US9187517B2 - Methods of promoting cardiac repair using growth factors fused to heparin binding sequences - Google Patents
Methods of promoting cardiac repair using growth factors fused to heparin binding sequences Download PDFInfo
- Publication number
- US9187517B2 US9187517B2 US11/979,708 US97970807A US9187517B2 US 9187517 B2 US9187517 B2 US 9187517B2 US 97970807 A US97970807 A US 97970807A US 9187517 B2 US9187517 B2 US 9187517B2
- Authority
- US
- United States
- Prior art keywords
- igf
- cartilage
- compound
- seq
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/65—Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/30—Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/32—Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/34—Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/04—Drugs for skeletal disorders for non-specific disorders of the connective tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/02—Muscle relaxants, e.g. for tetanus or cramps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/04—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/49—Platelet-derived growth factor [PDGF]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K17/00—Carrier-bound or immobilised peptides; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0618—Cells of the nervous system
- C12N5/0619—Neurons
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0655—Chondrocytes; Cartilage
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0657—Cardiomyocytes; Heart cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/035—Fusion polypeptide containing a localisation/targetting motif containing a signal for targeting to the external surface of a cell, e.g. to the outer membrane of Gram negative bacteria, GPI- anchored eukaryote proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/33—Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/105—Insulin-like growth factors [IGF]
Definitions
- the present invention is directed to proteins in which a polypeptide that promotes the growth and/or survival of cells is fused to a peptide that binds to heparin. These proteins may be bound to cardiomyocytes and administered to damaged cardiac tissue to help promote repair.
- IGF-1 Insulin like growth factor-1
- Mice deficient in IGF-1 exhibit increased apoptosis following myocardial infarction (Palmen, et al., Cardiovasc. Res. 50:516-524 (2001)), whereas cardiac-specific IGF-1 overexpression protects against myocyte apoptosis and ventricular dilation following infarction (Li, et aL, J. Clin. Invest. 100:1991-1999 (1997); Torella, et al., Circ. Res. 94:514-524 (2004)). IGF-1 overexpression also increases cardiac stem cell number and growth, leading to an increase in myocyte turnover and function in the aging heart.
- IGF-1 promotes engraftment, differentiation, and functional improvement of embryonic stem cells transplanted into myocardium (Kofidis, et aL, Stem Cells 22:1239-1245 (2004)).
- serum levels of IGF-1 correlate inversely with the risk of congenital heart failure in a subset of elderly patients (Vasan, et al., Ann. Intern. Med. 139:642-648 (2003)).
- IGF-1 is an attractive therapeutic agent for patients that have experienced damage to cardiac tissue, e.g., patients that have undergone a myocardial infarction.
- IGF-1 is a small protein that diffuses readily through tissues. As a result, it is difficult to keep a high concentration of this factor at a site of tissue damage for a prolonged period of time.
- One approach that has been taken to maintain a high local concentration is to attach IGF-1 to a self-assembling biological membrane (see US20060088510). Using a rat model of myocardial infarction, it was found that when this membrane is implanted along with neonatal cardiomyocytes, the survival and growth of the implanted cells is improved relative to cells implanted with unbound IGF-1.
- the present invention is based upon the development of a procedure for binding IGF-1 to cardiomyocytes prior to their implantation into damaged cardiac tissue. It has been found that it is possible to join IGF-1 to a heparin binding peptide (HBP) and obtain a fusion protein that maintains a beneficial effect on the survival of cultured cells.
- HBP heparin binding peptide
- the fusion protein binds to cardiomyocytes (presumably to cell surface heparin) better than IGF-1 alone. Since many different cell types have cell surface heparin, it is not expected that simply injecting the IGF-1/HBP protein systemically would be of much benefit to cardiac patients. However, targeting may be achieved by incubating cardiomyocytes with IGF-1/HBP prior to implantation. To a lesser extent, localization may also be achieved by injecting the protein directly into cardiac tissue. Similar approaches should be useful in treating other conditions (e.g., wounds) that respond to growth factors (with or without the transplantation of cells).
- the invention is directed to a compound having the formula: B-(J) n -(Z) q , or (Z) q -(J) n -B, where n is an integer from 0-10; q is an integer from 1-5; B is a peptide that promotes the growth and/or survival of cardiomyocytes (as determined, e.g., using cells deprived of serum) and Z is a heparin binding peptide. Any of the heparin binding peptides known in the art may be used including all of the peptides described herein.
- J is either a proteinogenic amino acid or compounds such as biotin/avidin that can be used to join peptides together.
- all peptide sequences are written from the N terminus (far left) to the C terminus (far right) and unless otherwise indicated, all peptides are made up of “proteinogenic” amino acids, i.e., they are the L-isomers of: alanine (A); arginine (R); asparagine (N); aspartic acid (D); cysteine (C); glutamic acid (E); glutamine (Q); glycine (G); histidine (H); isoleucine (I); leucine (L); lysine (K); methionine (M); phenylalanine (F); proline (P); serine (S); threonine (T); tryptophan (W); tyrosine (Y); or valine (V).
- the compound of the formulas shown above is a fusion protein in which J is a proteinogenic amino acid and B is either insulin like growth factor-1 (IGF-1) or platelet derived growth factor (PDGF).
- IGF-1 insulin like growth factor-1
- PDGF platelet derived growth factor
- the full length sequence for human IGF-1 (GenBank Accession No. NM 00618) is as follows: MGKISSLPTQLFKCCFCDFLKVKMHTMSSSHLFYLALCLLTFTSSATAGPETL CGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRRL EMYCAPLKPAKSARSVRAQRHTDMPKTQKEVHLKNASRGSAGNKNYRM (SEQ ID NO:1).
- IGF-1 is defined as having the core sequence: PETLCGAELVDALQFVCGDRGFYFNKP TGYGSSSRRAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA (SEQ ID NO:2) and may optionally include any additional portion of the sequence of SEQ ID NO:1.
- the C terminus may begin with G, AG, TAG etc.
- the N terminus of SEQ ID NO:2 may be extended in accordance with SEQ ID NO:1.
- the peptide may terminate in R, RS, RSV etc.
- n is preferably 0 and q is preferably 1.
- Preferred heparin binding peptides ie. Z in the formulas, are:
- the invention also includes DNA molecules encoding any of the fusion proteins described above, vectors containing these DNA molecules and host cells transformed with the vectors.
- the host cells may be used to produce the fusion proteins for use in the therapeutic methods described herein.
- the DNA may also be used to transform cells that secrete the fusion protein at the site of tissue damage. Once secreted, the proteins should bind to other cells in the vicinity, thereby maintaining a relatively high localized concentration.
- the invention also includes methods of treating patients for any condition responsive to IGF-1 or PDGF using one or more of the fusion proteins or compounds.
- the compounds or fusion proteins are administered directly to the treatment site to allow them to bind to the surfaces of endogenous cells. More preferably, they are used in treating conditions where tissue growth or repair is needed and there are cells available that can be used to aid this process. In these cases, the compounds or fusion proteins will be preincubated with the cells to allow them to bind prior to implantation.
- a patient is treated for damaged cardiac tissue (e.g., due to a myocardial infarction) by incubating cardiomyocytes with the compounds or fusion proteins for a period of time and under conditions sufficient to permit them to bind. The cells are then injected or implanted into the cardiac tissue of the patient.
- the compounds and fusion proteins may also be used to repair damaged cartilage. Normally, IGF-1 diffuses out of cartilage and its effect on transplanted chondrocytes is therefore reduced or lost. By incubating the chondrocytes with heparin-binding IGF-1 prior to implantation, the local concentration of the growth factor will be increased and, as a result, the chondrocytes will make more cartilage.
- IGF-1 growth factors engineered to bind heparin, particularly IGF-1, may also be bound to cells being implanted to repair and regenerate neurons, e.g., in patients with neurodegenerative diseases such as ALS, who have had a stroke, or who have lost nerve function as the result of an injury.
- IGF-1 is a candidate for clinical trials in ALS and has been found to promote axon outgrowth in corticospinal motor neurons ( ⁇ zdinler, et al., Nature Neurosci. 9:1371-1381 (2006)). By binding the IGF-1 to the neurons before implantation, their growth in vivo will be enhanced.
- the present invention is based upon the concept that that the recovery of tissue after injury is promoted by maintaining high local concentrations of growth factors such as IGF-1 or PDGF.
- growth factors such as IGF-1 or PDGF.
- One way of joining the heparin binding peptide to the therapeutic agent is through the use of a nonpeptide linker.
- a nonpeptide linker For example, the use of biotin and avidin for linking molecules is well known in the art and standard methodology can be used for attaching heparin binding peptides to growth factors such as IGF-1.
- a spacer may be included between the two.
- the spacer can take the form of 1-15 (preferably 1-10) fatty acids or 1-15 (preferably 1-10) amino acids. Methodology for incorporating spacers of this type is well known in the art.
- heparin binding peptides and growth factors such as IGF-1 and PDGF are joined together in the form of a fusion protein.
- Fusion proteins may either be chemically synthesized or made using recombinant DNA techniques. Chemical methods include solid-phase peptide synthesis using standard N-tert-butyoxycarbonyl (t-Boc) chemistry and cycles using n-methylpyrolidone chemistry. Once peptides have been synthesized, they can be purified using procedures such as high pressure liquid chromatography on reverse-phase columns. Purity may also be assessed by HPLC and the presence of a correct composition can be determined by amino acid analysis.
- Cardiomyocytes or other cells may be obtained using standard procedures and may then be incubated with fusion compositions or proteins for a period sufficient to allow the fusion proteins to bind to cell surfaces.
- the incubation may last anywhere from about an hour to several days and should be carried out under conditions that allow for cell survival, e.g. at about 37° C., neutral pH, and in a culture medium that insures cell survival.
- the amount of protein present should generally be enough to coat the cells but the exact amount is not critical.
- the cells may be administered by syringe or catheter to cardiac tissue. The exact amount of cells used is not critical but, in general, between 1 ⁇ 10 5 and 1 ⁇ 10 7 will be used.
- Fusion proteins may be incorporated into a pharmaceutical composition containing a carrier such as saline, water, Ringer's solution and other agents or excipients and cells may be maintained in standard media to maintain viability.
- a carrier such as saline, water, Ringer's solution and other agents or excipients and cells
- Preparations will generally be designed for implantation, infusion or injection, particularly into cardiac tissue but topical treatments will also be useful, e.g., in the treatment of wounds. All pharmaceutical compositions may be prepared using methods that are standard in the art (see e.g., Remington's Pharmaceutical Sciences , 16th ed. A. Oslo. ed., Easton, Pa. (1980)).
- the optimal dosage will be determined by methods known in the art and will be influenced by factors such as the age of the patient, disease state and other clinically relevant factors.
- the present example demonstrates that IGF-1 improves survival of ES-derived cardiomyocytes and describes the development of a novel heparin binding (HB)-IGF-1 fusion protein engineered to improve survival of injected cells.
- HB heparin binding
- ES cells committed to the cardiomyocyte lineage.
- Mouse ES cells stably transfected with a-cardiac myosin heavy chain promoter-driven enhanced green fluorescent protein (EGFP), were differentiated into cardiomyocytes by the hanging drop method and EGFP positive cells were purified by fluorescent cell sorting.
- IGF-1 reduced cell death induced by serum deprivation (13.6+/ ⁇ 1.9% vs 25.9+/ ⁇ 2.5% in control, p ⁇ 0.05) and decreased apoptosis induced by serum deprivation (TUNEL-positive cells 8.0+/ ⁇ 1.5% to 4.3+/ ⁇ 0.5% respectively, p ⁇ 0.05).
- IGF-1 decreased Doxorubicin (1 ⁇ M, 24 hr) or chelerythrin (3 ⁇ M, 1 hr)-induced apoptosis (p ⁇ 0.01).
- the phosphoinositide-3 kinase inhibitor, LY294002 (10 ⁇ M) inhibited the protective effect of IGF-1 on Doxorubicin-induced apoptosis (p ⁇ 0.05).
- IGF-1 diffuses rapidly away from injected sites, we then designed and expressed a novel recombinant IGF-1 fusion protein with an N-terminal HB domain. The protein was purified by Nickel-affinity chromatography and then subjected to oxidative refolding to restore biological activity.
- IGF-1 improves survival of ES-derived cardiomyocytes in vitro
- this new Heparin-binding IGF-1 should improve cell therapy by binding to the surfaces of injected cells. This demonstrates the potential for changing the cellular microenvironment through locally-delivered therapeutic proteins.
- HB-IGF-1 Heparin-binding IGF-1
- HB-IGF-1 Heparin-binding IGF-1
- HB-IGF-1 bound selectively to heparin as well as the cell surfaces of 3T3 fibroblasts, neonatal cardiac myocytes and differentiating embryonic stem cells.
- HB-IGF-1 activated the IGF-1 receptor and Akt with the identical kinetics and dose-dependence of IGF-1, indicating no compromise of biological activity due to the heparin-binding domain.
- Rat IGF-1 cDNA was amplified by Polymerase chain reaction (PCR) using primers (5′ to 3′) GGACCAGAGGACCCTTTGCG (forward, SEQ ID NO:22) and AGCTGACTTT GTAGGCTTCAGC (reverse, SEQ ID NO:23).
- PCR Polymerase chain reaction
- the product was subcloned into the pTrcHis-TOPO vector (Invitrogen, Carlsbad, Calif., USA) with the addition of a stop codon (TAG) at the C-terminus of IGF-1, thus encoding an Xpress-tagged IGF-1 (Xpress-IGF-1).
- TAG stop codon
- Xpress-IGF-1 Xpress-tagged IGF-1
- heparin binding sequence (AA 93-113) of rat HB-EGF(AAAAAGAAGAGGAAAGGCAAGGGG TTAGGAAAGAAGAGAGATCCATGCCT TAAGAAATACAAG (SEQ ID NO:24) was inserted between the X-press tag and the IGF-1 sequence through mutagenesis.
- Amplification was performed with PfuUltra HF DNA Polymerase (Stratagene, Cedar Creek, Tex., USA) and the template plasmid was digested with DpnI (New England Biolabs, Beverly, Mass., USA) before transformation in E. coli . All sequences were confirmed by DNA sequencing.
- Xpress-IGF-1 and HB-IGF-1 were expressed in E. coli BL21 cells and grown in LB medium in 4 I batches. Protein synthesis was induced with 1 mM isopropyl ⁇ -D-thiogalactoside for 4 hours and cells were then harvested by centrifugation, lysed in lysis buffer (6 M guanidine hydrochloride, 20 mM sodium phosphate, 500 mM NaCl, pH 7.8) and homogenized. The first purification step consisted of affinity purification by the polyhistidine tag in fusion proteins with Ni-NTA (Invitrogen).
- Ni-NTA resin was washed with wash buffer (8 M urea, 500 mM NaCl, 20 mM phosphate, pH 6.2), and bound protein was eluted at pH 4. Eluted proteins were then subjected to oxidative refolding to restore biological activity. The proteins were incubated overnight at 4° C. with refolding buffer (50 mM Tris, 75 mM NaCl, 100 ⁇ M oxidized-glutathione and 100 ⁇ M reduced-glutathione, pH 7.8).
- DMEM Dulbecco's modified Eagle's medium
- Invitrogen Dulbecco's modified Eagle's medium
- 3T3 fibroblast cells were cultured in DMEM with 10% newborn calf serum (Invitrogen) and the medium was replaced with serum-free medium 24 hours before experiments.
- Mouse embryonic stem (ES) cells were grown on gelatin-coated dishes without feeder cells in Glasgow Minimum Essential Medium (Invitrogen) supplemented with 15% KNOCKOUT SR (Invitrogen) and leukemia inhibitory factor (Chemicon, Billerica, Mass., USA).
- ES cells were passaged every three days. To induce differentiation, cells were first enzymatically dissociated and cultured as hanging drops for embryoid body formation as described previously (Takahashi, et al., Circulation 107:1912-1916 (2003)). Differentiation medium with 10% ES cell-qualified fetal bovine serum (Invitrogen) without leukemia inhibitory factor was added. These ES cells become green fluorescent protein (GFP) positive after differentiation into cardiac myocytes, because they were stably transfected with an alpha-Myosin heavy chain promoter-driven enhanced GFP vector. After embryoid body formation (days 7), cells were plated on gelatin-coated dishes.
- GFP green fluorescent protein
- Bovine articular cartilage explants (3-mm-diameter, 1-mm-thick disks) were harvested from the femoropatellar grooves of 1-2-week-old calves and cultured in low-glucose DMEM with 10 mM HEPES, 0.1 mM nonessential amino acids, 0.4 mM L-proline, 20 ⁇ g/ml ascorbate, 100 U/ml penicillin and 100 ⁇ g/ml streptomycin at 37° C. in a 5% CO 2 atmosphere.
- Neonatal cardiac myocytes and 3T3 fibroblasts were lysed using phosphate-buffered saline (PBS) with 1% Triton-X, 0.25% Na-deoxycholate, 1 mM ethylenediamine-tetraacetic acid (EDTA), 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM NaF, 1 mM Na 3 VO 4 and 1:1000 protease inhibitor cocktail (Sigma, St. Louis, Md., USA).
- PBS phosphate-buffered saline
- Triton-X 1 mM ethylenediamine-tetraacetic acid
- PMSF phenylmethylsulfonyl fluoride
- 1 mM NaF 1 mM Na 3 VO 4
- protease inhibitor cocktail Sigma, St. Louis, Md., USA.
- Cartilage disks were pulverized and lysed with 100 mM NaCl, 50 mM Tris, 0.5% Triton-X, 5 mM EDTA, 1 mM PMSF and 1:1000 proteinase inhibitor cocktail (Sigma). Protein concentration was measured by Bradford assay and 10 ⁇ g protein was loaded in each well for Western blot analysis. Similar GAG content was observed in all samples as measured by DMMB dye binding.
- Anti-Xpress antibody Invitrogen
- Anti-polyclonal IGF-1 antibody Abcam, Cambridge, Mass., USA
- anti-phospho-IGF-1 receptor antibody Cell Signaling, Danvers, Mass., USA
- anti-phospho-Akt antibody Cell Signaling
- Anti-Actin antibody Sigma
- 96-well plates were coated with an anti-Xpress antibody (10 ⁇ g/ml) overnight. Identical amounts of protein from cartilage extracts were added to each well. Polyclonal IGF-1 antibody was used as the primary antibody, and anti-rabbit-horseradish peroxidase (Bio-Rad, Hercules, Calif., USA) was used as the secondary antibody. After addition of ABTS Peroxidase Substrate (KPL, Gaithersburg, Md., USA), plates were read at 405 nm.
- KPL ABTS Peroxidase Substrate
- Heparin agarose beads (Sigma) were incubated with 300 pmol HB-IGF-1 or Xpress-IGF-1 for 2 hours and washed 3 times with PBS. Bound fusion proteins with Heparin agarose beads were extracted by boiling with SDS-PAGE sample buffer (Invitrogen). 3T3 fibroblast cells or neonatal rat cardiomyocytes were incubated with 100 nM HB-IGF-1 or control IGF-1 (Sigma) for 2 hours and then washed with PBS 3 times. The cells were lysed with lysis buffer and then subjected to Western blot analysis with an anti-IGF-1 antibody.
- Embryoid bodies (10 days after induction of differentiation) were incubated with fusion proteins for 2 hours, washed with PBS 3 times, and fixed with paraformaldehyde before immunohistochemistry with an anti-Xpress antibody.
- Cartilage disks were cultured in serum-free DMEM supplemented with either 500 nM HB-IGF-1 or 500 nM Xpress-IGF-1. After 48 hours (on day 0), disks were washed 3 times with PBS then incubated in DMEM with no IGF-1. Disks were collected on days 0, 1, 2 and 4. Protein remaining in cartilage extracts was detected by Western blot analysis and ELISA.
- Chondrocyte proteoglycan synthesis was measured by incorporation of [ 35 S]sulfate (PerkinElmer, Waltham, Mass., USA) as previously described ( Sah, et al., J. Orthop. Res. 7:619-636 (1989)).
- Cartilage disks were equilibrated in serum-free medium for 1 day and incubated in medium containing 100 nM HB-IGF-1, Xpress-IGF-1 or control IGF-1 (Sigma) for 2 days. The disks were then washed 3 times with PBS and changed to IGF-1 free medium. Cultured disks were radiolabeled with 5 ⁇ Ci/ml [ 35 S]sulfate for the final 24 hours of culture.
- each disk was washed 3 times in 1.0 ml of PBS with 0.8 mM proline and 1 mM Na 2 SO 4 at 4° C. to remove free radiolabel.
- Disks were digested in 1.0 ml of proteinase K (125 ⁇ g/ml in 0.1 M Na 2 SO 4 , 5 mM EDTA and 5 mM cysteine at pH 6.0).
- Samples were analyzed for DNA content by fluorometric analysis by reaction of 20 ⁇ l of digest with 180 ⁇ l of Hoechst dye 33258(24). The [ 35 S]sulfate content of the digests was then measured in a scintillation counter (Wallac MicroBeta TriLux, PerkinElmer, Waltham, Mass., USA), with corrections for spillover and quenching.
- IGF-1 has 3 disulfide bonds and includes 70 amino acids.
- the IGF-1 fusion proteins both contain poly-histidine tags for protein purification and Xpress tags for protein detection. Molecular weights of HB-IGF-1 and Xpress-IGF-1 are 14,018 Da and 11,548 Da, respectively.
- HB-IGF-1 has the HB domain on the N-terminus of IGF-1. The HB domain has 21 amino acids and includes 12 positively charged amino acids.
- Final purification of the new fusion proteins after refolding was performed with RP-HPLC. Identification of the correctly-folded protein was performed as previously described (Milner, et al., Biochem. J. 308(Pt 3):865-871 (1995)) and confirmed with bioactivity assays. Coomassie blue staining and Western analysis with an anti-Xpress antibody of the refolded IGF-1 proteins after RP-HPLC, revealed a single band.
- HB-IGF-1 binds selectively to heparin. After 2 hours incubation of heparin agarose beads with 300 pmol HB-IGF-1 or Xpress-IGF-1, bound proteins were extracted from beads by boiling. Coomassie blue staining of bound protein with heparin agarose beads showed that HB-IGF-1 binds selectively to heparin compared with Xpress-IGF-1. Next we tested the ability of HB-IGF-1 to bind to cell surfaces, which have heparin sulfate proteoglycans, using 3T3 fibroblast cells and neonatal rat cardiac myocytes.
- HB-IGF-1 bound to 3T3 fibroblast cells when treated with 10 nM and 100 nM concentrations.
- HB-IGF-1 binding to neonatal cardiac myocytes showed clear selective binding of HB-IGF-1 at 10 nM and 100 nM and a very weak band of IGF-1 at 100 nM. These results are consistent with binding of this HB domain to heparin in the submicromolar range.
- Cartilage is a proteoglycan-rich tissue, and chondrocytes respond to IGF-1 with increased extracellular matrix synthesis. Because prolonged local stimulation of IGF-1 signaling could thus be beneficial for cartilage repair, we studied the ability of HB-IGF-1 to bind to cartilage. Identically sized bovine articular cartilage disks were incubated with 500 nM HB-IGF-1 or Xpress-IGF-1 for 1 day, 3 days or 6 days, and there were no differences in the amount of IGF-1 protein that diffused into cartilage over this time period.
- HB-IGF-1 Increases Chondrocyte Biosynthesis
- chondrocyte biosynthesis of extracellular matrix proteoglycans by incorporation of [ 35 S]sulfate.
- Cartilage disks were incubated with 100 nM HB-IGF-1, control IGF-1 or Xpress-IGF-1 for 2 days and washed 3 times with PBS, followed by culture in medium with no IGF-1.
- [ 35 S]sulfate incorporation was measured for 24 hours beginning on day 0 (before wash-out), day 2 (just after wash-out), day 4, day 6 and day 8.
- control IGF-1, Xpress-IGF-1 and HB-IGF-1 groups all stimulated proteoglycan synthesis as expected. However, after washing, neither control IGF-1 nor Xpress IGF-1 stimulated proteoglycan synthesis at day 4 or beyond. In contrast, HB-IGF-1 led to sustained stimulation of proteoglycan synthesis for 6 days. Proteoglycan synthesis was significantly higher in cartilage incubated with HB-IGF-1 vs. Xpress-IGF-1 on days 2, 4, and 6. These data demonstrate that HB-IGF-1, which is selectively retained in the cartilage, stimulates chondrocyte biosynthesis over a more sustained period.
- IGF-1 Intracellular endothelial growth factor-1
- HB-IGF-1 a novel IGF-1 protein
- IGF-1 has four domains: B domain (AA1-29), C domain (AA30-41), A domain (AA42-62) and D domain (AA63-70), with the C domain playing the most important role in binding to the IGF-1 receptor. Replacement of the entire C domain causes a 30-fold decrease in affinity for the IGF-1 receptor.
- the addition of the heparin-binding domain to the N terminus of IGF-1 was not anticipated to interfere with interactions with the IGF-1 C domain.
- FGF-2 fibroblast growth factor-2
- IGFBP IGF binding proteins
- IGF-1 can promote the synthesis of cartilage extracellular matrix and inhibit cartilage degradation (Bonassar, et al., Arch. Biochem. Biophys. 379:57-63 (2000)); however, a practical mode of IGF-1 delivery to cartilage has yet to be developed (Schmidt, et al., Osteoarthritis Cartilage 14:403-412 (2006)). Heparan sulfate proteoglycans are prevalent in the pericellular matrix of cartilage, particularly as chains on perlecan and syndecan-2, and are known to bind other ligands such as FGF-2. Our experiments suggest that HB-IGF-1 protein can bind with matrix and increase local, long-term bioavailability to chondrocytes and thus improve cartilage repair.
- HB-IGF-1 has potential for use in other tissues.
- IGF-1 induces the axon outgrowth of PC12 cells and corticospinal motor neurons, and thus IGF-1 may benefit motor neuron degeneration diseases.
- IGF-1 is also effective because IGF-1 stimulates collagen synthesis and mitogenicity of fibroblasts and keratinocytes.
- the ability of HB-IGF-1 to bind to the surfaces of cells may enhance cell therapies and other regenerative strategies.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Neurology (AREA)
- Developmental Biology & Embryology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Rheumatology (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Neurosurgery (AREA)
- Virology (AREA)
- Cardiology (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Vascular Medicine (AREA)
Priority Applications (14)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/979,708 US9187517B2 (en) | 2006-11-13 | 2007-11-07 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| MX2009005090A MX2009005090A (es) | 2006-11-13 | 2007-11-08 | Metodos de promover la reparacion cardiaca usando factores de crecimiento fusionados a secuencias de ligadura de heparina. |
| PCT/US2007/023527 WO2008063424A2 (en) | 2006-11-13 | 2007-11-08 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| KR1020097012163A KR20090087061A (ko) | 2006-11-13 | 2007-11-08 | 헤파린 결합 서열에 융합된 성장 인자를 사용하여 심장 수복을 촉진시키는 방법 |
| NZ577235A NZ577235A (en) | 2006-11-13 | 2007-11-08 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| AU2007322217A AU2007322217A1 (en) | 2006-11-13 | 2007-11-08 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| BRPI0718679-7A2A BRPI0718679A2 (pt) | 2006-11-13 | 2007-11-08 | Composto, molécula de dna, e, métodos para tratar um paciente com tecido cardíaco danificado, para tratar um paciente para reparar cartilagem danificada e para tratar um paciente para reparar tecido do nervo danificado |
| CA002670830A CA2670830A1 (en) | 2006-11-13 | 2007-11-08 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| JP2009536294A JP2010508845A (ja) | 2006-11-13 | 2007-11-08 | ヘパリン結合配列に融合した増殖因子を使用して心臓修復を促進する方法 |
| EP07867389A EP2091550B1 (en) | 2006-11-13 | 2007-11-08 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| RU2009122456/15A RU2009122456A (ru) | 2006-11-13 | 2007-11-08 | Способы стимуляции восстановления сердца с использованием факторов роста, слитых с гепарин-связывающими последовательностями |
| IL198708A IL198708A0 (en) | 2006-11-13 | 2009-05-12 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| NO20092261A NO20092261L (no) | 2006-11-13 | 2009-06-12 | Fremgangsmater for a fremme reparasjon av hjerte ved anvendelse av vekstfaktorer fusjonert til heparin bindingssekvenser |
| US14/877,474 US9969788B2 (en) | 2006-11-13 | 2015-10-07 | Methods of treating damaged cartilage tissue using growth factors fused to heparin binding sequences |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US85840606P | 2006-11-13 | 2006-11-13 | |
| US11/979,708 US9187517B2 (en) | 2006-11-13 | 2007-11-07 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/877,474 Continuation US9969788B2 (en) | 2006-11-13 | 2015-10-07 | Methods of treating damaged cartilage tissue using growth factors fused to heparin binding sequences |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20080138323A1 US20080138323A1 (en) | 2008-06-12 |
| US9187517B2 true US9187517B2 (en) | 2015-11-17 |
Family
ID=39430287
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/979,708 Active 2028-08-21 US9187517B2 (en) | 2006-11-13 | 2007-11-07 | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| US14/877,474 Active US9969788B2 (en) | 2006-11-13 | 2015-10-07 | Methods of treating damaged cartilage tissue using growth factors fused to heparin binding sequences |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/877,474 Active US9969788B2 (en) | 2006-11-13 | 2015-10-07 | Methods of treating damaged cartilage tissue using growth factors fused to heparin binding sequences |
Country Status (13)
| Country | Link |
|---|---|
| US (2) | US9187517B2 (enExample) |
| EP (1) | EP2091550B1 (enExample) |
| JP (1) | JP2010508845A (enExample) |
| KR (1) | KR20090087061A (enExample) |
| AU (1) | AU2007322217A1 (enExample) |
| BR (1) | BRPI0718679A2 (enExample) |
| CA (1) | CA2670830A1 (enExample) |
| IL (1) | IL198708A0 (enExample) |
| MX (1) | MX2009005090A (enExample) |
| NO (1) | NO20092261L (enExample) |
| NZ (1) | NZ577235A (enExample) |
| RU (1) | RU2009122456A (enExample) |
| WO (1) | WO2008063424A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160024170A1 (en) * | 2006-11-13 | 2016-01-28 | The Brigham And Women's Hospital, Inc. | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| US11529389B2 (en) | 2018-03-09 | 2022-12-20 | University of Pittsburgh—of the Commonwealth System of Higher Education | Delivering biological drugs to tissues |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2674567T3 (es) | 2010-05-21 | 2018-07-02 | Merrimack Pharmaceuticals, Inc. | Proteínas de fusión biespecíficas |
| JP2012093290A (ja) * | 2010-10-28 | 2012-05-17 | Sumitomo Bakelite Co Ltd | 医療用粒子および生理活性物質の捕捉方法 |
| US9790264B2 (en) | 2012-06-25 | 2017-10-17 | The Brigham And Women's Hospital, Inc. | Compounds and methods for modulating pharmacokinetics |
| US9637531B2 (en) | 2012-06-25 | 2017-05-02 | The Brigham And Women's Hospital, Inc | Selective cartilage therapy |
| WO2014004465A1 (en) * | 2012-06-25 | 2014-01-03 | The Brigham And Women's Hospital, Inc. | Targeted therapeutics |
| EP3355907B1 (en) | 2015-10-02 | 2021-01-20 | Silver Creek Pharmaceuticals, Inc. | Bi-specific therapeutic proteins for tissue repair |
| EA037848B1 (ru) * | 2016-07-14 | 2021-05-27 | Общество С Ограниченной Ответственностью "Биохимический Агент" | Гибридный белок, полинуклеотид, генетическая конструкция, продуцент, препарат для регенерации хряща (варианты) |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5670483A (en) | 1992-12-28 | 1997-09-23 | Massachusetts Insititute Of Technology | Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor |
| US5786217A (en) * | 1994-05-05 | 1998-07-28 | Genzyme Corporation | Methods and compositions for the repair of articular cartilage defects in mammals |
| WO1999054359A1 (en) * | 1998-04-17 | 1999-10-28 | Gropep Limited | Matrix binding factor |
| US6037329A (en) | 1994-03-15 | 2000-03-14 | Selective Genetics, Inc. | Compositions containing nucleic acids and ligands for therapeutic treatment |
| US6150163A (en) * | 1996-07-25 | 2000-11-21 | Genzyme Corporation | Chondrocyte media formulations and culture procedures |
| WO2004018499A2 (en) | 2002-08-20 | 2004-03-04 | Biosurface Engineering Technologies, Inc. | Synthetic heparin-binding growth factor analogs |
| US20040087505A1 (en) | 2002-08-20 | 2004-05-06 | Pena Louis A. | Synthetic heparin-binding factor analogs |
| US20050222394A1 (en) | 2002-08-20 | 2005-10-06 | Biosurface Engineering Technologies, Inc. | Dual chain synthetic heparin-binding growth factor analogs |
| US20060088510A1 (en) | 2004-10-25 | 2006-04-27 | The Brigham And Women's Hospital, Inc. | Targeted delivery of biological factors using self-assembling peptide nanofibers |
| US20060148703A1 (en) | 2005-01-04 | 2006-07-06 | The Brigham And Women's Hospital, Inc. | Sustained delivery of PDGF using self-assembling peptide nanofibers |
| US20060172931A1 (en) | 2003-03-28 | 2006-08-03 | Thomas Jefferson University | Heparin-binding peptides and uses thereof |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2001288392A1 (en) * | 2000-08-30 | 2002-03-13 | University Of Delaware | Delivery system for heparin-binding growth factors |
| US20080227696A1 (en) * | 2005-02-22 | 2008-09-18 | Biosurface Engineering Technologies, Inc. | Single branch heparin-binding growth factor analogs |
| US9187517B2 (en) * | 2006-11-13 | 2015-11-17 | The Brigham And Women's Hospital, Inc. | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
-
2007
- 2007-11-07 US US11/979,708 patent/US9187517B2/en active Active
- 2007-11-08 AU AU2007322217A patent/AU2007322217A1/en not_active Abandoned
- 2007-11-08 KR KR1020097012163A patent/KR20090087061A/ko not_active Withdrawn
- 2007-11-08 WO PCT/US2007/023527 patent/WO2008063424A2/en not_active Ceased
- 2007-11-08 CA CA002670830A patent/CA2670830A1/en not_active Abandoned
- 2007-11-08 NZ NZ577235A patent/NZ577235A/en not_active IP Right Cessation
- 2007-11-08 MX MX2009005090A patent/MX2009005090A/es active IP Right Grant
- 2007-11-08 EP EP07867389A patent/EP2091550B1/en active Active
- 2007-11-08 RU RU2009122456/15A patent/RU2009122456A/ru not_active Application Discontinuation
- 2007-11-08 BR BRPI0718679-7A2A patent/BRPI0718679A2/pt not_active IP Right Cessation
- 2007-11-08 JP JP2009536294A patent/JP2010508845A/ja active Pending
-
2009
- 2009-05-12 IL IL198708A patent/IL198708A0/en unknown
- 2009-06-12 NO NO20092261A patent/NO20092261L/no not_active Application Discontinuation
-
2015
- 2015-10-07 US US14/877,474 patent/US9969788B2/en active Active
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5670483A (en) | 1992-12-28 | 1997-09-23 | Massachusetts Insititute Of Technology | Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor |
| US6548630B1 (en) | 1992-12-28 | 2003-04-15 | Massachusettes Insitute Of Technology | Stable macroscopic membranes formed by self-assembly of amphiphilic peptides and uses therefor |
| US6037329A (en) | 1994-03-15 | 2000-03-14 | Selective Genetics, Inc. | Compositions containing nucleic acids and ligands for therapeutic treatment |
| US5786217A (en) * | 1994-05-05 | 1998-07-28 | Genzyme Corporation | Methods and compositions for the repair of articular cartilage defects in mammals |
| US6150163A (en) * | 1996-07-25 | 2000-11-21 | Genzyme Corporation | Chondrocyte media formulations and culture procedures |
| WO1999054359A1 (en) * | 1998-04-17 | 1999-10-28 | Gropep Limited | Matrix binding factor |
| WO2004018499A2 (en) | 2002-08-20 | 2004-03-04 | Biosurface Engineering Technologies, Inc. | Synthetic heparin-binding growth factor analogs |
| US20040087505A1 (en) | 2002-08-20 | 2004-05-06 | Pena Louis A. | Synthetic heparin-binding factor analogs |
| US20050222394A1 (en) | 2002-08-20 | 2005-10-06 | Biosurface Engineering Technologies, Inc. | Dual chain synthetic heparin-binding growth factor analogs |
| US20060172931A1 (en) | 2003-03-28 | 2006-08-03 | Thomas Jefferson University | Heparin-binding peptides and uses thereof |
| US20060088510A1 (en) | 2004-10-25 | 2006-04-27 | The Brigham And Women's Hospital, Inc. | Targeted delivery of biological factors using self-assembling peptide nanofibers |
| US7399831B2 (en) | 2004-10-25 | 2008-07-15 | The Brigham And Women's Hospital, Inc. | Targeted delivery of biological factors using self-assembling peptide nanofibers |
| US20060148703A1 (en) | 2005-01-04 | 2006-07-06 | The Brigham And Women's Hospital, Inc. | Sustained delivery of PDGF using self-assembling peptide nanofibers |
| US7429567B2 (en) | 2005-01-04 | 2008-09-30 | The Brigham And Women's Hospital, Inc. | Sustained delivery of PDGF using self-assembling peptide nanofibers |
Non-Patent Citations (29)
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160024170A1 (en) * | 2006-11-13 | 2016-01-28 | The Brigham And Women's Hospital, Inc. | Methods of promoting cardiac repair using growth factors fused to heparin binding sequences |
| US9969788B2 (en) * | 2006-11-13 | 2018-05-15 | The Brigham And Women's Hospital, Inc. | Methods of treating damaged cartilage tissue using growth factors fused to heparin binding sequences |
| US11529389B2 (en) | 2018-03-09 | 2022-12-20 | University of Pittsburgh—of the Commonwealth System of Higher Education | Delivering biological drugs to tissues |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2670830A1 (en) | 2008-05-29 |
| KR20090087061A (ko) | 2009-08-14 |
| EP2091550A2 (en) | 2009-08-26 |
| WO2008063424A3 (en) | 2008-09-12 |
| RU2009122456A (ru) | 2010-12-20 |
| IL198708A0 (en) | 2011-08-01 |
| US9969788B2 (en) | 2018-05-15 |
| EP2091550A4 (en) | 2009-12-09 |
| US20080138323A1 (en) | 2008-06-12 |
| AU2007322217A1 (en) | 2008-05-29 |
| US20160024170A1 (en) | 2016-01-28 |
| EP2091550B1 (en) | 2013-01-02 |
| WO2008063424A2 (en) | 2008-05-29 |
| JP2010508845A (ja) | 2010-03-25 |
| NZ577235A (en) | 2011-12-22 |
| MX2009005090A (es) | 2009-07-24 |
| NO20092261L (no) | 2009-08-06 |
| BRPI0718679A2 (pt) | 2014-02-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9969788B2 (en) | Methods of treating damaged cartilage tissue using growth factors fused to heparin binding sequences | |
| JP2010508845A5 (enExample) | ||
| Gospodarowicz et al. | Extracellular matrix and control of proliferation of vascular endothelial cells | |
| EP2588491B1 (en) | Novel peptide and use thereof | |
| McLane et al. | Disintegrins in health and disease | |
| Etheredge et al. | The effect of growth factor signaling on keratocytes in vitro and its relationship to the phases of stromal wound repair | |
| Swope et al. | Bombesin stimulates insulin secretion by a pancreatic islet cell line. | |
| Tokunou et al. | Engineering insulin-like growth factor-1 for local delivery | |
| US9072706B2 (en) | Chimeric fibronectin matrix mimetics and uses therof | |
| CN116333094A (zh) | 一种重组人源化I型胶原蛋白α1及表达载体和应用 | |
| US20220289804A1 (en) | Bioactive agents and methods related thereto | |
| CN103694340B (zh) | 重组蛋白igf1-24及其应用 | |
| JP3945846B2 (ja) | 膵臓機能改善剤 | |
| US20110251128A1 (en) | THYMOSIN Beta4 PEPTIDES PROMOTE TISSUE REGENERATION | |
| CN101547704A (zh) | 使用融合至肝素结合序列的生长因子促进心脏修复的方法 | |
| KR102638021B1 (ko) | 섬유질환 예방 또는 치료용 재조합 융합 단백질 | |
| Tsao et al. | Muscle derived stem cells stimulate muscle myofiber repair and counteract fat infiltration in a diabetic mouse model of critical limb ischemia | |
| SHIU et al. | Characterization of insulin-like growth factor II peptides secreted by explants of neonatal brain and of adult pituitary from rats | |
| Patruno et al. | Tat-MyoD fused proteins, together with C2c12 conditioned medium, are able to induce equine adult mesenchimal stem cells towards the myogenic fate | |
| AU2003287289B2 (en) | Promotion of peroxisomal catalase function in cells | |
| KR20210127618A (ko) | 섬유질환 예방 또는 치료용 재조합 융합 단백질 | |
| Lozito et al. | Microenvironmental regulation of adult mesenchymal stem cells | |
| US20110092427A1 (en) | Polypeptide and pharmaceutical composition containing the polypeptide | |
| KR102877150B1 (ko) | 연골 재생용 펩타이드 및 이의 용도 | |
| Hazen‐Martin et al. | Electron microscopic immunostaining of nerve growth factor: Secretagogue stimulated submandibular glands |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: THE BRIGHAM AND WOMEN'S HOSPITAL, INC., MASSACHUSE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, RICHARD;REEL/FRAME:020303/0759 Effective date: 20071217 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |