US9135233B2 - Suggesting alternate data mappings for charts - Google Patents

Suggesting alternate data mappings for charts Download PDF

Info

Publication number
US9135233B2
US9135233B2 US13/272,522 US201113272522A US9135233B2 US 9135233 B2 US9135233 B2 US 9135233B2 US 201113272522 A US201113272522 A US 201113272522A US 9135233 B2 US9135233 B2 US 9135233B2
Authority
US
United States
Prior art keywords
data
chart
alternatives
series
mapping alternatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US13/272,522
Other languages
English (en)
Other versions
US20130097177A1 (en
Inventor
Kevin Fan
Benjamin Edward Rampson
Nick Chiang
Robin Wakefield
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Priority to US13/272,522 priority Critical patent/US9135233B2/en
Assigned to MICROSOFT CORPORATION reassignment MICROSOFT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIANG, Nick, FAN, KEVIN, RAMPSON, BENJAMIN EDWARD, WAKEFIELD, Robin
Priority to CN201210387253.XA priority patent/CN102937970B/zh
Publication of US20130097177A1 publication Critical patent/US20130097177A1/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Priority to US14/811,090 priority patent/US10019494B2/en
Application granted granted Critical
Publication of US9135233B2 publication Critical patent/US9135233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • G06F17/246
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/248Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/221Column-oriented storage; Management thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • G06F16/24578Query processing with adaptation to user needs using ranking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/34Browsing; Visualisation therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/43Querying
    • G06F16/438Presentation of query results
    • G06F17/3005
    • G06F17/30554
    • G06F17/30716
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/166Editing, e.g. inserting or deleting
    • G06F40/177Editing, e.g. inserting or deleting of tables; using ruled lines
    • G06F40/18Editing, e.g. inserting or deleting of tables; using ruled lines of spreadsheets

Definitions

  • Data analytics is used in many industries to allow companies and organization to make better business decisions and in the sciences to model and verify theories.
  • data processing and management tools include database tools, visual tool for creating, analyzing, and communicating decision models, spreadsheet programs, etc.
  • visual tool for creating, analyzing, and communicating decision models, spreadsheet programs, etc.
  • visualization is often needed for different types of data sources, whether they be spreadsheet data, data in a CSV file, data in a SQL table, data in some other data base, data in a cube, or data in some other structured electronic storage container.
  • a spreadsheet is one example of a grid data source that may be used to create a table which displays numbers in rows and columns.
  • Spreadsheets can be used for a variety of purposes. For example, spreadsheets are often used in accounting, budgeting, charting/graphing, financial analysis, scientific applications, etc. Spreadsheets can exist in paper format, but are more commonly today provided using electronic spreadsheet tools. Electronic spreadsheets are frequently used to manipulate, condense and organize vast collections of data. Moreover, spreadsheets have the ability to re-calculate the entire spreadsheet automatically after a change to a single cell is made, which saves save users a tremendous amount of time. While the data analytic tools, such as the spreadsheet, have become ubiquitous in every organization and will likely remain so, the quality of information visualization has not kept pace.
  • An embodiment includes a method for presenting data mapping alternatives for creating a visual representation of a set of data is disclosed.
  • the method includes identifying a set of data for analysis, analyzing the identified set of data and properties associated with the identified set of data, based on the analysis, determining data mapping alternatives for the identified set of data, ranking the determined data mapping alternatives for the identified set of data and presenting the determined data mapping alternatives in an order according to the ranking of the determined data mapping alternatives.
  • a chart recommendation device in another embodiment, includes memory for storing data and a processor, coupled to the memory, the processor configured for identifying a set of data for analysis, analyzing the identified set of data and properties associated with the identified set of data, based on the analysis, determining data mapping alternatives for the identified set of data, ranking the determined data mapping alternatives for the identified set of data and presenting the determined data mapping alternatives in an order according to the ranking of the determined data mapping alternatives.
  • a computer-readable memory device with instructions stored thereon for providing chart recommendations.
  • the instructions include identifying a set of data for analysis, analyzing the identified set of data and properties associated with the identified set of data, based on the analysis, determining data mapping alternatives for the identified set of data, ranking the determined data mapping alternatives for the identified set of data and presenting the determined data mapping alternatives in an order according to the ranking of the determined data mapping alternatives.
  • FIG. 1 represents a table in a spreadsheet application that a user may select a dataset from for chart suggestions according to one embodiment
  • FIG. 2 provides a “Recommended Charts” pane according to one embodiment.
  • FIG. 3 provides an “All Charts” pane according to one embodiment
  • FIG. 4 illustrates the data selection and layout feature according to one embodiment
  • FIG. 5 provides a flowchart of a method for providing chart recommendations according to one embodiment
  • FIG. 6 illustrates trimming empty rows/columns according to one embodiment
  • FIG. 7 illustrates the exclusion of filtered series or categories according to one embodiment
  • FIG. 8 addresses discontinuous ranges for chart creation according to one embodiment
  • FIG. 9 shows data input ranges that include a portion of a pivot table according to one embodiment
  • FIG. 10 shows hierarchical categories according to one embodiment
  • FIGS. 11 a - b illustrate the process of picking a single suitable category series when the dataset has multiple categories identified according to one embodiment
  • FIGS. 12 a - c show an example of a header on a category series according to one embodiment
  • FIGS. 13 a - c show an example of composite data with different numeric groups according to one embodiment
  • FIGS. 14 a - c show an example of scatter charts according to one embodiment
  • FIG. 15 provides scoring examples for possible categories and value series attributes for line and area charts according to one embodiment
  • FIG. 16 provides guidelines for chart selection based on attributes and characterization of data according to one embodiment
  • FIG. 17 is a high order process flowchart illustrating the integration of a pivot structure recommendation and a chart recommendation according to one embodiment
  • FIG. 18 shows PivotTable suggestions for a dataset that contains aggregates according to one embodiment
  • FIG. 19 shows recommended charts for the pivot table suggestion selected above according to one embodiment
  • FIG. 20 provides a detailed flowchart of the chart recommendations with the additional pivot chart recommendations according to one embodiment
  • FIG. 21 illustrates sorting a category axis by values according to one embodiment
  • FIG. 22 shows the naming of the recommendation title and chart title for pivot tables according to one embodiment
  • FIGS. 23 a - b illustrate recommendations presented in a window according to embodiments
  • FIG. 24 is a simplified block diagram of a computing device with which embodiments of the present invention may be practiced.
  • FIGS. 25 a - b are simplified block diagrams of a mobile computing device with which embodiments of the present invention may be practiced.
  • FIG. 26 is a simplified block diagram of a distributed computing system in which embodiments of the present invention may be practiced.
  • Embodiments of the present invention are directed to providing chart recommendations to users desiring a visualization of data.
  • FIG. 1 represents a table 100 in a spreadsheet application that a user may select a dataset from for chart suggestions according to one embodiment.
  • data processing and management tools which may include database tools, visual tool for creating, analyzing, and communicating decision models, spreadsheet programs, etc.
  • visual tool for creating, analyzing, and communicating decision models, spreadsheet programs, etc.
  • other tools that may use tables or other grid data sources.
  • a spreadsheet is one example of a grid data source that may be used to create a table.
  • the embodiments discussed herein are not meant to be limited to spreadsheets or any other particular method of presenting data.
  • the chart recommendation process tries to heuristically determine a set of appropriate chart suggestions for a user provided dataset 110 , taking into account different chart types, data mappings and chart layouts, based on the given data.
  • FIG. 2 provides a “Recommended Charts” pane 200 according to one embodiment.
  • the insect chart feature may consist of two distinct panes, the recommendations pane 210 and the all charts pane 220 .
  • the recommendations pane 210 contains a scrollable list of recommended charts 230 provided by the chart recommendation process.
  • a chart 240 from the list of recommended charts 230 , e.g., the line chart
  • the chart selection is displayed on screen 250 .
  • the user may modify the chart by selecting the button 260 , or select the chart by clicking the OK button 270 .
  • embodiments are not meant to be limited to the user interface described herein, but that other user interfaces may be used without departing from the scope of the described embodiments.
  • FIG. 3 provides the “All Charts” pane 300 according to one embodiment.
  • the All Charts pane 310 contains static, selectable chart types 320 .
  • the user may select a chart type from the scrollable list of all chart types 320 .
  • FIG. 3 only shows one chart 343 .
  • the All Charts pane 310 may provide multiple suggestions (of type clustered column) based on different possible data mappings. Nevertheless, the data set and the chart selection process may operate so that only one recommendation is presented.
  • FIG. 3 shows three chart subtypes, e.g., the types of column charts that are available. More specifically, the three subtypes shown in FIG. 3 are clustered column 332 , stacked column 334 , and 100% stacked column 336 .
  • each chart type 320 Associated with each chart type 320 is a set of recommended layouts and mappings provided by the chart recommendations process for the selected chart type. Data mapping defines what is on the x axis, y axis or series depending on the chart type.
  • a chart type 330 from the all charts types 320 , e.g., the column chart
  • the recommended layouts and mappings for the subtypes 332 , 334 , 336 are displayed on the screen as illustrated for clustered column subtype 332 by the clustered column chart 342 under the clustered column chart heading 340 .
  • the user may modify the chart by selecting the button 350 , or select the chart by clicking the OK button 360 .
  • the change chart feature may have the same functionality as the insert chart feature.
  • certain input charts may be linked to external data or contain literal data.
  • the chart recommendation process may be able to provide suggestions when the linked chart is embedded into the workbook of the source worksheet.
  • FIG. 4 illustrates the data selection and layout feature 400 according to one embodiment.
  • the data selection and layout feature provides a contextual way for users to change the chart data mapping and filter out specific series from the dataset for a given chart in a workbook.
  • the mapping choices in the Layouts Gallery, displayed in the “Alternative Layouts” highlighted box 410 are provided by the chart recommendations process and may be locked to the chart type of the current chart 420 .
  • FIG. 5 provides a flowchart of the chart recommendations process 500 according to one embodiment.
  • the chart suggestions architecture implements a rule and score based structure for ranking recommendations.
  • the chart recommendation process 500 starts 505 by taking in the user dataset 510 .
  • the user dataset 510 may be modified by expanding the selection, addressing discontinuous ranges, and trimming empty rows and columns 515 .
  • the resulting data input 520 is fed into the process.
  • the process determines data orientation 525 by heuristically deciding whether the dataset is laid out column-wise 530 or row-wise 535 , ranking one orientation higher than the other.
  • the likelihood to correctly recommend a chart with the data laid out in the proper orientation as the user intended is increased.
  • the scores for each path may be weighted with a multiplier according to how likely each orientation reflects the given dataset.
  • the process may compile together a set of attributes off of which the chart selection rules may be based by examining the dataset. In certain cases with more complex datasets, the process may try to heuristically determine which categories and value series are important to include and which ones are left out. Thus, categories and value series may be filtered out 555 .
  • the process analyzes each series in the dataset to determine if it is a categorical series, a value series or a header 560 .
  • a categorical series is a series of labels as values
  • a value series is a series of numerical values. Headers are values that describe the contents of the series. They exist above a series in a column-wise dataset and left of a series in a row-wise dataset.
  • the chart recommendation process 500 may now add mappings to the dataset.
  • the categories and value series may be run against a set of predetermined conditions for mapping those series to particular axis on a given chart type.
  • the process has now determined number of orientations, chart types, and mappings 567 .
  • the mappings are subjected to a series of chart selection rules 570 that determine how appropriate the mapping is for that particular chart type.
  • a set of rules are run through for each chart type (see FIG. 16 ), and each rule corresponds to a static score that gets tallied up at the end. The scores then get normalized across all chart types to provide a consistent basis for comparison.
  • the chart recommendations process is intended for use by the insert new chart experience, the change chart type experience and the change data layout/mapping experience, each of which have slightly different requirements from the recommendations output.
  • the process may take in flags that may modify its behavior and recommendations.
  • the lock chart type flag 575 prevents the process from running the chart selection rules over all of the chart types, and limits it to just the chart type provided and the alternate chart types suggestions described in the following section. Because the usage of line charts may be confused with scatter charts, the process may offer suggestions for both types given one or the other as an input, despite the lock chart type flag.
  • Chart element layout/formatting rules 580 may also be applied by toggling specific chart elements and applying formatting based on certain conditions. Certain conditions in the dataset are better represented in the chart with the formatting or inclusion/exclusion of particular chart elements. For example, it may not make sense to have a legend in the chart when there is only a single value series charted. These rules do not cause additional permutations in the chart suggestion results; they are simply applied to the final chart suggestions. The user may have already customized certain chart elements and formatting. To avoid changing these customizations, the implementer can pass the Lock formatting flag 585 which prevents the process from suggesting chart element layout and formatting options. The only exception may be the chart axis scales, which need to change in relation to the magnitude of the series mapped to it.
  • the recommendations output 590 from the chart recommendations process 500 is a stack ranked list of all the chart suggestions for the given dataset based on their corresponding score. There may be a minimum threshold that the score meets in order for a chart suggestion to be returned. Whether the results apply across all chart types or are specific to one chart type (specified through the Lock Chart Type flag) may be specified 595 .
  • the final chart suggestions are ranked from an internal rules-based scoring system.
  • the scoring system consists of two types of values—static scores and score multipliers. Static scores are mapped against each individual chart selection rule, which determine how appropriate the set of categories and value series for a particular chart type and mapping are. Score multipliers are mapped against the data orientation, series-axis mappings and results filtering rules to provide a broader way to increase or decrease the scores for a group of suggestions.
  • the chart types that may be recommended as output 597 include column (clustered, stacked, or 100% stacked), line (line or 100% stacked), pie (pie, pie of pie, bar or pie), bar (clustered, stacked, of 100% stacked), area (stacked or 100% stacked), scatter, surface, bubble, radar, stock (high-low-close, open high-low-close, volume-high-low-close, volume-open-high-low-close), and combination charts.
  • mapping end points may be used, such as category names and series names, e.g., during header detection.
  • additional or alternative mapping end points may be used.
  • mapping points may be included.
  • FIGS. 6-9 provide further insight into the selected user dataset 510 and the actual data input 520 fed into the chart recommendation process.
  • the areas outlined in the broken bold line represent selection of the user dataset 510 and the area outlined in the solid bold line represent the data input 520 fed into the chart recommendations process after editing the selection.
  • FIG. 6 illustrates trimming empty rows/columns 600 according to one embodiment.
  • the process trims away entirely the empty rows 615 and columns 620 around the user's data selection 610 before passing it on for parsing.
  • the data arrangement 630 with the shaded cells representing data is what the user may see.
  • the trimmed away rows and columns may not impact the cell reference of the range; instead the rows and columns may be marked as filtered out.
  • the empty interior rows and columns these are addressed during the series classification process described above with reference to FIG. 5 . Any series that is entirely empty may not be considered for the output chart suggestions. Empty data points within any given series are retained.
  • FIG. 7 illustrates the exclusion of filtered series or categories 700 according to one embodiment.
  • any of the filtered series or categories beyond the series classification stage may be excluded.
  • the dataset 710 with the black cells 712 indicating filtered rows and columns 720 represent the before state.
  • the dataset fed actually into the process 730 has the filtered rows and columns excluded.
  • FIG. 8 addresses discontinuous ranges for chart creation 800 according to one embodiment.
  • the ranges may be identified as distinct rectangular regions in a left to right, top to bottom manner indicated by the numbers 820 .
  • the multiple discontinuous ranges 810 represented by the rectangular regions may be concatenated together into a rectangular range, with the topmost cell of each range aligned with one another 830 thus providing the data input. Leftover spaces from columns of varying heights are left as blank cells.
  • FIG. 9 shows data input ranges that include a portion of a pivot table 900 according to one embodiment.
  • the shaded regions 910 represent the pivot table on a sheet.
  • the user's input selections 920 framed by the bold broken lines in each case includes a portion of the pivot table 910 .
  • FIG. 10 shows hierarchical categories 1000 according to one embodiment.
  • Hierarchical categories may be identified by a set of categories grouped together on the leftmost side of the range.
  • the shaded series 1010 represent the hierarchy, thus multiple levels of categories in a ranked arrangement. Categories not in this rightmost group 1020 may not be considered part of the hierarchy. Recognizing hierarchical headers is performed in the same manner, looking at headers from the top to bottom of the range.
  • FIGS. 11 a - b illustrate the process of picking a single suitable category series when the dataset has multiple categories identified 1100 according to one embodiment.
  • the chart recommendations process tries to determine the most useful categories and value series from the input range to include in the chart suggestions.
  • the process involves picking a single suitable category series and a set of suitable value series to pass on.
  • categories when there are multiple categories identified, the process may approach the dataset with two possible interpretations. The first is that the multiple categories represent hierarchical categories, the second that the dataset is a table and the different categories identified actually represent associated values.
  • the process may look at the (# of non-blank values)/(total # of values) ratio of the first category series. If the non-blank/total ratio is above a certain percent, for example 60%, the dataset may be identified as a table and the leftmost category 1110 series is used, with the other categories filtered out 1120 as indicated by black.
  • the dataset is identified as having hierarchical categories, and the rightmost category is used 1130 , with the other categories filtered out 1140 .
  • the rightmost category is used 1130 , with the other categories filtered out 1140 .
  • All the value series that fall into the most common numeric group are passed on. All other series may then be filtered out 1150 before the range is passed on to the Series-Axis Mapping process.
  • FIGS. 12-14 provide examples of datasets run through the chart recommendation process and the charts recommended.
  • these examples show a chart output that may be displayed when the process is not used, which misrepresents the dataset.
  • the chart recommendation process provides the user with better chart choices. Satisfaction with chart selection may be verified using one or more methods. For example, data points may be implemented to validate whether or not people are using the chart suggestions and whether they are satisfied with the suggestion (refraining from making data layout/mapping changes or change the chart altogether). Another example may include using a Send-a-Smile feature to get glimpses into the datasets users are creating to ensure the process accounts for scenarios that may have originally been missed.
  • FIGS. 12 a - c shows an example of a header on a category series 1200 according to one embodiment.
  • the Year column 1220 in the dataset 1210 is recognized as a year series, while the columns 1230 are composed of non-linear values during the dataset summary process.
  • FIG. 12 b shows a chart before the chart recommendation process has run. However, the Year column 1220 gets identified as a category series and the columns 1230 get identified as value series during the series classification process, and are mapped as such during the series-axis mapping stage.
  • FIG. 12 c shows that when the mappings are run through the chart selection rules, and since the year column 1220 is a time series, a line chart 1240 may rank higher in this case, while a clustered column chart 1250 may also be offered as a suggestion.
  • FIGS. 13 a - c show an example of composite data with different numeric groups 1300 according to one embodiment.
  • the Dataset Summary process determines that the first column is a month series 1320 , and the Income column 1330 and the Profit column 1340 fall into different numeric groups since the Profit column 1340 in the dataset 1310 is composed of percentages.
  • FIG. 13 b shows a chart before the chart recommendation process has run. However, the first column, i.e., the month series 1320 , gets classified as a category, and the Income column 1330 and the Profit column 1340 classified as value series. During the Series-Axis mapping process, the difference in numeric groups among the value series is noticed.
  • FIG. 13 a shows a chart before the chart recommendation process has run.
  • the first column i.e., the month series 1320 , gets classified as a category
  • the Income column 1330 and the Profit column 1340 classified as value series During the Series-Axis mapping process, the difference in numeric groups among the value series is noticed
  • the output from the chart selection rules may rank a combo chart 1350 high (since it is an appropriate chart type), followed by a line chart 1360 (since the category is time based).
  • FIGS. 14 a - c show an example of scatter charts 1400 according to one embodiment.
  • the Dataset Summary sees the first column 1420 in the dataset 1410 as all strings and the X column 1430 and Y column 1440 as numeric values.
  • the Y column 1440 is also seen as being a linear series.
  • FIG. 14 b shows a chart before the chart recommendation process has run.
  • the first column 1420 is classified as a category, the X column 1430 as a value series, and the Y column 1440 as potentially either a category or a value series, although weighted towards a value series because it's not a year series.
  • FIG. 14 a the Dataset Summary sees the first column 1420 in the dataset 1410 as all strings and the X column 1430 and Y column 1440 as numeric values.
  • the Y column 1440 is also seen as being a linear series.
  • FIG. 14 b shows a chart before the chart recommendation process has run.
  • the first column 1420 is classified as
  • the scatter chart suggestion 1450 gets ranked high, followed by a clustered column chart 1460 (due to the discrete strings in the category).
  • the chart recommendation process uses a set of guidelines to determine optimal charts decisions. There may be guidelines for: analyzing attributes of data; classifying and characterizing data for charts; selecting chart type based on attributes of data and characterization of data; and for formatting charts.
  • Dataset summary attributes provides examples of attributes of data that may be used to analyze and characterize the data.
  • data attributes may include the numeric series formatted as strings, the average or average length in the series, repetition in the series and the total count or count of distinct values in a series.
  • Other attributes used include is the series the left most or right most one in the range, is the series linear, are the series values numeric, and is the series sorted.
  • data may be characterized by the largest or smallest in a series, or the sum values in a series.
  • Series classification rules define how categories, value series and header are identified for every chart type supported. From the attributes generated in the dataset summary, scores for each series are generated in the dataset relating to how likely that series is a category versus a value series versus a header. This process is repeated across both a row-wise orientation and a column-wise orientation for all chart types. At least one value series is found for the process to continue; otherwise the process does not return any results.
  • FIG. 15 provides scoring examples for possible categories and value series attributes for line and area charts 1500 according to one embodiment.
  • scoring examples include “the column is the left most” 1520 for a score of 1, if “day of week series” 1530 for a score of 3, and “if year series” for a score of 6 to 8 depending on the range 1540 .
  • scoring examples include if the percentage of null values fall between predetermined ranges 1560 , if there are no null values 1570 for a score of 6, and if there are null values 1580 for a score of 4.
  • the process maps the highest ranked category (or hierarchical categories) against all other series, the exceptions being chart types with static mappings.
  • chart types scatter charts, bubble charts, stock charts
  • the value series may be arranged as [X 1 , Y 1 , X 2 , Y 2 ] or [X, Y 1 , Y 2 , Y 3 ] in a given dataset. It becomes difficult to assume the user's intention in this situation simply because (1) the headers may not always be accurate or exist and (2) the value series themselves may all appear to be of the same type (i.e. integers) and magnitude.
  • the process runs through a static set of potential series-axis mappings, with each mapping having a score multiplier associated with it depending on how common that particular layout is used compared to the others.
  • a combination chart may be suggested. Combination chart suggestions may be limited to a combination of a clustered column chart on the primary axis and a single line chart on the secondary axis. The line chart may always be on its own secondary axis.
  • the process may first look through the numeric group types making up the dataset. Amongst the numeric groups, those identified as a Summary numeric group rank highest, followed by Percents, and then the overall second most common numeric group amongst all of the data. Within the chosen numeric group, the highest ranked value series may be plotted as a line chart on its own secondary axis. All other value series within the entire dataset may be plotted on the primary axis as a clustered column chart.
  • FIG. 16 provides guidelines for chart selection based on attributes and characterization of data 1600 according to one embodiment.
  • the chart recommendation process applies chart selection rules 570 to help determine optimal chart recommendations.
  • the process selects charts based on several criteria that assign a score.
  • the different criteria may include category 1610 , legend 1615 , values 1620 , variables 1625 , data density 1630 , and uniqueness density 1635 .
  • Line, Area, and Surface charts 1640 are all category, legend, and value based, whereas Radar, Clustered Bar, Stacked Bar, and Stacked Column charts 1650 use those three criteria as well as data density based.
  • Stacked bar and column multiple values
  • Doughnut Stacked 100% bar and column
  • Pie 1660 are all category, values, and data density based.
  • Bubble and Scatter charts 1645 are based on those three criteria in addition to uniqueness density.
  • the Clustered column 1670 is based on the same criteria as the Stacked Column charts 1650 with the addition of variables.
  • the Stock chart 1680 is category based, but this chart also looks at titles text.
  • pivot chart would be a better suggestion than a static chart.
  • the first is if the input data range is a pivot table.
  • the second is if the input data range looks like it contains aggregates and would be better suited to be represented by a pivot chart.
  • the pivot chart recommendation the core process that recommends a pivot structure based on raw data
  • the chart recommendation process the process that recommends the charts, make it easier for users to understand and work with Pivot Charts or Pivot Tables.
  • FIG. 17 is a high order process flowchart illustrating the integration of the PIVOT CHART RECOMMENDATION and the chart recommendation process 1700 according to one embodiment.
  • the chart recommendation process 1710 may rely on the rules and heuristics of the Pivot feature for detecting when a pivot chart is appropriate to recommend and how the pivot structure gets generated from the given dataset. If the input data range contains aggregates and would be better represented by a pivot chart, the following process may be used.
  • the chart recommendation process 1710 After receiving and processing the input dataset 1720 , the chart recommendation process 1710 calls the pivot chart recommendation process 1730 to determine whether or not the input dataset 1720 is appropriate for creating a pivot chart.
  • the dataset is passed off to the pivot chart recommendation process 1740 to generate the suggested pivot structures, while at the same time the chart recommendation process 1710 proceeds as usual.
  • the pivot chart recommendation process 1740 Upon entering the Chart Selection Rules process 1750 , the pivot chart recommendation process 1740 provides a set of pivot chart suggestions, as well as an associated dataset summary and series-axis mapping for each suggestion, to run through the Chart Selection Rules process 1750 .
  • the resulting pivot chart suggestions are merged into the static chart suggestions based on scores 1760 , and output to the consumer 1770 .
  • the process may be the same except the chart recommendation process may not create its own set of chart suggestions, instead relying entirely on the pivot chart recommendation process 1740 to provide the pivot chart suggestions.
  • FIG. 18 shows PivotTable suggestions for a dataset that contains aggregates 1800 according to one embodiment.
  • the pivot chart recommendation process may provide the best summarization of data that are of higher value to the user when user has repetitive data sets 1810 . This can prevent users from having to manually re-arrange their data or having to create pivot tables.
  • the suggestions provided by the pivot chart recommendation process include pivot table suggestions by customer 1820 , fruit 1830 , and by farm 1840 . The user may select a table suggestion, for example by customer 1820 , which is displayed on the screen 1850 .
  • FIG. 19 shows recommended charts for the pivot table suggestion selected above 1900 according to one embodiment.
  • the user selected the clustered column chart 1910 from the selection list 1920 .
  • the chart recommendation process may not have made any recommendations since the chart recommendation process does not summarize data.
  • users may get meaningful visualizations, e.g. clustered column chart 1910 , for repetitive datasets.
  • FIG. 20 provides a detailed flowchart of the chart recommendation process with the additional pivot chart recommendations 2000 according to one embodiment.
  • the chart recommendation process calls the pivot chart recommendation process 2020 by asking if data can be summarized 2010 . Regardless of this, the chart recommendation process may still generate regular chart recommendations 2040 and 2045 . If dataset cannot be summarized 2012 , no pivot table summarizations are generated. If the dataset may be summarized 2014 , pivot table suggestions that are optimized for pivot charts may be created 2025 . An example of optimization may be skipping PivotTable shape tests because the shape of the table is hidden and does not matter. Since the chart recommendation process expects tabular data, the pivot chart recommendation process creates tabular representations of the top pivot table suggestions 2030 .
  • pivot chart recommendation process generates chart recommendations based off these tabular datasets optimized for pivot charts 2035 . Only the original user selection is used by pivot chart recommendation process to determine which fields (or columns) to recommend as value candidates, row candidates, and column candidates for the value axis, row axis, and column axis when generating a pivot table recommendation.
  • pivot table data is provided to the chart recommendation process 2037 , the nature of the series/category combinations for the dataset has been decided. Hence, the chart recommendation process may consume this data as-is and not try to determine additional orientations of the data.
  • the chart recommendation process does not use the components of data input, data orientation, header detection, classify series, auto-filter series, and series-axis mapping since the pivot chart recommendation process already provides this information.
  • the chart recommendation process may perform all the analysis and scoring for the pivot table data. This may help maintain parity between the summarized and non-summarized data.
  • the data summary, chart selection rules, chart element layout/formatting rules and recommendations output may all be used by the chart recommendation process.
  • the chart recommendation process may rank all pivot chart recommendations along with regular chart recommendations 2050 .
  • the top N, a predetermined number, chart choices are identified 2055 and the chart recommendation process generates preview/snapshots 2060 and displays 2070 these top N ranked choices.
  • the user may decide whether or not to insert a chart from the recommendations 2075 . If the user decides to cancel 2077 , the chart recommendation process is terminated 2095 .
  • pivot charts 2090 may be recommended: column (clustered, stacked, or 100% stacked); line (line or 100% stacked); pie (pie, pie of pie, bar or pie), bar (clustered, stacked, of 100% stacked); area (stacked or 100% stacked); bubble, radar, doughnut.
  • Other chart types such as scatter, stock, and surface charts may not be recommended because such charts may not be applicable to pivot charts.
  • FIG. 21 illustrates sorting a category axis by values 2100 according to one embodiment. Sorting category axis by values adds a lot of extra value to the chart and makes the chart look professional.
  • the recommended summary table 2110 is sorted by values (largest to smallest) only when the following is true: there is exactly one field on ROW and exactly one field on VALUE axis; there are no COLUMN fields being used; the data type of ROW field is determined to be of text type.
  • FIG. 22 shows the naming of the recommendation title and chart title for pivot tables 2200 according to one embodiment.
  • each chart has a title that describes the chart type, for example Line Chart.
  • the phrase “Chart” may be replaced with “PivotChart” 2210 .
  • the pivot chart recommendation process may create a description for each recommended pivot table. This description may be seen as the title of the generated chart 2220 .
  • Pivot charts 2230 and regular charts 2240 may be stacked ranked together and displayed in the order of their stack ranked scores when recommending charts 2250 in the “Insert chart” dialog.
  • the Pivot chart recommendations may not be shown in the “Change chart” type dialog (unless the chart itself is a pivot chart in which case only pivot charts may be shown) or in the “alternate layout” gallery on regular charts.
  • the “Insert chart” dialog may host a predetermined number of chart suggestions. If there are regular chart suggestions available, a predetermined percentage of the spots may be reserved for regular charts regardless of how they stack up in the ranking as compared to the pivot chart suggestions.
  • FIGS. 23 a - b illustrate recommendations presented as data mapping alternatives in a window 2300 according to embodiments.
  • the Analysis Lens 2302 , 2352 shown in FIGS. 23 a - b show the user a few data mapping alternatives and allows the user to launch the full dialog experience from there.
  • FIG. 23 a an Analysis Lens 2302 for standard charts is shown.
  • a column chart 2310 , a line chart 2312 , a pie chart 2314 , a bar chart 2316 and an area chart 2318 are recommended.
  • a selection for requesting more recommendations 2320 is also provided.
  • FIG. 23 b shows an Analysis Lens 2352 for recommending pivot charts.
  • the Analysis Lens 2352 may use the same list of chart suggestions as the Insert Chart recommendation pane. However, the suggestions do not have to be the same between the entrances of both features, especially if auto-mapping plays a role in Insert Chart, but not in the Analysis Lens 2352 where the filtering user interface may not always be visible and hence confusing to the user in the Analysis Lens 2352 for single-cell selection scenarios. For example, if there are regular chart suggestions available, a percentage of the spots (e.g. 40%) may be reserved for regular charts 2370 regardless of how they stack up in the ranking as compared to the pivot chart suggestions. In FIG. 23 , the top suggestions are pivot charts 2360 , but there are also regular charts available 2370 available for selection.
  • FIG. 24 is a block diagram illustrating example physical components of a computing device 2400 with which embodiments may be practiced.
  • computing device 2400 may include at least one processing unit 2402 and a system memory 2404 .
  • system memory 2404 may comprise, but is not limited to, volatile (e.g. random access memory (RAM)), non-volatile (e.g. read-only memory (ROM)), flash memory, or any combination.
  • System memory 2404 may include operating system 2405 , one or more programming modules 2406 , and may include the chart recommendation module 2420 for providing chart recommendations.
  • Operating system 2405 for example, may be suitable for controlling the operation of computing device 2400 .
  • embodiments may be practiced in conjunction with a graphics library, other operating systems, or any other application program and is not limited to any particular application or system. This basic configuration is illustrated in FIG. 24 by those components within a dashed line 2408 .
  • Computing device 2400 may have additional features or functionality.
  • computing device 2400 may also include additional data storage devices (removable and/or non-removable) such as, for example, magnetic disks, optical disks, or tape.
  • additional storage is illustrated in FIG. 24 by a removable storage 2409 and a non-removable storage 2410 .
  • a number of program modules and data files may be stored in system memory 2404 , including operating system 2405 .
  • programming modules 2406 may perform processes including, for example, one or more of the processes described above with reference to FIGS. 1-23 .
  • the aforementioned processes are an example, and at least one processing unit 2402 may perform other processes.
  • Other programming modules that may be used in accordance with embodiments may include electronic mail and contacts applications, word processing applications, spreadsheet applications, database applications, slide presentation applications, drawing or computer-aided application programs, etc.
  • program modules may include routines, programs, components, data structures, and other types of structures that may perform particular tasks or that may implement particular abstract data types.
  • embodiments may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, and the like.
  • Embodiments may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote memory storage devices.
  • embodiments may be practiced in an electrical circuit comprising discrete electronic elements, packaged or integrated electronic chips containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing electronic elements or microprocessors.
  • an electrical circuit comprising discrete electronic elements, packaged or integrated electronic chips containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing electronic elements or microprocessors.
  • embodiments may be practiced via a system-on-a-chip (SOC) where each or many of the components illustrated in FIG. 24 may be integrated onto a single integrated circuit.
  • SOC device may include one or more processing units, graphics units, communications units, system virtualization units and various application functionality all of which are integrated (or “burned”) onto the chip substrate as a single integrated circuit.
  • the functionality, described herein, with respect to the chart recommendation module 2420 may be operated via application-specific logic integrated with other components of the computing device 2400 on the single integrated circuit (chip).
  • Embodiments may also be practiced using other technologies capable of performing logical operations such as, for example, AND, OR, and NOT, including but not limited to mechanical, optical, fluidic, and quantum technologies.
  • embodiments may be practiced within a general purpose computer or in any other circuits or systems.
  • Embodiments may be implemented as a computer process (method), a computing system, or as an article of manufacture, such as a computer program product or computer-readable storage medium.
  • the computer program product may be a computer-readable storage medium readable by a computer system and encoding a computer program of instructions for executing a computer process.
  • Computer-readable storage medium may include computer storage media.
  • Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules, or other data.
  • System memory 2404 , removable storage 2409 , and non-removable storage 2410 are all computer storage media examples (i.e., memory storage.)
  • Computer storage media may include, but is not limited to, RAM, ROM, electrically erasable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store information and which can be accessed by computing device 2400 . Any such computer storage media may be part of computing device 2400 .
  • Computing device 2400 may also have input device(s) 2412 such as a keyboard, a mouse, a pen, a sound input device, a touch input device, etc.
  • Output device(s) 2414 such as a display, speakers, a printer, etc. may also be included. The aforementioned devices are examples and others may be used.
  • Communication media may be embodied by computer-readable instructions, data structures, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media.
  • modulated data signal may describe a signal that has one or more characteristics set or changed in such a manner as to encode information in the signal.
  • communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared, and other wireless media.
  • RF radio frequency
  • FIGS. 25 a - b illustrate a suitable mobile computing environment, for example, a mobile computing device 2500 , a smart phone, a tablet personal computer, a laptop computer, and the like, with which embodiments may be practiced.
  • a mobile computing device 2500 for implementing the embodiments is illustrated.
  • mobile computing device 2500 is a handheld computer having both input elements and output elements.
  • Input elements may include touch screen display 2505 and optional side input button 2515 that allow the user to enter information into mobile computing device 2500 .
  • Mobile computing device 2500 may also incorporate an optional side input button 2515 allowing further user input.
  • Optional side input button 2515 may be a rotary switch, a button, or any other type of manual input element.
  • mobile computing device 2500 may incorporate more or less input elements.
  • touch screen display 2505 may not be a touch screen in some embodiments.
  • the mobile computing device is a portable phone system, such as a cellular phone having touch screen display 2505 and optional side input button 2515 .
  • Mobile computing device 2500 may also include an optional keypad 2535 .
  • Optional keypad 2535 may be a physical keypad or a “soft” keypad generated on the touch screen display.
  • Mobile computing device 2500 incorporates output elements, such as touch screen display 2505 , which can display a graphical user interface (GUI). Other output elements include speaker 2525 and LED light 2524 . Additionally, mobile computing device 2500 may incorporate a vibration module (not shown), which causes mobile computing device 2500 to vibrate to notify the user of an event. In yet another embodiment, mobile computing device 2500 may incorporate a headphone jack (not shown) for providing another means of providing output signals.
  • GUI graphical user interface
  • any computer system having a plurality of environment sensors, a plurality of output elements to provide notifications to a user and a plurality of notification event types may incorporate embodiments.
  • FIG. 25 b is a block diagram illustrating components of a mobile computing device used in one embodiment, such as the computing device shown in FIG. 25 a .
  • mobile computing device 2500 can incorporate system 2502 to implement some embodiments.
  • system 2502 can be used in implementing a “smart phone” that can run one or more applications similar to those of a desktop or notebook computer such as, for example, browser, e-mail, scheduling, instant messaging, and media player applications.
  • system 2502 is integrated as a computing device, such as an integrated personal digital assistant (PDA) and wireless phone.
  • PDA personal digital assistant
  • One or more application programs 2566 may be loaded into memory 2562 and run on or in association with operating system 2564 .
  • Examples of application programs include phone dialer programs, e-mail programs, PIM (personal information management) programs, word processing programs, spreadsheet programs, Internet browser programs, messaging programs, and so forth.
  • System 2502 also includes non-volatile storage 2568 within memory 2562 .
  • Non-volatile storage 2568 may be used to store persistent information that is lost if system 2502 is powered down.
  • Application programs 2566 may use and store information in non-volatile storage 2568 , such as e-mail or other messages used by an e-mail application, and the like.
  • a synchronization application (not shown) also resides on system 2502 and is programmed to interact with a corresponding synchronization application resident on a host computer to keep the information stored in non-volatile storage 2568 synchronized with corresponding information stored at the host computer.
  • Other applications may be loaded into memory 2562 and run on the mobile computing device 2500 , including the chart recommendation module 2520 , described herein.
  • Power Supply 2570 which may be implemented as one or more batteries.
  • Power supply 2570 might further include an external power source, such as an AC adapter or a powered docking cradle that supplements or recharges the batteries.
  • System 2502 may also include a radio 2572 that performs the function of transmitting and receiving radio frequency communications.
  • Radio 2572 facilitates wireless connectivity between system 2502 and the “outside world”, via a communications carrier or service provider. Transmissions to and from radio 2572 are conducted under control of the operating system 2564 . In other words, communications received by radio 2572 may be disseminated to application programs 2566 via the operating system 2564 , and vice versa.
  • Radio 2572 allows system 2502 to communicate with other computing devices, such as over a network.
  • Radio 2572 is one example of communication media.
  • Communication media may typically be embodied by computer-readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
  • This embodiment of system 2502 is shown with two types of notification output devices; LED light 2524 that can be used to provide visual notifications and an audio interface 2574 that can be used with speaker 2525 to provide audio notifications. These devices may be directly coupled to power supply 2570 so that when activated, they remain on for a duration dictated by the notification mechanism even though processor 2560 and other components might shut down for conserving battery power. LED light 2524 may be programmed to remain on indefinitely until the user takes action to indicate the powered-on status of the device. Audio interface 2574 is used to provide audible signals to and receive audible signals from the user. For example, in addition to being coupled to speaker 2525 , audio interface 2574 may also be coupled to a microphone to receive audible input, such as to facilitate a telephone conversation. In accordance with embodiments, the microphone 2526 may also serve as an audio sensor to facilitate control of notifications, as described below. System 2502 may further include video interface 2576 that enables an operation of on-board camera 2530 to record still images, video stream, and the like.
  • a system 2502 for implementing a mobile computing system may have additional features or functionality.
  • the device may also include additional data storage devices (removable and/or non-removable) such as, magnetic disks, optical disks, or tape.
  • additional storage is illustrated in FIG. 25 b by non-volatile storage 2568 .
  • Computer-readable storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules, or other data.
  • Data/information generated or captured by the mobile computing device 2500 and stored via the system 2502 may be stored locally on the mobile computing device 2500 , as described above, or the data may be stored on any number of storage media that may be accessed by the device via the radio 2572 or via a wired connection between the mobile computing device 2500 and a separate computing device associated with the mobile computing device 2500 , for example, a server computer in a distributed computing network, such as the Internet. Such data/information may be accessed via the mobile computing device 2500 via the radio 2572 or via a distributed computing network. Similarly, such data/information may be readily transferred between computing devices for storage and use according to well-known data/information transfer and storage means, including electronic mail and collaborative data/information sharing systems.
  • FIG. 26 illustrates a system architecture for providing chart recommendations, as described above.
  • Chart recommendations developed, interacted with or edited in association with a chart recommendation module 2620 may be stored in different communication channels or other storage types.
  • chart recommendations along with information from which they are developed may be stored using directory services 2622 , web portals 2624 , mailbox services 2626 , instant messaging stores 2628 and social networking sites 2630 and accessed by application 2640 .
  • the chart recommendation module 2620 may use any of these types of systems or the like for enabling data utilization, as described herein.
  • a server 2650 may provide the chart recommendations to clients.
  • server 2650 may be a web server providing chart recommendations over the web.
  • Server 2650 may provide chart recommendations over the web to clients through a network 2615 . Examples of clients that may obtain chart recommendations include computing device 2602 , which may include any general purpose personal computer, a tablet computing device 2604 and/or mobile computing device 2606 , such as smart phones. Any of these devices may obtain content from the store 2616 .
  • Embodiments for example, are described above with reference to block diagrams and/or operational illustrations of methods, systems, and computer program products according to embodiments.
  • the functions/acts noted in the blocks may occur out of the order as shown in any flowchart or described herein with reference to FIGS. 1-23 .
  • two processes shown or described in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • User Interface Of Digital Computer (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
US13/272,522 2011-10-13 2011-10-13 Suggesting alternate data mappings for charts Active US9135233B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/272,522 US9135233B2 (en) 2011-10-13 2011-10-13 Suggesting alternate data mappings for charts
CN201210387253.XA CN102937970B (zh) 2011-10-13 2012-10-12 建议图表的替换数据映射
US14/811,090 US10019494B2 (en) 2011-10-13 2015-07-28 Suggesting alternate data mappings for charts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/272,522 US9135233B2 (en) 2011-10-13 2011-10-13 Suggesting alternate data mappings for charts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/811,090 Continuation US10019494B2 (en) 2011-10-13 2015-07-28 Suggesting alternate data mappings for charts

Publications (2)

Publication Number Publication Date
US20130097177A1 US20130097177A1 (en) 2013-04-18
US9135233B2 true US9135233B2 (en) 2015-09-15

Family

ID=47696867

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/272,522 Active US9135233B2 (en) 2011-10-13 2011-10-13 Suggesting alternate data mappings for charts
US14/811,090 Active US10019494B2 (en) 2011-10-13 2015-07-28 Suggesting alternate data mappings for charts

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/811,090 Active US10019494B2 (en) 2011-10-13 2015-07-28 Suggesting alternate data mappings for charts

Country Status (2)

Country Link
US (2) US9135233B2 (zh)
CN (1) CN102937970B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150186806A1 (en) * 2013-12-30 2015-07-02 International Business Machines Corporation Pattern-based analysis recommendation
US20150278172A1 (en) * 2014-03-31 2015-10-01 NIIT Technologies Ltd Simplifying identification of potential non-visibility of user interface components when responsive web pages are rendered by disparate devices
US20160085835A1 (en) * 2014-09-18 2016-03-24 Johnson Wong Visualization suggestion application programming interface
USD753673S1 (en) * 2014-03-07 2016-04-12 Xyzprinting, Inc. Display screen or portion thereof with animated graphical user interface
USD757038S1 (en) * 2014-04-18 2016-05-24 Nutonian, Inc. Display screen with graphical user interface
USD774540S1 (en) * 2014-05-08 2016-12-20 Express Scripts, Inc. Display screen with a graphical user interface
US20180052597A1 (en) * 2014-12-29 2018-02-22 Palantir Technologies Inc. System and method of generating data points from one or more data stores of data items for chart creation and manipulation
US10019494B2 (en) 2011-10-13 2018-07-10 Microsoft Technology Licensing, Llc Suggesting alternate data mappings for charts
US10061473B2 (en) 2011-11-10 2018-08-28 Microsoft Technology Licensing, Llc Providing contextual on-object control launchers and controls
US20180253414A1 (en) * 2015-09-19 2018-09-06 Entit Software Llc Determining output presentation type
US10552994B2 (en) 2014-12-22 2020-02-04 Palantir Technologies Inc. Systems and interactive user interfaces for dynamic retrieval, analysis, and triage of data items
US10572487B1 (en) 2015-10-30 2020-02-25 Palantir Technologies Inc. Periodic database search manager for multiple data sources
US20200210640A1 (en) * 2017-04-24 2020-07-02 Beijing Kingsoft Office Software, Inc. Method and apparatus for displaying textual information
US10719527B2 (en) 2013-10-18 2020-07-21 Palantir Technologies Inc. Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores
US11093687B2 (en) 2014-06-30 2021-08-17 Palantir Technologies Inc. Systems and methods for identifying key phrase clusters within documents
US11093703B2 (en) * 2016-09-29 2021-08-17 Google Llc Generating charts from data in a data table
US11308131B2 (en) 2020-05-21 2022-04-19 International Business Machines Corporation Combining visualizations in a business analytic application
US11341178B2 (en) 2014-06-30 2022-05-24 Palantir Technologies Inc. Systems and methods for key phrase characterization of documents
US11422833B1 (en) * 2017-06-30 2022-08-23 Cognex Corporation System and method for automatic generation of human-machine interface in a vision system
US20220284182A1 (en) * 2021-02-26 2022-09-08 Finicast, Inc. Apparatus and method for forming pivot tables from pivot frames
US11663399B1 (en) 2022-08-29 2023-05-30 Bank Of America Corporation Platform for generating published reports with position mapping identification and template carryover reporting
US11900054B1 (en) 2022-08-29 2024-02-13 Bank Of America Corporation Platform for generating published reports using report and worksheet building with position mapping identification

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969656B1 (ko) * 2009-10-30 2010-07-14 (주)비아이매트릭스 엑셀기반 분석보고서 작성 시스템 및 방법
US9792017B1 (en) * 2011-07-12 2017-10-17 Domo, Inc. Automatic creation of drill paths
US9202297B1 (en) * 2011-07-12 2015-12-01 Domo, Inc. Dynamic expansion of data visualizations
US10001898B1 (en) 2011-07-12 2018-06-19 Domo, Inc. Automated provisioning of relational information for a summary data visualization
US8793567B2 (en) 2011-11-16 2014-07-29 Microsoft Corporation Automated suggested summarizations of data
US9164673B2 (en) * 2012-07-16 2015-10-20 Microsoft Technology Licensing, Llc Location-dependent drag and drop UI
US20140040805A1 (en) * 2012-08-02 2014-02-06 International Business Machines Corporation Chart generation based on user control inferences
US9547316B2 (en) 2012-09-07 2017-01-17 Opower, Inc. Thermostat classification method and system
US9158766B2 (en) * 2012-11-29 2015-10-13 Oracle International Corporation Multi-touch interface for visual analytics
US10067516B2 (en) 2013-01-22 2018-09-04 Opower, Inc. Method and system to control thermostat using biofeedback
US10055396B2 (en) * 2013-04-12 2018-08-21 Microsoft Technology Licensing, Llc Binding of data source to compound control
US9818211B1 (en) * 2013-04-25 2017-11-14 Domo, Inc. Automated combination of multiple data visualizations
US10719797B2 (en) 2013-05-10 2020-07-21 Opower, Inc. Method of tracking and reporting energy performance for businesses
US20150081395A1 (en) * 2013-05-17 2015-03-19 InfoEffect LLC System and method to control distribution of goods in a virtual marketplace
US10001792B1 (en) 2013-06-12 2018-06-19 Opower, Inc. System and method for determining occupancy schedule for controlling a thermostat
US20150006518A1 (en) * 2013-06-27 2015-01-01 Microsoft Corporation Visualizations based on natural language query
WO2015021907A1 (en) * 2013-08-15 2015-02-19 International Business Machines Corporation Utilization of a concept to obtain data of specific interest to a user from one or more data storage locations
US10223401B2 (en) 2013-08-15 2019-03-05 International Business Machines Corporation Incrementally retrieving data for objects to provide a desired level of detail
US9775013B2 (en) * 2013-09-27 2017-09-26 Tencent Technology (Shenzhen) Company Limited Method, mobile terminal, and server for displaying data analysis result
US10146219B2 (en) * 2013-12-23 2018-12-04 General Electric Company Systems and methods for processing and graphically displaying power plant data
US9396567B2 (en) * 2014-01-13 2016-07-19 International Business Machines Corporation Generating a chart specification based on image recognition of chart parts
US11921715B2 (en) 2014-01-27 2024-03-05 Microstrategy Incorporated Search integration
US10255320B1 (en) 2014-01-27 2019-04-09 Microstrategy Incorporated Search integration
US10095759B1 (en) 2014-01-27 2018-10-09 Microstrategy Incorporated Data engine integration and data refinement
US11386085B2 (en) 2014-01-27 2022-07-12 Microstrategy Incorporated Deriving metrics from queries
US10416871B2 (en) * 2014-03-07 2019-09-17 Microsoft Technology Licensing, Llc Direct manipulation interface for data analysis
US9727063B1 (en) 2014-04-01 2017-08-08 Opower, Inc. Thermostat set point identification
US10019739B1 (en) 2014-04-25 2018-07-10 Opower, Inc. Energy usage alerts for a climate control device
US20150356061A1 (en) * 2014-06-06 2015-12-10 Microsoft Corporation Summary view suggestion based on user interaction pattern
US20150356068A1 (en) * 2014-06-06 2015-12-10 Microsoft Technology Licensing, Llc Augmented data view
US10592781B2 (en) * 2014-07-18 2020-03-17 The Boeing Company Devices and method for scoring data to quickly identify relevant attributes for instant classification
US10572889B2 (en) 2014-08-07 2020-02-25 Opower, Inc. Advanced notification to enable usage reduction
US10410130B1 (en) 2014-08-07 2019-09-10 Opower, Inc. Inferring residential home characteristics based on energy data
US9971742B2 (en) 2014-09-26 2018-05-15 Oracle International Corporation Semantic distance-based assignment of data elements to visualization edges
US10528589B2 (en) 2014-09-26 2020-01-07 Oracle International Corporation Cross visualization interaction between data visualizations
US11030552B1 (en) * 2014-10-31 2021-06-08 Tibco Software Inc. Context aware recommendation of analytic components
US10007708B2 (en) * 2014-10-31 2018-06-26 Business Objects Software Ltd. System and method of providing visualization suggestions
US10033184B2 (en) 2014-11-13 2018-07-24 Opower, Inc. Demand response device configured to provide comparative consumption information relating to proximate users or consumers
US10198483B2 (en) 2015-02-02 2019-02-05 Opower, Inc. Classification engine for identifying business hours
US11093950B2 (en) 2015-02-02 2021-08-17 Opower, Inc. Customer activity score
US10074097B2 (en) 2015-02-03 2018-09-11 Opower, Inc. Classification engine for classifying businesses based on power consumption
US10371861B2 (en) 2015-02-13 2019-08-06 Opower, Inc. Notification techniques for reducing energy usage
US20160253308A1 (en) * 2015-02-27 2016-09-01 Microsoft Technology Licensing, Llc Analysis view for pivot table interfacing
CN106033495B (zh) * 2015-03-13 2019-11-26 腾讯科技(深圳)有限公司 一种人体生理特征数据的处理方法及装置
USD776716S1 (en) * 2015-04-03 2017-01-17 Fanuc Corporation Display panel for controlling machine tools with icon
US10817789B2 (en) 2015-06-09 2020-10-27 Opower, Inc. Determination of optimal energy storage methods at electric customer service points
US9958360B2 (en) 2015-08-05 2018-05-01 Opower, Inc. Energy audit device
US10387444B2 (en) * 2015-08-10 2019-08-20 Successfactors, Inc. Tools for auto-visualizations of data
US10559044B2 (en) 2015-11-20 2020-02-11 Opower, Inc. Identification of peak days
US10353909B2 (en) * 2016-01-25 2019-07-16 International Business Machines Corporation System and method for visualizing data
US9852524B2 (en) 2016-04-29 2017-12-26 Accenture Global Solutions Limited Device based visualization and analysis of multivariate data
USD820290S1 (en) * 2016-08-09 2018-06-12 Under Armour, Inc. Display screen with graphical user interface
USD795272S1 (en) * 2016-08-09 2017-08-22 Under Armour, Inc. Display screen with animated graphical user interface
JP6834290B2 (ja) * 2016-09-21 2021-02-24 カシオ計算機株式会社 人材情報処理装置及びプログラム
US10417198B1 (en) * 2016-09-21 2019-09-17 Well Fargo Bank, N.A. Collaborative data mapping system
WO2018085859A1 (en) * 2016-11-07 2018-05-11 Ayasdi, Inc. Dimension grouping and reduction for model generation, testing, and documentation
US11481550B2 (en) * 2016-11-10 2022-10-25 Google Llc Generating presentation slides with distilled content
US10380778B2 (en) * 2016-12-09 2019-08-13 Dropbox, Inc. Automated chart generation within a document generation application using heuristic model with predefined data types
CN108268435A (zh) * 2016-12-30 2018-07-10 北京国双科技有限公司 图表匹配方法及装置
CN108319577B (zh) * 2017-01-18 2021-09-28 阿里巴巴集团控股有限公司 一种图表的处理方法、装置及电子设备
KR101758219B1 (ko) * 2017-01-24 2017-07-14 김훈 수치정보 검색이 가능한 수치정보 관리장치
CN107229606A (zh) * 2017-05-10 2017-10-03 贵州大学 一种适用两因素互作结果平面作图方法
US10956237B2 (en) * 2017-06-02 2021-03-23 Oracle International Corporation Inter-application sharing of business intelligence data
CN108363709A (zh) * 2017-06-08 2018-08-03 国云科技股份有限公司 一种基于用户使用主成分的图表推荐系统及方法
EP3422199A1 (en) * 2017-06-27 2019-01-02 Zebrys An interactive interface for improving the management of datasets
CN107451272B (zh) * 2017-08-03 2021-01-08 网易(杭州)网络有限公司 信息展示方法、介质、装置和计算设备
CN110147183B (zh) * 2017-10-09 2021-03-30 北京国双科技有限公司 一种数据的筛选方法及装置
US10936648B2 (en) 2017-12-12 2021-03-02 Google Llc Generating slide presentations using a collaborative multi-content application
CN109190908A (zh) * 2018-08-06 2019-01-11 成都四方伟业软件股份有限公司 一种应用于商业智能分析工具的快照方法
CN109254970A (zh) * 2018-08-31 2019-01-22 广东创我科技发展有限公司 一种数据的快速自定义图表展现的方法及装置
CN110888975A (zh) * 2018-09-06 2020-03-17 微软技术许可有限责任公司 文本可视化
US10915520B2 (en) * 2018-11-30 2021-02-09 International Business Machines Corporation Visual data summaries with cognitive feedback
US10937213B2 (en) * 2019-06-27 2021-03-02 Fuji Xerox Co., Ltd. Systems and methods for summarizing and steering multi-user collaborative data analyses
CN110413766B (zh) * 2019-07-31 2023-07-21 联想(北京)有限公司 一种数据处理方法、装置及电子设备
CN110662185B (zh) * 2019-08-29 2021-12-14 深圳市梦网科技发展有限公司 图表短信的发送方法、装置及终端设备
CN112632929B (zh) * 2019-09-20 2023-12-26 珠海金山办公软件有限公司 一种基于表格数据智能推荐图表的方法、装置和电子设备
CN112784555B (zh) * 2019-11-08 2024-03-12 珠海金山办公软件有限公司 一种生成数据透视图的方法及装置
US11614970B2 (en) 2019-12-06 2023-03-28 Microstrategy Incorporated High-throughput parallel data transmission
US11567965B2 (en) 2020-01-23 2023-01-31 Microstrategy Incorporated Enhanced preparation and integration of data sets
CN111475094B (zh) * 2020-03-23 2022-03-08 深圳市富途网络科技有限公司 一种图表的参考图编辑方法、设备和计算机可读存储介质
US11562129B2 (en) 2020-04-20 2023-01-24 Google Llc Adding machine understanding on spreadsheets data
CN111881311B (zh) * 2020-08-06 2023-06-23 泰山信息科技有限公司 一种图表类型的智能推荐方法、装置、设备及存储介质
US11270483B1 (en) * 2020-09-09 2022-03-08 Sap Se Unified multi-view data visualization
CN112540819B (zh) * 2020-12-08 2023-02-24 杭州讯酷科技有限公司 一种根据查询页面自动生成推荐详细页面及表单页面的方法
US11308667B1 (en) 2020-12-14 2022-04-19 International Business Machines Corporation Chart erratum and refactoring
US11900133B2 (en) * 2021-12-01 2024-02-13 Microsoft Technology Licensing, Llc Discovery and suggestions for unstructured tables in spreadsheets
USD1005310S1 (en) * 2021-12-02 2023-11-21 Inspire Medical Systems, Inc. Display screen or portion thereof with a graphical user interface
US20240078267A1 (en) * 2022-09-05 2024-03-07 Salesforce, Inc. Visualization Recommendations for Time-Series Metrics Presentations

Citations (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495565A (en) 1994-06-21 1996-02-27 Wang Laboratories, Inc. Integrated form document editor with form descriptor table, background bitmap, graphics editor and text editor, composite image generator and intelligent autofill
US5581677A (en) 1994-04-22 1996-12-03 Carnegie Mellon University Creating charts and visualizations by demonstration
EP0863469A2 (en) 1997-02-10 1998-09-09 Nippon Telegraph And Telephone Corporation Scheme for automatic data conversion definition generation according to data feature in visual multidimensional data analysis tool
US5844572A (en) 1995-06-07 1998-12-01 Binaryblitz Method and apparatus for data alteration by manipulation of representational graphs
US5894311A (en) 1995-08-08 1999-04-13 Jerry Jackson Associates Ltd. Computer-based visual data evaluation
US6278450B1 (en) 1998-06-17 2001-08-21 Microsoft Corporation System and method for customizing controls on a toolbar
US6496832B2 (en) 1998-10-20 2002-12-17 University Of Minnesota Visualization spreadsheet
EP1286284A1 (en) 2001-08-15 2003-02-26 F1F9 (UK) Ltd. Spreadsheet data processing system
US20030071814A1 (en) * 2000-05-10 2003-04-17 Jou Stephan F. Interactive business data visualization system
US20030154443A1 (en) 2002-02-13 2003-08-14 Ncr Corporation Visual discovery tool
US20030195780A1 (en) 2001-12-13 2003-10-16 Liquid Engines, Inc. Computer-based optimization system for financial performance management
JP2004028864A (ja) 2002-06-27 2004-01-29 Shimadzu Corp 分析装置のデータ処理装置
US20040230471A1 (en) 2003-02-20 2004-11-18 Putnam Brookes Cyril Henry Business intelligence system and method
US20050071325A1 (en) * 2003-09-30 2005-03-31 Jeremy Bem Increasing a number of relevant advertisements using a relaxed match
US20050097465A1 (en) 2001-06-29 2005-05-05 Microsoft Corporation Gallery user interface controls
US20050204304A1 (en) 2004-03-15 2005-09-15 Autodesk, Inc. User interface elements of a sheet set manager for a graphics program
US20050234960A1 (en) 2004-04-14 2005-10-20 Microsoft Corporation Automatic data perspective generation for a target variable
US7002580B1 (en) 2003-05-14 2006-02-21 At&T Corp Method and apparatus for automatically generating charts
US20060074866A1 (en) 2004-09-27 2006-04-06 Microsoft Corporation One click conditional formatting method and system for software programs
US20060167911A1 (en) 2005-01-24 2006-07-27 Stephane Le Cam Automatic data pattern recognition and extraction
US7092929B1 (en) 2000-11-08 2006-08-15 Bluefire Systems, Inc. Method and apparatus for planning analysis
US7107519B1 (en) 2001-08-16 2006-09-12 Cognax Corporation Spreadsheet-based user interface creation
US20060218483A1 (en) 2005-03-25 2006-09-28 Weitzman Louis M System, method and program product for tabular data with dynamic visual cells
US7127672B1 (en) 2003-08-22 2006-10-24 Microsoft Corporation Creating and managing structured data in an electronic spreadsheet
US20060285868A1 (en) 2005-06-16 2006-12-21 Xerox Corporation Computerized action tool and method of use
US20070024490A1 (en) 2005-06-10 2007-02-01 International Business Machines Corporation Modification of Chart Representation of Tabular Data in an Information Display System
US20070061369A1 (en) 2005-09-09 2007-03-15 Microsoft Corporation User interface for creating a spreadsheet data summary table
US20070061611A1 (en) 2005-09-09 2007-03-15 Mackinlay Jock D Computer systems and methods for automatically viewing multidimensional databases
US20070074130A1 (en) 2005-09-09 2007-03-29 Microsoft Corporation Automated placement of fields in a data summary table
US20070101299A1 (en) 2005-10-28 2007-05-03 Microsoft Corporation Two level hierarchy in-window gallery
US7231593B1 (en) 2003-07-24 2007-06-12 Balenz Software, Inc. System and method for managing a spreadsheet
US7292244B2 (en) 2004-10-18 2007-11-06 Microsoft Corporation System and method for automatic label placement on charts
US20070260970A1 (en) 2002-10-24 2007-11-08 Dorwart Richard W System and method for creating a graphical presentation
US20080005677A1 (en) * 2006-06-30 2008-01-03 Business Objects, S.A. Apparatus and method for visualizing data
US20080082521A1 (en) 2006-09-28 2008-04-03 Battelle Memorial Institute Method and apparatus for information visualization and analysis
US20080127052A1 (en) 2006-09-08 2008-05-29 Sap Ag Visually exposing data services to analysts
US20080243784A1 (en) 2007-03-30 2008-10-02 Tyron Jerrod Stading System and methods of query refinement
US7444599B1 (en) 2002-03-14 2008-10-28 Apple Inc. Method and apparatus for controlling a display of a data processing system
US20080281783A1 (en) * 2007-05-07 2008-11-13 Leon Papkoff System and method for presenting media
US20080288889A1 (en) 2004-02-20 2008-11-20 Herbert Dennis Hunt Data visualization application
US20090044089A1 (en) 2007-08-06 2009-02-12 Apple Inc. Automatic insertion of a default function
US20090076974A1 (en) 2007-09-13 2009-03-19 Microsoft Corporation Combined estimate contest and prediction market
US20090096812A1 (en) 2007-10-12 2009-04-16 Business Objects, S.A. Apparatus and method for morphing data visualizations
US20090282324A1 (en) 2006-10-04 2009-11-12 Dilip Patel Method and system for automatically generating template based excel pivots from web analytics
US20090287673A1 (en) * 2008-05-13 2009-11-19 Microsoft Corporation Ranking visualization types based upon fitness for visualizing a data set
US7627812B2 (en) 2005-10-27 2009-12-01 Microsoft Corporation Variable formatting of cells
US20090307207A1 (en) * 2008-06-09 2009-12-10 Murray Thomas J Creation of a multi-media presentation
CN101604243A (zh) 2004-08-16 2009-12-16 微软公司 显示上下文相关软件功能控件的用户界面
US20090319897A1 (en) 2008-06-20 2009-12-24 Microsoft Corporation Enhanced user interface for editing images
US20100017872A1 (en) 2002-12-10 2010-01-21 Neonode Technologies User interface for mobile computer unit
US20100070448A1 (en) 2002-06-24 2010-03-18 Nosa Omoigui System and method for knowledge retrieval, management, delivery and presentation
US20100083086A1 (en) 2008-09-30 2010-04-01 Apple Inc. Providing spreadsheet features
US20100107101A1 (en) 2008-10-24 2010-04-29 Microsoft Corporation In-document floating object re-ordering
US20100205521A1 (en) 2009-02-11 2010-08-12 Microsoft Corporation Displaying multiple row and column header areas in a summary table
US20100214299A1 (en) 2007-02-12 2010-08-26 Microsoft Corporation Graphical manipulation of chart elements for interacting with chart data
US20100228752A1 (en) 2009-02-25 2010-09-09 Microsoft Corporation Multi-condition filtering of an interactive summary table
US20100229122A1 (en) 2004-12-30 2010-09-09 Microsoft Corporation Floating Action Buttons
US7849395B2 (en) 2004-12-15 2010-12-07 Microsoft Corporation Filter and sort by color
US20110016425A1 (en) 2009-07-20 2011-01-20 Apple Inc. Displaying recently used functions in context sensitive menu
US7882427B2 (en) 2003-07-24 2011-02-01 Balenz Software, Inc. System and method for managing a spreadsheet
US20110055722A1 (en) 2009-09-02 2011-03-03 Ludwig Lester F Data Visualization Environment with DataFlow Processing, Web, Collaboration, Advanced User Interfaces, and Spreadsheet Visualization
US7908567B1 (en) 2007-05-25 2011-03-15 Intuit Inc. Method and system for navigating in a document
US20110066488A1 (en) 2009-09-17 2011-03-17 Ad Infuse, Inc. Mobile ad routing
US20110087954A1 (en) 2009-10-09 2011-04-14 Microsoft Corporation Data analysis expressions
US7949953B2 (en) 2003-06-13 2011-05-24 Sap Aktiengesellschaft Designing and generating charts to graphically represent data in a data source
US20110252032A1 (en) 2010-04-07 2011-10-13 Microsoft Corporation Analysis of computer network activity by successively removing accepted types of access events
US20110276867A1 (en) 2000-01-07 2011-11-10 Mastermine Software, Inc. Data mining and reporting
US20110295871A1 (en) 2006-01-25 2011-12-01 Microsoft Corporation Filtering and Sorting Information
US20120023101A1 (en) 2010-07-21 2012-01-26 Microsoft Corporation Smart defaults for data visualizations
US20120159297A1 (en) 2010-12-21 2012-06-21 Sap Ag System and method for generating a pivot table
US20120166927A1 (en) 2010-12-27 2012-06-28 Microsoft Corporation Creating Cross-Tabular Reports
US20120192053A1 (en) 2011-01-25 2012-07-26 Infineon Technologies Ag Method, Software and Computer System for Manipulating Aggregated Data
US20130080444A1 (en) 2011-09-26 2013-03-28 Microsoft Corporation Chart Recommendations
US20130086460A1 (en) 2011-10-04 2013-04-04 Microsoft Corporation Automatic Relationship Detection for Reporting on Spreadsheet Data
US20130086459A1 (en) 2011-10-04 2013-04-04 Microsoft Corporation Automatic Scoping of Data Entities
US20130124989A1 (en) 2011-11-10 2013-05-16 Microsoft Corporation Providing Contextual On-Object Control Launchers and Controls
US20130124960A1 (en) 2011-11-16 2013-05-16 Microsoft Corporation Automated suggested summarizations of data
US20130145244A1 (en) 2011-12-05 2013-06-06 Microsoft Corporation Quick analysis tool for spreadsheet application programs
US8612380B2 (en) 2009-05-26 2013-12-17 Adobe Systems Incorporated Web-based collaboration for editing electronic documents

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040131A (en) 1987-12-23 1991-08-13 International Business Machines Corporation Graphical processing
JP2842487B2 (ja) 1991-12-13 1999-01-06 三菱電機株式会社 データ編集方式
US5461708A (en) 1993-08-06 1995-10-24 Borland International, Inc. Systems and methods for automated graphing of spreadsheet information
US6570587B1 (en) 1996-07-26 2003-05-27 Veon Ltd. System and method and linking information to a video
US7574652B2 (en) * 2002-06-20 2009-08-11 Canon Kabushiki Kaisha Methods for interactively defining transforms and for generating queries by manipulating existing query data
US7644361B2 (en) * 2002-12-23 2010-01-05 Canon Kabushiki Kaisha Method of using recommendations to visually create new views of data across heterogeneous sources
US7085757B2 (en) * 2003-07-11 2006-08-01 International Business Machines Corporation Abstract data linking and joining interface
US8549392B2 (en) 2005-08-30 2013-10-01 Microsoft Corporation Customizable spreadsheet table styles
US8250486B2 (en) 2006-01-19 2012-08-21 International Business Machines Corporation Computer controlled user interactive display interface for accessing graphic tools with a minimum of display pointer movement
US8132106B2 (en) 2006-06-23 2012-03-06 Microsoft Corporation Providing a document preview
US20080022562A1 (en) 2006-07-31 2008-01-31 John Robert Manis Shoe static outsole structrue connected to rotary midsole structrue
US9411903B2 (en) * 2007-03-05 2016-08-09 Oracle International Corporation Generalized faceted browser decision support tool
GB2453777A (en) 2007-10-18 2009-04-22 Toshiba Res Europ Ltd Lattice reduction aided MIMO detector with storing means for storing channel decoding information output from a pre-processing section
US8055093B2 (en) 2008-04-11 2011-11-08 Xerox Corporation Method and system for noise level detection in image data
US9135233B2 (en) 2011-10-13 2015-09-15 Microsoft Technology Licensing, Llc Suggesting alternate data mappings for charts

Patent Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581677A (en) 1994-04-22 1996-12-03 Carnegie Mellon University Creating charts and visualizations by demonstration
US5495565A (en) 1994-06-21 1996-02-27 Wang Laboratories, Inc. Integrated form document editor with form descriptor table, background bitmap, graphics editor and text editor, composite image generator and intelligent autofill
US5844572A (en) 1995-06-07 1998-12-01 Binaryblitz Method and apparatus for data alteration by manipulation of representational graphs
US5894311A (en) 1995-08-08 1999-04-13 Jerry Jackson Associates Ltd. Computer-based visual data evaluation
EP0863469A2 (en) 1997-02-10 1998-09-09 Nippon Telegraph And Telephone Corporation Scheme for automatic data conversion definition generation according to data feature in visual multidimensional data analysis tool
US6278450B1 (en) 1998-06-17 2001-08-21 Microsoft Corporation System and method for customizing controls on a toolbar
US6496832B2 (en) 1998-10-20 2002-12-17 University Of Minnesota Visualization spreadsheet
US20110276867A1 (en) 2000-01-07 2011-11-10 Mastermine Software, Inc. Data mining and reporting
US20030071814A1 (en) * 2000-05-10 2003-04-17 Jou Stephan F. Interactive business data visualization system
US7092929B1 (en) 2000-11-08 2006-08-15 Bluefire Systems, Inc. Method and apparatus for planning analysis
US20050097465A1 (en) 2001-06-29 2005-05-05 Microsoft Corporation Gallery user interface controls
US7853877B2 (en) 2001-06-29 2010-12-14 Microsoft Corporation Gallery user interface controls
EP1286284A1 (en) 2001-08-15 2003-02-26 F1F9 (UK) Ltd. Spreadsheet data processing system
US7107519B1 (en) 2001-08-16 2006-09-12 Cognax Corporation Spreadsheet-based user interface creation
US20030195780A1 (en) 2001-12-13 2003-10-16 Liquid Engines, Inc. Computer-based optimization system for financial performance management
US20030154443A1 (en) 2002-02-13 2003-08-14 Ncr Corporation Visual discovery tool
US7444599B1 (en) 2002-03-14 2008-10-28 Apple Inc. Method and apparatus for controlling a display of a data processing system
US20100070448A1 (en) 2002-06-24 2010-03-18 Nosa Omoigui System and method for knowledge retrieval, management, delivery and presentation
JP2004028864A (ja) 2002-06-27 2004-01-29 Shimadzu Corp 分析装置のデータ処理装置
US20070260970A1 (en) 2002-10-24 2007-11-08 Dorwart Richard W System and method for creating a graphical presentation
US20100017872A1 (en) 2002-12-10 2010-01-21 Neonode Technologies User interface for mobile computer unit
US20040230471A1 (en) 2003-02-20 2004-11-18 Putnam Brookes Cyril Henry Business intelligence system and method
US7002580B1 (en) 2003-05-14 2006-02-21 At&T Corp Method and apparatus for automatically generating charts
US7949953B2 (en) 2003-06-13 2011-05-24 Sap Aktiengesellschaft Designing and generating charts to graphically represent data in a data source
US7231593B1 (en) 2003-07-24 2007-06-12 Balenz Software, Inc. System and method for managing a spreadsheet
US7882427B2 (en) 2003-07-24 2011-02-01 Balenz Software, Inc. System and method for managing a spreadsheet
US7127672B1 (en) 2003-08-22 2006-10-24 Microsoft Corporation Creating and managing structured data in an electronic spreadsheet
US20050071325A1 (en) * 2003-09-30 2005-03-31 Jeremy Bem Increasing a number of relevant advertisements using a relaxed match
US20080288889A1 (en) 2004-02-20 2008-11-20 Herbert Dennis Hunt Data visualization application
US20050204304A1 (en) 2004-03-15 2005-09-15 Autodesk, Inc. User interface elements of a sheet set manager for a graphics program
US20050234960A1 (en) 2004-04-14 2005-10-20 Microsoft Corporation Automatic data perspective generation for a target variable
CN101604243A (zh) 2004-08-16 2009-12-16 微软公司 显示上下文相关软件功能控件的用户界面
US20060074866A1 (en) 2004-09-27 2006-04-06 Microsoft Corporation One click conditional formatting method and system for software programs
US7292244B2 (en) 2004-10-18 2007-11-06 Microsoft Corporation System and method for automatic label placement on charts
US7849395B2 (en) 2004-12-15 2010-12-07 Microsoft Corporation Filter and sort by color
US20100229122A1 (en) 2004-12-30 2010-09-09 Microsoft Corporation Floating Action Buttons
US20060167911A1 (en) 2005-01-24 2006-07-27 Stephane Le Cam Automatic data pattern recognition and extraction
US20060218483A1 (en) 2005-03-25 2006-09-28 Weitzman Louis M System, method and program product for tabular data with dynamic visual cells
US20070024490A1 (en) 2005-06-10 2007-02-01 International Business Machines Corporation Modification of Chart Representation of Tabular Data in an Information Display System
US20060285868A1 (en) 2005-06-16 2006-12-21 Xerox Corporation Computerized action tool and method of use
US20070061369A1 (en) 2005-09-09 2007-03-15 Microsoft Corporation User interface for creating a spreadsheet data summary table
US20070061611A1 (en) 2005-09-09 2007-03-15 Mackinlay Jock D Computer systems and methods for automatically viewing multidimensional databases
US20070074130A1 (en) 2005-09-09 2007-03-29 Microsoft Corporation Automated placement of fields in a data summary table
US7627812B2 (en) 2005-10-27 2009-12-01 Microsoft Corporation Variable formatting of cells
US20070101299A1 (en) 2005-10-28 2007-05-03 Microsoft Corporation Two level hierarchy in-window gallery
US20110295871A1 (en) 2006-01-25 2011-12-01 Microsoft Corporation Filtering and Sorting Information
US20080005677A1 (en) * 2006-06-30 2008-01-03 Business Objects, S.A. Apparatus and method for visualizing data
US20080127052A1 (en) 2006-09-08 2008-05-29 Sap Ag Visually exposing data services to analysts
US20080082521A1 (en) 2006-09-28 2008-04-03 Battelle Memorial Institute Method and apparatus for information visualization and analysis
US20090282324A1 (en) 2006-10-04 2009-11-12 Dilip Patel Method and system for automatically generating template based excel pivots from web analytics
US20100214299A1 (en) 2007-02-12 2010-08-26 Microsoft Corporation Graphical manipulation of chart elements for interacting with chart data
US20080243784A1 (en) 2007-03-30 2008-10-02 Tyron Jerrod Stading System and methods of query refinement
US20080281783A1 (en) * 2007-05-07 2008-11-13 Leon Papkoff System and method for presenting media
US7908567B1 (en) 2007-05-25 2011-03-15 Intuit Inc. Method and system for navigating in a document
US20090044089A1 (en) 2007-08-06 2009-02-12 Apple Inc. Automatic insertion of a default function
US20090076974A1 (en) 2007-09-13 2009-03-19 Microsoft Corporation Combined estimate contest and prediction market
US20090096812A1 (en) 2007-10-12 2009-04-16 Business Objects, S.A. Apparatus and method for morphing data visualizations
CN102027445A (zh) 2008-05-13 2011-04-20 微软公司 基于用于可视化数据集的适合度来排列可视化类型
US20090287673A1 (en) * 2008-05-13 2009-11-19 Microsoft Corporation Ranking visualization types based upon fitness for visualizing a data set
US20090307207A1 (en) * 2008-06-09 2009-12-10 Murray Thomas J Creation of a multi-media presentation
US20090319897A1 (en) 2008-06-20 2009-12-24 Microsoft Corporation Enhanced user interface for editing images
US8255789B2 (en) 2008-09-30 2012-08-28 Apple Inc. Providing spreadsheet features
US20100083086A1 (en) 2008-09-30 2010-04-01 Apple Inc. Providing spreadsheet features
US20100107101A1 (en) 2008-10-24 2010-04-29 Microsoft Corporation In-document floating object re-ordering
US20100205521A1 (en) 2009-02-11 2010-08-12 Microsoft Corporation Displaying multiple row and column header areas in a summary table
US20100228752A1 (en) 2009-02-25 2010-09-09 Microsoft Corporation Multi-condition filtering of an interactive summary table
US8612380B2 (en) 2009-05-26 2013-12-17 Adobe Systems Incorporated Web-based collaboration for editing electronic documents
US20110016425A1 (en) 2009-07-20 2011-01-20 Apple Inc. Displaying recently used functions in context sensitive menu
US20110055722A1 (en) 2009-09-02 2011-03-03 Ludwig Lester F Data Visualization Environment with DataFlow Processing, Web, Collaboration, Advanced User Interfaces, and Spreadsheet Visualization
US20110066488A1 (en) 2009-09-17 2011-03-17 Ad Infuse, Inc. Mobile ad routing
US20110087954A1 (en) 2009-10-09 2011-04-14 Microsoft Corporation Data analysis expressions
US20110252032A1 (en) 2010-04-07 2011-10-13 Microsoft Corporation Analysis of computer network activity by successively removing accepted types of access events
US20120023101A1 (en) 2010-07-21 2012-01-26 Microsoft Corporation Smart defaults for data visualizations
US20120159297A1 (en) 2010-12-21 2012-06-21 Sap Ag System and method for generating a pivot table
US20120166927A1 (en) 2010-12-27 2012-06-28 Microsoft Corporation Creating Cross-Tabular Reports
US20120192053A1 (en) 2011-01-25 2012-07-26 Infineon Technologies Ag Method, Software and Computer System for Manipulating Aggregated Data
US20130080444A1 (en) 2011-09-26 2013-03-28 Microsoft Corporation Chart Recommendations
US20130086460A1 (en) 2011-10-04 2013-04-04 Microsoft Corporation Automatic Relationship Detection for Reporting on Spreadsheet Data
US20130086459A1 (en) 2011-10-04 2013-04-04 Microsoft Corporation Automatic Scoping of Data Entities
US20130124989A1 (en) 2011-11-10 2013-05-16 Microsoft Corporation Providing Contextual On-Object Control Launchers and Controls
US20130124960A1 (en) 2011-11-16 2013-05-16 Microsoft Corporation Automated suggested summarizations of data
US8793567B2 (en) 2011-11-16 2014-07-29 Microsoft Corporation Automated suggested summarizations of data
US20130145244A1 (en) 2011-12-05 2013-06-06 Microsoft Corporation Quick analysis tool for spreadsheet application programs

Non-Patent Citations (28)

* Cited by examiner, † Cited by third party
Title
"Chart Component .NET ver. 4.4," Printed: Jul. 27, 2011, available at http://www.chartcomponent.com/, 1pg.
"OLAP Statistics & Reporting," Retrieved: Sep. 2, 2011, 4 pgs., http://www.assistmyteam.net/OLAPStatistics/.
Ani Gupta (nickname: Soan), "Excel Chart Advisor will Create and Suggest Charts for your Data," published on May 29, 2010, available at: http://am22tech.com/s/22/Blogs/post/2010/05/29/Excel-Chart-advisor-will-create-and-suggest-charts-for-your-data.aspx, 4 pgs.
Brian Jones, "Document Assembly Solution for SpreadsheetML," Retrieved at <http://blogs.msdn.com/b/brian-jones/archive/2008/11/04/document-assembly-solution-for-spreadsheetmt.aspx>, Nov. 4, 2008, 11 pgs.
Chinese First Office Action dated Jan. 26, 2015 cited in Application No. 201210448502.1, 13 pgs.
Chinese First Office Action dated Jan. 7, 2015 cited in Application No. 201210362781.X, 15 pgs.
Chinese Office Action and Search Report Issued in Patent Application No. 201210387253.X, Mailed Date: Jan. 19, 2015, 12 Pages.
Co-pending U.S. Appl. No. 13/245,126 entitled "Chart Recommendations" filed Sep. 26, 2011.
Glary Klass. Presenting Data: Tabular and graphic display of social indicators. "Constructing Good Charts and Graphs" Printed Jul. 27, 2011, available at http://lilt.ilstu.edu/gmklass/pos138/datadisplay/sections/goodcharts.htm, 28pgs.
International Search Report dated Feb. 26, 2013 cited in Application No. PCT/US2012/066489, 9 pgs.
International Search Report dated Feb. 28, 2013 cited in Application No. PCT/US2012/057159, 13 pgs.
Jean-Luc Doumont et al., "Choosing the Right Graph," Retrieved at , IEEE Transactions on Professional Communication, vol. 45, No. 1, Mar. 2002, pp. 1-6.
Jean-Luc Doumont et al., "Choosing the Right Graph," Retrieved at <http://users.ece.gatech.edu/˜gpalmer/ece8020/documents/PDF/Graphs.pdf>, IEEE Transactions on Professional Communication, vol. 45, No. 1, Mar. 2002, pp. 1-6.
John Marinuzzi, "PowerPivot for Excel 2010," Retrieved at <https://community.altiusconsulting.com/blogs/altiustechblog/archive/2011/05/04/powerpivot-for-excel-2010.aspx>, May 4, 2011, 5 pgs.
Jonathan I. Helfman et al., "Selecting the Best Graph Based on Data, Tasks, and User Roles." Jun. 11-15, 2007. http://www.upassoc.org/usability-resources/conference/2007/prp-049.pdf, 10 pgs.
U.S. Final Office Action dated Jun. 11, 2013 cited in U.S. Appl. No. 13/245,126, 24 pgs.
U.S. Final Office Action dated May 1, 2015 cited in Appl. No. 13/293,288, 41 pgs.
U.S. Final Office Action dated Sep. 10, 2014 cited in U.S. Appl. No. 13/293,288, 27 pgs.
U.S. Final Office Action mailed Sep. 6, 2013 in U.S. Appl. No. 13/311,541, 15 pages.
U.S. Non-Final Office Action mailed Nov. 4, 2013 in U.S. Appl. No. 13/298,285, 11 pages.
U.S. Office Action dated Dec. 1, 2014 cited in U.S. Appl. No. 13/245,126, 15 pgs.
U.S. Office Action dated Feb. 13, 2014 cited in U.S. Appl. No. 13/293,288, 35 pgs.
U.S. Office Action dated Jan. 16, 2015 cited in U.S. Appl. No. 13/311,541, 19 pgs.
U.S. Office Action dated Jun. 13, 2014 cited in U.S. Appl. No. 13/245,126, 35 pgs.
U.S. Office Action dated Jun. 25, 2015 cited in Appl. No. 13/245,126, 37 pgs.
U.S. Office Action dated Mar. 19, 2013 cited in U.S. Appl. No. 13/311,541, 13 pgs.
U.S. Office Action dated Oct. 22, 2012 cited in U.S. Appl. No. 13/245,126, 18 pgs.
Wikipedia. "Wikipedia talk:Collaboration to convert graphs to SVG" Printed: Jul. 27, 2011, http://en.wikipedia.org/wiki/Wikipedia-talk:Collaboration-to-convert-graphs-to-SVG#AAutomati-charts, 6pgs.

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10019494B2 (en) 2011-10-13 2018-07-10 Microsoft Technology Licensing, Llc Suggesting alternate data mappings for charts
US10061473B2 (en) 2011-11-10 2018-08-28 Microsoft Technology Licensing, Llc Providing contextual on-object control launchers and controls
US10719527B2 (en) 2013-10-18 2020-07-21 Palantir Technologies Inc. Systems and user interfaces for dynamic and interactive simultaneous querying of multiple data stores
US20150186806A1 (en) * 2013-12-30 2015-07-02 International Business Machines Corporation Pattern-based analysis recommendation
USD753673S1 (en) * 2014-03-07 2016-04-12 Xyzprinting, Inc. Display screen or portion thereof with animated graphical user interface
US20150278172A1 (en) * 2014-03-31 2015-10-01 NIIT Technologies Ltd Simplifying identification of potential non-visibility of user interface components when responsive web pages are rendered by disparate devices
US9792267B2 (en) * 2014-03-31 2017-10-17 NIIT Technologies Ltd Simplifying identification of potential non-visibility of user interface components when responsive web pages are rendered by disparate devices
USD757038S1 (en) * 2014-04-18 2016-05-24 Nutonian, Inc. Display screen with graphical user interface
USD790586S1 (en) 2014-05-08 2017-06-27 Express Scripts, Inc. Display screen with a graphical user interface
USD774540S1 (en) * 2014-05-08 2016-12-20 Express Scripts, Inc. Display screen with a graphical user interface
US11341178B2 (en) 2014-06-30 2022-05-24 Palantir Technologies Inc. Systems and methods for key phrase characterization of documents
US11093687B2 (en) 2014-06-30 2021-08-17 Palantir Technologies Inc. Systems and methods for identifying key phrase clusters within documents
US9830370B2 (en) * 2014-09-18 2017-11-28 Business Objects Software Ltd. Visualization suggestion application programming interface
US20160085835A1 (en) * 2014-09-18 2016-03-24 Johnson Wong Visualization suggestion application programming interface
US10552994B2 (en) 2014-12-22 2020-02-04 Palantir Technologies Inc. Systems and interactive user interfaces for dynamic retrieval, analysis, and triage of data items
US20180052597A1 (en) * 2014-12-29 2018-02-22 Palantir Technologies Inc. System and method of generating data points from one or more data stores of data items for chart creation and manipulation
US10552998B2 (en) * 2014-12-29 2020-02-04 Palantir Technologies Inc. System and method of generating data points from one or more data stores of data items for chart creation and manipulation
US20180253414A1 (en) * 2015-09-19 2018-09-06 Entit Software Llc Determining output presentation type
US10572487B1 (en) 2015-10-30 2020-02-25 Palantir Technologies Inc. Periodic database search manager for multiple data sources
US20240005091A1 (en) * 2016-09-29 2024-01-04 Google Llc Generating charts from data in a data table
US20210374332A1 (en) * 2016-09-29 2021-12-02 Google Llc Generating charts from data in a data table
US11093703B2 (en) * 2016-09-29 2021-08-17 Google Llc Generating charts from data in a data table
US11694024B2 (en) * 2016-09-29 2023-07-04 Google Llc Generating charts from data in a data table
US12112123B2 (en) * 2016-09-29 2024-10-08 Google Llc Generating charts from data in a data table
US20200210640A1 (en) * 2017-04-24 2020-07-02 Beijing Kingsoft Office Software, Inc. Method and apparatus for displaying textual information
US11422833B1 (en) * 2017-06-30 2022-08-23 Cognex Corporation System and method for automatic generation of human-machine interface in a vision system
US11308131B2 (en) 2020-05-21 2022-04-19 International Business Machines Corporation Combining visualizations in a business analytic application
US20220284182A1 (en) * 2021-02-26 2022-09-08 Finicast, Inc. Apparatus and method for forming pivot tables from pivot frames
US11663399B1 (en) 2022-08-29 2023-05-30 Bank Of America Corporation Platform for generating published reports with position mapping identification and template carryover reporting
US11900054B1 (en) 2022-08-29 2024-02-13 Bank Of America Corporation Platform for generating published reports using report and worksheet building with position mapping identification
US11983491B2 (en) 2022-08-29 2024-05-14 Bank Of America Corporation Platform for generating published reports using report and worksheet building with position mapping identification

Also Published As

Publication number Publication date
US10019494B2 (en) 2018-07-10
CN102937970A (zh) 2013-02-20
US20160026695A1 (en) 2016-01-28
CN102937970B (zh) 2016-02-24
US20130097177A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
US10019494B2 (en) Suggesting alternate data mappings for charts
Wagner III Using IBM® SPSS® statistics for research methods and social science statistics
US10579723B2 (en) User interface for creating a spreadsheet data summary table
US10565404B2 (en) Autodetection of types and patterns
CN102968436B (zh) 图表推荐
CN106255965B (zh) 用于电子表格的自动见解的方法和系统
US9959267B2 (en) Filtering user interface for a data summary table
RU2417421C2 (ru) Автоматическое размещение полей в сводной таблице данных
US7519589B2 (en) Method and apparatus for sociological data analysis
US8135711B2 (en) Method and apparatus for sociological data analysis
US7647551B2 (en) System and method for formatting a cell in response to data stored in a separate location
US20160246769A1 (en) System and method for user collaboration in a business intelligence software tool
WO2007089274A2 (en) An improved method and apparatus for sociological data analysis
US9367609B1 (en) Method and apparatus for submitting, organizing, and searching for content
US8832645B2 (en) Quick-creating objects in an application
CN101631398A (zh) 一种移动终端电子书管理系统和方法
CN111712825A (zh) 在生产力应用程序中识别集合并且操作集合数据
WO2018005946A1 (en) Autodetection of types and patterns

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FAN, KEVIN;RAMPSON, BENJAMIN EDWARD;CHIANG, NICK;AND OTHERS;REEL/FRAME:027055/0884

Effective date: 20111010

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034544/0001

Effective date: 20141014

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8