thereof is positioned within a groove 68 (not shown in FIG. 7 , can be seen in FIG. 8 ) of gear rack assembly 52 . This may desirably place clip member 60 near inner member 20 and intermediate tube 36 (which may also extend through groove 68 ) such that clip member 60 can be associated therewith.
- Inner member 20 may be coupled with clip member 60 such that the longitudinal position of inner member 20 can be fixed relative to handle 14 .
- clip member 60 may include one or more tubular sections, for example a tubular section 64 , through which inner member 20 may extend.
- a sleeve or cuff 66 may be disposed about inner member 20 at a position proximal of the proximal end of clip member 60 .
- Sleeve 66 may substantially prevent any unwanted distal movement of inner member 20 via interference with clip member 60 .
- thumbwheel 18 When stent 34 is deployed, a clinician may actuate the actuation thumbwheel 18 . Because of the association of thumbwheel 18 with gear rack assembly 52 , relative rotation of thumbwheel 18 causes proximal movement of deployment sheath 16 . As deployment sheath 16 proximally retracts, stent 34 is “uncovered” and (if stent 34 is a self-expanding stent) can expand within the body lumen.
- the relative position of the inner member or structure (e.g., the structure about which the stent is disposed or is loaded on) remains fixed relative to the deployment sheath during stent deployment.
- the inner member is removed from the body lumen by proximally retracting it after the stent is fully deployed.
- the deployment process in typical systems generally includes: (1) proximally retracting the deployment sheath to fully deploy the stent and then (2) proximally retracting the inner member and/or other components of the system by pulling the inner member proximally through the interior of the deployed stent and, ultimately, out from the body.
- the proximal retracting of the inner member through the interior of the stent also includes proximally retracting the tip through the interior of the stent.
- Such tips may have an outer profile that approximates the outer diameter of the deployment sheath. In other words, the outer profile of the tip may be relatively “enlarged” as compared to the inner member. Because of the relatively large profile of the tip, there may be a possibility that the tip could engage the stent when being proximally retracted. This could displace the position of the stent, disrupt the structure of the stent, or have any number of undesirable effects.
- Stent delivery system 10 is designed to help reduce the possibility that tip 26 could “catch” on stent 34 .
- system 10 is designed to proximally retract inner member 20 along with deployment sheath 16 . This, desirably, brings tip 26 proximally during stent 34 deployment and obviates the need for the clinician to pull tip 26 back through the full length of stent 34 after deployment.
- a clinician may actuate thumbwheel 18 to begin proximally retracting deployment sheath 16 . After sheath 16 is retracted a relatively short distance, a structural feature of system 10 may interact with inner member 20 so that inner member 20 begins to also retract upon further retraction of deployment sheath 16 .
- the structural feature of system that may result in proximal movement of inner member 20 includes a feature of gear rack assembly 52 (which is already associated with proximal movement of deployment sheath 16 ).
- gear rack assembly 52 may include a loop or catch 70 as shown in FIG. 8 .
- Loop 70 may be positioned a relatively short distance proximally of clip member 60 .
- Inner member 20 may extend through loop 70 . The short distance between loop 70 and clip member 60 may allow deployment sheath 16 to begin proximally retracting to uncover stent 34 and, if stent 34 is a self-expanding stent, for stent 34 to begin expanding.
- intermediate tube 36 (which is shown spaced from clip member 60 in FIG. 8 but in practice will abut clip member 60 ) may be positioned so that it abuts clip member 60 . Because clip member 60 is fixed to handle 14 , intermediate tube 36 remains substantially fixed and, thus, prevents any unwanted proximal movement of stent 34 during deployment.
- FIGS. 9-13 schematically illustrate the deployment of stent 34 with system 10 .
- FIG. 9 illustrates the relative position of the various structures of system 10 prior to deployment.
- deployment sheath 16 With actuation of thumbwheel 18 , deployment sheath 16 beings to proximally retract (via gear rack assembly 52 ) to uncover stent 34 as illustrated in FIG. 10 .
- gear rack assembly 52 is proximally retracted a distance sufficient to result in loop 70 engaging sleeve 66 of inner member 20
- further proximal retraction of gear rack assembly 52 begins to also proximally retract inner member 20 and, thus, tip 26 as shown in FIG. 11 .
- Proximal retraction may continue until the full length of stent 34 is uncovered and, thus, stent 34 is deployed as shown in FIG. 12 .
- tip 26 may be positioned near the proximal end of the stent 34 at the completion of deployment. This may include positioning proximal ridge 30 of tip 26 (which may be a possible “catch point” of tip 26 ) at or near the proximal end of stent 34 . Because of this, tip 26 only needs to travel a relatively short distance in order to clear stent 34 as shown in FIG. 13 .
- FIG. 14 illustrates a portion of another example gear rack assembly 152 , which can be used with system 10 as well as other systems disclosed and contemplated herein, that includes a projection 170 that can interact with sleeve 66 .
- projection 170 may project outward from the inner surface of gear rack assembly 152 (e.g., along a portion or all of the interior of groove 152 ).
- Projection 170 may be sufficiently large so that it can interfere with sleeve 66 and, thus, catch on sleeve 66 so as to proximally retract inner member 20 .
- FIG. 15 illustrates a portion of another example gear rack assembly 252 , which can be used with system 10 as well as other systems disclosed and contemplated herein, that includes a horseshoe shaped clip 270 that can interact with sleeve 66 .
- Clip 270 is similar to loop 70 except that clip 270 does not form a full loop of material that surrounds inner member 20 . Such a configuration may be desirable for a number of reasons. For example, clip 270 may allow assembly of system 10 to include snapping inner member 20 into clip 270 rather than feeding inner member 20 through a complete loop structure. Other forms, shapes, and configurations are contemplated for clip 270 .
- FIG. 16 illustrates a portion of another example gear rack assembly 352 , which can be used with system 10 as well as other systems disclosed and contemplated herein, that includes a loop assembly 370 that can interact with sleeve 66 .
- Loop assembly 370 may include loop 370 a and a rod 370 b that may be accessible along the exterior of handle 14 so that a user can manipulate the position of inner member 20 manually. It should be noted that loop 370 a may be complete loop (e.g., similar to loop 70 ) or a partial loop (e.g., similar to clip 270 ). Other forms and configurations are contemplated for loop assembly 370 .
- Shaft 12 , deployment sheath 16 , and inner member 20 , and/or other components of system 10 may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, combinations thereof, and the like, or any other suitable material.
- suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g.,
- Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does.
- linear elastic and/or non-super-elastic nitinol as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear that the super elastic plateau and/or flag region that may be seen with super elastic nitinol.
- linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.
- linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both of these materials can be distinguished from other linear elastic materials such as stainless steel (that can also can be distinguished based on its composition), which may accept only about 0.2-0.44% strain before plastically deforming.
- the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by DSC and DMTA analysis over a large temperature range.
- the mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature.
- the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region.
- the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties and has essentially no yield point.
- the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel.
- a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Some examples of nickel titanium alloys are disclosed in U.S. Pat. Nos. 5,238,004 and 6,508,803, which are incorporated herein by reference. Other suitable materials may include ULTANIUMTM (available from Neo-Metrics) and GUM METALTM (available from Toyota).
- a superelastic alloy for example a superelastic nitinol can be used to achieve desired properties.
- portions or all of shaft 12 , deployment sheath 16 , and inner member 20 may also be doped with, made of, or otherwise include a radiopaque material including those listed herein or other suitable radiopaque materials.
- a degree of MRI compatibility is imparted into system 10 .
- MRI Magnetic Resonance Imaging
- shaft 12 , deployment sheath 16 , and inner member 20 may be made of a material that does not substantially distort the image and create substantial artifacts (artifacts are gaps in the image).
- Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image.
- Shaft 12 , deployment sheath 16 , and inner member 20 , or portions thereof, may also be made from a material that the MRI machine can image.
- Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
- cobalt-chromium-molybdenum alloys e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like
- nickel-cobalt-chromium-molybdenum alloys e.g., UNS: R30035 such as MP35-N® and the like
- nitinol and the like
- suitable polymers that may be used to form shaft 12 , deployment sheath 16 , and inner member 20 , and/or other components of system 10 may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide, block
- the exterior surface of the system 10 may include a coating, for example a lubricious, a hydrophilic, a protective, or other type of coating.
- Hydrophobic coatings such as fluoropolymers provide a dry lubricity which improves device handling and exchanges.
- Lubricious coatings improve steerability and improve lesion crossing capability.
- Suitable lubricious polymers may include silicone and the like, polymers such as high-density polyethylene (HDPE), polytetrafluoroethylene (PTFE), polyarylene oxides, polyvinylpyrolidones, polyvinylalcohols, hydroxy alkyl cellulosics, algins, saccharides, caprolactones, and the like, and mixtures and combinations thereof.
- Hydrophilic polymers may be blended among themselves or with formulated amounts of water insoluble compounds (including some polymers) to yield coatings with suitable lubricity, bonding, and solubility.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/240,765 US9220619B2 (en) | 2010-11-17 | 2011-09-22 | Stent delivery system |
US14/968,026 US9974679B2 (en) | 2010-11-17 | 2015-12-14 | Stent delivery system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41483510P | 2010-11-17 | 2010-11-17 | |
US41485810P | 2010-11-17 | 2010-11-17 | |
US13/240,765 US9220619B2 (en) | 2010-11-17 | 2011-09-22 | Stent delivery system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/968,026 Continuation US9974679B2 (en) | 2010-11-17 | 2015-12-14 | Stent delivery system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130013047A1 US20130013047A1 (en) | 2013-01-10 |
US9220619B2 true US9220619B2 (en) | 2015-12-29 |
Family
ID=44774133
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/240,765 Active 2031-12-16 US9220619B2 (en) | 2010-11-17 | 2011-09-22 | Stent delivery system |
US14/968,026 Active 2032-02-22 US9974679B2 (en) | 2010-11-17 | 2015-12-14 | Stent delivery system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/968,026 Active 2032-02-22 US9974679B2 (en) | 2010-11-17 | 2015-12-14 | Stent delivery system |
Country Status (6)
Country | Link |
---|---|
US (2) | US9220619B2 (fr) |
EP (2) | EP2640320B1 (fr) |
JP (1) | JP5891236B2 (fr) |
CN (1) | CN103298432B (fr) |
AU (1) | AU2011329443B2 (fr) |
WO (1) | WO2012067714A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10064746B2 (en) | 2012-06-13 | 2018-09-04 | Cook Medical Technologies Llc | Systems and methods for deploying a portion of a stent using at least one coiled member |
WO2020168117A1 (fr) | 2019-02-13 | 2020-08-20 | Boston Scientific Scimed, Inc. | Systèmes d'implantation d'endoprothèse |
WO2021067804A1 (fr) | 2019-10-04 | 2021-04-08 | Boston Scientific Scimed, Inc. | Systèmes d'implantation d'endoprothèse |
US11013627B2 (en) | 2018-01-10 | 2021-05-25 | Boston Scientific Scimed, Inc. | Stent delivery system with displaceable deployment mechanism |
US11083606B2 (en) | 2017-12-05 | 2021-08-10 | Cook Medical Technologies Llc | Endograft delivery device assembly |
US11166833B2 (en) | 2019-04-30 | 2021-11-09 | Cook Medical Technologies Llc | Line pull assembly for a prosthetic delivery device |
US11571317B2 (en) | 2018-02-15 | 2023-02-07 | Boston Scientific Scimed Inc. | Devices and methods for controlled delivery of a stent |
WO2023154563A1 (fr) | 2022-02-14 | 2023-08-17 | Boston Scientific Scimed, Inc. | Dispositif d'obturation permettant de fermer une ouverture d'accès de grande taille |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9155619B2 (en) * | 2011-02-25 | 2015-10-13 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US10376362B2 (en) | 2012-04-05 | 2019-08-13 | Medtronic Vascular Galway | Valve introducers with adjustable deployment mechanism and implantation depth gauge |
US9486349B2 (en) | 2012-08-10 | 2016-11-08 | W. L. Gore & Associates, Inc. | Systems and methods of deployment of endoluminal devices |
WO2014143197A1 (fr) * | 2013-03-12 | 2014-09-18 | Abbott Cardiovascular Systems Inc. | Cathéter ayant une structure tubulaire mobile et une butée proximale |
CN103505311B (zh) * | 2013-08-08 | 2016-01-13 | 浙江归创医疗器械有限公司 | 植入医疗器械输送装置及其控制方法 |
US9974676B2 (en) | 2013-08-09 | 2018-05-22 | Cook Medical Technologies Llc | Wire collection device with geared advantage |
US9974677B2 (en) | 2013-08-20 | 2018-05-22 | Cook Medical Technologies Llc | Wire collection device for stent delivery system |
US9974678B2 (en) | 2014-03-10 | 2018-05-22 | Cook Medical Technologies Llc | Wire collection device with varying collection diameter |
US10149758B2 (en) | 2014-04-01 | 2018-12-11 | Medtronic, Inc. | System and method of stepped deployment of prosthetic heart valve |
US10959868B2 (en) | 2014-09-15 | 2021-03-30 | Cook Medical Technologies, LLC | Ratchet operated vascular intervention device delivery system |
US10098768B2 (en) | 2014-09-15 | 2018-10-16 | Cook Medical Technologies Llc | Ratchet operated vascular intervention device delivery system |
US9820876B2 (en) | 2014-09-15 | 2017-11-21 | Cook Medical Technologies Llc | Pivot operated vascular intervention device delivery system |
US9820877B2 (en) | 2014-09-15 | 2017-11-21 | Cook Medical Technologies Llc | Wedge holding mechanism for vascular intervention device delivery system |
US10758349B2 (en) | 2015-03-13 | 2020-09-01 | Medtronic Vascular, Inc. | Delivery device for prosthetic heart valve with capsule adjustment device |
US11504236B2 (en) | 2015-03-13 | 2022-11-22 | Medtronic Vascular, Inc. | Delivery device for prosthetic heart valve with capsule adjustment device |
US10327899B2 (en) | 2015-03-13 | 2019-06-25 | Medtronic Vascular, Inc. | Delivery device for prosthetic heart valve with capsule adjustment device |
USD795425S1 (en) | 2015-08-12 | 2017-08-22 | Cook Medical Technologies Llc | Ratchet pawl for thumbwheel actuated stent delivery system |
USD786429S1 (en) | 2015-09-04 | 2017-05-09 | Cook Medical Technologies Llc | Handle for thumbwheel actuated medical stent delivery device |
US11351048B2 (en) | 2015-11-16 | 2022-06-07 | Boston Scientific Scimed, Inc. | Stent delivery systems with a reinforced deployment sheath |
US11065137B2 (en) | 2016-02-26 | 2021-07-20 | Boston Scientific Scimed, Inc. | Stent delivery systems with a reduced profile |
WO2017152097A1 (fr) | 2016-03-03 | 2017-09-08 | Medtronic Vascular Inc. | Système de pose de prothèse à tuteur ayant une butée |
CN105640681A (zh) * | 2016-03-24 | 2016-06-08 | 常州乐奥医疗科技股份有限公司 | 一种具有可回撤功能的支架输送系统 |
JP2019509833A (ja) * | 2016-03-29 | 2019-04-11 | ヴェニティ インコーポレイテッドVeniti, Inc. | 機械的ステント補助送達システム |
CN107280831B (zh) * | 2016-04-12 | 2019-02-01 | 苏州茵络医疗器械有限公司 | 血管支架输送系统及其导管组件 |
CN111096833B (zh) * | 2018-10-25 | 2022-06-07 | 东莞市先健医疗有限公司 | 输送器 |
Citations (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3613684A (en) | 1969-09-19 | 1971-10-19 | David S Sheridan | Trocar catheters |
US4665918A (en) | 1986-01-06 | 1987-05-19 | Garza Gilbert A | Prosthesis system and method |
US4732152A (en) | 1984-12-05 | 1988-03-22 | Medinvent S.A. | Device for implantation and a method of implantation in a vessel using such device |
US4906232A (en) | 1988-03-01 | 1990-03-06 | Abbott Laboratories | Intravascular delivery device |
US5026377A (en) | 1989-07-13 | 1991-06-25 | American Medical Systems, Inc. | Stent placement instrument and method |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5158548A (en) | 1990-04-25 | 1992-10-27 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5163905A (en) | 1990-01-12 | 1992-11-17 | Don Michael T Anthony | Regional perfusion dissolution catheter |
US5201757A (en) | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
US5221261A (en) | 1990-04-12 | 1993-06-22 | Schneider (Usa) Inc. | Radially expandable fixation member |
US5238004A (en) | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
US5346471A (en) | 1993-03-22 | 1994-09-13 | Raulerson J Daniel | Dual lumen catheter |
US5433723A (en) | 1991-10-11 | 1995-07-18 | Angiomed Ag | Apparatus for widening a stenosis |
US5443907A (en) | 1991-06-18 | 1995-08-22 | Scimed Life Systems, Inc. | Coating for medical insertion guides |
US5445646A (en) | 1993-10-22 | 1995-08-29 | Scimed Lifesystems, Inc. | Single layer hydraulic sheath stent delivery apparatus and method |
EP0676936A1 (fr) | 1992-12-30 | 1995-10-18 | Schneider (Usa) Inc. | Appareil de deploiement d'extenseurs implantables |
EP0684022A2 (fr) | 1994-05-12 | 1995-11-29 | Endovascular Technologies, Inc. | Système à greffe intravasculaire multicapsulaire avec bifurcation |
US5534007A (en) | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5571135A (en) | 1993-10-22 | 1996-11-05 | Scimed Life Systems Inc. | Stent delivery apparatus and method |
WO1997017899A1 (fr) | 1995-11-13 | 1997-05-22 | Corvita Corporation | Appareil de mise en place de protheses endoluminales, destine a des protheses de longueur variable et ayant une capacite de retrait |
EP0775470A1 (fr) | 1995-11-14 | 1997-05-28 | Schneider (Europe) Ag | Dispositif pour l'implantation d'une endoprothèse et procédé de fabrication d'un dispositif pour l'implantation d'une endoprothèse |
US5662703A (en) | 1995-04-14 | 1997-09-02 | Schneider (Usa) Inc. | Rolling membrane stent delivery device |
US5674242A (en) | 1995-06-06 | 1997-10-07 | Quanam Medical Corporation | Endoprosthetic device with therapeutic compound |
US5695499A (en) | 1994-10-27 | 1997-12-09 | Schneider (Usa) Inc. | Medical device supported by spirally wound wire |
US5702364A (en) | 1988-02-29 | 1997-12-30 | Scimed Life Systems Inc | Fixed-wire dilatation balloon catheter |
US5707376A (en) * | 1992-08-06 | 1998-01-13 | William Cook Europe A/S | Stent introducer and method of use |
US5713860A (en) | 1992-11-02 | 1998-02-03 | Localmed, Inc. | Intravascular catheter with infusion array |
US5733267A (en) | 1995-04-05 | 1998-03-31 | Scimed Life Systems, Inc. | Pull back stent delivery system |
US5755777A (en) | 1991-10-25 | 1998-05-26 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5772669A (en) * | 1996-09-27 | 1998-06-30 | Scimed Life Systems, Inc. | Stent deployment catheter with retractable sheath |
US5772609A (en) | 1993-05-11 | 1998-06-30 | Target Therapeutics, Inc. | Guidewire with variable flexibility due to polymeric coatings |
US5788707A (en) | 1995-06-07 | 1998-08-04 | Scimed Life Systems, Inc. | Pull back sleeve system with compression resistant inner shaft |
US5830181A (en) | 1997-02-07 | 1998-11-03 | Advanced Cardiovascular Systems, Inc. | Perfusion catheter with high flow distal tip |
US5833694A (en) | 1995-05-25 | 1998-11-10 | Medtronic, Inc. | Stent assembly and method of use |
US5833706A (en) | 1991-07-05 | 1998-11-10 | Scimed Life Systems, Inc. | Single operator exchange perfusion catheter having a distal catheter shaft section |
US5843090A (en) | 1996-11-05 | 1998-12-01 | Schneider (Usa) Inc. | Stent delivery device |
US5843091A (en) | 1995-05-12 | 1998-12-01 | Ballard Medical Products | Extension regulator for catheter carried medical instruments |
US5882347A (en) | 1996-09-09 | 1999-03-16 | Cordis Europa, N.V. | Catheter with internal stiffening ridges |
US5891154A (en) | 1997-05-06 | 1999-04-06 | Advanced Cardiovascular System, Inc. | Passive perfusion stent delivery system |
US5906619A (en) | 1997-07-24 | 1999-05-25 | Medtronic, Inc. | Disposable delivery device for endoluminal prostheses |
US5954764A (en) | 1996-09-20 | 1999-09-21 | Parodi; Juan Carlos | Device for concurrently placing an endovascular expander with an endovascular prosthesis |
WO1999049808A1 (fr) | 1998-03-31 | 1999-10-07 | Salviac Limited | Catheter de mise en place |
US5980483A (en) | 1996-05-21 | 1999-11-09 | Dimitri; Mauro | Drainage catheter for continent urinary neo-bladders |
US6017577A (en) | 1995-02-01 | 2000-01-25 | Schneider (Usa) Inc. | Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices |
US6019778A (en) | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6033413A (en) | 1998-04-20 | 2000-03-07 | Endocare, Inc. | Stent delivery system |
WO2000018330A1 (fr) | 1998-09-30 | 2000-04-06 | Impra, Inc. | Mecanisme de mise en place d'extenseur implantable |
WO2000023139A1 (fr) | 1998-10-16 | 2000-04-27 | Scimed Life Systems, Inc. | Catheter a perfusion pour pose de stent |
US6059813A (en) | 1998-11-06 | 2000-05-09 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
US6117140A (en) | 1998-06-26 | 2000-09-12 | Scimed Life Systems, Inc. | Stent delivery device |
US6120522A (en) | 1998-08-27 | 2000-09-19 | Scimed Life Systems, Inc. | Self-expanding stent delivery catheter |
US6123723A (en) | 1998-02-26 | 2000-09-26 | Board Of Regents, The University Of Texas System | Delivery system and method for depolyment and endovascular assembly of multi-stage stent graft |
US6139510A (en) | 1994-05-11 | 2000-10-31 | Target Therapeutics Inc. | Super elastic alloy guidewire |
WO2000067828A1 (fr) | 1999-05-07 | 2000-11-16 | Scimed Life Systems, Inc. | Catheter a ballonnet pourvu d'un revetement lubrifiant |
WO2000071059A1 (fr) | 1999-05-20 | 2000-11-30 | Boston Scientific Limited | Systeme de pose d'endoprothese pour prevenir la formation d'un vrillage, et procede de chargement et d'utilisation |
US6176849B1 (en) | 1999-05-21 | 2001-01-23 | Scimed Life Systems, Inc. | Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat |
US6206888B1 (en) | 1997-10-01 | 2001-03-27 | Scimed Life Systems, Inc. | Stent delivery system using shape memory retraction |
US6254609B1 (en) | 1999-01-11 | 2001-07-03 | Scimed Life Systems, Inc. | Self-expanding stent delivery system with two sheaths |
US6287329B1 (en) | 1999-06-28 | 2001-09-11 | Nitinol Development Corporation | Stent keeper for a self-expanding stent delivery system |
WO2001076676A2 (fr) | 2000-04-07 | 2001-10-18 | Image-Guided Neurologics, Inc. | Systeme d'introduction de materiel medical |
US20010034549A1 (en) | 2000-02-29 | 2001-10-25 | Bartholf Heather A. | Stent delivery system having delivery catheter member with a clear transition zone |
US20010037141A1 (en) | 1997-11-14 | 2001-11-01 | Yee Carl E. | Multi-sheath delivery catheter |
US6322586B1 (en) | 2000-01-10 | 2001-11-27 | Scimed Life Systems, Inc. | Catheter tip designs and method of manufacture |
US6331184B1 (en) | 1999-12-10 | 2001-12-18 | Scimed Life Systems, Inc. | Detachable covering for an implantable medical device |
US6330884B1 (en) | 1997-11-14 | 2001-12-18 | Transvascular, Inc. | Deformable scaffolding multicellular stent |
US6355060B1 (en) | 1994-06-08 | 2002-03-12 | Medtronic Ave, Inc. | Apparatus and method for deployment release of intraluminal prostheses |
US6375676B1 (en) | 1999-05-17 | 2002-04-23 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with enhanced delivery precision and stent delivery system |
US6379365B1 (en) | 1999-03-29 | 2002-04-30 | Alexis Diaz | Stent delivery catheter system having grooved shaft |
US20020058951A1 (en) | 1997-03-13 | 2002-05-16 | Gary R. Fiedler | Fluid actuated stent delivery system |
US6391050B1 (en) | 2000-02-29 | 2002-05-21 | Scimed Life Systems, Inc. | Self-expanding stent delivery system |
US6398802B1 (en) | 1999-06-21 | 2002-06-04 | Scimed Life Systems, Inc. | Low profile delivery system for stent and graft deployment |
US20020082550A1 (en) | 1999-12-21 | 2002-06-27 | Advanced Cardiovascular Systems, Inc. | Catheter having a soft distal tip |
US20020095203A1 (en) | 2001-01-18 | 2002-07-18 | Intra Therapeutics, Inc. | Catheter system with spacer member |
US6425898B1 (en) | 1998-03-13 | 2002-07-30 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US20020103525A1 (en) | 2001-02-01 | 2002-08-01 | Charles Cummings | Medical device delivery system |
US20020165523A1 (en) | 2000-03-02 | 2002-11-07 | Chin Albert C. C. | Multilayer medical device |
US6508803B1 (en) | 1998-11-06 | 2003-01-21 | Furukawa Techno Material Co., Ltd. | Niti-type medical guide wire and method of producing the same |
US6514228B1 (en) | 1999-03-05 | 2003-02-04 | Scimed Life Systems, Inc. | Balloon catheter having high flow tip |
US6544278B1 (en) | 1998-11-06 | 2003-04-08 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
US6576006B2 (en) | 1996-07-15 | 2003-06-10 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US6602226B1 (en) | 2000-10-12 | 2003-08-05 | Scimed Life Systems, Inc. | Low-profile stent delivery system and apparatus |
US20030163156A1 (en) | 2002-02-28 | 2003-08-28 | Stephen Hebert | Guidewire loaded stent for delivery through a catheter |
US6613014B1 (en) | 2000-06-09 | 2003-09-02 | Advanced Cardiovascular Systems, Inc. | Catheter hub with detachable push device |
US6626934B2 (en) | 1999-06-14 | 2003-09-30 | Scimed Life Systems, Inc. | Stent delivery system |
US6709667B1 (en) * | 1999-08-23 | 2004-03-23 | Conceptus, Inc. | Deployment actuation system for intrafallopian contraception |
US6726714B2 (en) | 2001-08-09 | 2004-04-27 | Scimed Life Systems, Inc. | Stent delivery system |
US6726712B1 (en) | 1999-05-14 | 2004-04-27 | Boston Scientific Scimed | Prosthesis deployment device with translucent distal end |
US20040098083A1 (en) | 2001-04-11 | 2004-05-20 | Khanh Tran | Multi-length delivery system |
US20040148009A1 (en) | 2001-10-12 | 2004-07-29 | Jon Buzzard | Locking handle deployment mechanism for medical device and method |
US6773446B1 (en) | 2000-08-02 | 2004-08-10 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6776791B1 (en) | 1998-04-01 | 2004-08-17 | Endovascular Technologies, Inc. | Stent and method and device for packing of same |
US6802849B2 (en) | 1996-08-23 | 2004-10-12 | Scimed Life Systems, Inc. | Stent delivery system |
WO2004098692A1 (fr) | 2003-05-09 | 2004-11-18 | Angiomed Gmbh & Co. Medizintechnik Kg | Gestion de contrainte dans un systeme de distribution de stent |
US20040267348A1 (en) | 2003-04-11 | 2004-12-30 | Gunderson Richard C. | Medical device delivery systems |
US20050027345A1 (en) | 2003-02-14 | 2005-02-03 | Steven Horan | Stent delivery and deployment system |
WO2005020856A2 (fr) | 2003-09-02 | 2005-03-10 | Abbott Laboratories | Systeme d'introduction d'un dispositif medical |
US20050080476A1 (en) | 2003-10-09 | 2005-04-14 | Gunderson Richard C. | Medical device delivery system |
US20050149159A1 (en) * | 2003-12-23 | 2005-07-07 | Xtent, Inc., A Delaware Corporation | Devices and methods for controlling and indicating the length of an interventional element |
US20050154439A1 (en) | 2004-01-08 | 2005-07-14 | Gunderson Richard C. | Medical device delivery systems |
US20050182473A1 (en) * | 2004-02-18 | 2005-08-18 | Tracee Eidenschink | Multi stent delivery system |
US20050192657A1 (en) | 2004-02-26 | 2005-09-01 | Colen Fredericus A. | Medical devices |
US6939352B2 (en) | 2001-10-12 | 2005-09-06 | Cordis Corporation | Handle deployment mechanism for medical device and method |
US6951675B2 (en) | 2003-01-27 | 2005-10-04 | Scimed Life Systems, Inc. | Multilayer balloon catheter |
US20050240254A1 (en) | 2004-04-27 | 2005-10-27 | Michael Austin | Stent delivery system |
US20050256562A1 (en) | 2004-05-14 | 2005-11-17 | Boston Scientific Scimed, Inc. | Stent delivery handle and assembly formed therewith |
US20060009833A1 (en) | 2001-04-11 | 2006-01-12 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US20060030923A1 (en) | 2004-08-06 | 2006-02-09 | Gunderson Richard C | Stent delivery system |
US7001423B2 (en) | 1993-10-22 | 2006-02-21 | Boston Scientific Scimed, Inc. | Stent delivery apparatus and method |
US20060041302A1 (en) | 2004-08-17 | 2006-02-23 | Andrzej Malewicz | Stent delivery system |
WO2006036472A1 (fr) | 2004-09-22 | 2006-04-06 | Advanced Cardiovascular Systems, Inc. | Systeme de pose de dispositifs medicaux |
US20060074477A1 (en) | 2004-09-29 | 2006-04-06 | Medtronic Vascular, Inc. | Self-expanding stent delivery system |
US20060190069A1 (en) | 2004-12-28 | 2006-08-24 | Cook Incorporated | Unidirectional delivery system |
US20060229697A1 (en) | 2005-03-30 | 2006-10-12 | Michael Gerdts | Catheter |
US20060292300A1 (en) | 2005-06-24 | 2006-12-28 | Tan Sharon M L | Methods and systems for coating particles |
US20070135803A1 (en) * | 2005-09-14 | 2007-06-14 | Amir Belson | Methods and apparatus for performing transluminal and other procedures |
US20070142894A1 (en) | 2003-09-03 | 2007-06-21 | Bolton Medical, Inc. | Method for aligning a stent graft delivery system |
WO2007084370A1 (fr) | 2006-01-13 | 2007-07-26 | C.R. Bard, Inc. | Systeme de mise en place d’une endoprothese |
US20070191865A1 (en) * | 2003-09-02 | 2007-08-16 | Pappas Jeffrey M | Delivery System For A Medical Device |
US20070208350A1 (en) | 2006-03-06 | 2007-09-06 | Gunderson Richard C | Implantable medical endoprosthesis delivery systems |
US20080188920A1 (en) * | 2007-02-02 | 2008-08-07 | Boston Scientific Scimed, Inc. | Medical systems and related methods |
US20080208320A1 (en) * | 2006-12-15 | 2008-08-28 | Francisca Tan-Malecki | Delivery Apparatus and Methods for Vertebrostenting |
US20090024133A1 (en) * | 2007-07-16 | 2009-01-22 | Fionan Keady | Delivery device |
US20090157162A1 (en) * | 2007-10-17 | 2009-06-18 | Mina Chow | Rapid-exchange retractable sheath self-expanding delivery system with incompressible inner member and flexible distal assembly |
US20090192584A1 (en) | 2008-01-30 | 2009-07-30 | Boston Scientific Scimed, Inc. | Medical Systems and Related Methods |
US7632296B2 (en) | 2005-03-03 | 2009-12-15 | Boston Scientific Scimed, Inc. | Rolling membrane with hydraulic recapture means for self expanding stent |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2772757C (fr) * | 1999-08-23 | 2014-10-14 | Conceptus, Inc. | Systeme d'actionnement de deploiement en matiere de contraception intrafallopienne |
US7052511B2 (en) * | 2002-04-04 | 2006-05-30 | Scimed Life Systems, Inc. | Delivery system and method for deployment of foreshortening endoluminal devices |
US7758625B2 (en) * | 2003-09-12 | 2010-07-20 | Abbott Vascular Solutions Inc. | Delivery system for medical devices |
-
2011
- 2011-09-22 JP JP2013539839A patent/JP5891236B2/ja active Active
- 2011-09-22 EP EP11767523.1A patent/EP2640320B1/fr active Active
- 2011-09-22 US US13/240,765 patent/US9220619B2/en active Active
- 2011-09-22 CN CN201180065115.3A patent/CN103298432B/zh active Active
- 2011-09-22 WO PCT/US2011/052800 patent/WO2012067714A1/fr active Application Filing
- 2011-09-22 EP EP18162045.1A patent/EP3375413A1/fr active Pending
- 2011-09-22 AU AU2011329443A patent/AU2011329443B2/en not_active Ceased
-
2015
- 2015-12-14 US US14/968,026 patent/US9974679B2/en active Active
Patent Citations (160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3613684A (en) | 1969-09-19 | 1971-10-19 | David S Sheridan | Trocar catheters |
US4732152A (en) | 1984-12-05 | 1988-03-22 | Medinvent S.A. | Device for implantation and a method of implantation in a vessel using such device |
US4665918A (en) | 1986-01-06 | 1987-05-19 | Garza Gilbert A | Prosthesis system and method |
US5702364A (en) | 1988-02-29 | 1997-12-30 | Scimed Life Systems Inc | Fixed-wire dilatation balloon catheter |
US4906232A (en) | 1988-03-01 | 1990-03-06 | Abbott Laboratories | Intravascular delivery device |
US5026377A (en) | 1989-07-13 | 1991-06-25 | American Medical Systems, Inc. | Stent placement instrument and method |
US5163905A (en) | 1990-01-12 | 1992-11-17 | Don Michael T Anthony | Regional perfusion dissolution catheter |
US5238004A (en) | 1990-04-10 | 1993-08-24 | Boston Scientific Corporation | High elongation linear elastic guidewire |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5221261A (en) | 1990-04-12 | 1993-06-22 | Schneider (Usa) Inc. | Radially expandable fixation member |
US5378239A (en) | 1990-04-12 | 1995-01-03 | Schneider (Usa) Inc. | Radially expandable fixation member constructed of recovery metal |
US5496277A (en) | 1990-04-12 | 1996-03-05 | Schneider (Usa) Inc. | Radially expandable body implantable device |
US5158548A (en) | 1990-04-25 | 1992-10-27 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
US5443907A (en) | 1991-06-18 | 1995-08-22 | Scimed Life Systems, Inc. | Coating for medical insertion guides |
US5833706A (en) | 1991-07-05 | 1998-11-10 | Scimed Life Systems, Inc. | Single operator exchange perfusion catheter having a distal catheter shaft section |
US5433723A (en) | 1991-10-11 | 1995-07-18 | Angiomed Ag | Apparatus for widening a stenosis |
US5755777A (en) | 1991-10-25 | 1998-05-26 | Cook Incorporated | Expandable transluminal graft prosthesis for repair of aneurysm |
US5201757A (en) | 1992-04-03 | 1993-04-13 | Schneider (Usa) Inc. | Medial region deployment of radially self-expanding stents |
EP0633756B1 (fr) | 1992-04-03 | 1998-12-02 | Schneider (Usa) Inc. | Deploiement de la region mediane d'extenseurs radialement auto-extensibles |
US5707376A (en) * | 1992-08-06 | 1998-01-13 | William Cook Europe A/S | Stent introducer and method of use |
US5713860A (en) | 1992-11-02 | 1998-02-03 | Localmed, Inc. | Intravascular catheter with infusion array |
US5690644A (en) | 1992-12-30 | 1997-11-25 | Schneider (Usa) Inc. | Apparatus for deploying body implantable stent |
US6755855B2 (en) | 1992-12-30 | 2004-06-29 | Boston Scientific Scimed, Inc. | Apparatus for deploying body implantable stents |
US6380457B1 (en) | 1992-12-30 | 2002-04-30 | Boston Scientific Scimed, Inc. | Apparatus for deploying body implantable stents |
EP0676936A1 (fr) | 1992-12-30 | 1995-10-18 | Schneider (Usa) Inc. | Appareil de deploiement d'extenseurs implantables |
US5346471A (en) | 1993-03-22 | 1994-09-13 | Raulerson J Daniel | Dual lumen catheter |
US5772609A (en) | 1993-05-11 | 1998-06-30 | Target Therapeutics, Inc. | Guidewire with variable flexibility due to polymeric coatings |
US5445646A (en) | 1993-10-22 | 1995-08-29 | Scimed Lifesystems, Inc. | Single layer hydraulic sheath stent delivery apparatus and method |
US5571135A (en) | 1993-10-22 | 1996-11-05 | Scimed Life Systems Inc. | Stent delivery apparatus and method |
US7001423B2 (en) | 1993-10-22 | 2006-02-21 | Boston Scientific Scimed, Inc. | Stent delivery apparatus and method |
US6139510A (en) | 1994-05-11 | 2000-10-31 | Target Therapeutics Inc. | Super elastic alloy guidewire |
EP0684022A2 (fr) | 1994-05-12 | 1995-11-29 | Endovascular Technologies, Inc. | Système à greffe intravasculaire multicapsulaire avec bifurcation |
US6355060B1 (en) | 1994-06-08 | 2002-03-12 | Medtronic Ave, Inc. | Apparatus and method for deployment release of intraluminal prostheses |
US5695499A (en) | 1994-10-27 | 1997-12-09 | Schneider (Usa) Inc. | Medical device supported by spirally wound wire |
US6017577A (en) | 1995-02-01 | 2000-01-25 | Schneider (Usa) Inc. | Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices |
US5733267A (en) | 1995-04-05 | 1998-03-31 | Scimed Life Systems, Inc. | Pull back stent delivery system |
US5662703A (en) | 1995-04-14 | 1997-09-02 | Schneider (Usa) Inc. | Rolling membrane stent delivery device |
EP0820259B1 (fr) | 1995-04-14 | 2003-02-05 | Boston Scientific Limited | Dispositif d'introduction d'un extenseur a membrane a enroulement |
US5843091A (en) | 1995-05-12 | 1998-12-01 | Ballard Medical Products | Extension regulator for catheter carried medical instruments |
US5534007A (en) | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5833694A (en) | 1995-05-25 | 1998-11-10 | Medtronic, Inc. | Stent assembly and method of use |
US5674242A (en) | 1995-06-06 | 1997-10-07 | Quanam Medical Corporation | Endoprosthetic device with therapeutic compound |
US5788707A (en) | 1995-06-07 | 1998-08-04 | Scimed Life Systems, Inc. | Pull back sleeve system with compression resistant inner shaft |
US6342066B1 (en) | 1995-06-07 | 2002-01-29 | Scimed Life Systems, Inc. | Pull back sleeve system with compression resistant inner shaft |
WO1997017899A1 (fr) | 1995-11-13 | 1997-05-22 | Corvita Corporation | Appareil de mise en place de protheses endoluminales, destine a des protheses de longueur variable et ayant une capacite de retrait |
EP0775470A1 (fr) | 1995-11-14 | 1997-05-28 | Schneider (Europe) Ag | Dispositif pour l'implantation d'une endoprothèse et procédé de fabrication d'un dispositif pour l'implantation d'une endoprothèse |
US5980483A (en) | 1996-05-21 | 1999-11-09 | Dimitri; Mauro | Drainage catheter for continent urinary neo-bladders |
US6576006B2 (en) | 1996-07-15 | 2003-06-10 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent delivery system |
US6802849B2 (en) | 1996-08-23 | 2004-10-12 | Scimed Life Systems, Inc. | Stent delivery system |
US5882347A (en) | 1996-09-09 | 1999-03-16 | Cordis Europa, N.V. | Catheter with internal stiffening ridges |
US5954764A (en) | 1996-09-20 | 1999-09-21 | Parodi; Juan Carlos | Device for concurrently placing an endovascular expander with an endovascular prosthesis |
US5957930A (en) | 1996-09-27 | 1999-09-28 | Scimed Life Systems, Inc. | Stent deployment catheter with midshaft seal |
US5772669A (en) * | 1996-09-27 | 1998-06-30 | Scimed Life Systems, Inc. | Stent deployment catheter with retractable sheath |
US5843090A (en) | 1996-11-05 | 1998-12-01 | Schneider (Usa) Inc. | Stent delivery device |
US5830181A (en) | 1997-02-07 | 1998-11-03 | Advanced Cardiovascular Systems, Inc. | Perfusion catheter with high flow distal tip |
US20020058951A1 (en) | 1997-03-13 | 2002-05-16 | Gary R. Fiedler | Fluid actuated stent delivery system |
US5891154A (en) | 1997-05-06 | 1999-04-06 | Advanced Cardiovascular System, Inc. | Passive perfusion stent delivery system |
US6221467B1 (en) | 1997-06-03 | 2001-04-24 | Scimed Life Systems, Inc. | Coating gradient for lubricious coatings on balloon catheters |
US5906619A (en) | 1997-07-24 | 1999-05-25 | Medtronic, Inc. | Disposable delivery device for endoluminal prostheses |
US6206888B1 (en) | 1997-10-01 | 2001-03-27 | Scimed Life Systems, Inc. | Stent delivery system using shape memory retraction |
US6589251B2 (en) | 1997-11-14 | 2003-07-08 | Scimed Life Systems, Inc. | Multi-sheath delivery catheter |
US6330884B1 (en) | 1997-11-14 | 2001-12-18 | Transvascular, Inc. | Deformable scaffolding multicellular stent |
US20010037141A1 (en) | 1997-11-14 | 2001-11-01 | Yee Carl E. | Multi-sheath delivery catheter |
US6123723A (en) | 1998-02-26 | 2000-09-26 | Board Of Regents, The University Of Texas System | Delivery system and method for depolyment and endovascular assembly of multi-stage stent graft |
US6019778A (en) | 1998-03-13 | 2000-02-01 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6425898B1 (en) | 1998-03-13 | 2002-07-30 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6669716B1 (en) | 1998-03-31 | 2003-12-30 | Salviac Limited | Delivery catheter |
WO1999049808A1 (fr) | 1998-03-31 | 1999-10-07 | Salviac Limited | Catheter de mise en place |
US6776791B1 (en) | 1998-04-01 | 2004-08-17 | Endovascular Technologies, Inc. | Stent and method and device for packing of same |
US6033413A (en) | 1998-04-20 | 2000-03-07 | Endocare, Inc. | Stent delivery system |
US6117140A (en) | 1998-06-26 | 2000-09-12 | Scimed Life Systems, Inc. | Stent delivery device |
US6120522A (en) | 1998-08-27 | 2000-09-19 | Scimed Life Systems, Inc. | Self-expanding stent delivery catheter |
US20030144671A1 (en) * | 1998-09-30 | 2003-07-31 | Brooks Christopher J. | Delivery mechanism for implantable stents-grafts |
US6514261B1 (en) | 1998-09-30 | 2003-02-04 | Impra, Inc. | Delivery mechanism for implantable stent |
WO2000018330A1 (fr) | 1998-09-30 | 2000-04-06 | Impra, Inc. | Mecanisme de mise en place d'extenseur implantable |
WO2000023139A1 (fr) | 1998-10-16 | 2000-04-27 | Scimed Life Systems, Inc. | Catheter a perfusion pour pose de stent |
US6139524A (en) | 1998-10-16 | 2000-10-31 | Scimed Life Systems, Inc. | Stent delivery system with perfusion |
US6238410B1 (en) | 1998-11-06 | 2001-05-29 | Scimed Life Systems, Inc. | Pulling membrane stent delivery system |
US6942682B2 (en) | 1998-11-06 | 2005-09-13 | Boston Scientific Scimed, Inc. | Rolling membrane stent delivery system |
US6508803B1 (en) | 1998-11-06 | 2003-01-21 | Furukawa Techno Material Co., Ltd. | Niti-type medical guide wire and method of producing the same |
US6544278B1 (en) | 1998-11-06 | 2003-04-08 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
US6059813A (en) | 1998-11-06 | 2000-05-09 | Scimed Life Systems, Inc. | Rolling membrane stent delivery system |
WO2000027309A1 (fr) | 1998-11-06 | 2000-05-18 | Scimed Life Systems, Inc. | Systeme d'acheminement de stent ameliore muni d'une membrane retractable |
US6254609B1 (en) | 1999-01-11 | 2001-07-03 | Scimed Life Systems, Inc. | Self-expanding stent delivery system with two sheaths |
US20010034548A1 (en) | 1999-01-11 | 2001-10-25 | Vrba Anthony C. | Medical device delivery system with two sheaths |
US6514228B1 (en) | 1999-03-05 | 2003-02-04 | Scimed Life Systems, Inc. | Balloon catheter having high flow tip |
US6379365B1 (en) | 1999-03-29 | 2002-04-30 | Alexis Diaz | Stent delivery catheter system having grooved shaft |
WO2000067828A1 (fr) | 1999-05-07 | 2000-11-16 | Scimed Life Systems, Inc. | Catheter a ballonnet pourvu d'un revetement lubrifiant |
US6726712B1 (en) | 1999-05-14 | 2004-04-27 | Boston Scientific Scimed | Prosthesis deployment device with translucent distal end |
US6860898B2 (en) | 1999-05-17 | 2005-03-01 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with enhanced delivery precision and stent delivery system |
US6375676B1 (en) | 1999-05-17 | 2002-04-23 | Advanced Cardiovascular Systems, Inc. | Self-expanding stent with enhanced delivery precision and stent delivery system |
WO2000071059A1 (fr) | 1999-05-20 | 2000-11-30 | Boston Scientific Limited | Systeme de pose d'endoprothese pour prevenir la formation d'un vrillage, et procede de chargement et d'utilisation |
US6176849B1 (en) | 1999-05-21 | 2001-01-23 | Scimed Life Systems, Inc. | Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat |
US6626934B2 (en) | 1999-06-14 | 2003-09-30 | Scimed Life Systems, Inc. | Stent delivery system |
US6398802B1 (en) | 1999-06-21 | 2002-06-04 | Scimed Life Systems, Inc. | Low profile delivery system for stent and graft deployment |
US6287329B1 (en) | 1999-06-28 | 2001-09-11 | Nitinol Development Corporation | Stent keeper for a self-expanding stent delivery system |
US6709667B1 (en) * | 1999-08-23 | 2004-03-23 | Conceptus, Inc. | Deployment actuation system for intrafallopian contraception |
US6331184B1 (en) | 1999-12-10 | 2001-12-18 | Scimed Life Systems, Inc. | Detachable covering for an implantable medical device |
US20020082550A1 (en) | 1999-12-21 | 2002-06-27 | Advanced Cardiovascular Systems, Inc. | Catheter having a soft distal tip |
US20020052641A1 (en) | 2000-01-10 | 2002-05-02 | Scimed Life Systems, Inc. | Catheter tip designs and method of manufacture |
US6322586B1 (en) | 2000-01-10 | 2001-11-27 | Scimed Life Systems, Inc. | Catheter tip designs and method of manufacture |
US20010034549A1 (en) | 2000-02-29 | 2001-10-25 | Bartholf Heather A. | Stent delivery system having delivery catheter member with a clear transition zone |
US6391050B1 (en) | 2000-02-29 | 2002-05-21 | Scimed Life Systems, Inc. | Self-expanding stent delivery system |
US20020165523A1 (en) | 2000-03-02 | 2002-11-07 | Chin Albert C. C. | Multilayer medical device |
WO2001076676A2 (fr) | 2000-04-07 | 2001-10-18 | Image-Guided Neurologics, Inc. | Systeme d'introduction de materiel medical |
US6613014B1 (en) | 2000-06-09 | 2003-09-02 | Advanced Cardiovascular Systems, Inc. | Catheter hub with detachable push device |
US6773446B1 (en) | 2000-08-02 | 2004-08-10 | Cordis Corporation | Delivery apparatus for a self-expanding stent |
US6602226B1 (en) | 2000-10-12 | 2003-08-05 | Scimed Life Systems, Inc. | Low-profile stent delivery system and apparatus |
EP1385450B1 (fr) | 2001-01-18 | 2007-03-14 | EV3 Peripheral, Inc. | Systeme de catheter avec element de piece d'espacement |
US20020095203A1 (en) | 2001-01-18 | 2002-07-18 | Intra Therapeutics, Inc. | Catheter system with spacer member |
WO2002056953A2 (fr) | 2001-01-18 | 2002-07-25 | Ev3 Peripheral, Inc. | Systeme de catheter avec element de piece d'espacement |
US20090036967A1 (en) | 2001-02-01 | 2009-02-05 | Charles Cummings | Medical Device Delivery System |
US7387640B2 (en) | 2001-02-01 | 2008-06-17 | Boston Scientific Scimed, Inc. | Medical device delivery system |
US20040215317A1 (en) | 2001-02-01 | 2004-10-28 | Charles Cummings | Medical device delivery system |
US6736839B2 (en) | 2001-02-01 | 2004-05-18 | Charles Cummings | Medical device delivery system |
US8128676B2 (en) | 2001-02-01 | 2012-03-06 | Charles Cummings | Medical device delivery system |
US20020103525A1 (en) | 2001-02-01 | 2002-08-01 | Charles Cummings | Medical device delivery system |
US20040098083A1 (en) | 2001-04-11 | 2004-05-20 | Khanh Tran | Multi-length delivery system |
US20060009833A1 (en) | 2001-04-11 | 2006-01-12 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US6726714B2 (en) | 2001-08-09 | 2004-04-27 | Scimed Life Systems, Inc. | Stent delivery system |
US20040148009A1 (en) | 2001-10-12 | 2004-07-29 | Jon Buzzard | Locking handle deployment mechanism for medical device and method |
US6939352B2 (en) | 2001-10-12 | 2005-09-06 | Cordis Corporation | Handle deployment mechanism for medical device and method |
US20030163156A1 (en) | 2002-02-28 | 2003-08-28 | Stephen Hebert | Guidewire loaded stent for delivery through a catheter |
US6951675B2 (en) | 2003-01-27 | 2005-10-04 | Scimed Life Systems, Inc. | Multilayer balloon catheter |
US20050027345A1 (en) | 2003-02-14 | 2005-02-03 | Steven Horan | Stent delivery and deployment system |
US20040267348A1 (en) | 2003-04-11 | 2004-12-30 | Gunderson Richard C. | Medical device delivery systems |
WO2004098692A1 (fr) | 2003-05-09 | 2004-11-18 | Angiomed Gmbh & Co. Medizintechnik Kg | Gestion de contrainte dans un systeme de distribution de stent |
US20050182475A1 (en) | 2003-09-02 | 2005-08-18 | Jimmy Jen | Delivery system for a medical device |
WO2005020856A2 (fr) | 2003-09-02 | 2005-03-10 | Abbott Laboratories | Systeme d'introduction d'un dispositif medical |
US20070191865A1 (en) * | 2003-09-02 | 2007-08-16 | Pappas Jeffrey M | Delivery System For A Medical Device |
US20070142894A1 (en) | 2003-09-03 | 2007-06-21 | Bolton Medical, Inc. | Method for aligning a stent graft delivery system |
US20050080476A1 (en) | 2003-10-09 | 2005-04-14 | Gunderson Richard C. | Medical device delivery system |
US20050149159A1 (en) * | 2003-12-23 | 2005-07-07 | Xtent, Inc., A Delaware Corporation | Devices and methods for controlling and indicating the length of an interventional element |
US8152818B2 (en) | 2004-01-08 | 2012-04-10 | Boston Scientific Scimed, Inc. | Medical device delivery systems |
US20050154439A1 (en) | 2004-01-08 | 2005-07-14 | Gunderson Richard C. | Medical device delivery systems |
US20070282420A1 (en) | 2004-01-08 | 2007-12-06 | Gunderson Richard C | Medical Device Delivery Systems |
US20050182473A1 (en) * | 2004-02-18 | 2005-08-18 | Tracee Eidenschink | Multi stent delivery system |
US20050192657A1 (en) | 2004-02-26 | 2005-09-01 | Colen Fredericus A. | Medical devices |
US20050240254A1 (en) | 2004-04-27 | 2005-10-27 | Michael Austin | Stent delivery system |
WO2005107644A1 (fr) | 2004-04-27 | 2005-11-17 | Boston Scientific Limited | Systeme de distribution d'endoprothese |
WO2005112824A1 (fr) | 2004-05-14 | 2005-12-01 | Boston Scientific Scimed, Inc | Poignée de largage d’endoprothèse et assemblage formé avec celle-ci |
US20050256562A1 (en) | 2004-05-14 | 2005-11-17 | Boston Scientific Scimed, Inc. | Stent delivery handle and assembly formed therewith |
US20060030923A1 (en) | 2004-08-06 | 2006-02-09 | Gunderson Richard C | Stent delivery system |
US20060041302A1 (en) | 2004-08-17 | 2006-02-23 | Andrzej Malewicz | Stent delivery system |
WO2006036472A1 (fr) | 2004-09-22 | 2006-04-06 | Advanced Cardiovascular Systems, Inc. | Systeme de pose de dispositifs medicaux |
US20060074477A1 (en) | 2004-09-29 | 2006-04-06 | Medtronic Vascular, Inc. | Self-expanding stent delivery system |
US20060190069A1 (en) | 2004-12-28 | 2006-08-24 | Cook Incorporated | Unidirectional delivery system |
US7632296B2 (en) | 2005-03-03 | 2009-12-15 | Boston Scientific Scimed, Inc. | Rolling membrane with hydraulic recapture means for self expanding stent |
US7740652B2 (en) | 2005-03-30 | 2010-06-22 | Boston Scientific Scimed, Inc. | Catheter |
US20060229697A1 (en) | 2005-03-30 | 2006-10-12 | Michael Gerdts | Catheter |
US20100256727A1 (en) | 2005-03-30 | 2010-10-07 | Boston Scientific Scimed, Inc. | Catheter |
US20060292300A1 (en) | 2005-06-24 | 2006-12-28 | Tan Sharon M L | Methods and systems for coating particles |
US20070135803A1 (en) * | 2005-09-14 | 2007-06-14 | Amir Belson | Methods and apparatus for performing transluminal and other procedures |
WO2007084370A1 (fr) | 2006-01-13 | 2007-07-26 | C.R. Bard, Inc. | Systeme de mise en place d’une endoprothese |
US20070208350A1 (en) | 2006-03-06 | 2007-09-06 | Gunderson Richard C | Implantable medical endoprosthesis delivery systems |
US20080208320A1 (en) * | 2006-12-15 | 2008-08-28 | Francisca Tan-Malecki | Delivery Apparatus and Methods for Vertebrostenting |
US20080188920A1 (en) * | 2007-02-02 | 2008-08-07 | Boston Scientific Scimed, Inc. | Medical systems and related methods |
US20090024133A1 (en) * | 2007-07-16 | 2009-01-22 | Fionan Keady | Delivery device |
US20090157162A1 (en) * | 2007-10-17 | 2009-06-18 | Mina Chow | Rapid-exchange retractable sheath self-expanding delivery system with incompressible inner member and flexible distal assembly |
US20090192584A1 (en) | 2008-01-30 | 2009-07-30 | Boston Scientific Scimed, Inc. | Medical Systems and Related Methods |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10064746B2 (en) | 2012-06-13 | 2018-09-04 | Cook Medical Technologies Llc | Systems and methods for deploying a portion of a stent using at least one coiled member |
US10993823B2 (en) | 2012-06-13 | 2021-05-04 | Cook Medical Technologies Llc | Systems and methods for deploying a portion of a stent using at least one coiled member |
US11083606B2 (en) | 2017-12-05 | 2021-08-10 | Cook Medical Technologies Llc | Endograft delivery device assembly |
US11013627B2 (en) | 2018-01-10 | 2021-05-25 | Boston Scientific Scimed, Inc. | Stent delivery system with displaceable deployment mechanism |
US11571317B2 (en) | 2018-02-15 | 2023-02-07 | Boston Scientific Scimed Inc. | Devices and methods for controlled delivery of a stent |
WO2020168117A1 (fr) | 2019-02-13 | 2020-08-20 | Boston Scientific Scimed, Inc. | Systèmes d'implantation d'endoprothèse |
US11602447B2 (en) | 2019-02-13 | 2023-03-14 | Boston Scientific Scimed Inc. | Stent delivery systems |
US11166833B2 (en) | 2019-04-30 | 2021-11-09 | Cook Medical Technologies Llc | Line pull assembly for a prosthetic delivery device |
WO2021067804A1 (fr) | 2019-10-04 | 2021-04-08 | Boston Scientific Scimed, Inc. | Systèmes d'implantation d'endoprothèse |
US11364136B2 (en) | 2019-10-04 | 2022-06-21 | Boston Scientific Scimed, Inc. | Stent delivery systems |
US11980557B2 (en) | 2019-10-04 | 2024-05-14 | Boston Scientific Scimed, Inc. | Stent delivery systems |
WO2023154563A1 (fr) | 2022-02-14 | 2023-08-17 | Boston Scientific Scimed, Inc. | Dispositif d'obturation permettant de fermer une ouverture d'accès de grande taille |
Also Published As
Publication number | Publication date |
---|---|
US20160095729A1 (en) | 2016-04-07 |
CN103298432B (zh) | 2016-03-02 |
US20130013047A1 (en) | 2013-01-10 |
AU2011329443A1 (en) | 2013-06-27 |
WO2012067714A1 (fr) | 2012-05-24 |
EP3375413A1 (fr) | 2018-09-19 |
CN103298432A (zh) | 2013-09-11 |
JP2014501558A (ja) | 2014-01-23 |
US9974679B2 (en) | 2018-05-22 |
EP2640320A1 (fr) | 2013-09-25 |
JP5891236B2 (ja) | 2016-03-22 |
AU2011329443B2 (en) | 2016-02-25 |
EP2640320B1 (fr) | 2018-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9974679B2 (en) | Stent delivery system | |
US8784468B2 (en) | Stent delivery systems and locking members for use with stent delivery systems | |
US9084692B2 (en) | Stent delivery system | |
US10058443B2 (en) | Stent delivery systems and methods for use | |
US9931232B2 (en) | Stent delivery system | |
US20170325951A1 (en) | Sheathing aid | |
WO2017136276A1 (fr) | Aides de revêtement tendu | |
US20190125566A1 (en) | Medical device delivery system with force reduction member | |
US11351048B2 (en) | Stent delivery systems with a reinforced deployment sheath | |
US11013627B2 (en) | Stent delivery system with displaceable deployment mechanism | |
US20240009012A1 (en) | Stent Delivery System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAMOS, TIM;GRABOWSKI, GERALD;ANDERSON, KEITH;SIGNING DATES FROM 20110921 TO 20110922;REEL/FRAME:027236/0138 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |