US8888862B2 - Bone implant with a surface anchoring structure - Google Patents

Bone implant with a surface anchoring structure Download PDF

Info

Publication number
US8888862B2
US8888862B2 US12/783,025 US78302510A US8888862B2 US 8888862 B2 US8888862 B2 US 8888862B2 US 78302510 A US78302510 A US 78302510A US 8888862 B2 US8888862 B2 US 8888862B2
Authority
US
United States
Prior art keywords
implant
bone
bone implant
core
stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/783,025
Other versions
US20100298950A1 (en
Inventor
Patrick McDonnell
Noel Harrison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Ireland Galway NUI
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to NATIONAL UNIVERSITY OF IRELAND, GALWAY reassignment NATIONAL UNIVERSITY OF IRELAND, GALWAY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Harrison, Noel, MCDONNELL, PATRICK
Publication of US20100298950A1 publication Critical patent/US20100298950A1/en
Application granted granted Critical
Publication of US8888862B2 publication Critical patent/US8888862B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30011Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
    • A61F2002/30013
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30113Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30156Convex polygonal shapes triangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30179X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30225Flat cylinders, i.e. discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30317The prosthesis having different structural features at different locations within the same prosthesis
    • A61F2002/30322The prosthesis having different structural features at different locations within the same prosthesis differing in surface structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • A61F2002/30807Plurality of blind bores
    • A61F2002/30808Plurality of blind bores parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • A61F2002/30807Plurality of blind bores
    • A61F2002/30812Plurality of blind bores perpendicular with respect to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30891Plurality of protrusions
    • A61F2002/30892Plurality of protrusions parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30952Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/3097Designing or manufacturing processes using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3611Heads or epiphyseal parts of femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3625Necks
    • A61F2002/3631Necks with an integral complete or partial peripheral collar or bearing shoulder at its base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4681Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor by applying mechanical shocks, e.g. by hammering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0023Angular shapes triangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0058X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • A61F2250/0024Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity made from both porous and non-porous parts, e.g. adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0026Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in surface structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium

Definitions

  • This invention relates to a bone implant having a surface structure for anchoring the implant to a bone without the use of cement.
  • Primary fixation refers to the fixation of an implant during the initial period after insertion by the surgeon (first few weeks). During this period it is desirable that micromotions of the implant relative to the host bone are minimised so that growth of hard bone tissue into the pores of the implant is promoted. If there is excessive micromotion, then fibrous tissue tends to develop instead of hard bone resulting in poor fixation of the implant [Engh et al., Clinical Orthopaedics and Related Research, 1992].
  • Secondary fixation refers to the long-term fixation of the implant, following the initial primary fixation period. During this period, it is desirable for hard bone to grow into the pores of the implant and firmly fix it in place relative to the host bone. If there is poor primary fixation, then it will not be possible to achieve good secondary fixation [Abdul-Kadir et al., J. Biomechanics, 2008].
  • U.S. Pat. No. 7,018,418 describes a textured surface for medical implants having micro recesses such that the outer surface overhangs the micro recesses.
  • Embodiments of the textured surface include sharp edges for promoting bone deposition and growth within the micro recesses, protrusions of varying depth from the surface that include overhangs, and micro recesses that are at least partially defined by complex ellipsoids.
  • U.S. Pat. No. 4,272,855 describes an anchoring surface of a bone implant provided with villi (depressions or projections) devoid of corners and edges.
  • the villi are of generally conical shape with transition surfaces merging into the base level of the anchoring surface.
  • the villi allow implanting in a bone without cement since bone tissue is allowed to grow into or around the villi.
  • US2007/0142914 describes a method of forming an implant having a porous tissue ingrowth structure and a bearing support structure. The method includes depositing a first layer of a metal powder onto a substrate, scanning a laser beam over the powder so as to sinter the metal powder at predetermined locations, depositing at least one layer of the metal powder onto the first layer and repeating the scanning of the laser beam.
  • a bone implant comprising a stem having an integral anchoring structure at its surface, the structure comprising an array of mutually spaced pointed teeth formed along at least a portion of the length of the stem, each tooth forming an overhang generally in the form of a claw for digging into bone to which the stem is to be attached, and a network of pores underlying the array and communicating with the exterior of the surface via openings between the teeth, the pores allowing for the circulation of nutrients to promote bone growth.
  • the structure of the device provides for both primary and secondary fixation of the implant.
  • the openings between the teeth allow growth of bone into the network of pores.
  • the pointed teeth extend upwardly from said core.
  • the network of pores are substantially fully interconnected.
  • upwardly means in a direction generally away from the underlying implant core
  • substantially fully interconnected means that there is a continuous pathway between substantially every pore in the structure. As the pores are interconnected, this allows for free movement of the appropriate cells and nutrients to promote bone in-growth.
  • the implant may be manufactured from any suitable material (for example titanium, titanium alloys, cobalt-chromium or other biocompatible metallic material), in a rapid prototyping process using, for example, selective laser sintering, which integrates the surface structure with the solid core.
  • suitable material for example titanium, titanium alloys, cobalt-chromium or other biocompatible metallic material
  • FIG. 1 is a perspective view of a representative part of an anchoring structure at the surface of a bone implant.
  • FIG. 2 is a plan view of the anchoring structure of FIG. 1 .
  • FIG. 3 is an enlarged view of the part of the anchoring structure of FIG. 1 circled in FIG. 2 .
  • FIG. 4 is a cross-sectional view of the anchoring structure of FIG. 1 , taken on the line III-III of FIG. 2 .
  • FIGS. 5( a ) and ( b ) show the basic structure underlying the anchoring structure of FIG. 1 .
  • FIGS. 6 and 7 identify certain dimensions of the anchoring structure of FIGS. 1 to 5 .
  • FIGS. 8 and 9 show a second embodiment of the invention in which the upper surface of the claw is at an oblique angle to the surface of the implant base to promote embedding in the host bone.
  • FIG. 10 illustrates the use of the anchoring structure of FIGS. 1 to 5 .
  • FIG. 11 shows a CAD model and images of a hip replacement stem embodying the invention.
  • FIGS. 1-10 show the anchoring structure as a flat, circular disc, it will be understood that in a practical implementation the structure will be shaped and dimensioned to conform to the contours of a particular bone implant to which it is applied. Also, in FIGS. 1 to 10 , only the outermost layer of the implant's core is shown.
  • a cementless bone implant comprises a solid core 10 having an integral anchoring structure 12 at its surface.
  • the anchoring structure 12 comprises a two dimensional array of upwardly extending mutually spaced pointed teeth 14 for digging into bone to which the implant is to be attached, and a substantially fully interconnected network of pores 16 underlying the array and communicating with the exterior of the surface via openings 18 between the teeth 14 .
  • the anchoring structure 12 is built up integrally with the core 10 by a rapid prototyping process such as direct metal laser sintering (DMLS) or electron beam melting.
  • DMLS direct metal laser sintering
  • the anchoring structure and core are made of titanium, titanium alloy, cobalt-chromium or other biocompatible metal material.
  • each tooth 14 forms an overhang 20 , FIG. 4 , so that it is generally in the form of a claw.
  • Each claw 14 has a substantially triangular upper surface 22 with convergent edges 24 defining a point 26 at the free end of the claw.
  • the upper surface 22 is substantially parallel to the underlying core 10 , but, as will be described, the upper surface 22 may be inclined upwardly to the point 26 .
  • the teeth 14 may extend directly upwards without any overhang 20 and terminate in a point.
  • the anchoring structure 12 may comprise alternative claw shapes, for example a wedge-shaped claw.
  • the claws 14 Over substantial areas of the implant the claws 14 have a common orientation; for example, in the representative part of the implant shown in FIG. 2 , all the claws point towards the right. However, dependent on the design of the particular implant, different areas of the structure may have the claws 14 pointing in different directions respectively. This is to allow the most advantageous attachment to the bone in different areas of the implant. It will be understood that the repeating pattern of the claws may be varied to give optimum primary fixation of the implant to the host bone.
  • the structure 12 is actually constructed as a grid of intersecting struts 28 supported above the core 10 by a plurality of pillars 30 intersecting the grid at the intersections of the struts and extending upwardly beyond the strut intersection to form the claws 14 .
  • the junctions between the intersecting struts and pillars, and between the pillars and underlying core are filleted as indicated schematically by the dashed lines 32 . It should be understood that the fillets 32 are not applied subsequent to the manufacture of the grid 28 and columns 30 , but are formed integrally during the manufacture by, for example, selective laser sintering.
  • the fillets have been designed to reduce stress concentrations in order to withstand the extreme case loading and fatigue loading conditions that are experienced in-vivo. It will be also be understood that there may be more than one layer in depth of interconnecting struts, i.e. that there could be a 3D lattice of interconnecting struts and pillars, between the outer surface of the implant base 10 and the claws 14 .
  • FIGS. 6 and 7 are views similar to FIGS. 3 and 4 in which certain dimensions of the structure 12 , listed in the first column of the following table, are indicated by the numerals 1 to 12 :
  • the second column lists the values of these dimensions for the particular embodiment of FIGS. 1 to 5
  • the third column lists the preferred ranges for these dimensions for all embodiments.
  • dimension ( 10 ) gives the offset of the upper surface of the claw, i.e. the distance between the centre line of the pillar and the centre of the top surface of the claw
  • dimension ( 12 ) gives the distance from the surface of the core to the centreline of the intersecting struts.
  • the radius of the intersecting struts are given in dimensions ( 4 ) and ( 8 ).
  • the angle 11 was 0 degrees. In a second preferred embodiment the angle 11 is 10 degrees, as shown in FIGS. 8 and 9 which are views similar to FIGS. 3 and 4 respectively.
  • FIG. 10 illustrates the successive steps in attaching the implant to a patient's bone 34 .
  • step (a) the implant is pushed onto the bone in the direction indicated by the arrow, and then hammered in place by the surgeon, steps (b) to (d), so that the claws 14 dig into the bone 34 .
  • This is the primary fixation, and no cement need be used (although the additional use of cement is not ruled out).
  • the claws are designed to prevent micromotions of the implant during the primary fixation period to avoid the development of fibrous tissue.
  • Steps (e) and (f) show the gradual long term bone growth into the wells between claws 14 and into the network of pores. This is the secondary fixation.
  • FIG. 11 shows a total hip replacement stem (THRS) embodying the invention.
  • FIG. 11( a ) shows a CAD model (A) of the stem.
  • FIG. 11( b ) shows an enlarged view of the anchoring structure architecture adjacent the distal end of the implant stem.
  • the anchoring structure 12 is formed substantially the entire length of the stem body except for the ball joint. It will also be understood that the anchoring structure may be provided on a portion of the stem of the implant.
  • the THRS incorporates the novel surface anchoring structure 12 described above, designed to encourage bone growth into the stem and to resist in-vivo mechanical loading conditions.
  • the stem is manufactured from titanium in a 1-step rapid prototyping (RP) process which integrates the surface architecture with the solid core.
  • the anchoring structure includes the network of interconnected pores 16 whose dimensions are chosen to give the maximum potential for bone in-growth. The pore junctions are filleted in order to reduce the stresses developed under in-vivo loading conditions.
  • Initial cell culture tests where bone-type cells were seeded onto coupons with the surface architecture and coupons from commercially available stems, showed that cell proliferation occurs in the new surface architecture, indicating the potential of the new design to provide better bone in-growth compared to existing products on the market. This may result in an increased operational lifetime of the THRS in-vivo, a reduction in required revision operations and, consequently, a marked improvement in patient well-being.
  • the THRS anchoring structure also includes the claw-like teeth 14 on the external surface of the interconnected pore network which is designed to provide improved primary fixation of the stem immediately after implantation.
  • Primary fixation has been shown to be critical for achieving in-growth of hard bone tissue, since micro-motions of the stem relative to the femur after implantation tend to result in undesirable fibrous tissue instead of hard bone.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A bone implant comprises a core 10 having an integral anchoring structure 12 at its surface. The structure 12 comprises an array of upwardly extending mutually spaced pointed claw-like teeth 14 for digging into bone to which the implant is to be attached, and a network of pores 16 underlying the array and communicating with the exterior of the surface via openings 18 between the teeth, the pores allowing for the circulation of nutrients to promote bone growth.

Description

This invention relates to a bone implant having a surface structure for anchoring the implant to a bone without the use of cement.
Primary fixation refers to the fixation of an implant during the initial period after insertion by the surgeon (first few weeks). During this period it is desirable that micromotions of the implant relative to the host bone are minimised so that growth of hard bone tissue into the pores of the implant is promoted. If there is excessive micromotion, then fibrous tissue tends to develop instead of hard bone resulting in poor fixation of the implant [Engh et al., Clinical Orthopaedics and Related Research, 1992].
Secondary fixation refers to the long-term fixation of the implant, following the initial primary fixation period. During this period, it is desirable for hard bone to grow into the pores of the implant and firmly fix it in place relative to the host bone. If there is poor primary fixation, then it will not be possible to achieve good secondary fixation [Abdul-Kadir et al., J. Biomechanics, 2008].
Current commercially available cementless implants incorporate a variety of surface features to encourage bone in-growth, including spherical beads, meshes and roughened surfaces. The most commonly used surface coating consists of a plasma sprayed porous coating of metal beads. However, the architecture of this type of porous surface cannot be optimised and studies of failed implants which have been removed from patients, have raised questions about the effectiveness of bone in-growth into the implant surface [Cook et al., J. Bone Joint Surg, 1991, Engh et al., J. Bone Joint Surg, 1995]. Also, the coating must be applied to the core in a separate manufacturing step, resulting in increased cost and the risk of debonding from the core [Hollister, Current Orthopaedics, 1995, Hamilton et al., J. Arthroplasty, 2007].
U.S. Pat. No. 7,018,418 describes a textured surface for medical implants having micro recesses such that the outer surface overhangs the micro recesses. Embodiments of the textured surface include sharp edges for promoting bone deposition and growth within the micro recesses, protrusions of varying depth from the surface that include overhangs, and micro recesses that are at least partially defined by complex ellipsoids.
U.S. Pat. No. 4,272,855 describes an anchoring surface of a bone implant provided with villi (depressions or projections) devoid of corners and edges. The villi are of generally conical shape with transition surfaces merging into the base level of the anchoring surface. The villi allow implanting in a bone without cement since bone tissue is allowed to grow into or around the villi.
US2007/0142914 describes a method of forming an implant having a porous tissue ingrowth structure and a bearing support structure. The method includes depositing a first layer of a metal powder onto a substrate, scanning a laser beam over the powder so as to sinter the metal powder at predetermined locations, depositing at least one layer of the metal powder onto the first layer and repeating the scanning of the laser beam.
Further examples of the prior art can be found in EP 0760687; US 2008/0288083; EP 0420542; US 2004/0191106; and US 2006/0147332.
It is an object of the invention to provide an improved bone implant which facilitates both primary and secondary fixation.
According to the present invention there is provided a bone implant comprising a stem having an integral anchoring structure at its surface, the structure comprising an array of mutually spaced pointed teeth formed along at least a portion of the length of the stem, each tooth forming an overhang generally in the form of a claw for digging into bone to which the stem is to be attached, and a network of pores underlying the array and communicating with the exterior of the surface via openings between the teeth, the pores allowing for the circulation of nutrients to promote bone growth.
The structure of the device provides for both primary and secondary fixation of the implant.
Preferably, the openings between the teeth allow growth of bone into the network of pores.
Preferably, the pointed teeth extend upwardly from said core. Preferably, the network of pores are substantially fully interconnected.
In the present context “upwardly” means in a direction generally away from the underlying implant core, and “substantially fully interconnected” means that there is a continuous pathway between substantially every pore in the structure. As the pores are interconnected, this allows for free movement of the appropriate cells and nutrients to promote bone in-growth.
The implant may be manufactured from any suitable material (for example titanium, titanium alloys, cobalt-chromium or other biocompatible metallic material), in a rapid prototyping process using, for example, selective laser sintering, which integrates the surface structure with the solid core.
Embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
FIG. 1 is a perspective view of a representative part of an anchoring structure at the surface of a bone implant.
FIG. 2 is a plan view of the anchoring structure of FIG. 1.
FIG. 3 is an enlarged view of the part of the anchoring structure of FIG. 1 circled in FIG. 2.
FIG. 4 is a cross-sectional view of the anchoring structure of FIG. 1, taken on the line III-III of FIG. 2.
FIGS. 5( a) and (b) show the basic structure underlying the anchoring structure of FIG. 1.
FIGS. 6 and 7 identify certain dimensions of the anchoring structure of FIGS. 1 to 5.
FIGS. 8 and 9 show a second embodiment of the invention in which the upper surface of the claw is at an oblique angle to the surface of the implant base to promote embedding in the host bone.
FIG. 10 illustrates the use of the anchoring structure of FIGS. 1 to 5.
FIG. 11 shows a CAD model and images of a hip replacement stem embodying the invention.
Although the drawings in FIGS. 1-10 show the anchoring structure as a flat, circular disc, it will be understood that in a practical implementation the structure will be shaped and dimensioned to conform to the contours of a particular bone implant to which it is applied. Also, in FIGS. 1 to 10, only the outermost layer of the implant's core is shown.
Referring to FIGS. 1 to 4, a cementless bone implant comprises a solid core 10 having an integral anchoring structure 12 at its surface. The anchoring structure 12 comprises a two dimensional array of upwardly extending mutually spaced pointed teeth 14 for digging into bone to which the implant is to be attached, and a substantially fully interconnected network of pores 16 underlying the array and communicating with the exterior of the surface via openings 18 between the teeth 14. The anchoring structure 12 is built up integrally with the core 10 by a rapid prototyping process such as direct metal laser sintering (DMLS) or electron beam melting. The anchoring structure and core are made of titanium, titanium alloy, cobalt-chromium or other biocompatible metal material.
In the embodiment shown in FIGS. 1 to 4 each tooth 14 forms an overhang 20, FIG. 4, so that it is generally in the form of a claw. Each claw 14 has a substantially triangular upper surface 22 with convergent edges 24 defining a point 26 at the free end of the claw. In the present embodiment the upper surface 22 is substantially parallel to the underlying core 10, but, as will be described, the upper surface 22 may be inclined upwardly to the point 26. In other embodiments the teeth 14 may extend directly upwards without any overhang 20 and terminate in a point. It will also be understood that the anchoring structure 12 may comprise alternative claw shapes, for example a wedge-shaped claw.
Over substantial areas of the implant the claws 14 have a common orientation; for example, in the representative part of the implant shown in FIG. 2, all the claws point towards the right. However, dependent on the design of the particular implant, different areas of the structure may have the claws 14 pointing in different directions respectively. This is to allow the most advantageous attachment to the bone in different areas of the implant. It will be understood that the repeating pattern of the claws may be varied to give optimum primary fixation of the implant to the host bone.
As shown in FIG. 5( a), the structure 12 is actually constructed as a grid of intersecting struts 28 supported above the core 10 by a plurality of pillars 30 intersecting the grid at the intersections of the struts and extending upwardly beyond the strut intersection to form the claws 14. As can be seen in FIG. 5( b), the junctions between the intersecting struts and pillars, and between the pillars and underlying core, are filleted as indicated schematically by the dashed lines 32. It should be understood that the fillets 32 are not applied subsequent to the manufacture of the grid 28 and columns 30, but are formed integrally during the manufacture by, for example, selective laser sintering.
It will be understood that the fillets have been designed to reduce stress concentrations in order to withstand the extreme case loading and fatigue loading conditions that are experienced in-vivo. It will be also be understood that there may be more than one layer in depth of interconnecting struts, i.e. that there could be a 3D lattice of interconnecting struts and pillars, between the outer surface of the implant base 10 and the claws 14.
FIGS. 6 and 7 are views similar to FIGS. 3 and 4 in which certain dimensions of the structure 12, listed in the first column of the following table, are indicated by the numerals 1 to 12:
Structure Embodiment Preferred Range
Dimension (mm) (mm)
1 1.4 0.7-3.0
2 1.4 0.7-3.0
3 (radius) 0.04   0-0.2
4 0.7 0.1-3.0
5 (radius) 0.09   0-3.0
6 0.64 0.1-3.0
7 0.61 0.1-3.0
8 0.7 0.1-3.0
9 0.5 0.1-2.0
10 0.25   0-2.0
11 (°) 0  0-90
12 1.05 0.1-3.0
The second column lists the values of these dimensions for the particular embodiment of FIGS. 1 to 5, while the third column lists the preferred ranges for these dimensions for all embodiments.
In the above table, dimension (10) gives the offset of the upper surface of the claw, i.e. the distance between the centre line of the pillar and the centre of the top surface of the claw, and dimension (12) gives the distance from the surface of the core to the centreline of the intersecting struts. The radius of the intersecting struts are given in dimensions (4) and (8).
In the foregoing embodiment the angle 11 was 0 degrees. In a second preferred embodiment the angle 11 is 10 degrees, as shown in FIGS. 8 and 9 which are views similar to FIGS. 3 and 4 respectively.
FIG. 10 illustrates the successive steps in attaching the implant to a patient's bone 34. Initially, step (a), the implant is pushed onto the bone in the direction indicated by the arrow, and then hammered in place by the surgeon, steps (b) to (d), so that the claws 14 dig into the bone 34. This is the primary fixation, and no cement need be used (although the additional use of cement is not ruled out). The claws are designed to prevent micromotions of the implant during the primary fixation period to avoid the development of fibrous tissue. Steps (e) and (f) show the gradual long term bone growth into the wells between claws 14 and into the network of pores. This is the secondary fixation.
FIG. 11 shows a total hip replacement stem (THRS) embodying the invention. FIG. 11( a) shows a CAD model (A) of the stem. FIG. 11( b) shows an enlarged view of the anchoring structure architecture adjacent the distal end of the implant stem. As seen, the anchoring structure 12 is formed substantially the entire length of the stem body except for the ball joint. It will also be understood that the anchoring structure may be provided on a portion of the stem of the implant.
The THRS incorporates the novel surface anchoring structure 12 described above, designed to encourage bone growth into the stem and to resist in-vivo mechanical loading conditions. The stem is manufactured from titanium in a 1-step rapid prototyping (RP) process which integrates the surface architecture with the solid core. The anchoring structure includes the network of interconnected pores 16 whose dimensions are chosen to give the maximum potential for bone in-growth. The pore junctions are filleted in order to reduce the stresses developed under in-vivo loading conditions. Initial cell culture tests, where bone-type cells were seeded onto coupons with the surface architecture and coupons from commercially available stems, showed that cell proliferation occurs in the new surface architecture, indicating the potential of the new design to provide better bone in-growth compared to existing products on the market. This may result in an increased operational lifetime of the THRS in-vivo, a reduction in required revision operations and, consequently, a marked improvement in patient well-being.
The THRS anchoring structure also includes the claw-like teeth 14 on the external surface of the interconnected pore network which is designed to provide improved primary fixation of the stem immediately after implantation. Primary fixation has been shown to be critical for achieving in-growth of hard bone tissue, since micro-motions of the stem relative to the femur after implantation tend to result in undesirable fibrous tissue instead of hard bone.
The invention is not limited to the embodiments described herein which may be modified or varied without departing from the scope of the invention.

Claims (11)

The invention claimed is:
1. A permanent bone implant comprising a stem extending between a proximal end and a distal end, the stem having an integral anchoring structure at a surface of the stem, wherein said distal end has a smaller cross section than said proximal end, the structure comprising an array of mutually spaced pointed teeth formed along at least a portion of the length of the stem, each tooth forming an overhang generally in the form of a claw having an upper surface with convergent edges defining a point of the tooth extending towards said distal end and for digging into a bone in a direction in which the stem is to be attached, and a network of pores underlying the array and communicating with an exterior of the surface via openings between the teeth, the network of pores allowing for circulation of nutrients to promote bone growth, wherein the structure comprises a grid of intersecting struts supported above a core of the implant by a plurality of pillars, each pillar intersecting the grid at respective intersections of the struts and extending upwardly beyond the strut intersection to form the teeth.
2. A bone implant as claimed in claim 1, wherein the openings between the teeth allow growth of bone into the network of pores.
3. A bone implant as claimed in claim 1, wherein the network of pores are substantially fully interconnected.
4. A bone implant as claimed in claim 1, wherein the claws have a common orientation over at least a substantial area of the structure.
5. A bone implant as claimed in claim 4, wherein an upper surface portion of each claw is inclined upwardly to the point of the tooth.
6. A bone implant as claimed in claim 4, wherein an upper surface portion of each claw is substantially parallel to the core of the implant.
7. A bone implant as claimed in claim 1, wherein each claw has a substantially triangular upper surface.
8. A bone implant as claimed in claim 1, wherein junctions between the intersecting struts and pillars, and between the pillars and underlying core, are filleted.
9. A bone implant as claimed in claim 1, wherein the structure is made integral with the core of the implant by a rapid prototyping process such as direct metal laser sintering or electron beam melting.
10. A bone implant as claimed in claim 1, wherein the anchoring structure and the core of the implant are made of titanium, titanium alloy, cobalt chromium or other biocompatible metal material.
11. A bone implant as claimed in claim 1, wherein said proximal end comprises a component of an articulated joint.
US12/783,025 2009-05-19 2010-05-19 Bone implant with a surface anchoring structure Active 2030-08-19 US8888862B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09006746.3A EP2253291B1 (en) 2009-05-19 2009-05-19 A bone implant with a surface anchoring structure
EP09006746.3 2009-05-19
EP09006746 2009-05-19

Publications (2)

Publication Number Publication Date
US20100298950A1 US20100298950A1 (en) 2010-11-25
US8888862B2 true US8888862B2 (en) 2014-11-18

Family

ID=41129337

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/783,025 Active 2030-08-19 US8888862B2 (en) 2009-05-19 2010-05-19 Bone implant with a surface anchoring structure

Country Status (6)

Country Link
US (1) US8888862B2 (en)
EP (1) EP2253291B1 (en)
JP (1) JP2010269144A (en)
CN (1) CN101889911A (en)
DK (1) DK2253291T3 (en)
PL (1) PL2253291T3 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150366668A1 (en) * 2014-06-23 2015-12-24 Community Blood Center Cellular-scale surface modification for increased osteogenic protein expression
US9456901B2 (en) 2004-12-30 2016-10-04 Howmedica Osteonics Corp. Laser-produced porous structure
US10070962B1 (en) 2015-02-13 2018-09-11 Nextstep Arthropedix, LLC Medical implants having desired surface features and methods of manufacturing
US10279521B1 (en) * 2016-08-12 2019-05-07 Smith & Nephew, Inc. Forming of additively manufactured product
US10596660B2 (en) 2015-12-15 2020-03-24 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
US10614176B2 (en) 2012-04-06 2020-04-07 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
CN111936087A (en) * 2018-03-30 2020-11-13 德普伊新特斯产品公司 Surface texture of three-dimensional porous structure for bone ingrowth and method of making
US10888362B2 (en) 2017-11-03 2021-01-12 Howmedica Osteonics Corp. Flexible construct for femoral reconstruction
US11090162B2 (en) 2017-05-04 2021-08-17 Wright Medical Technology, Inc. Bone implant with struts
US11155073B2 (en) 2002-11-08 2021-10-26 Howmedica Osteonics Corp. Laser-produced porous surface
US11278412B2 (en) * 2018-03-30 2022-03-22 Depuy Ireland Unlimited Company Hybrid fixation features for three-dimensional porous structures for bone ingrowth and methods for producing
US11298747B2 (en) 2017-05-18 2022-04-12 Howmedica Osteonics Corp. High fatigue strength porous structure
US11364123B2 (en) 2018-03-26 2022-06-21 Depuy Ireland Unlimited Company Three-dimensional porous structures for bone ingrowth and methods for producing
US11517438B2 (en) 2019-09-25 2022-12-06 Depuy Ireland Unlimited Company Three-dimensional porous structures for bone ingrowth and methods for producing
US11628517B2 (en) 2017-06-15 2023-04-18 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
US12011355B2 (en) 2005-12-06 2024-06-18 Howmedica Osteonics Corp. Laser-produced porous surface

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080511A1 (en) 2008-12-18 2010-07-15 4-Web Spine, Inc. Truss implant
GB201007166D0 (en) * 2010-04-29 2010-06-09 Finsbury Dev Ltd Prosthesis
WO2011156504A2 (en) * 2010-06-08 2011-12-15 Smith & Nephew, Inc. Implant components and methods
ITMO20110115A1 (en) * 2011-05-16 2012-11-17 Caselli Stefano OSTEOINDUCTIVE SUPPORT
US20130030529A1 (en) * 2011-07-29 2013-01-31 Jessee Hunt Implant interface system and method
US8771354B2 (en) 2011-10-26 2014-07-08 George J. Picha Hard-tissue implant
US10765530B2 (en) 2012-06-21 2020-09-08 Renovis Surgical Technologies, Inc. Surgical implant devices incorporating porous surfaces
US11304811B2 (en) * 2012-01-17 2022-04-19 KYOCERA Medical Technologies, Inc. Surgical implant devices incorporating porous surfaces and associated method of manufacture
FR2986962B1 (en) * 2012-02-20 2014-02-14 Pierre-Etienne Moreau ORTHOPEDIC IMPLANT CUP, ORTHOPEDIC IMPLANT COMPRISING SUCH A CUPULE AND METHOD FOR PRODUCING SUCH A CUPULE
US9135374B2 (en) 2012-04-06 2015-09-15 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US10154913B2 (en) 2012-06-21 2018-12-18 Renovis Surgical Technologies, Inc. Surgical implant devices incorporating porous surfaces and a locking plate
US8843229B2 (en) * 2012-07-20 2014-09-23 Biomet Manufacturing, Llc Metallic structures having porous regions from imaged bone at pre-defined anatomic locations
US9415137B2 (en) * 2012-08-22 2016-08-16 Biomet Manufacturing, Llc. Directional porous coating
US12115071B2 (en) 2012-09-25 2024-10-15 4Web, Llc Programmable intramedullary implants and methods of using programmable intramedullary implants to repair bone structures
US9271845B2 (en) 2012-09-25 2016-03-01 4Web Programmable implants and methods of using programmable implants to repair bone structures
JP2014068776A (en) * 2012-09-28 2014-04-21 Kyocera Medical Corp Prosthetic member for living body
WO2014145529A2 (en) 2013-03-15 2014-09-18 4-Web, Inc. Traumatic bone fracture repair systems and methods
EP3024419B1 (en) * 2013-07-24 2022-05-11 Kyocera Medical Technologies, Inc. Surgical implant devices incorporating porous surfaces
EP3052037B1 (en) * 2013-10-02 2022-08-24 Kyocera Medical Technologies, Inc. Surgical implant devices incorporating porous surfaces and a locking plate
DK3137125T3 (en) * 2014-05-02 2020-04-27 The Royal Institution For The Advancement Of Learning / Mcgill Univ IMPLANT CREATED BY STRUCTURAL POROSTIC BIOMATERIAL AND PROCEDURE FOR PRODUCING SAME
US10561456B2 (en) 2014-07-24 2020-02-18 KYOCERA Medical Technologies, Inc. Bone screw incorporating a porous surface formed by an additive manufacturing process
US9649200B2 (en) * 2014-07-28 2017-05-16 Wasaw Orthopedic, Inc. Spinal implant system and method
CN104207867B (en) * 2014-08-13 2017-02-22 中国科学院福建物质结构研究所 Low-modulus medical implant porous scaffold structure
CN105232169B (en) * 2015-10-16 2018-07-31 福建中科康钛材料科技有限公司 Multisection type planting body component and preparation method thereof
CA3010242A1 (en) * 2016-01-12 2017-07-20 Smed-Ta/Td, Llc Orthopaedic implants with textured porous surfaces
US10660764B2 (en) * 2016-06-14 2020-05-26 The Trustees Of The Stevens Institute Of Technology Load sustaining bone scaffolds for spinal fusion utilizing hyperbolic struts and translational strength gradients
HK1224885A (en) * 2016-09-08 2017-08-25
CN106344221A (en) * 2016-10-26 2017-01-25 四川大学 Bonelike porous biomechanical bionic designed spinal fusion device and preparation method and use thereof
US10675074B2 (en) 2017-01-27 2020-06-09 Zimmer, Inc. Porous fixation devices and methods
US11213398B2 (en) 2017-03-10 2022-01-04 Gary A. Zwick Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member
US11324606B2 (en) 2017-03-10 2022-05-10 Gary A. Zwick Spinal interbody cage comprising a bulk interbody cage, a top face, a bottom face, pillars, and slots
JP6893838B2 (en) * 2017-07-12 2021-06-23 日本ピストンリング株式会社 Implant surface structure and method of manufacturing implant surface structure
US11278427B2 (en) 2018-04-10 2022-03-22 Gary A. Zick, Trustee Of The Everest Trust Uta April 20, 2017 Spinal interbody cage comprising top and bottom faces with mesh structures, pillars and slots
TWI666004B (en) * 2018-06-07 2019-07-21 財團法人金屬工業研究發展中心 Orthopedic implant
CN112674917B (en) * 2018-06-12 2021-08-10 深圳市立心科学有限公司 Intervertebral fusion device for fitting with vertebra
TWI681760B (en) * 2018-06-25 2020-01-11 京達醫材科技股份有限公司 Implant device
CN109482995B (en) * 2018-11-14 2020-04-21 南京航空航天大学 Metal matrix with spherical characteristic array microstructure and construction method thereof
CN109363804B (en) * 2018-11-29 2021-04-30 北京爱康宜诚医疗器材有限公司 Anchoring device
CN113631122A (en) * 2019-02-28 2021-11-09 丽玛共同股份公司 Tibial baseplate for tibial component of knee prosthesis (tibial component including tibial baseplate) and method of manufacturing tibial baseplate
JP7335428B2 (en) 2019-09-11 2023-08-29 アルプス ホールディング エルエルシー An implant comprising a first set and a second set of pillars for attaching a tendon or ligament to hard tissue
AU2020385014A1 (en) 2019-11-15 2022-06-30 4Web, Inc. Piezoelectric coated implants and methods of using piezoelectric coated implants to repair bone structures
CN112155798B (en) * 2020-10-30 2024-04-09 嘉思特华剑医疗器材(天津)有限公司 Titanium alloy partitioned bone small Liang Gugu handle and preparation method thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230006A1 (en) 1986-01-16 1987-07-29 Waldemar Link (GmbH & Co.) Bone implant
EP0420542A1 (en) 1989-09-28 1991-04-03 Howmedica Inc. Cast bone ingrowth surface
US5348788A (en) 1991-01-30 1994-09-20 Interpore Orthopaedics, Inc. Mesh sheet with microscopic projections and holes
US5665091A (en) * 1996-02-09 1997-09-09 Howmedica Inc. Surgical broach
WO1997036708A1 (en) 1996-04-03 1997-10-09 Industrial Research Limited Spark erosion electrode
WO1997038649A1 (en) 1996-04-16 1997-10-23 Horst Broziat Implant and process for producing the same
US20020040242A1 (en) * 1997-05-20 2002-04-04 George J. Picha Spinal implant
US6468309B1 (en) * 2000-10-05 2002-10-22 Cleveland Clinic Foundation Method and apparatus for stabilizing adjacent bones
DE10120330A1 (en) 2001-04-26 2002-11-21 Ulrich Muender Casting model, for a joint prosthesis implant, uses a lost mold method to give the casting a macro-pore surface structure with interconnecting zones for the bone to fuse to it without bonding cement
US7018418B2 (en) * 2001-01-25 2006-03-28 Tecomet, Inc. Textured surface having undercut micro recesses in a surface
US20060100705A1 (en) * 2004-11-10 2006-05-11 Rolando Puno Intervertebral spacer
US20060105295A1 (en) * 2004-02-20 2006-05-18 Woodwelding Ag Implant that can be implanted in osseous tissue and method for producing said implant corresponding implant
US20060235518A1 (en) * 2005-03-17 2006-10-19 Jason Blain Flanged interbody fusion device with fastener insert and retaining ring
WO2006125711A1 (en) 2005-05-02 2006-11-30 Mariasal Investment N.V. Prosthetic component with recesses provided beneath the outer surface
US7244275B2 (en) * 1999-12-08 2007-07-17 Warsaw Orthopedic, Inc. Orthopedic implant surface configuration with a projection having a back cut
WO2007113862A1 (en) 2006-03-31 2007-10-11 Sintea Biotech S.P.A. Endoprosthesis for orthopedic applications
US20080195103A1 (en) * 2007-02-09 2008-08-14 Lawis Randall J Hollow reamer for medical applications
US20080200957A1 (en) 2005-09-06 2008-08-21 Fin-Ceramica Faenza S.P.A. Pin for Anchorage of Articular Prosthesis, Articular Prosthesis Comprising Said Pin, Tibial Component and Articular Prosthesis for the Knee Comprising Said Tibial Component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH630251A5 (en) 1978-05-19 1982-06-15 Sulzer Ag SURFACE STRUCTURE ON ANCHORING ELEMENT OF A BONE IMPLANT.
WO1995032008A1 (en) 1994-05-24 1995-11-30 Implico B.V. A biomaterial and bone implant for bone repair and replacement
US20060147332A1 (en) 2004-12-30 2006-07-06 Howmedica Osteonics Corp. Laser-produced porous structure
AU2003261497B2 (en) 2002-11-08 2009-02-26 Howmedica Osteonics Corp. Laser-produced porous surface
EP1779812A1 (en) 2005-10-26 2007-05-02 Etervind AB An osseointegration implant
US8728387B2 (en) 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0230006A1 (en) 1986-01-16 1987-07-29 Waldemar Link (GmbH & Co.) Bone implant
EP0420542A1 (en) 1989-09-28 1991-04-03 Howmedica Inc. Cast bone ingrowth surface
US5348788A (en) 1991-01-30 1994-09-20 Interpore Orthopaedics, Inc. Mesh sheet with microscopic projections and holes
US5665091A (en) * 1996-02-09 1997-09-09 Howmedica Inc. Surgical broach
WO1997036708A1 (en) 1996-04-03 1997-10-09 Industrial Research Limited Spark erosion electrode
WO1997038649A1 (en) 1996-04-16 1997-10-23 Horst Broziat Implant and process for producing the same
US20020040242A1 (en) * 1997-05-20 2002-04-04 George J. Picha Spinal implant
US7244275B2 (en) * 1999-12-08 2007-07-17 Warsaw Orthopedic, Inc. Orthopedic implant surface configuration with a projection having a back cut
US6468309B1 (en) * 2000-10-05 2002-10-22 Cleveland Clinic Foundation Method and apparatus for stabilizing adjacent bones
US7018418B2 (en) * 2001-01-25 2006-03-28 Tecomet, Inc. Textured surface having undercut micro recesses in a surface
DE10120330A1 (en) 2001-04-26 2002-11-21 Ulrich Muender Casting model, for a joint prosthesis implant, uses a lost mold method to give the casting a macro-pore surface structure with interconnecting zones for the bone to fuse to it without bonding cement
US20060105295A1 (en) * 2004-02-20 2006-05-18 Woodwelding Ag Implant that can be implanted in osseous tissue and method for producing said implant corresponding implant
US20060100705A1 (en) * 2004-11-10 2006-05-11 Rolando Puno Intervertebral spacer
US20060235518A1 (en) * 2005-03-17 2006-10-19 Jason Blain Flanged interbody fusion device with fastener insert and retaining ring
WO2006125711A1 (en) 2005-05-02 2006-11-30 Mariasal Investment N.V. Prosthetic component with recesses provided beneath the outer surface
US20080200957A1 (en) 2005-09-06 2008-08-21 Fin-Ceramica Faenza S.P.A. Pin for Anchorage of Articular Prosthesis, Articular Prosthesis Comprising Said Pin, Tibial Component and Articular Prosthesis for the Knee Comprising Said Tibial Component
WO2007113862A1 (en) 2006-03-31 2007-10-11 Sintea Biotech S.P.A. Endoprosthesis for orthopedic applications
US20080195103A1 (en) * 2007-02-09 2008-08-14 Lawis Randall J Hollow reamer for medical applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Extended European Search Report from priority application EP 09006746.3 dated Oct. 23, 2009.

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510783B2 (en) 2002-11-08 2022-11-29 Howmedica Osteonics Corp. Laser-produced porous surface
US11186077B2 (en) 2002-11-08 2021-11-30 Howmedica Osteonics Corp. Laser-produced porous surface
US11155073B2 (en) 2002-11-08 2021-10-26 Howmedica Osteonics Corp. Laser-produced porous surface
US9456901B2 (en) 2004-12-30 2016-10-04 Howmedica Osteonics Corp. Laser-produced porous structure
US11660195B2 (en) 2004-12-30 2023-05-30 Howmedica Osteonics Corp. Laser-produced porous structure
US12011355B2 (en) 2005-12-06 2024-06-18 Howmedica Osteonics Corp. Laser-produced porous surface
US10614176B2 (en) 2012-04-06 2020-04-07 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US12102538B2 (en) 2012-04-06 2024-10-01 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US11759323B2 (en) 2012-04-06 2023-09-19 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
US20150366668A1 (en) * 2014-06-23 2015-12-24 Community Blood Center Cellular-scale surface modification for increased osteogenic protein expression
US10070962B1 (en) 2015-02-13 2018-09-11 Nextstep Arthropedix, LLC Medical implants having desired surface features and methods of manufacturing
US10993811B2 (en) 2015-02-13 2021-05-04 Nextstep Arthropedix, LLC Medical implants having desired surface features and methods of manufacturing
US10098746B1 (en) 2015-02-13 2018-10-16 Nextstep Arthropedix, LLC Medical implants having desired surface features and methods of manufacturing
US10596660B2 (en) 2015-12-15 2020-03-24 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
US12097657B2 (en) 2015-12-15 2024-09-24 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
US10857708B2 (en) 2016-08-12 2020-12-08 Smith & Nephew, Inc. Forming of additively manufactured product
US12042966B2 (en) 2016-08-12 2024-07-23 Smith & Nephew, Inc. Forming of additively manufactured product
US10279521B1 (en) * 2016-08-12 2019-05-07 Smith & Nephew, Inc. Forming of additively manufactured product
US11090162B2 (en) 2017-05-04 2021-08-17 Wright Medical Technology, Inc. Bone implant with struts
US11298747B2 (en) 2017-05-18 2022-04-12 Howmedica Osteonics Corp. High fatigue strength porous structure
US11684478B2 (en) 2017-05-18 2023-06-27 Howmedica Osteonics Corp. High fatigue strength porous structure
US11628517B2 (en) 2017-06-15 2023-04-18 Howmedica Osteonics Corp. Porous structures produced by additive layer manufacturing
US11890041B2 (en) 2017-11-03 2024-02-06 Howmedica Osteonics Corp. Flexible construct for femoral reconstruction
US10888362B2 (en) 2017-11-03 2021-01-12 Howmedica Osteonics Corp. Flexible construct for femoral reconstruction
US11364123B2 (en) 2018-03-26 2022-06-21 Depuy Ireland Unlimited Company Three-dimensional porous structures for bone ingrowth and methods for producing
CN111936087A (en) * 2018-03-30 2020-11-13 德普伊新特斯产品公司 Surface texture of three-dimensional porous structure for bone ingrowth and method of making
US11890200B2 (en) 2018-03-30 2024-02-06 Depuy Ireland Unlimited Company Surface textures for three-dimensional porous structures for bone ingrowth and methods for producing
US11278412B2 (en) * 2018-03-30 2022-03-22 Depuy Ireland Unlimited Company Hybrid fixation features for three-dimensional porous structures for bone ingrowth and methods for producing
US11517438B2 (en) 2019-09-25 2022-12-06 Depuy Ireland Unlimited Company Three-dimensional porous structures for bone ingrowth and methods for producing

Also Published As

Publication number Publication date
EP2253291B1 (en) 2016-03-16
CN101889911A (en) 2010-11-24
DK2253291T3 (en) 2016-06-13
US20100298950A1 (en) 2010-11-25
EP2253291A1 (en) 2010-11-24
PL2253291T3 (en) 2016-09-30
JP2010269144A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
US8888862B2 (en) Bone implant with a surface anchoring structure
US12036125B2 (en) Structural porous biomaterial and implant formed of same
US7497876B2 (en) Prosthetic implant
AU2016290334B2 (en) Porous structure for bone implants
AU2020270510B2 (en) Bone implant with struts
US20200163771A1 (en) Implant for cartilage repair
EP2338530B1 (en) Hybrid polymer/metal plug for treating chondral defects
US20080288083A1 (en) Osseointegration Implant
CN110418624A (en) Implantation material with multilayer bone engagement screen work
DE102013227136B4 (en) Coated hemiprosthetic implant
WO2009022911A2 (en) Prosthesis comprising an anti-micromotion bone-interfacing surface and method for the manufacture thereof
EP4241738A1 (en) Non-polygonal porous structure
WO2022221543A1 (en) Orthopedic implant with porous structure having varying coefficient of friction with bone

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL UNIVERSITY OF IRELAND, GALWAY, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCDONNELL, PATRICK;HARRISON, NOEL;REEL/FRAME:024408/0871

Effective date: 20100429

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8