US9173388B2 - Radiating systems for affecting insect behavior - Google Patents
Radiating systems for affecting insect behavior Download PDFInfo
- Publication number
- US9173388B2 US9173388B2 US14/665,906 US201514665906A US9173388B2 US 9173388 B2 US9173388 B2 US 9173388B2 US 201514665906 A US201514665906 A US 201514665906A US 9173388 B2 US9173388 B2 US 9173388B2
- Authority
- US
- United States
- Prior art keywords
- vessel
- insect
- chemical compound
- insect trap
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000238631 Hexapoda Species 0.000 title claims abstract description 112
- 150000001875 compounds Chemical class 0.000 claims abstract description 75
- 230000005284 excitation Effects 0.000 claims abstract description 44
- 238000010521 absorption reaction Methods 0.000 claims abstract description 31
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 26
- 239000003016 pheromone Substances 0.000 claims description 17
- 230000000739 chaotic effect Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000005855 radiation Effects 0.000 description 22
- 239000000463 material Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 8
- 241000607479 Yersinia pestis Species 0.000 description 7
- 238000000695 excitation spectrum Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000003958 fumigation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 206010061217 Infestation Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000595629 Plodia interpunctella Species 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000031902 chemoattractant activity Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000002316 fumigant Substances 0.000 description 1
- -1 gaseous Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 238000004920 integrated pest control Methods 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M1/00—Stationary means for catching or killing insects
- A01M1/02—Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M1/00—Stationary means for catching or killing insects
- A01M1/02—Stationary means for catching or killing insects with devices or substances, e.g. food, pheronones attracting the insects
- A01M1/04—Attracting insects by using illumination or colours
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M1/00—Stationary means for catching or killing insects
- A01M1/10—Catching insects by using Traps
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M1/00—Stationary means for catching or killing insects
- A01M1/14—Catching by adhesive surfaces
- A01M1/145—Attracting and catching insects using combined illumination or colours and adhesive surfaces
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M1/00—Stationary means for catching or killing insects
- A01M1/22—Killing insects by electric means
- A01M1/223—Killing insects by electric means by using electrocution
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M29/00—Scaring or repelling devices, e.g. bird-scaring apparatus
- A01M29/06—Scaring or repelling devices, e.g. bird-scaring apparatus using visual means, e.g. scarecrows, moving elements, specific shapes, patterns or the like
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M29/00—Scaring or repelling devices, e.g. bird-scaring apparatus
- A01M29/06—Scaring or repelling devices, e.g. bird-scaring apparatus using visual means, e.g. scarecrows, moving elements, specific shapes, patterns or the like
- A01M29/08—Scaring or repelling devices, e.g. bird-scaring apparatus using visual means, e.g. scarecrows, moving elements, specific shapes, patterns or the like using reflection, colours or films with specific transparency or reflectivity
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M29/00—Scaring or repelling devices, e.g. bird-scaring apparatus
- A01M29/24—Scaring or repelling devices, e.g. bird-scaring apparatus using electric or magnetic effects, e.g. electric shocks, magnetic fields or microwaves
- A01M29/28—Scaring or repelling devices, e.g. bird-scaring apparatus using electric or magnetic effects, e.g. electric shocks, magnetic fields or microwaves specially adapted for insects
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M31/00—Hunting appliances
- A01M31/06—Decoys
Definitions
- Embodiments of the present invention are directed to electromagnetic radiation systems for affecting insect behavior.
- IPM Integrated Pest Management
- Stored grain is transported all over the world by ship, truck, and plane.
- the distribution of grain is dependent on short to long-term storage ranging from a few days to more than a year.
- the long-term storage of grain has encouraged the exponential growth of many insects and other pests that infest stored grain.
- One example pest is the Indian meal moth. Augmentation of pest populations are facilitated by the virtually unlimited food source found in storage grain bins or warehouses. Estimated losses caused by pests in temperate climates come to approximately 10-15%, but in tropical countries, the figure can be as high as 60%.
- An alternative to chemical management is the use of insect traps that contain artificially produced molecules called pheromones. These artificial pheromones may also be deployed in agriculture in order to confuse the insects or disrupt mating. Typically in nature, these molecules are released into the atmosphere by the insects and are used to locate a mate or to aggregate.
- Current pheromone traps have many limitations. One limitation includes the relatively small number of insects trapped over a given period of time relative to the actual insect population. There are no reliable figures to specify the percentage of insects that can be successively trapped in a given area. Therefore, the traps are more frequently used to simply determine the presence of a given insect population so that some other method of population control can be deployed, which is usually insecticidal in nature.
- a second limitation is the reduced longevity of the pheromone source or lure in conventional traps, aerosols, or lures.
- the longevity of the typical pheromone lure is estimated to be approximately six weeks, based on written information provided by the pheromone manufacturers.
- an insect decoy in an embodiment of the present invention, includes a vapor-isolated vessel, a chemical compound disposed within the vapor-isolated vessel, and a naturally occurring or artificially produced excitation energy source.
- the chemical compound may have one or more absorption bands at a set of absorption wavelengths and have one or more emission bands at a set of emission wavelengths.
- the excitation energy source may be configured to produce electromagnetic radiation at the absorption wavelengths so as to fluoresce the chemical compound and release photons at the emission wavelengths.
- the vapor-isolated vessel may be configured with at least one infrared transmissive window that is substantially transparent to the released photons at the emission wavelengths of the chemical compound.
- an insect trap in another embodiment, includes an outer vessel and a closed, vapor-isolated inner vessel within the outer vessel.
- the outer vessel may include a housing and at least one infrared transmissive window.
- the housing may include an opening configured to allow one or more insects to enter the outer vessel while preventing the one or more insects from exiting the outer vessel.
- the closed, vapor-isolated inner vessel may include at least one infrared transmissive window aligned with the infrared transmissive window in the outer vessel and a chemical compound disposed within the vapor-isolated inner vessel.
- the chemical compound may have one or more absorption bands at a set of absorption wavelengths and have one or more emission bands at a set of emission wavelengths.
- the infrared transmissive window is substantially transparent to electromagnetic radiation at the absorption wavelengths and electromagnetic radiation at the emission wavelengths of the chemical compound. The chemical compound releases photons at the emission wavelengths when electromagnetic radiation at the absorption wavelengths is received by the chemical compound.
- FIG. 1A illustrates an insect decoy system according to an embodiment of the present invention.
- FIG. 1B illustrates an exploded view of the insect decoy system of FIG. 1 .
- FIG. 2 illustrates an insect decoy system according to another embodiment of the present invention.
- FIG. 3 illustrates an insect decoy system according to another embodiment of the present invention.
- FIG. 4 illustrates an insect decoy system according to another embodiment of the present invention.
- FIG. 5 illustrates an insect decoy system including an internal excitation energy source according to an embodiment of the present invention.
- FIG. 6 illustrates an insect decoy system including an external excitation energy source according to an embodiment of the present invention.
- FIG. 7 illustrates an insect trap system according to an embodiment of the present invention.
- Embodiments of the present invention provide a radiating insect decoy system for inducing behavioral changes in various types of insects. Inducing behavioral changes may be in the form of producing attractive, repulsive, or chaotic movement responses in various insects with respect to the embodiments of the present invention.
- FIG. 1A illustrates an insect decoy system 100 according to an embodiment of the present invention.
- System 100 includes a vapor-isolated vessel 101 .
- Vapor-isolated vessel 101 may include a window 104 , and a chemical compound 106 .
- Vessel 101 may include sides 120 , 122 , 124 , 126 , 128 , and 130 , as illustrated in FIG. 1B in an exploded view of system 100 .
- Vapor-isolation may be provided, for example, by hermetically sealing vessel 101 or by placing vessel 101 under vacuum.
- the term “vapor-isolated” does not require 100% vapor isolation.
- a vapor-isolated vessel may be substantially vapor-isolated, such as 90-95% vapor-isolated if, for example, sides 120 , 122 , 124 , 126 , 128 , or 130 exhibit some degree of vapor porosity, 100% vapor isolation is referred to herein as “completely vapor-isolated.”
- Vessel 101 may be configured to be weather resistant and capable of being mounted or portably deployed in agricultural and stored grain environments.
- chemical compound 106 emits infrared electromagnetic radiation by means of fluorescence. Fluorescence occurs when energy (e.g., light) from an excitation energy source is absorbed by a body (or molecule) at one or more frequency range(s) and is re-emitted at one or more different frequency ranges. The photonic emission is generally of a longer wavelength than the excitation source.
- An absorption spectrum of a body is a plot of the absorption intensity of the fraction of incident radiation absorbed by that body as a function of wavelengths covering the electronic energy levels of the molecules in the body. While absorption spectra can be recorded for any absorbing material, excitation spectra can be recorded only for fluorescent materials apart from their usual absorption spectra.
- Emission spectra can be recorded by fixing an excitation wavelength at a particular wavelength, while intensity of emission wavelengths is scanned. The recorded emission wavelengths are obtained due to radiative relaxations of molecules from a higher energy level to which molecules are excited with energy at the fixed excitation wavelength to various lower energy levels.
- excitation spectra can be recorded by scanning intensity of excitation wavelengths while an emission wavelength is kept constant. In other words, an excitation spectrum will provide all the wavelengths absorbed by molecule that will result in a particular emission wavelength. All the excitation spectra corresponding to all the emission wavelengths can provide a spectrum which is almost the same as the absorption spectrum, but which differs somewhat since a signature of absorption is not obtained if that absorption does not yield fluorescence emission.
- Chemical compound 106 may be characterized as having one or more absorption bands at different absorption wavelengths and one or more emission bands at different emission wavelengths.
- the behavior of different types of insects may be affected by different emission wavelengths. These different wavelengths may include different fluorescence wavelengths of the same chemical compound, or the different wavelengths may include fluorescence wavelengths of multiple chemical compounds. Therefore, one chemical compound 106 may be used as an attractant, repellent, or disruptive agent for different types of insects. One or more chemical compounds 106 with different absorption and emission hands may be used in decoy system 100 to target different types of insects.
- Chemical compound 106 may include pheromone molecules.
- the fluorescence characteristics of the pheromone molecules results in the emission of electromagnetic radiation at various wavelengths in the infrared spectrum, referred to herein as the emission wavelengths. These wavelengths may be detected by insects and cause a change in their behavior. If an insect is sensitive to the emission wavelengths, such as those insects targeted by a specific pheromone, there are several types of behavior that may result from the insect's exposure to the emission wavelengths.
- a first type of behavior is an attraction behavior.
- the emission wavelengths correspond to those produced by a sex or aggregation pheromone
- an insect that detects the emission wavelengths may be attracted or lured to the pheromone as if it were a mating signal or a call to aggregate, respectively.
- a second type of behavior is a repelling behavior. If the emission wavelengths are too strong or are representative of something the insect would perceive as a threat, an insect may be overwhelmed and repelled by the signal, or seek evasive action or cover in the event of a perceived threat.
- a third type of behavior is confusion or chaotic response, which results when the emission wavelengths disrupt the insect from its normal behavior. Tests have shown that when some insects are exposed to certain emission wavelengths, their behavior is disrupted.
- insects may, for example, become abnormally active, using up their own energy resources such that they are unable to properly mate, or such that they die sooner than expected.
- the depletion of their energy resources may also produce unhealthy offspring, eventually resulting in an overall reduction in the insect population.
- the infrared fluorescence of the pheromone molecules allows the use of pheromone molecules even though they are housed in vapor-isolated vessel 101 .
- the vapor-isolation of the pheromone molecules in vessel 101 may enable greater longevity of the molecules than the current methods used for deployment, including traps and aerosols, which diffuse pheromone molecules into open space. Dissipation, spreading, diffusion, or releasing of pheromone molecules into the open environment can cause a decline in parts-per-million concentration and radiation release rates as a function of time, such that their effectiveness in prompting insect behavior is also reduced.
- chemical compound 106 is deposited on or adhered to a single one of sides 120 , 122 , 124 , 126 , 128 , and 130 .
- chemical compound 106 is deposited onto a plurality of interior sides of vessel 101 . Each side of vessel 101 may have deposited the same or a different chemical compound.
- different types of chemical compounds may be used to enable decoy system 100 to affect behavior in a variety of insects.
- chemical compound 106 may be deposited or adhered onto one or more substrates placed in vessel 101 , instead of being deposited directly onto a side of vessel 101 .
- Other mechanisms, methodologies, and techniques can be employed to introduce chemical compound 106 into vessel 101 , and are deemed to be within the scope of the present invention.
- the chemical compound may be in liquid, gaseous, or solid form.
- the chemical compound may be a gas or liquid that fills a separate vial located within vessel 101 , said vial being transmissive to the absorption and emission wavelengths of interest specific to the chemical compound.
- the gas may be inserted directly into vessel 101 , such that it disperses throughout vessel 101 .
- the chemical compound is a liquid or solid disposed on an interior surface of vessel 101 or a surface of a separate substrate, which substrate is then placed within vessel 101 . Any other number of mechanisms may be employed to contain the chemical compound in insect decoy system 100 .
- FIGS. 1A and 1B show vessel 101 as a cuboid shape having sides 120 , 122 , 124 , 126 , 128 , and 130 , according to an example embodiment.
- vessel 101 is not restricted to being cuboid in shape or having other straight-sided shapes.
- Vessel 101 may be configured to be any type of geometric shape, such as but not limited to cylindrical, spherical, or elliptical.
- Vessel 101 may be constructed from a variety of materials that are configured to prevent substantial penetration of vapor or electromagnetic radiation from chemical compound 106 through sides 120 , 122 , 124 , 126 , 128 , and 130 .
- one or more sides may be made of a material that prevents substantial penetration of vapor, but which is transmissive to electromagnetic radiation at the absorption and/or emission wavelengths.
- Vessel 101 materials may include natural or synthetic materials, such as but not limited to metals, non-metals, and/or alloys.
- vessel 101 may be made from, for example and without limitation, high density polyethylene (HDPE) or low-density polyethylene (LDPE).
- HDPE high density polyethylene
- LDPE low-density polyethylene
- Such materials may have transmissivity through 20 microns, for example, to allow passage of infrared radiation while restricting other types of electromagnetic radiation.
- the inner surface of one or more sides of vessel 101 may be partially or fully covered with a reflective surface.
- chemical compound 106 may be deposited on or adhered to one or more sides having reflective surfaces.
- a reflective surface may include a mirror or like material that prevents, for example, absorption of radiation from chemical compound 106 or passing of radiation from chemical compound 106 through vessel 101 .
- the surface may be, for example, a first surface mirror.
- the reflective surface may be reflective to electromagnetic radiation at wavelengths of the absorption band, emission band, or both the absorption and emission bands of chemical compound 106 , according to examples of this embodiment.
- Window 104 may be transmissive to infrared radiation according to an example embodiment. Window 104 may be transmissive specifically to wavelengths in the emission bands of chemical compound 106 . Window 104 may also be transmissive to wavelengths in the absorption bands of chemical compound 106 . Infrared transmissive window 104 may be slightly porous, thereby making vessel 101 less than 100% vapor-isolated. For example, infrared transmissive window 104 may be made from a material that is approximately 5% porous (95% vapor-isolated). HDPE is one such material.
- window 104 may be strategically positioned to allow emission of electromagnetic radiation from chemical compound 106 through window 104 .
- window 104 is illustrated as being located on top of vessel 101 , window 104 may additionally or alternatively be located at other sides of vessel 101 , as long as emission of radiation from chemical compound 106 can be released into the environment external to vessel 101 .
- FIGS. 1A and 1B illustrate vessel 101 having a window 104 of a circular shape.
- vessel 101 may include windows in various shapes and sizes.
- vessel 201 of insect decoy system 200 may include a rectangular shaped window 204 that forms a side of vessel 201 , according to an embodiment of the present invention.
- Window 204 may have similar transmissive properties as window 104 .
- vessel 201 may include a plurality of windows with transmissive properties similar to windows 104 and 204 .
- the plurality of windows may form a vessel 301 , as illustrated in FIG. 3 .
- FIG. 3 illustrates insect decoy system 300 as a vessel 301 having a substantially flat, straight-sided window on each side, a window of vessel 301 may take any geometric shape, such as but not limited to cylindrical, spherical, or elliptical.
- window 104 may be directional or omnidirectional.
- vessel 401 of insect decoy system 400 may include a lens, such as a concave lens, as window 404 .
- Window 404 may be capable of focusing infrared radiation emitted by chemical compound 106 .
- directionality may be additionally or alternatively facilitated with an internal or external reflector (not shown).
- FIG. 5 illustrates an insect decoy system 500 .
- Insect decoy system 500 is similar to insect decoy system 100 of FIG. 1 , but includes an excitation energy source 516 within vapor-isolated vessel 501 .
- Excitation energy source 516 may be an isolated system located within vessel 501 , or it may be an integrated part of vessel 501 .
- Examples of excitation energy source elements include, without limitation, heating elements, capacitive elements, and solar energy elements. If the excitation energy source is an integrated part of vessel 501 , then excitation energy source 516 is a part of vessel 501 .
- excitation energy source 516 is integrated into one or more sides of vessel 501 .
- a side of vessel 501 may be made of a dielectric material that builds up energy as a capacitive charge. This energy can then be transferred to chemical compound 106 .
- Excitation energy source 516 may be configured to produce electromagnetic radiation in the absorption bands of chemical compound 106 . Exciting chemical compound 106 with radiation produced by excitation energy source 516 may result in the fluorescence of compound 106 . This fluorescence releases photons having wavelengths in the emission bands of compound 106 .
- the electromagnetic radiation from excitation energy source 516 may be produced by various means, such as but not limited to thermal, electrical, or optical, according to various embodiments.
- excitation energy source 516 is configured to modulate the electromagnetic radiation. Such modulation may be electrically or manually induced, depending on, for example, whether the excitation energy source is actively produced, naturally occurring, or a function of re-radiation.
- Increasing the amount of fluorescing energy that acts upon chemical compound 106 may increase the emission of radiation from chemical compound 106 , which in turn may increase the corresponding volumetric area in which insects' behavior may be affected.
- the greater the infrared emission from chemical compound 106 the more likely the insect will be able to detect and react to the emission.
- the infrared emission from chemical compound 106 may be increased, for example, by increasing the amount of chemical compound 106 in vessels 101 , 201 , 301 , 401 , or 501 .
- the desired level of emission radiation is a function of the amount of the chemical compound and the amount of energy provided by the excitation energy source, taking into consideration variables such as the cost of the chemical compound, the desired volumetric size of the effective area, and efficiency of the excitation energy source, among other things.
- FIG. 6 illustrates an insect decoy system 600 .
- Insect decoy system 600 is similar to insect decoy system 100 of FIG. 1 , but includes an additional window 617 in vessel 101 and an excitation energy source 616 located external to vapor-isolated vessel 101 .
- Excitation energy source 616 may be configured to perform similar functions as excitation energy source 516 .
- Window 617 may be transmissive to wavelengths produced by excitation energy source 616 .
- window 617 may be placed strategically with respect to excitation energy source 616 and chemical compound 106 to allow radiation from excitation energy source 616 to enter vessel 101 and excite chemical compound 106 .
- excitation of chemical compound 106 with excitation energy source 616 may result in chemical compound 106 fluorescing radiation at wavelengths in the infrared spectrum, which are then released through window 104 . Insects responsive to or influenced by radiation from chemical compound 106 may be attracted, repelled, or confused depending on the fluorescing wavelength, depending on the intensity of the radiation emitting from compound 106 .
- the window allowing radiation from excitation energy source 616 to enter vessel 101 is the same window that allows radiation emitted by the chemical compound to exit vessel 101 .
- FIG. 6 illustrates insect decoy system 600 having one substantially flat and straight-sided window 617 that may be transmissive to radiation from an external excitation energy source.
- system 600 may have windows in varying numbers and in varying shapes that are similar to window 617 in their transmissive properties.
- Windows 104 and 617 of system 600 may be placed in different orientations with respect to each other and may not necessarily be placed as illustrated in FIG. 6 .
- vessel 101 of system 600 may have windows transmissive to both wavelengths entering vessel 101 from excitation energy source 616 and leaving vessel 101 from chemical compound 106 .
- FIG. 7 illustrates an insect trap system 700 comprising an insect decoy system 100 and an insect trap vessel 701 , according to an embodiment of the present invention.
- Insect trap vessel 701 includes an aperture 704 .
- insect decoy system 100 may be enclosed within trap vessel 701 .
- System 100 may be strategically positioned in trap vessel 701 such that window 104 and aperture 704 are optically aligned. This optical alignment may enable infrared radiation from chemical compound 106 to exit insect trap system 700 through window 104 and aperture 704 to the surrounding environment.
- Trap vessel 701 may be configured similarly to vessel 101 as previously discussed. That is, trap vessel 701 may be impermeable to radiation from chemical compound 106 . In that case, trap system 700 may not, be effective without optical alignment of window 104 and aperture 704 . When window 104 and aperture 704 are aligned, the released radiation from chemical compound 106 may attract insects into trap system 700 through aperture 704 .
- aperture 704 is as circular opening on a side of trap vessel 701 , as illustrated in FIG. 7 .
- the diameter of aperture 704 may be varied to adjust for insect size and may be designed to allow for insect entry while prohibiting insect escape once inside trap vessel 701 , as is common in the art.
- aperture 704 is illustrated as being circular, aperture 704 may form other geometric shapes, or may be located at other positions, such as on sides of trap vessel 701 .
- aperture 704 may be attached to a barrier (not shown) that permits insects attracted by the emission from chemical compound 106 to enter aperture 704 , but may prevent insects from escaping trap vessel 701 .
- Aperture 704 may be, for example, a one-way bristle-type opening. Multiple apertures similar to aperture 740 may be strategically formed in trap vessel 701 .
- a sticky substance may be disposed inside of trap vessel 701 that may prevent trapped insects from exiting trap vessel 701 .
- insect decoy system 100 may be located near, but external to, trap vessel 701 .
- insect decoy system 100 may be located within a screen mesh forming an enclosed trap that allows the released radiation from chemical compound 106 to pass through the screen, the screen mesh further allowing insects to enter but not escape.
- insect decoy system 100 may be located in near proximity to an electrostatic device that stuns or kills the insect.
- insect trap systems may be configured by integrating trap vessel 701 with other insect decoy systems, such as but not limited, to systems 500 and 600 as described above.
- Trap vessel 701 may be configured to enclose systems 500 and 600 in a manner as illustrated for system 100 in FIG. 7 .
- One example structure uses solar radiation-absorptive materials that nocturnally reradiate, serving as an excitation energy source.
- two intersecting triangles of solar radiation-absorptive materials may be combined to form a tent-like structure.
- This tent-like structure of re-radiating material constitutes the excitation energy source of the insect decoy system.
- a vapor-isolated vessel containing the chemical compound of interest is disposed in the interior of the tent-like structure.
- a vessel wall surrounding the excitation energy source is made from flexible LDPE or HDPE material. The vessel wall is doped with adhesive bands to capture insects attracted to the chamber.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Insects & Arthropods (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Birds (AREA)
- Catching Or Destruction (AREA)
Abstract
Description
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/665,906 US9173388B2 (en) | 2013-03-15 | 2015-03-23 | Radiating systems for affecting insect behavior |
US14/930,421 US10226035B2 (en) | 2013-03-15 | 2015-11-02 | Radiating systems for affecting insect behavior |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/839,636 US8984800B2 (en) | 2013-03-15 | 2013-03-15 | Radiating systems for affecting insect behavior |
US14/665,906 US9173388B2 (en) | 2013-03-15 | 2015-03-23 | Radiating systems for affecting insect behavior |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/839,636 Division US8984800B2 (en) | 2013-03-15 | 2013-03-15 | Radiating systems for affecting insect behavior |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/930,421 Continuation US10226035B2 (en) | 2013-03-15 | 2015-11-02 | Radiating systems for affecting insect behavior |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150196019A1 US20150196019A1 (en) | 2015-07-16 |
US9173388B2 true US9173388B2 (en) | 2015-11-03 |
Family
ID=51520790
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/839,636 Expired - Fee Related US8984800B2 (en) | 2013-03-15 | 2013-03-15 | Radiating systems for affecting insect behavior |
US14/665,906 Active US9173388B2 (en) | 2013-03-15 | 2015-03-23 | Radiating systems for affecting insect behavior |
US14/930,421 Expired - Fee Related US10226035B2 (en) | 2013-03-15 | 2015-11-02 | Radiating systems for affecting insect behavior |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/839,636 Expired - Fee Related US8984800B2 (en) | 2013-03-15 | 2013-03-15 | Radiating systems for affecting insect behavior |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/930,421 Expired - Fee Related US10226035B2 (en) | 2013-03-15 | 2015-11-02 | Radiating systems for affecting insect behavior |
Country Status (8)
Country | Link |
---|---|
US (3) | US8984800B2 (en) |
EP (1) | EP2967019B1 (en) |
CN (1) | CN105246326B (en) |
AU (1) | AU2014237064B2 (en) |
BR (1) | BR112015023526A2 (en) |
CA (1) | CA2907076A1 (en) |
RU (1) | RU2654643C2 (en) |
WO (1) | WO2014150519A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150051882A1 (en) * | 2013-08-16 | 2015-02-19 | Technology S.G., Lp | Artificially Simulating Emissions of a Chemical Compound |
US20160050900A1 (en) * | 2013-03-15 | 2016-02-25 | Technology Sg, L.P. | Radiating Systems for Affecting Insect Behavior |
US9642351B1 (en) * | 2016-09-13 | 2017-05-09 | Kenneth Reese | Cockroach bait station |
WO2020051441A1 (en) * | 2018-09-07 | 2020-03-12 | Dykstra Thomas M | Determining odorant detection in arthropods |
US11484022B2 (en) | 2019-10-15 | 2022-11-01 | S. C. Johnson & Son, Inc. | Insect trap device |
USD1010060S1 (en) | 2022-02-09 | 2024-01-02 | S. C. Johnson & Son, Inc. | Substrate |
USD1031910S1 (en) | 2022-02-09 | 2024-06-18 | S. C. Johnson & Son, Inc. | Insect trap |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120317868A1 (en) * | 2011-06-15 | 2012-12-20 | Ecolab Usa Inc. | Flying insect attraction station |
JP5938653B2 (en) * | 2012-05-11 | 2016-06-22 | パナソニックIpマネジメント株式会社 | Pest control lighting system |
EP2738314B1 (en) * | 2012-11-28 | 2018-04-04 | Itzhak Shefer | See-Through manhole cover |
US9999211B2 (en) * | 2015-02-13 | 2018-06-19 | Delta Five, Llc | Insect traps and monitoring system |
US9664813B2 (en) | 2015-02-13 | 2017-05-30 | Delta Five, Llc | Automated insect monitoring system |
US9999212B2 (en) * | 2015-02-13 | 2018-06-19 | Delta Five, Llc | Insect traps and monitoring system |
US20170094960A1 (en) * | 2015-10-01 | 2017-04-06 | Ipm Products Manufacturing, Llc | Insect control device and method of using the same |
US10028501B2 (en) * | 2016-05-03 | 2018-07-24 | Eco-Solutions | Insect repellant apparatus with imprinted glass marbles and associated methods |
CN106234332A (en) * | 2016-09-11 | 2016-12-21 | 于卫华 | Power quick triggering cockroach trapper |
DE102017114261A1 (en) * | 2017-06-27 | 2018-12-27 | Priedemann Facade-Lab GmbH | Bird vermin device and arrangement |
ES2769601A1 (en) * | 2018-12-26 | 2020-06-26 | Zobele Espana Sa | Insect catching device (Machine-translation by Google Translate, not legally binding) |
CN109919796B (en) * | 2019-02-27 | 2021-08-03 | 北京农业智能装备技术研究中心 | Insect pest situation detecting and reporting system |
CA3149360A1 (en) * | 2019-08-26 | 2021-03-04 | Shankar SEETHARAM | Arthropod lure or repellent, arthropod trap, and lighting device |
CN110521675B (en) * | 2019-09-18 | 2020-12-22 | 清华大学 | Y-shaped labyrinth for bee ethology research experiment |
WO2022015190A1 (en) * | 2020-07-17 | 2022-01-20 | Шамиль Шимагомедович ХАРХАРОВ | Multifunctional device for lunch table |
Citations (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1819551A (en) * | 1929-01-09 | 1931-08-18 | Gourdon Georges | Method and apparatus for capturing insects |
US2059835A (en) * | 1936-01-29 | 1936-11-03 | Archie G Worthing | Destruction of living organisms |
US2645877A (en) * | 1951-12-01 | 1953-07-21 | William A Pohlman | Insect trap |
US2731762A (en) * | 1954-06-01 | 1956-01-24 | James F Jones | Bug and mosquito catcher |
US3653145A (en) * | 1969-12-10 | 1972-04-04 | Whitmire Research Lab Inc | Art of controlling houseflies |
US3997785A (en) * | 1975-09-24 | 1976-12-14 | The United States Of America As Represented By The Secretary Of Agriculture | Insect antenna vibrating frequency modulator and resonating maserlike IR emitter |
US4018530A (en) * | 1975-11-18 | 1977-04-19 | Block Engineering, Inc. | Fluorescence spectrometry employing excitation of bleaching intensity |
US4069615A (en) * | 1976-11-22 | 1978-01-24 | Gilbert Donald E | Screen for deterring flying insects |
US4127961A (en) * | 1976-03-29 | 1978-12-05 | Pestolite Inc. | Apparatus for entrapping insects |
US4282673A (en) * | 1979-06-21 | 1981-08-11 | Focks Dana A | Flying insect trap |
US4411093A (en) * | 1981-06-17 | 1983-10-25 | Whitmire Research Laboratories, Inc. | Insect lure |
US4490040A (en) * | 1981-06-10 | 1984-12-25 | Hartmut Lucht | Spectralfluorometer arrangement |
US4675300A (en) * | 1985-09-18 | 1987-06-23 | The Board Of Trustees Of The Leland Stanford Junior University | Laser-excitation fluorescence detection electrokinetic separation |
US4982100A (en) * | 1983-06-14 | 1991-01-01 | Harding Jr Norman T | Method and apparatus for repelling insects |
US5247933A (en) | 1991-10-07 | 1993-09-28 | Callahan Philip S | Photonic ionic cloth radio amplifier |
US5424551A (en) * | 1993-09-15 | 1995-06-13 | Richard J. Fox | Frequency emitter for control of insects |
US5528049A (en) * | 1993-09-15 | 1996-06-18 | Fox Investment Company | Frequency emitter for control of insects |
US5634292A (en) * | 1993-10-29 | 1997-06-03 | Kitterman; Roger L. | Apparatus and method for attracting and trapping insects |
WO1998010643A1 (en) | 1996-09-13 | 1998-03-19 | Pest West Electronics Limited | Insect catching device |
US5766617A (en) * | 1996-08-23 | 1998-06-16 | The United States Of America As Represented By The Secretary Of Agriculture | Trapping system for mediterranean fruit flies |
US5801828A (en) * | 1996-11-14 | 1998-09-01 | Detections Unlimited, Inc. | Apparatus and method for fluorescence spectroscopy of remote sample |
US5896695A (en) * | 1996-07-01 | 1999-04-27 | Walker; Robert T. | Device for controlling crawling or flying insects |
US5921018A (en) * | 1996-03-29 | 1999-07-13 | Sumitomo Chemical Company, Limited | Device and method for luring termites |
US6088949A (en) | 1995-11-13 | 2000-07-18 | Nicosia And Reinhardt, Inc. | Insect control apparatus and method |
US6178687B1 (en) * | 1997-09-19 | 2001-01-30 | Atlantic Paste & Glue Co., Inc. | Insect trap |
US6199315B1 (en) * | 1997-08-25 | 2001-03-13 | Earth Chemical Co., Ltd. | Method and apparatus for catching fleas |
US6298011B1 (en) | 2001-01-03 | 2001-10-02 | Michael H. Nyberg | Method for killing mosquito larvae |
US6301194B1 (en) | 1999-04-26 | 2001-10-09 | Charles J. Cauchy | Self-powered insect and rodent repellent device |
US6438894B1 (en) * | 1997-03-26 | 2002-08-27 | Kenneth Silvandersson | Arrangement for an insect trap |
US20020125419A1 (en) * | 2001-02-06 | 2002-09-12 | Callahan Philip S. | Solid-state organic maser |
US6515539B1 (en) * | 2000-04-12 | 2003-02-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Microwave devices based on chemically induced dynamic electron spin polarization |
US20030151006A1 (en) | 2002-02-11 | 2003-08-14 | Technology S.G., Lp | Method and system for dissipating and amplifying natural emissions from a resonant cavity |
US20030178616A1 (en) | 2002-03-25 | 2003-09-25 | Prevenslik Thomas V. | Cavity QED devices |
US6655080B2 (en) | 2002-02-19 | 2003-12-02 | Lentek International, Inc. | Insect trapping apparatus with laminar air flow |
US6662489B2 (en) | 2002-02-19 | 2003-12-16 | Lentek International, Inc. | Insect trapping apparatus |
US20040115235A1 (en) * | 2002-12-12 | 2004-06-17 | Simpson Arthur W. | Adhesive device for capturing insects |
US6795568B1 (en) | 1998-07-17 | 2004-09-21 | Torsana Laser Technologies A/S | Method and an apparatus for severing or damaging unwanted plants |
US6928769B2 (en) * | 2001-08-07 | 2005-08-16 | Bugjammer, Inc. | Disposable insect-control member |
US20050212691A1 (en) | 2002-08-07 | 2005-09-29 | Tirkel Anatol Z | Near-field antenna array with signal processing |
US6965205B2 (en) * | 1997-08-26 | 2005-11-15 | Color Kinetics Incorporated | Light emitting diode based products |
US20070107297A1 (en) | 2005-11-14 | 2007-05-17 | Wijenberg Rosanna M | Use of electromagnetic fields to affect insect movement |
US20070132598A1 (en) | 2005-12-13 | 2007-06-14 | Wijenberg Rosanna M | Use of wing-fanning sounds to affect cockroach movement |
US7286056B2 (en) * | 2005-03-22 | 2007-10-23 | Lawrence Kates | System and method for pest detection |
US7368743B2 (en) * | 2002-12-13 | 2008-05-06 | Nichols Applied Technology, Inc. | Device for detecting fluorescent trace material |
US20080168703A1 (en) | 2007-01-12 | 2008-07-17 | Siljander Eric D | Controlling bedbugs with synthetic pheromones and/or infrared radiation |
US7412797B1 (en) | 2004-05-25 | 2008-08-19 | Hiscox William C | Free-standing flying insect trap with removable cartridge |
US7415313B2 (en) | 2000-07-07 | 2008-08-19 | New Vectors Llc | Spatial coordination system |
US20080289246A1 (en) * | 2005-12-23 | 2008-11-27 | Van Bers Paul Hendrik | Device For Catching and Collecting Insects |
US20090086894A1 (en) * | 2007-09-28 | 2009-04-02 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Time of flight aspects for X-Ray fluorescence visualizer, imager, or information provider |
US7599731B2 (en) * | 2002-07-16 | 2009-10-06 | Xenogen Corporation | Fluorescent light tomography |
US7623625B2 (en) * | 2007-04-11 | 2009-11-24 | Searete Llc | Compton scattered X-ray visualization, imaging, or information provider with scattering event locating |
US20090288333A1 (en) * | 2008-05-23 | 2009-11-26 | Ecolab Inc. | Insect Trap |
US20100050499A1 (en) | 2008-08-27 | 2010-03-04 | Fuwaysun Technology, Ltd. | Intelligent pest killing lamp |
US20100071257A1 (en) * | 2008-09-20 | 2010-03-25 | Shang-Chieh Tsai | Illuminating Device and system for Killing and/or Intefering with Pests, and Method for Killing and/or Interfering with Pests |
US7698853B2 (en) * | 2005-09-27 | 2010-04-20 | Mississippi State University Research And Technology Corporation | Termite control methods and apparatus |
US7784215B2 (en) * | 2006-11-09 | 2010-08-31 | Lee William Cohnstaedt | Methods and compositions for improved light traps |
US7869042B2 (en) * | 2003-12-23 | 2011-01-11 | Precisense A/S | Fluorometers |
US20110101252A1 (en) * | 2009-10-02 | 2011-05-05 | Vladimir Nikolaevich Rubochkin | Method of protection of human (livestock) from bites of blood-sucking insects. |
US7937887B2 (en) * | 2005-05-06 | 2011-05-10 | Black Mantis Limited | Insect trap and method of attracting insects |
US20110136154A1 (en) * | 2008-03-03 | 2011-06-09 | Geddes Chris D | Voltage-gated metal-enhanced fluorescence, chemiluminescence or bioluminescence methods and systems |
US20110296740A1 (en) * | 2009-02-24 | 2011-12-08 | Panasonic Electric Works Co., Ltd. | Insect pest-controlling apparatus |
WO2012010238A1 (en) * | 2010-07-17 | 2012-01-26 | Merck Patent Gmbh | Enhancement of penetration and action |
US8111164B2 (en) | 2006-09-28 | 2012-02-07 | The United States Of America As Represented By The Secretary Of The Air Force | Employing millimeter-wave electromagnetic energy in collision avoidance |
US20120032096A1 (en) * | 2009-04-16 | 2012-02-09 | Szabolcs Marka | Optical Barrier to Pests |
US20120061590A1 (en) * | 2009-05-22 | 2012-03-15 | British Columbia Cancer Agency Branch | Selective excitation light fluorescence imaging methods and apparatus |
US20120204475A1 (en) | 2011-01-24 | 2012-08-16 | Sterling International Inc. | Illuminated insect trap |
US20120315666A1 (en) * | 2010-02-26 | 2012-12-13 | Kazushi Fujioka | Detection apparatus and method for detecting airborne biological particles |
US20130283671A1 (en) * | 2012-04-27 | 2013-10-31 | Darek Czokajlo | Devices and methods for detecting and trapping pests |
US20140197335A1 (en) * | 2011-07-29 | 2014-07-17 | Sruc | Methods, systems and devices for detecting insects and other pests |
US8984800B2 (en) * | 2013-03-15 | 2015-03-24 | Technology Sg, L.P. | Radiating systems for affecting insect behavior |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87204558U (en) * | 1987-08-28 | 1988-03-30 | 杨建设 | Far-infrared electromagnetic wave type mosquito dispelling unit |
WO1997037532A1 (en) * | 1996-04-08 | 1997-10-16 | Ecolab Inc. | Fly trap with two or more directional light patterns |
JP2007043915A (en) * | 2005-08-08 | 2007-02-22 | Tsugunori Uchiyama | Film for suppressing coming flying of flying insect |
RU97245U1 (en) * | 2009-01-11 | 2010-09-10 | Федеральное государственное образовательное учреждение высшего профессионального образования "Челябинский государственный агроинженерный университет" | LIGHT TRAP FOR INSECTS |
US9538740B2 (en) * | 2011-11-25 | 2017-01-10 | United Arab Emirates University | Red palm weevil sensing and control system |
RU120851U1 (en) * | 2012-06-08 | 2012-10-10 | Федеральное государственное бюджетное учреждение науки Главный ботанический сад им. Н.В. Цицина Российской академии наук | DEVICE FOR CATCHING MUSHROOMS MOSQUITOES |
FR2996411B1 (en) * | 2012-10-04 | 2014-12-19 | Commissariat Energie Atomique | TRAP FOR FRELONS |
EP2738314B1 (en) * | 2012-11-28 | 2018-04-04 | Itzhak Shefer | See-Through manhole cover |
-
2013
- 2013-03-15 US US13/839,636 patent/US8984800B2/en not_active Expired - Fee Related
-
2014
- 2014-03-11 CN CN201480026989.1A patent/CN105246326B/en not_active Expired - Fee Related
- 2014-03-11 AU AU2014237064A patent/AU2014237064B2/en not_active Ceased
- 2014-03-11 BR BR112015023526A patent/BR112015023526A2/en not_active IP Right Cessation
- 2014-03-11 EP EP14770965.3A patent/EP2967019B1/en active Active
- 2014-03-11 WO PCT/US2014/023480 patent/WO2014150519A1/en active Application Filing
- 2014-03-11 RU RU2015138799A patent/RU2654643C2/en not_active IP Right Cessation
- 2014-03-11 CA CA2907076A patent/CA2907076A1/en not_active Abandoned
-
2015
- 2015-03-23 US US14/665,906 patent/US9173388B2/en active Active
- 2015-11-02 US US14/930,421 patent/US10226035B2/en not_active Expired - Fee Related
Patent Citations (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1819551A (en) * | 1929-01-09 | 1931-08-18 | Gourdon Georges | Method and apparatus for capturing insects |
US2059835A (en) * | 1936-01-29 | 1936-11-03 | Archie G Worthing | Destruction of living organisms |
US2645877A (en) * | 1951-12-01 | 1953-07-21 | William A Pohlman | Insect trap |
US2731762A (en) * | 1954-06-01 | 1956-01-24 | James F Jones | Bug and mosquito catcher |
US3653145A (en) * | 1969-12-10 | 1972-04-04 | Whitmire Research Lab Inc | Art of controlling houseflies |
US3997785A (en) * | 1975-09-24 | 1976-12-14 | The United States Of America As Represented By The Secretary Of Agriculture | Insect antenna vibrating frequency modulator and resonating maserlike IR emitter |
US4018530A (en) * | 1975-11-18 | 1977-04-19 | Block Engineering, Inc. | Fluorescence spectrometry employing excitation of bleaching intensity |
US4127961A (en) * | 1976-03-29 | 1978-12-05 | Pestolite Inc. | Apparatus for entrapping insects |
US4069615A (en) * | 1976-11-22 | 1978-01-24 | Gilbert Donald E | Screen for deterring flying insects |
US4282673A (en) * | 1979-06-21 | 1981-08-11 | Focks Dana A | Flying insect trap |
US4490040A (en) * | 1981-06-10 | 1984-12-25 | Hartmut Lucht | Spectralfluorometer arrangement |
US4411093A (en) * | 1981-06-17 | 1983-10-25 | Whitmire Research Laboratories, Inc. | Insect lure |
US4982100A (en) * | 1983-06-14 | 1991-01-01 | Harding Jr Norman T | Method and apparatus for repelling insects |
US4675300A (en) * | 1985-09-18 | 1987-06-23 | The Board Of Trustees Of The Leland Stanford Junior University | Laser-excitation fluorescence detection electrokinetic separation |
US5247933A (en) | 1991-10-07 | 1993-09-28 | Callahan Philip S | Photonic ionic cloth radio amplifier |
US5424551A (en) * | 1993-09-15 | 1995-06-13 | Richard J. Fox | Frequency emitter for control of insects |
US5528049A (en) * | 1993-09-15 | 1996-06-18 | Fox Investment Company | Frequency emitter for control of insects |
US5634292A (en) * | 1993-10-29 | 1997-06-03 | Kitterman; Roger L. | Apparatus and method for attracting and trapping insects |
US6088949A (en) | 1995-11-13 | 2000-07-18 | Nicosia And Reinhardt, Inc. | Insect control apparatus and method |
US5921018A (en) * | 1996-03-29 | 1999-07-13 | Sumitomo Chemical Company, Limited | Device and method for luring termites |
US5896695A (en) * | 1996-07-01 | 1999-04-27 | Walker; Robert T. | Device for controlling crawling or flying insects |
US5766617A (en) * | 1996-08-23 | 1998-06-16 | The United States Of America As Represented By The Secretary Of Agriculture | Trapping system for mediterranean fruit flies |
WO1998010643A1 (en) | 1996-09-13 | 1998-03-19 | Pest West Electronics Limited | Insect catching device |
US5801828A (en) * | 1996-11-14 | 1998-09-01 | Detections Unlimited, Inc. | Apparatus and method for fluorescence spectroscopy of remote sample |
US6438894B1 (en) * | 1997-03-26 | 2002-08-27 | Kenneth Silvandersson | Arrangement for an insect trap |
US6199315B1 (en) * | 1997-08-25 | 2001-03-13 | Earth Chemical Co., Ltd. | Method and apparatus for catching fleas |
US6965205B2 (en) * | 1997-08-26 | 2005-11-15 | Color Kinetics Incorporated | Light emitting diode based products |
US6178687B1 (en) * | 1997-09-19 | 2001-01-30 | Atlantic Paste & Glue Co., Inc. | Insect trap |
US6795568B1 (en) | 1998-07-17 | 2004-09-21 | Torsana Laser Technologies A/S | Method and an apparatus for severing or damaging unwanted plants |
US6301194B1 (en) | 1999-04-26 | 2001-10-09 | Charles J. Cauchy | Self-powered insect and rodent repellent device |
US6515539B1 (en) * | 2000-04-12 | 2003-02-04 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Microwave devices based on chemically induced dynamic electron spin polarization |
US7415313B2 (en) | 2000-07-07 | 2008-08-19 | New Vectors Llc | Spatial coordination system |
US6298011B1 (en) | 2001-01-03 | 2001-10-02 | Michael H. Nyberg | Method for killing mosquito larvae |
US20020125419A1 (en) * | 2001-02-06 | 2002-09-12 | Callahan Philip S. | Solid-state organic maser |
US6928769B2 (en) * | 2001-08-07 | 2005-08-16 | Bugjammer, Inc. | Disposable insect-control member |
US8893428B2 (en) * | 2002-02-11 | 2014-11-25 | Technology S.G., L.P. | System for trapping insects |
US20150150233A1 (en) * | 2002-02-11 | 2015-06-04 | Technology S.G., Lp | Apparatus for Trapping Insects |
US20030151006A1 (en) | 2002-02-11 | 2003-08-14 | Technology S.G., Lp | Method and system for dissipating and amplifying natural emissions from a resonant cavity |
US7181885B2 (en) | 2002-02-19 | 2007-02-27 | American Biophysics Corporation | Insect trapping apparatus |
US6662489B2 (en) | 2002-02-19 | 2003-12-16 | Lentek International, Inc. | Insect trapping apparatus |
US6655080B2 (en) | 2002-02-19 | 2003-12-02 | Lentek International, Inc. | Insect trapping apparatus with laminar air flow |
US20030178616A1 (en) | 2002-03-25 | 2003-09-25 | Prevenslik Thomas V. | Cavity QED devices |
US7599731B2 (en) * | 2002-07-16 | 2009-10-06 | Xenogen Corporation | Fluorescent light tomography |
US7176828B2 (en) | 2002-08-07 | 2007-02-13 | J.I. Peston Pty Ltd | Near-field antenna array with signal processing |
US20050212691A1 (en) | 2002-08-07 | 2005-09-29 | Tirkel Anatol Z | Near-field antenna array with signal processing |
US20040115235A1 (en) * | 2002-12-12 | 2004-06-17 | Simpson Arthur W. | Adhesive device for capturing insects |
US7368743B2 (en) * | 2002-12-13 | 2008-05-06 | Nichols Applied Technology, Inc. | Device for detecting fluorescent trace material |
US7869042B2 (en) * | 2003-12-23 | 2011-01-11 | Precisense A/S | Fluorometers |
US7412797B1 (en) | 2004-05-25 | 2008-08-19 | Hiscox William C | Free-standing flying insect trap with removable cartridge |
US7286056B2 (en) * | 2005-03-22 | 2007-10-23 | Lawrence Kates | System and method for pest detection |
US7937887B2 (en) * | 2005-05-06 | 2011-05-10 | Black Mantis Limited | Insect trap and method of attracting insects |
US7698853B2 (en) * | 2005-09-27 | 2010-04-20 | Mississippi State University Research And Technology Corporation | Termite control methods and apparatus |
US7712247B2 (en) * | 2005-11-14 | 2010-05-11 | Wijenberg Rosanna M | Use of electromagnetic fields to affect insect movement |
US20070107297A1 (en) | 2005-11-14 | 2007-05-17 | Wijenberg Rosanna M | Use of electromagnetic fields to affect insect movement |
US20070132598A1 (en) | 2005-12-13 | 2007-06-14 | Wijenberg Rosanna M | Use of wing-fanning sounds to affect cockroach movement |
US7541936B2 (en) * | 2005-12-13 | 2009-06-02 | Wijenberg Rosanna M | Use of wing-fanning sounds to affect cockroach movement |
US20080289246A1 (en) * | 2005-12-23 | 2008-11-27 | Van Bers Paul Hendrik | Device For Catching and Collecting Insects |
US8111164B2 (en) | 2006-09-28 | 2012-02-07 | The United States Of America As Represented By The Secretary Of The Air Force | Employing millimeter-wave electromagnetic energy in collision avoidance |
US7784215B2 (en) * | 2006-11-09 | 2010-08-31 | Lee William Cohnstaedt | Methods and compositions for improved light traps |
US20080168703A1 (en) | 2007-01-12 | 2008-07-17 | Siljander Eric D | Controlling bedbugs with synthetic pheromones and/or infrared radiation |
US8211419B2 (en) * | 2007-01-12 | 2012-07-03 | Siljander Eric D | Controlling bedbugs with synthetic pheromones and/or infrared radiation |
WO2008088546A2 (en) * | 2007-01-12 | 2008-07-24 | S. C. Johnson & Son, Inc. | Controlling bedbugs with synthetic pheromones and/or infrared radiation |
US7892528B2 (en) * | 2007-01-12 | 2011-02-22 | Siljander Eric D | Controlling bedbugs with synthetic pheromones and/or infrared radiation |
US20110099886A1 (en) | 2007-01-12 | 2011-05-05 | Siljander Eric D | Controlling Bedbugs With Synthetic Pheromones And/Or Infrared Radiation |
US7623625B2 (en) * | 2007-04-11 | 2009-11-24 | Searete Llc | Compton scattered X-ray visualization, imaging, or information provider with scattering event locating |
US20090086894A1 (en) * | 2007-09-28 | 2009-04-02 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Time of flight aspects for X-Ray fluorescence visualizer, imager, or information provider |
US20110136154A1 (en) * | 2008-03-03 | 2011-06-09 | Geddes Chris D | Voltage-gated metal-enhanced fluorescence, chemiluminescence or bioluminescence methods and systems |
US20090288333A1 (en) * | 2008-05-23 | 2009-11-26 | Ecolab Inc. | Insect Trap |
US20100050499A1 (en) | 2008-08-27 | 2010-03-04 | Fuwaysun Technology, Ltd. | Intelligent pest killing lamp |
US20100071257A1 (en) * | 2008-09-20 | 2010-03-25 | Shang-Chieh Tsai | Illuminating Device and system for Killing and/or Intefering with Pests, and Method for Killing and/or Interfering with Pests |
US20110296740A1 (en) * | 2009-02-24 | 2011-12-08 | Panasonic Electric Works Co., Ltd. | Insect pest-controlling apparatus |
US20120032096A1 (en) * | 2009-04-16 | 2012-02-09 | Szabolcs Marka | Optical Barrier to Pests |
US20120061590A1 (en) * | 2009-05-22 | 2012-03-15 | British Columbia Cancer Agency Branch | Selective excitation light fluorescence imaging methods and apparatus |
US20110101252A1 (en) * | 2009-10-02 | 2011-05-05 | Vladimir Nikolaevich Rubochkin | Method of protection of human (livestock) from bites of blood-sucking insects. |
US20120315666A1 (en) * | 2010-02-26 | 2012-12-13 | Kazushi Fujioka | Detection apparatus and method for detecting airborne biological particles |
WO2012010238A1 (en) * | 2010-07-17 | 2012-01-26 | Merck Patent Gmbh | Enhancement of penetration and action |
US20120204475A1 (en) | 2011-01-24 | 2012-08-16 | Sterling International Inc. | Illuminated insect trap |
US20140197335A1 (en) * | 2011-07-29 | 2014-07-17 | Sruc | Methods, systems and devices for detecting insects and other pests |
US20130283671A1 (en) * | 2012-04-27 | 2013-10-31 | Darek Czokajlo | Devices and methods for detecting and trapping pests |
US8984800B2 (en) * | 2013-03-15 | 2015-03-24 | Technology Sg, L.P. | Radiating systems for affecting insect behavior |
Non-Patent Citations (23)
Title |
---|
Callahan, P.S, "Comments on Mark Diesendorfs Critique of My Review Paper," International Journal of Insect Morphology and Embryology, vol. 6, No. 2, 1977; pp. 111-122. |
Callahan, P.S., "A High Frequency Dielectric Waveguide on the Antennae of Night-Flying Moths (Saiurnidae)," Applied Opitcs, vol. 7, No. 8, Aug. 1968; pp. 1425-1430. |
Callahan, P.S., "Insect Antennae with Special Reference to the Mechanism of Scent Detection and the Evolution of the Sensilla," International Journal of Insect Morphology & Embryology, vol. 4, No. 5, 1975; pp. 381-430. |
Callahan, P.S., "Insect Molecular Bioelectronics: A Theoretical and Experimental Study of Insect Sensillae as Tubular Waveguides, with Particular Emphasis on Their Dielectric and Thermoelectret Propeerties," Miscellaneous Publications on the Entomological Society of America, vol. 5, No. 7, 1967; pp. 315-347. |
Callahan, P.S., "Intermediate and Far Infared Sensing of Nocturnal Insects. Part I. Evidences for Far Infrared (FIR) Electromagnetic Theory of Communication and Sensing in Moths and Its Relationship to the Limiting Biosphere of the Corn Earworm," Annals of the Entomological Society of America, vol. 58, No. 5, Sep. 1965; pp. 727-745. |
Callahan, P.S., "Moth and candle: the candle flame as a sexual mimic of the coded infrared wavelengths from a moth sex scent (pheromeone)," Applied Optics, vol. 16, No. 12, Dec. 1977; pp. 3089-3097. |
Callahan, P.S., "Tuning In to Nature: Infrared Radiation and the Insect Communication System," 25th Anniversary Edition, Acres U.S.A., Publishers (2001). |
Callahan, P.S., et al., "The Scape and Pedicel Dome Sensors-A Dielectric Aerial Waveguide on the Antennae of Night-Flying Moths," Annals of the Entomological Society of America, vol. 61, No. 4, Jul. 1968; pp. 934-937. |
Diesendorf, M., "Insect Sensilla as Dielectric Aerials for Scent Detection: Comments on a Review by Callahan," CSIRO, Division of Mathematics and Statistics, International Journal of Insect Morphology & Embryology, vol. 6, No. 2, 1977; 12 pages. |
Diesendorf, M., "The 'Dielectric Waveguide Theory' of Insect Olfaction: A Reply to P.S. Callahan," Internatinal Journal of Insect Morphology and Embryology, vol. 6, No. 2, 1977; pp. 123-126. |
Diesendorf, M., et al., "A theoretical investigation of radiation mechanisms of insect chemoreception," Proceedings of the Royal Society of London, Series B, Vool, 185, 1974; pp. 33-49. |
Fabre, J.-H., "Social Life in the Insect World," 1st Edition published 1911, e-Book released May 8, 2006; 136 pages. |
International Search Report and Written Opinion directed to related International Patent Application No. PCt/US14/23480, mailed Jul. 8, 2014; 16 pages. |
Laithwaite, E.R., "A Radiation Theory of the Assembling of Moths," The Entomologist, vol. 93, No. 1165, Jun. 1960; pp. 1-5. |
Lakowicz, J.R., "Principles of Fluorescence Spectroscopy," 3rd Edition, 2006; pp. 32 and 74-75. |
Millar, J.G., et al., "Evaluation of Release Rates of Codling Moth Pheromone Mating Disruption Dispensers," 1995; pp. 167-170. |
Prevenslik, T., "Odorant molecules signal the G-protein receptors with their unique IR spectra," PRLog, Sep. 26, 2010; 3 pages. |
Prevenslik, T., "Olfaction and Far Infrared Signaling by Moths," QED Radiations Discovery Bay, 2011; 3 pages. |
Smith, F.G., "The Infrared and Electro-Optical Systems Handbook, vol. 2: Atmospheric Propagation of Radiation," The Society of Photo-Optical Instrumentation Engineers, 1993; 333 pages. |
Sower L.L. et al, "Rate of Release of the Sex Pheromone of the Female Indian Meal Moth," Environmental Entomology, vol. 4, No. 1, Feb. 1975; pp. 168-169. |
Suh, C., et al., "Profile of Pheromone Released from Hercon, Plato, and Scentry Lures," TAC Meeting, USDA Agricultural Research Service Feb. 14-15, 2011; 14 pages. |
Traill, R.R., "How Popperian positivism killed a good-but-poorly-presented theory-Insect Communication by Infrared," Ondwelle Short-Monograph, No. 3, 2005; pp. 1-24. |
Zissis, G.J., "The Infrared and Electro-Optical Systems Handbook, vol. 1: Sources of Radiation," The Society of Photo-Optical Instrumentation Engineers, 1993; 383 pages. |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160050900A1 (en) * | 2013-03-15 | 2016-02-25 | Technology Sg, L.P. | Radiating Systems for Affecting Insect Behavior |
US10226035B2 (en) * | 2013-03-15 | 2019-03-12 | Technology Sg, L.P. | Radiating systems for affecting insect behavior |
US20150051882A1 (en) * | 2013-08-16 | 2015-02-19 | Technology S.G., Lp | Artificially Simulating Emissions of a Chemical Compound |
US9642351B1 (en) * | 2016-09-13 | 2017-05-09 | Kenneth Reese | Cockroach bait station |
US12042267B2 (en) * | 2018-09-07 | 2024-07-23 | Technology Sg, L.P. | Determining odorant detection in arthropods |
WO2020051441A1 (en) * | 2018-09-07 | 2020-03-12 | Dykstra Thomas M | Determining odorant detection in arthropods |
US20210356390A1 (en) * | 2018-09-07 | 2021-11-18 | Thomas M. Dykstra | Determining Odorant Detection in Arthropods |
US11484022B2 (en) | 2019-10-15 | 2022-11-01 | S. C. Johnson & Son, Inc. | Insect trap device |
US12102078B2 (en) | 2019-10-15 | 2024-10-01 | S. C. Johnson & Son, Inc. | Insect trap device |
USD1018767S1 (en) | 2022-02-09 | 2024-03-19 | S. C. Johnson & Son, Inc. | Substrate |
USD1029985S1 (en) | 2022-02-09 | 2024-06-04 | S. C. Johnson & Son, Inc. | Substrate |
USD1030945S1 (en) | 2022-02-09 | 2024-06-11 | S. C. Johnson & Son, Inc. | Substrate |
USD1031910S1 (en) | 2022-02-09 | 2024-06-18 | S. C. Johnson & Son, Inc. | Insect trap |
USD1010060S1 (en) | 2022-02-09 | 2024-01-02 | S. C. Johnson & Son, Inc. | Substrate |
Also Published As
Publication number | Publication date |
---|---|
RU2015138799A (en) | 2017-04-21 |
CN105246326A (en) | 2016-01-13 |
CN105246326B (en) | 2019-08-20 |
AU2014237064B2 (en) | 2017-07-20 |
CA2907076A1 (en) | 2014-09-25 |
EP2967019A4 (en) | 2016-11-23 |
US20160050900A1 (en) | 2016-02-25 |
WO2014150519A1 (en) | 2014-09-25 |
US20140259858A1 (en) | 2014-09-18 |
US8984800B2 (en) | 2015-03-24 |
AU2014237064A1 (en) | 2015-10-01 |
RU2015138799A3 (en) | 2018-03-14 |
RU2654643C2 (en) | 2018-05-21 |
US20150196019A1 (en) | 2015-07-16 |
US10226035B2 (en) | 2019-03-12 |
EP2967019B1 (en) | 2019-11-13 |
EP2967019A1 (en) | 2016-01-20 |
BR112015023526A2 (en) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10226035B2 (en) | Radiating systems for affecting insect behavior | |
US9775334B2 (en) | Insect trap with reflective interior walls | |
TWI789530B (en) | insect trap | |
US20080196296A1 (en) | Fruit-Shaped Fruit Fly Trap | |
US20190133105A1 (en) | Selectively tunable attraction device | |
ES2291367T3 (en) | SYSTEM AND METHOD OF ELIMINATION OF FEEDING ANTS BY LIQUID GRAVITY. | |
US20120110892A1 (en) | Mosquito Trap | |
US20100031556A1 (en) | Device and method for controlling insect pests | |
US6543180B2 (en) | Non-chemical fly repellant device | |
JP5430582B2 (en) | Pest control device | |
Marchioro et al. | Light traps in shipping containers: a new tool for the early detection of insect alien species | |
KR20170037741A (en) | An UV LED Applied Insect Trap | |
KR20150025689A (en) | Apparatus of Injurious insect trap using UV LED | |
US11968970B2 (en) | Trapping method, light source device, and trapping device for adult moths belonging to indoor phycitinae subfamily | |
CN115868465A (en) | Pest extermination device, pest extermination method, and pest extermination system | |
US7913449B2 (en) | Device for extending duration of volatile liquid lures | |
Marchioro et al. | Improved light traps for early detection of insect pests of phytosanitary concern in shipping containers | |
EP4154708A1 (en) | Insect trap | |
WO2024046568A1 (en) | Device to attract, capture and/or kill mosquitoes and/or biting insects, method fur assembling and using a device and use of a device | |
Paoli et al. | Comparison of different attract‐and‐kill device densities to control the adult population of Popillia japonica (Coleoptera: Scarabaeidae) | |
KR20190120628A (en) | Insect trap device | |
JP2002272342A (en) | Extermination tool for walking insect pest such as cockroach or the like | |
Hassan et al. | Pheromone use in the Food Industry | |
Aman et al. | Modern Technologies of Insect Trapping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TECHNOLOGY SG, L.P., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CANFIELD, ERIC L.;DYKSTRA, THOMAS M.;SOMA, SCOTT J.;AND OTHERS;REEL/FRAME:035265/0994 Effective date: 20130314 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1555); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |