US8710122B2 - Halogen-free flame retardants for epoxy resin systems - Google Patents
Halogen-free flame retardants for epoxy resin systems Download PDFInfo
- Publication number
- US8710122B2 US8710122B2 US13/128,846 US200913128846A US8710122B2 US 8710122 B2 US8710122 B2 US 8710122B2 US 200913128846 A US200913128846 A US 200913128846A US 8710122 B2 US8710122 B2 US 8710122B2
- Authority
- US
- United States
- Prior art keywords
- phosphate
- epoxy resin
- flame retardant
- composition according
- containing flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000003063 flame retardant Substances 0.000 title claims abstract description 59
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 35
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 35
- DXZMANYCMVCPIM-UHFFFAOYSA-L zinc;diethylphosphinate Chemical compound [Zn+2].CCP([O-])(=O)CC.CCP([O-])(=O)CC DXZMANYCMVCPIM-UHFFFAOYSA-L 0.000 title 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 32
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 31
- 239000010452 phosphate Substances 0.000 claims abstract description 31
- 150000003839 salts Chemical class 0.000 claims abstract description 25
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 20
- 239000008199 coating composition Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 20
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 17
- 150000001768 cations Chemical class 0.000 claims description 14
- -1 polyethylene Polymers 0.000 claims description 13
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 235000011187 glycerol Nutrition 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920001187 thermosetting polymer Polymers 0.000 claims description 5
- HXXFSFRBOHSIMQ-VFUOTHLCSA-N alpha-D-glucose 1-phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(O)=O)[C@H](O)[C@@H](O)[C@@H]1O HXXFSFRBOHSIMQ-VFUOTHLCSA-N 0.000 claims description 4
- 150000002772 monosaccharides Chemical group 0.000 claims description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims 1
- 229920000388 Polyphosphate Polymers 0.000 abstract description 9
- 239000001205 polyphosphate Substances 0.000 abstract description 9
- 235000011176 polyphosphates Nutrition 0.000 abstract description 9
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 abstract description 4
- 231100000053 low toxicity Toxicity 0.000 abstract description 4
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- 235000021317 phosphate Nutrition 0.000 description 16
- 239000002253 acid Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 0 *P(=O)([O-])OP(=O)([O-])[O-].C.C.C Chemical compound *P(=O)([O-])OP(=O)([O-])[O-].C.C.C 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- CQQGLXZHXDHSJD-UHFFFAOYSA-L 2,3-dihydroxypropyl phosphate;manganese(2+) Chemical compound [Mn+2].OCC(O)COP([O-])([O-])=O CQQGLXZHXDHSJD-UHFFFAOYSA-L 0.000 description 3
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 3
- 239000001736 Calcium glycerylphosphate Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 150000001323 aldoses Chemical class 0.000 description 3
- UHHRFSOMMCWGSO-UHFFFAOYSA-L calcium glycerophosphate Chemical compound [Ca+2].OCC(CO)OP([O-])([O-])=O UHHRFSOMMCWGSO-UHFFFAOYSA-L 0.000 description 3
- 229940095618 calcium glycerophosphate Drugs 0.000 description 3
- 235000019299 calcium glycerylphosphate Nutrition 0.000 description 3
- KCIDZIIHRGYJAE-PKXGBZFFSA-L dipotassium;[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical class [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@@H]1O KCIDZIIHRGYJAE-PKXGBZFFSA-L 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 235000001130 magnesium glycerophosphate Nutrition 0.000 description 3
- 239000011742 magnesium glycerophosphate Substances 0.000 description 3
- BHJKUVVFSKEBEX-UHFFFAOYSA-L magnesium;2,3-dihydroxypropyl phosphate Chemical compound [Mg+2].OCC(O)COP([O-])([O-])=O BHJKUVVFSKEBEX-UHFFFAOYSA-L 0.000 description 3
- 235000018348 manganese glycerophosphate Nutrition 0.000 description 3
- 239000011584 manganese glycerophosphate Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 235000011009 potassium phosphates Nutrition 0.000 description 3
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 3
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 3
- 235000019832 sodium triphosphate Nutrition 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 3
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 208000007976 Ketosis Diseases 0.000 description 2
- AWUCVROLDVIAJX-UHFFFAOYSA-L O=P([O-])([O-])OCC(O)CO.[Ca+2] Chemical compound O=P([O-])([O-])OCC(O)CO.[Ca+2] AWUCVROLDVIAJX-UHFFFAOYSA-L 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-I O=P([O-])([O-])OP(=O)([O-])OP(=O)([O-])[O-].[K+].[K+].[K+].[K+].[K+] Chemical compound O=P([O-])([O-])OP(=O)([O-])OP(=O)([O-])[O-].[K+].[K+].[K+].[K+].[K+] UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004786 cone calorimetry Methods 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 150000002337 glycosamines Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002584 ketoses Chemical class 0.000 description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 2
- ATGAWOHQWWULNK-UHFFFAOYSA-I pentapotassium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [K+].[K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O ATGAWOHQWWULNK-UHFFFAOYSA-I 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000019983 sodium metaphosphate Nutrition 0.000 description 2
- 235000019830 sodium polyphosphate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- CQWSSTYGDKLNBX-UHFFFAOYSA-N CNP(C)(NP(NC)([U])=C)=[U] Chemical compound CNP(C)(NP(NC)([U])=C)=[U] CQWSSTYGDKLNBX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- LKDRXBCSQODPBY-JDJSBBGDSA-N D-allulose Chemical compound OCC1(O)OC[C@@H](O)[C@@H](O)[C@H]1O LKDRXBCSQODPBY-JDJSBBGDSA-N 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-ZXXMMSQZSA-N D-iditol Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-ZXXMMSQZSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 1
- UNXHWFMMPAWVPI-QWWZWVQMSA-N D-threitol Chemical compound OC[C@@H](O)[C@H](O)CO UNXHWFMMPAWVPI-QWWZWVQMSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241001427367 Gardena Species 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- SQVRNKJHWKZAKO-LUWBGTNYSA-N N-acetylneuraminic acid Chemical class CC(=O)N[C@@H]1[C@@H](O)CC(O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-LUWBGTNYSA-N 0.000 description 1
- NFYQOZIAMGALHY-UHFFFAOYSA-H O=P(=O)OP(=O)([O-])OP(=O)([O-])OP(=O)([O-])OP(=O)([O-])OP(=O)([O-])[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] Chemical compound O=P(=O)OP(=O)([O-])OP(=O)([O-])OP(=O)([O-])OP(=O)([O-])OP(=O)([O-])[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] NFYQOZIAMGALHY-UHFFFAOYSA-H 0.000 description 1
- CQQGLXZHXDHSJD-UHFFFAOYSA-N O=P(O)(O)OCC(O)CO.[Mn+2] Chemical compound O=P(O)(O)OCC(O)CO.[Mn+2] CQQGLXZHXDHSJD-UHFFFAOYSA-N 0.000 description 1
- KCIDZIIHRGYJAE-IGIYQBICSA-L O=P(O[K])(O[K])O[C@H]1OC(CO)[C@@H](O)[C@@H](O)C1O Chemical compound O=P(O[K])(O[K])O[C@H]1OC(CO)[C@@H](O)[C@@H](O)C1O KCIDZIIHRGYJAE-IGIYQBICSA-L 0.000 description 1
- DCOZWBXYGZXXRX-IGIYQBICSA-L O=P(O[Na])(O[Na])O[C@H]1OC(CO)[C@@H](O)[C@@H](O)C1O Chemical compound O=P(O[Na])(O[Na])O[C@H]1OC(CO)[C@@H](O)[C@@H](O)C1O DCOZWBXYGZXXRX-IGIYQBICSA-L 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-L O=[PH]([O-])[O-].[K+].[K+] Chemical compound O=[PH]([O-])[O-].[K+].[K+] ABLZXFCXXLZCGV-UHFFFAOYSA-L 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 150000001312 aldohexoses Chemical class 0.000 description 1
- 150000001320 aldopentoses Chemical class 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- RNBGYGVWRKECFJ-ZXXMMSQZSA-N alpha-D-fructofuranose 1,6-bisphosphate Chemical group O[C@H]1[C@H](O)[C@](O)(COP(O)(O)=O)O[C@@H]1COP(O)(O)=O RNBGYGVWRKECFJ-ZXXMMSQZSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229940025237 fructose 1,6-diphosphate Drugs 0.000 description 1
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002454 idoses Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- BJHIKXHVCXFQLS-PQLUHFTBSA-N keto-D-tagatose Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)C(=O)CO BJHIKXHVCXFQLS-PQLUHFTBSA-N 0.000 description 1
- BQINXKOTJQCISL-GRCPKETISA-N keto-neuraminic acid Chemical compound OC(=O)C(=O)C[C@H](O)[C@@H](N)[C@@H](O)[C@H](O)[C@H](O)CO BQINXKOTJQCISL-GRCPKETISA-N 0.000 description 1
- 150000002574 ketohexoses Chemical class 0.000 description 1
- 150000002581 ketopentoses Chemical class 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 125000005341 metaphosphate group Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- OQZCJRJRGMMSGK-UHFFFAOYSA-M potassium metaphosphate Chemical compound [K+].[O-]P(=O)=O OQZCJRJRGMMSGK-UHFFFAOYSA-M 0.000 description 1
- 229940099402 potassium metaphosphate Drugs 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- BWAUQTFFVCLSOS-UHFFFAOYSA-N sodiosodium hydrate Chemical compound O.[Na].[Na] BWAUQTFFVCLSOS-UHFFFAOYSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/18—Fireproof paints including high temperature resistant paints
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
Definitions
- This disclosure relates to flame retardants that are useful for epoxy resin systems.
- Resins are used in many industries and for many different purposes. Resins are widely used, for example, in the electrical and electronics industry as seals for splices and other equipment along with other applications. Resins used in such electrical and electronic applications generally require the possession of an acceptable set of electrical properties, a degree of flame resistance or flame retardancy, and an acceptable level of processability. To meet increasingly sensitive environmental and safety considerations there is also now a desire to offer resin compositions that are substantially free of halogenated and halogen-containing compounds and materials. Currently available resins lack the ability to offer a desired set of electrical, performance, processing and flame resistance characteristics without the incorporation of halogenated or halogen-containing compounds and materials.
- flame retardant resin systems do not include halogenated or halogen-containing compounds as flame retardants. It is also advantageous to have epoxy resin systems that incorporate flame retardants that have low toxicity and are friendly to the environment. This is particularly important if the epoxy resin systems are in contact with the environment as are resin systems that are used to splice and/or to seal electrical splices.
- a coating composition that includes an epoxy resin and a phosphate-containing flame retardant, wherein the flame retardant has the formula:
- a coating composition in another aspect, includes an epoxy resin and a phosphate-containing flame retardant, wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, Group 1 metallic salts of a phosphate, and Group 1 metallic salts of a polyphosphate.
- the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, Group 1 metallic salts of a phosphate, and Group 1 metallic salts of a polyphosphate.
- a method of making a coating composition includes providing an epoxy resin and mixing in a phosphate-containing flame retardant, wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, Group 1 metallic salts of a phosphate, and Group 1 metallic salts of a polyphosphate.
- the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, Group 1 metallic salts of a phosphate, and Group 1 metallic salts of a polyphosphate.
- ASTM refers to test methods standardized by the American Society for Testing and Materials
- conjugate base refers to a saccharide or glyceride in which at least one of the OH groups has been deprotonated
- polyphosphate refers to a salt of metaphosphoric acid or polyphosphoric acid, regardless of cation
- the provided compositions and methods offer epoxy resin systems that contain environmentally friendly and low toxicity flame retardants.
- the flame retardants are either on the Generally Regarded As Safe (GRAS) list that is maintained by the Food and Drug Administration of the United States or they are chemically closely related.
- GRAS Generally Regarded As Safe
- any of the provided flame retardants that bloom out of the sealant are likely environmentally friendly and have low toxicity to the environment.
- the coating composition that is provided includes an epoxy resin.
- the epoxy resin can be part of an epoxy resin system which can, optionally include an effective amount of curative for the resin.
- Epoxy resin systems can include one-part and/or two-part systems. Desirably, for electronic applications, the epoxy resin is electronic grade.
- Exemplary epoxy resin systems include a two-part epoxy resin available as 3M SCOTCHCAST 4 ELECTRICAL INSULATING RESIN from 3M Company of Saint Paul, Minn.
- useful epoxy resins include 2,2-bis[4-(2,3-epoxypropoxy)-phenyl]propane (diglycidyl ether of bisphenol A) and materials available as EPON 828, EPON 1004, and EPON 1001F, available from Hexion Specialty Chemicals Co., Houston, Tex., DER-331, DER-332 and DER-334, available from SPI-Chem, West Chester, Pa.
- Other suitable epoxy resins include glycidyl ethers of phenol formaldehyde novolac (e.g., DEN-43 and DEN-428, available from SPI-Chem.).
- the epoxy resin system may contain one or more hardeners, initiators and/or catalysts (collectively referred to herein as “curative”), typically in an amount that is effective for chemically cross-linking the thermosetting resin (i.e., and effective amount of curative).
- curative typically in an amount that is effective for chemically cross-linking the thermosetting resin (i.e., and effective amount of curative).
- curative typically in an amount that is effective for chemically cross-linking the thermosetting resin (i.e., and effective amount of curative).
- curative typically will depend on the type of thermosetting resin selected, and will be well known to the skilled artisan.
- exemplary curatives for epoxy resins include amines (including imidazoles), mercaptans, and Lewis acids.
- the provided coating composition also includes a phosphate-containing flame retardant.
- the flame retardant has the formula:
- the flame retardant is a metaphosphate or a polyphosphate salt.
- phosphate-containing flame retardants where A is O ⁇ include potassium or sodium metaphosphate, potassium or sodium triphosphate, and potassium or sodium hexametaphosphate.
- Q is selected from sodium or potassium.
- A can be a conjugate base of glycerol.
- Exemplary flame retardants of these embodiments include, for example, calcium glycerophosphate, magnesium glycerophosphate, and manganese glycerophosphate.
- A can also be a conjugate base of a saccharide or substituted saccharide.
- the saccharide is a monosaccharide such as, for example, pentose sugars and hexose sugars.
- Exemplary monosaccharides that are useful as flame retardants include aldoses, and ketoses.
- Aldoses include aldopentoses such as ribose, arabinose, xylose, and aldohexoses such as allose, altrose, glucose, mannose, gulose, idose, galactose, and talose.
- Exemplary flame retardants derived from aldoses include D-glucose-1-phosphate disodium salt and D-glucose-1-phosphate dipotassium salt. These salts, as well as all of the salts contemplated by Formula (I) can exist as hydrates.
- Ketoses include ketopentoses such as ribulose and xylulose and ketohexoses such as psicose, fructose, sorbose and tagatose.
- Conjugate bases of disaccharides, oligosaccharides, and polysaccharides are also contemplated for A.
- A can be a conjugate base of a disaccharide such as lactose, maltose, sucrose, or cellobiose.
- A can be a conjugate base of a polysaccharide such as amylase, amylopectin, glucogen, or cellulose.
- Conjugate bases of derivatives of saccharides are also contemplated as flame retardants in the provided compositions. Such derivatives include sugar alcohols, sugar acids, amino sugars and N-acetylneuaminates.
- Exemplary sugar alcohols include glycol, glycerol, erythritol, threitol, arabitol, xylitol, rebitol, mannitol, sorbitol, dulcitol, iditol, isomalt, amltitol, and lactitol.
- Exemplary sugar acids include aldonic acids, ulosonic acids, uronic acids, and aldaric acids. A typical aldonic acid is ascorbic acid. Typical ulosonic acids include neuraminic acid, ketodeoxyoctulosonic acid, gluconic acid, and glucoronic acid. Aminosugars include, for example, glucosamine. N-acetylneuraminates such as sialic acid are also within the scope of useful sugar derivatives.
- the provided flame retardants have at least one polyphosphate moiety.
- the flame retardants can have two or even more polyphosphate moieties.
- An example of a useful diphosphate is fructose-1, 6-diphosphate.
- the phosphate-containing flame retardants of the provided compositions can be selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, and Group 1 metallic salts of a polyphosphate.
- the Group 1 metallic salts are selected from sodium and potassium and the Group 2 salts are selected from calcium and magnesium.
- Other divalent cations can also be present and can be selected from, for example, divalent ions of transition metals.
- a typically transition metal divalent ion is manganese.
- the phosphorus-containing flame retardants can be in used in any amount in curable and/or cured compositions according to the present disclosure.
- the phosphorus-containing flame retardants can be present in an amount in a range of from 1 to 20 percent by weight, typically 5 to 20 percent by weight, and more typically 10-15 percent by weight, based on the total weight of the curable and/or cured composition.
- the curable compositions can be formed by simple mixing; however, it is generally desirable to use a technique capable of forming a uniform dispersion.
- flame retardant and/or phosphorus-containing flame retardants are mixed into the thermosetting resin using a high shear mixer such as, for example, a high speed mixer available as SPEEDMIXER DAC 150FVZ from FlackTek, Inc. of Landrum, S.C.
- the curable compositions may be cured, for example by conventional methods well known in the art, including by mixing (in the case of two-part thermosetting resins), heating, exposure to actinic or thermal radiation, or any combination thereof resulting in a cured composition.
- the curable compositions can contain polymerization initiators (curatives)—either thermal or UV/visible light polymerization initiators well known to those of skill in the art.
- the provided curable compositions can be two-part epoxy systems. Each part of the two-part epoxy systems can be packaged separately in, for example, separate compartments in a two-part polyethylene bag.
- One reactive component of the epoxy system for example, the oxirane-containing compound can be isolated in one part of the two-part polyethylene bag.
- the other reactive component for example a diol, can be isolated in the other part of the two-part polyethylene bag.
- a curative such as an acid catalyst can be included in the diol-containing part of the bag.
- the phosphorous-containing flame retardant can be in either part of the two-part polyethylene bag or both as long as it does not react with the other components co-located in the bag.
- FIGRA flame retardancy
- One useful embodiment of the provided compositions is for use as a two-part epoxy insulating and encapsulating resin for making underground electrical splices.
- Flame retardants are desirable in such formulations to prevent flame formation if the splice suddenly becomes hot due to, for example, an electrical short.
- the use of the provided phosphate-containing flame retardants provides resistance to the rate of heat release and to the fire growth rate as shown in the Examples.
- most of the provided flame retardants are either on the GRAS list or are structurally similar to materials on the GRAS list, it is believed that these materials will be much less toxic to the environment if they leach out of the curable compositions over time.
- Sodium metaphosphate, potassium triphosphate, sodium hexametaphosphate, sodium polyphosphate, and calcium glycerophosphate were obtained from VWR International, West Chester, Pa.
- Sodium tripolyphosphate, D-glucose-1-phosphate disodium salt hydrate, and D-glucose-1-phosphate dipotassium salt hydrate were obtained from Sigma Aldrich, Milwaukee, Wis.
- Magnesium glycerophosphate and manganese glycerophosphate were obtained from Spectrum Chemicals, Gardena, Calif. Scotchcast 4 is an epoxy resin system available from 3M, Saint Paul, Minn.
- Flame retardant fillers for Examples 1-10 were first mixed into Part B of Scotchcast 4 resin using a SPEEDMIXER DAC 150FVZ, available from Flack Tek Inc., Landrum, S.C., at 3000 rpm for 1 min, and then Part A of Scotchcast 4 resin was mixed in also using a SPEEDMIXER DAC 150FVZ at 3000 rpm for 1 min.
- the total wt % of flame retardant in the mixed resin was 15%.
- the weight ratio of Part A/Part B was 1.34.
- the mixed Scotchcast 4 resin was poured into a mold of 5.0 cm ⁇ 5.0 cm ⁇ 0.5 cm, and then cured at 50° C. for 1 hr.
- the Scotchcast 4 resin was mixed without the addition of any flame retardant.
- the concentration of flame retardant was 15 weight percent (wt %).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
- Fireproofing Substances (AREA)
Abstract
This disclosure relates to flame retardants that are useful for epoxy resin systems. Coating compositions and methods are provided the include an epoxy resin and a phosphate-containing flame retardant wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, and Group 1 metallic salts of a polyphosphate. The provided flame retardants have low toxicity and are friendly to the environment.
Description
This application is a national stage filing under 35 U.S.C. 371 of PCT/US2009/065624, filed Nov. 24, 2009, which claims priority to U.S. Provisional Application No. 61/120,523, filed Dec. 8, 2008, the disclosure of which is incorporated by reference in its/their entirety herein.
This disclosure relates to flame retardants that are useful for epoxy resin systems.
Resins are used in many industries and for many different purposes. Resins are widely used, for example, in the electrical and electronics industry as seals for splices and other equipment along with other applications. Resins used in such electrical and electronic applications generally require the possession of an acceptable set of electrical properties, a degree of flame resistance or flame retardancy, and an acceptable level of processability. To meet increasingly sensitive environmental and safety considerations there is also now a desire to offer resin compositions that are substantially free of halogenated and halogen-containing compounds and materials. Currently available resins lack the ability to offer a desired set of electrical, performance, processing and flame resistance characteristics without the incorporation of halogenated or halogen-containing compounds and materials.
Advantageously, flame retardant resin systems according to the present disclosure do not include halogenated or halogen-containing compounds as flame retardants. It is also advantageous to have epoxy resin systems that incorporate flame retardants that have low toxicity and are friendly to the environment. This is particularly important if the epoxy resin systems are in contact with the environment as are resin systems that are used to splice and/or to seal electrical splices.
In one aspect, a coating composition is provided that includes an epoxy resin and a phosphate-containing flame retardant, wherein the flame retardant has the formula:
wherein A can be O−, a conjugate base of glycerol, or a conjugate base of a saccharide or derivative of a saccharide, wherein n=0-5, wherein Q is a monovalent cation or a divalent cation, wherein when Q is a monovalent cation then m=n+2, and wherein when Q is a divalent cation then n=0 and m=1.
In another aspect, a coating composition is provided that includes an epoxy resin and a phosphate-containing flame retardant, wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, Group 1 metallic salts of a phosphate, and Group 1 metallic salts of a polyphosphate.
In yet another aspect, a method of making a coating composition is provided that includes providing an epoxy resin and mixing in a phosphate-containing flame retardant, wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, Group 1 metallic salts of a phosphate, and Group 1 metallic salts of a polyphosphate.
In this document;
“ASTM” refers to test methods standardized by the American Society for Testing and Materials;
“conjugate base” refers to a saccharide or glyceride in which at least one of the OH groups has been deprotonated;
“polyphosphate” refers to a salt of metaphosphoric acid or polyphosphoric acid, regardless of cation; and
“UL” refers to Underwriters Laboratory and test methods developed and published therefrom.
The provided compositions and methods offer epoxy resin systems that contain environmentally friendly and low toxicity flame retardants. The flame retardants are either on the Generally Regarded As Safe (GRAS) list that is maintained by the Food and Drug Administration of the United States or they are chemically closely related. When the provided epoxy systems as used as, for example, sealants for electrical cables that are subsequently buried in the ground, any of the provided flame retardants that bloom out of the sealant are likely environmentally friendly and have low toxicity to the environment.
In the following description, reference is made to the accompanying set of drawings that form a part of the description hereof and in which are shown by way of illustration several specific embodiments. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense.
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein. The use of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
The coating composition that is provided includes an epoxy resin. The epoxy resin can be part of an epoxy resin system which can, optionally include an effective amount of curative for the resin. Epoxy resin systems can include one-part and/or two-part systems. Desirably, for electronic applications, the epoxy resin is electronic grade.
Exemplary epoxy resin systems include a two-part epoxy resin available as 3M SCOTCHCAST 4 ELECTRICAL INSULATING RESIN from 3M Company of Saint Paul, Minn. Examples of useful epoxy resins include 2,2-bis[4-(2,3-epoxypropoxy)-phenyl]propane (diglycidyl ether of bisphenol A) and materials available as EPON 828, EPON 1004, and EPON 1001F, available from Hexion Specialty Chemicals Co., Houston, Tex., DER-331, DER-332 and DER-334, available from SPI-Chem, West Chester, Pa. Other suitable epoxy resins include glycidyl ethers of phenol formaldehyde novolac (e.g., DEN-43 and DEN-428, available from SPI-Chem.).
Optionally, the epoxy resin system may contain one or more hardeners, initiators and/or catalysts (collectively referred to herein as “curative”), typically in an amount that is effective for chemically cross-linking the thermosetting resin (i.e., and effective amount of curative). The choice of curative and the amount to use typically will depend on the type of thermosetting resin selected, and will be well known to the skilled artisan. Exemplary curatives for epoxy resins include amines (including imidazoles), mercaptans, and Lewis acids.
The provided coating composition also includes a phosphate-containing flame retardant. The flame retardant has the formula:
wherein A can be O−, a conjugate base of glycerol, or a conjugate base of a saccharide or a derivative of a saccharide, wherein n=0-5, wherein Q is a monovalent cation or a divalent cation, wherein when Q is a monovalent cation then m=n+2, and wherein when Q is a divalent cation then n=0 and m=1. When A is O−, then the flame retardant is a metaphosphate or a polyphosphate salt. Examples of phosphate-containing flame retardants where A is O− include potassium or sodium metaphosphate, potassium or sodium triphosphate, and potassium or sodium hexametaphosphate. Typically, when A is O−, Q is selected from sodium or potassium.
In some embodiments, A can be a conjugate base of glycerol. Exemplary flame retardants of these embodiments include, for example, calcium glycerophosphate, magnesium glycerophosphate, and manganese glycerophosphate. A can also be a conjugate base of a saccharide or substituted saccharide. Typically the saccharide is a monosaccharide such as, for example, pentose sugars and hexose sugars. Exemplary monosaccharides that are useful as flame retardants include aldoses, and ketoses. Aldoses include aldopentoses such as ribose, arabinose, xylose, and aldohexoses such as allose, altrose, glucose, mannose, gulose, idose, galactose, and talose. Exemplary flame retardants derived from aldoses include D-glucose-1-phosphate disodium salt and D-glucose-1-phosphate dipotassium salt. These salts, as well as all of the salts contemplated by Formula (I) can exist as hydrates. Ketoses include ketopentoses such as ribulose and xylulose and ketohexoses such as psicose, fructose, sorbose and tagatose. Conjugate bases of disaccharides, oligosaccharides, and polysaccharides are also contemplated for A. For example, in some embodiments A can be a conjugate base of a disaccharide such as lactose, maltose, sucrose, or cellobiose. In other embodiments, A can be a conjugate base of a polysaccharide such as amylase, amylopectin, glucogen, or cellulose. Conjugate bases of derivatives of saccharides are also contemplated as flame retardants in the provided compositions. Such derivatives include sugar alcohols, sugar acids, amino sugars and N-acetylneuaminates. Exemplary sugar alcohols include glycol, glycerol, erythritol, threitol, arabitol, xylitol, rebitol, mannitol, sorbitol, dulcitol, iditol, isomalt, amltitol, and lactitol. Exemplary sugar acids include aldonic acids, ulosonic acids, uronic acids, and aldaric acids. A typical aldonic acid is ascorbic acid. Typical ulosonic acids include neuraminic acid, ketodeoxyoctulosonic acid, gluconic acid, and glucoronic acid. Aminosugars include, for example, glucosamine. N-acetylneuraminates such as sialic acid are also within the scope of useful sugar derivatives.
As indicated by Formula (I), the provided flame retardants have at least one polyphosphate moiety. The polyphosphate can have one phosphate (n=0) up to six phosphates (n=5). In some embodiments, the flame retardants can have two or even more polyphosphate moieties. An example of a useful diphosphate is fructose-1, 6-diphosphate.
The phosphate-containing flame retardants of the provided compositions can be selected from Group 1 metallic salts of a phosphate of a saccharide, Group 2 salts of a glycerophosphate, and Group 1 metallic salts of a polyphosphate. Typically, the Group 1 metallic salts are selected from sodium and potassium and the Group 2 salts are selected from calcium and magnesium. Other divalent cations can also be present and can be selected from, for example, divalent ions of transition metals. A typically transition metal divalent ion is manganese.
The phosphorus-containing flame retardants can be in used in any amount in curable and/or cured compositions according to the present disclosure. For example, the phosphorus-containing flame retardants can be present in an amount in a range of from 1 to 20 percent by weight, typically 5 to 20 percent by weight, and more typically 10-15 percent by weight, based on the total weight of the curable and/or cured composition.
The curable compositions can be formed by simple mixing; however, it is generally desirable to use a technique capable of forming a uniform dispersion. In one technique, flame retardant and/or phosphorus-containing flame retardants are mixed into the thermosetting resin using a high shear mixer such as, for example, a high speed mixer available as SPEEDMIXER DAC 150FVZ from FlackTek, Inc. of Landrum, S.C.
The curable compositions may be cured, for example by conventional methods well known in the art, including by mixing (in the case of two-part thermosetting resins), heating, exposure to actinic or thermal radiation, or any combination thereof resulting in a cured composition. As discussed above, the curable compositions can contain polymerization initiators (curatives)—either thermal or UV/visible light polymerization initiators well known to those of skill in the art.
Typically the provided curable compositions can be two-part epoxy systems. Each part of the two-part epoxy systems can be packaged separately in, for example, separate compartments in a two-part polyethylene bag. One reactive component of the epoxy system, for example, the oxirane-containing compound can be isolated in one part of the two-part polyethylene bag. The other reactive component, for example a diol, can be isolated in the other part of the two-part polyethylene bag. A curative such as an acid catalyst can be included in the diol-containing part of the bag. The phosphorous-containing flame retardant can be in either part of the two-part polyethylene bag or both as long as it does not react with the other components co-located in the bag. When the provided curable compositions are used, the two part polyethylene bag is ruptured, the two components are mixed, and the composition cures over a period of a few minutes to several hours.
There are a number of ways to test the efficacy of flame retardants. One standard that is typically used is ASTM E 1354-08, “Standard Test Method for Heat and Visible Smoke release Rates for Materials and Products Using an Oxygen Consumption calorimeter”, approved Jan. 1, 2008. This test method provides for the measurement of the time to sustained flaming, heat release rate (HRR), peak, and total heat release. Heat release data at different heating fluxes can also be obtained by this method. The sample is oriented horizontally, and a spark ignition source is used. Cone calorimetry has long been a useful tool for quantitating material flammability. Cone calorimetry analysis of UL-94 V-rated plastics is described, for example, by A. Morgan and M. Bundy, Fire Mater, 31, 257-283 (2007). Another important measurement of flame retardancy is provided by the FIGRA or fire growth rate which is calculated as:
(FIGRA)=Peak HRR/time to Peak HRR(kW/m2·sec)
(FIGRA)=Peak HRR/time to Peak HRR(kW/m2·sec)
The data for the Examples has been presented using these measurements.
One useful embodiment of the provided compositions is for use as a two-part epoxy insulating and encapsulating resin for making underground electrical splices. Flame retardants are desirable in such formulations to prevent flame formation if the splice suddenly becomes hot due to, for example, an electrical short. The use of the provided phosphate-containing flame retardants provides resistance to the rate of heat release and to the fire growth rate as shown in the Examples. In addition, since most of the provided flame retardants are either on the GRAS list or are structurally similar to materials on the GRAS list, it is believed that these materials will be much less toxic to the environment if they leach out of the curable compositions over time.
Objects and advantages of this invention are further illustrated by the following examples, but the particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.
Sodium metaphosphate, potassium triphosphate, sodium hexametaphosphate, sodium polyphosphate, and calcium glycerophosphate were obtained from VWR International, West Chester, Pa. Sodium tripolyphosphate, D-glucose-1-phosphate disodium salt hydrate, and D-glucose-1-phosphate dipotassium salt hydrate were obtained from Sigma Aldrich, Milwaukee, Wis. Magnesium glycerophosphate and manganese glycerophosphate were obtained from Spectrum Chemicals, Gardena, Calif. Scotchcast 4 is an epoxy resin system available from 3M, Saint Paul, Minn.
Flame retardant fillers for Examples 1-10 were first mixed into Part B of Scotchcast 4 resin using a SPEEDMIXER DAC 150FVZ, available from Flack Tek Inc., Landrum, S.C., at 3000 rpm for 1 min, and then Part A of Scotchcast 4 resin was mixed in also using a SPEEDMIXER DAC 150FVZ at 3000 rpm for 1 min. The total wt % of flame retardant in the mixed resin was 15%. The weight ratio of Part A/Part B was 1.34. The mixed Scotchcast 4 resin was poured into a mold of 5.0 cm×5.0 cm×0.5 cm, and then cured at 50° C. for 1 hr. For the Comparative Example the Scotchcast 4 resin was mixed without the addition of any flame retardant.
The cured resins for Comparative Example 1 and Examples 1-10 were subjected to evaluation using ASTM E 1354-08, the only difference being the sample size which was as is described above. The test results (heat release rate (peak and average)) and the FIGRA or fire growth rate are displayed in Table 1.
For all examples, the concentration of flame retardant was 15 weight percent (wt %).
TABLE 1 |
Flammability Testing of Scotchcast 4 with Added Flame Retardants |
Test Results | |||
Ex. | Flame Retardant | Chemical Structure | (HRR in kW/m2) |
*CE1 | None | None | FIGRA: 13.57 |
Peak HRR: 2170.70 | |||
Avg HRR: 711.89 | |||
1 | Potassium metaphosphate |
|
FIGRA: 5.87 Peak HRR: 968.54 kW/m2 Avg. HRR: 511.18 kW/m2 |
2 | Potassium Triphosphate |
|
FIGRA: 10.59 Peak HRR: 1483.22 Avg. HRR: 709.06 |
3 | Sodium tripolyphosphate |
|
FIGRA: 9.31 Peak HRR: 1395.96 Avg. HRR: 665.24 |
4 | Sodium hexametaphosphate |
|
FIGRA: 6.01 Peak HRR: 1051.98 Avg. HRR: 522.15 |
5 | Sodium polyphosphate |
|
FIGRA: 6.46 Peak HRR: 1065.62 Avg. HRR: 554.88 |
6 | Calcium glycerophosphate |
|
FIGRA: 7.43 Peak HRR: 1114.8 Avg. HRR: 609.3 |
7 | Magnesium Glycerophosphate |
|
FIGRA: 4.98 Peak HRR: 896.51 Avg. HRR: 510.25 |
8 | Manganese Glycerophosphate |
|
FIGRA: 6.70 Peak HRR: 1038.64 Avg. HRR: 555.00 |
9 | D-Glucose 1- phosphate disodium salt hydrate |
|
FIGRA: 4.33 Peak HRR: 887.09 Avg. HRR: 515.2 |
10 | D-Glucose 1- phosphate dipotassium salt hydrate |
|
FIGRA: 7.11 Peak HRR: 959.29 Avg. HRR: 589.56 |
*CE—comparative example—SC-4 with no added flame retardant |
The data in Table 1 show that the provided flame retardants can significantly freduce the flamability of SCOTCHCAST 4 epoxy resin system with respect to peak heat release rate, average heat release rate, fire growth rate (FIGRA), and total heat release.
Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows. All references cited within this document are herein incorporated by reference in their entirety.
Claims (17)
1. A coating composition comprising:
an epoxy resin; and
a phosphate-containing flame retardant, wherein the flame retardant has the formula:
wherein A is selected from the group consisting of a conjugate base of glycerol, and a conjugate base of a saccharide or derivative of a saccharide, wherein n=0-5, wherein Q comprises manganese, wherein Q is a monovalent cation or a divalent cation, wherein when Q is a monovalent cation then m=n+2, and wherein when Q is a divalent cation then n=0 and m=1.
2. A composition according to claim 1 , wherein A comprises a conjugate base of a saccharide and wherein the saccharide is derived from glucose.
3. A composition according to claim 1 , wherein A comprises a conjugate base of 1,2,3-trihydroxypropane.
4. A coating composition comprising:
an epoxy resin; and
a phosphate-containing flame retardant,
wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, and wherein the phosphate-containing flame retardant is a monosaccharide.
5. A coating composition according to claim 4 , wherein the epoxy resin comprises a thermosetting epoxy resin system.
6. A coating composition according to claim 4 , wherein the epoxy resin comprises a two part epoxy resin system.
7. A coating composition according to claim 4 , wherein the phosphate-containing flame retardant comprises one phosphate moiety.
8. A coating composition comprising:
an epoxy resin; and
a phosphate-containing flame retardant,
wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, wherein the flame retardant comprises D-glucose-1-phosphate disodium salt.
9. An article comprising a coating composition according to claim 1 .
10. An article comprising a coating composition according to claim 4 .
11. An underground electrical splice comprising a composition according to claim 1 .
12. A method of making a coating composition comprising:
providing an epoxy resin, and
mixing in a phosphate-containing flame retardant
wherein the phosphate-containing flame retardant is selected from Group 1 metallic salts of a phosphate of a saccharide, and wherein the phosphate-containing flame retardant is a monosaccharide.
13. A method according to claim 12 , wherein the epoxy resin comprises a two-part epoxy resin system.
14. A method according to claim 13 , further comprising a two-part polyethylene bag wherein one part of the epoxy resin system is in one part of the bag, the other part of the epoxy resin system is in the other part of the bag, and the flame retardant is in one part of the bag or both parts of the bag.
15. An article comprising a coating composition according to claim 8 .
16. An underground electrical splice comprising a composition according to claim 4 .
17. An underground electrical splice comprising a composition according to claim 8 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/128,846 US8710122B2 (en) | 2008-12-08 | 2009-11-24 | Halogen-free flame retardants for epoxy resin systems |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12052308P | 2008-12-08 | 2008-12-08 | |
US13/128,846 US8710122B2 (en) | 2008-12-08 | 2009-11-24 | Halogen-free flame retardants for epoxy resin systems |
PCT/US2009/065624 WO2010077493A1 (en) | 2008-12-08 | 2009-11-24 | Halogen-free flame retardants for epoxy resin systems |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110224331A1 US20110224331A1 (en) | 2011-09-15 |
US8710122B2 true US8710122B2 (en) | 2014-04-29 |
Family
ID=41786466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/128,846 Active 2030-07-20 US8710122B2 (en) | 2008-12-08 | 2009-11-24 | Halogen-free flame retardants for epoxy resin systems |
Country Status (11)
Country | Link |
---|---|
US (1) | US8710122B2 (en) |
EP (1) | EP2358805B1 (en) |
JP (1) | JP5769629B2 (en) |
KR (1) | KR101699988B1 (en) |
CN (1) | CN102300916B (en) |
BR (1) | BRPI0922176A2 (en) |
CA (1) | CA2745245A1 (en) |
MX (1) | MX2011005592A (en) |
RU (1) | RU2488615C2 (en) |
TW (1) | TWI471391B (en) |
WO (1) | WO2010077493A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2616943C1 (en) * | 2016-04-22 | 2017-04-18 | К5 Лтд | Self-supporting extinguishing media |
RU2628375C1 (en) * | 2016-04-22 | 2017-08-16 | К5 Лтд | Microencapsulated fire extinguishing agent and method of its obtaining |
RU2630530C1 (en) * | 2016-04-22 | 2017-09-11 | К5 Лтд | Combined gas fire extinguishing agent |
US10954446B2 (en) | 2017-08-16 | 2021-03-23 | International Business Machines Corporation | Sorbitol, glucaric acid, and gluconic acid based flame-retardants |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160177182A1 (en) * | 2013-07-31 | 2016-06-23 | Empire Technology Development Llc | Fire-resistant printed circuit board assemblies |
WO2015148314A1 (en) * | 2014-03-25 | 2015-10-01 | 3M Innovative Properties Company | Flame retardant, pressure-sensitive adhesive, and curable composition |
CN106189850A (en) * | 2016-08-24 | 2016-12-07 | 安徽徽明建设集团有限公司 | A kind of waterproof heat insulating roof coating |
US10611897B2 (en) | 2017-11-07 | 2020-04-07 | International Business Machines Corporation | Arabitol and xylitol based flame retardants |
US10597584B2 (en) * | 2017-11-08 | 2020-03-24 | International Business Machines Corporation | Levoglucosan-based flame retardant compounds |
CN108467654A (en) * | 2018-04-24 | 2018-08-31 | 常州五荣化工有限公司 | A kind of fireproof coating for building |
JP7121149B2 (en) * | 2019-02-15 | 2022-08-17 | 島田 誠之 | Coating agent, thin film, substrate with thin film, and method for producing thin film |
EP3980140A4 (en) | 2019-06-07 | 2023-06-14 | FRS Group, LLC | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
WO2020247780A1 (en) * | 2019-06-07 | 2020-12-10 | Frs Group, Llc | Long-term fire retardant with an organophosphate and methods for making and using same |
EP4143252A1 (en) * | 2020-04-28 | 2023-03-08 | 3M Innovative Properties Company | Curable composition |
KR20210158504A (en) * | 2020-06-24 | 2021-12-31 | 공석태 | FRP flame retardant additive |
AU2021400293A1 (en) | 2020-12-15 | 2023-08-03 | Frs Group, Llc | Long-term fire retardant with magnesium sulfate and corrosion inhibitors and methods for making and using same |
SE2151389A1 (en) * | 2021-11-15 | 2023-05-16 | Larsson Anna Carin | Flame retardant composition |
US11975231B2 (en) | 2022-03-31 | 2024-05-07 | Frs Group, Llc | Long-term fire retardant with corrosion inhibitors and methods for making and using same |
CN119390723A (en) * | 2024-12-31 | 2025-02-07 | 安徽艾立德制药有限公司 | Amorphous material of magnesium glycerophosphate and preparation method thereof |
Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1105953A (en) | 1964-03-31 | 1968-03-13 | Lankro Chem Ltd | Phosphorus-containing polyethers and polyurethane foams |
US3811992A (en) | 1966-01-14 | 1974-05-21 | Adachi Plywood Co Ltd | Fire-proof laminated plywood core |
US3819518A (en) | 1972-07-31 | 1974-06-25 | Apex Chem Co Inc | Scorch-resistant water-soluble flame-retardants for cellulose |
US3973074A (en) | 1973-02-20 | 1976-08-03 | Macmillan Bloedel Limited | Flame-proof cellulosic product |
GB1468053A (en) | 1973-11-12 | 1977-03-23 | Stauffer Chemical Co | Condensation products of beta-haloalkyl phosphates and dialkyl phosphonates |
US4122226A (en) | 1974-09-27 | 1978-10-24 | E. I. Du Pont De Nemours And Company | Heat-stable polymer coating composition with oxidation catalyst |
US4165411A (en) | 1975-06-18 | 1979-08-21 | W. R. Grace & Co. | Flame retardant urethane and method |
JPS54141823A (en) | 1978-04-26 | 1979-11-05 | Hitachi Cable Ltd | Fire resistant coating composition |
US4311634A (en) | 1974-09-27 | 1982-01-19 | E. I. Du Pont De Nemours And Company | Heat stable polymer coating composition with antioxidant |
JPS57123221A (en) * | 1981-01-23 | 1982-07-31 | Okura Ind Co Ltd | Metal-containing curable resin composition containing ionic bond |
SU952110A3 (en) | 1978-04-20 | 1982-08-15 | Стауффер Кемикал Компани (Фирма) | Process for producing poly(oxyorganophosphate)phosphonate |
US4837400A (en) * | 1986-08-22 | 1989-06-06 | Basf Aktiengesellschaft | Polyoxymethylene molding materials having improved thermal stability, their preparation and their use |
JPH02172847A (en) | 1988-12-23 | 1990-07-04 | Shinto Paint Co Ltd | Expandable fireproof coating composition |
JPH03119017A (en) | 1989-09-29 | 1991-05-21 | Hitachi Chem Co Ltd | Resin composition for foaming, foam and structure |
US5091608A (en) * | 1988-07-27 | 1992-02-25 | Minnesota Mining And Manufacturing Company | Flame retardant splicing system |
US5268393A (en) * | 1992-07-17 | 1993-12-07 | Blount David H | Flame-retardant polyurethane foam produced without additional blowing agents |
JPH0728994A (en) | 1992-06-13 | 1995-01-31 | Kanebo Ltd | Density gradation correcting device |
EP0742261A2 (en) | 1995-04-10 | 1996-11-13 | Shin-Etsu Chemical Co., Ltd. | Semiconductor encapsulating epoxy resin compositions suitable for semiconductor encapsulation, their manufacture and use, semiconductor devices encapsulated therewith |
US5587448A (en) * | 1994-12-29 | 1996-12-24 | Minnesota Mining And Manufacturing | Reaction system for producing a polyurethane and method of using same to seal a surface |
US5656709A (en) * | 1994-05-24 | 1997-08-12 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Hybrid material and process for producing the same |
JPH1017796A (en) | 1996-07-05 | 1998-01-20 | Dainippon Toryo Co Ltd | Foam type fireproof coating agent |
WO1999043390A1 (en) | 1995-12-29 | 1999-09-02 | No Fire Technologies, Inc. | Intumescent fire-retardant composition for high temperature and long duration protection |
US6001270A (en) | 1998-03-16 | 1999-12-14 | The United States Of America As Represented By The Secretary Of The Army | Sticky high water content gels for extinguishers |
US6171702B1 (en) * | 1998-07-17 | 2001-01-09 | Xerox Corporation | Coated substrates |
JP2002057442A (en) | 2000-05-30 | 2002-02-22 | Fujikura Ltd | Insulation structure and manufacturing method of flexible printed circuit board |
US6362279B2 (en) | 1996-09-27 | 2002-03-26 | The United States Of America As Represented By The Secretary Of The Air Force | Preceramic additives as fire retardants for plastics |
JP2002201344A (en) | 2000-11-06 | 2002-07-19 | Toray Ind Inc | Liquid crystalline resin composition, method for producing the same and molded product |
US6448324B1 (en) | 1998-08-18 | 2002-09-10 | Idemitsu Petrochemical Co., Ltd. | Flame-retardant polycarbonate resin composition and its blow moldings |
US6518357B1 (en) | 2000-10-04 | 2003-02-11 | General Electric Company | Flame retardant polycarbonate-silsesquioxane compositions, method for making and articles made thereby |
EP1285953A1 (en) | 2000-11-17 | 2003-02-26 | Ecodevice Laboratory Co., Ltd | Coating responding to visible light, coating film and article |
US6534601B1 (en) | 2001-10-29 | 2003-03-18 | Kukdo Chemical Co., Ltd. | Flame retardant epoxy resin modified with phosphorus and silicon |
US6551417B1 (en) * | 2000-09-20 | 2003-04-22 | Ge Betz, Inc. | Tri-cation zinc phosphate conversion coating and process of making the same |
WO2004007603A2 (en) | 2002-07-13 | 2004-01-22 | Chance & Hunt Limited | Flame retardant products |
EP1403310A1 (en) | 2002-09-25 | 2004-03-31 | Clariant GmbH | Masses duroplastiques ignifuges |
US20040099178A1 (en) * | 2000-11-01 | 2004-05-27 | Jones William H. | Novel fire retardant materials and method for producing same |
WO2005078012A2 (en) | 2004-02-18 | 2005-08-25 | Huntsman Advanced Materials (Switzerland) Gmbh | Fire retardant compositions using siloxanes |
JP2005236273A (en) | 2004-01-20 | 2005-09-02 | Showa Denko Kk | Flame-retardant composition for solder resist, hardening method and use thereof |
EP1580320A2 (en) | 2004-03-25 | 2005-09-28 | Walter Navarrini | Compositions for porous materials |
US20050215670A1 (en) * | 2004-03-29 | 2005-09-29 | Akihiko Shimasaki | Coating composition and article coated therewith |
WO2005106089A2 (en) | 2004-04-26 | 2005-11-10 | Certain Teed Corporation | Flame resistant fibrous insulation and methods of making the same |
US20050287362A1 (en) | 2004-06-23 | 2005-12-29 | 3M Innovative Properties Company | Halogen free tapes & method of making same |
US6982049B1 (en) | 2003-12-03 | 2006-01-03 | No-Burn Investments, L.L.C. | Fire retardant with mold inhibitor |
US20070166454A1 (en) * | 2005-11-08 | 2007-07-19 | Gupta Laxmi C | Methods for applying fire retardant systems, compositions and uses |
WO2007100725A2 (en) | 2006-02-24 | 2007-09-07 | Wms Gaming Inc. | Suspending wagering game play on wagering game machines |
WO2007100724A2 (en) | 2006-02-23 | 2007-09-07 | E. I. Du Pont De Nemours And Company | A halogen-free phosphorous epoxy resin composition |
US20070244229A1 (en) | 2004-06-17 | 2007-10-18 | Hong Sang H | Flameproof Thermoplastic Resin Composition |
US20070259582A1 (en) | 2004-08-25 | 2007-11-08 | Kawashima Selkon Textile Co., Ltd. | Polyphosphate Flame Retardant |
JP2007302762A (en) | 2006-05-10 | 2007-11-22 | Gun Ei Chem Ind Co Ltd | Foaming resin composition and foamed body thereof |
US20080090950A1 (en) | 2004-06-10 | 2008-04-17 | Italmatch Chemicals | Polyester Compositions Flame Retarded With Halogen-Free Additives |
US20080087466A1 (en) | 2006-10-17 | 2008-04-17 | Emerson Tod D | Splice for down hole electrical submersible pump cable |
US20090104444A1 (en) | 2007-10-19 | 2009-04-23 | 3M Innovative Properties Company | Halogen-free flame retardant adhesive compositions and article containing same |
US20090124734A1 (en) | 2007-11-05 | 2009-05-14 | 3M Innovative Properties Company | Halogen-free flame retardant resin composition |
US20100087079A1 (en) | 2008-10-07 | 2010-04-08 | Eumi Pyun | Composition, method of making the same, and use therefor |
US7915436B2 (en) | 2008-11-03 | 2011-03-29 | 3M Innovative Properties Company | Phosphorus-containing silsesquioxane derivatives as flame retardants |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0728994U (en) * | 1993-10-22 | 1995-05-30 | 桂助 上野 | Inorganic fiber mat |
JPH09310070A (en) * | 1996-05-20 | 1997-12-02 | Shigenobu Sakata | Nonflammable/flame-retardant liquid and its production |
KR100484175B1 (en) * | 2002-11-08 | 2005-04-18 | 삼성전자주식회사 | Apparatus and method for improving energy recovery in a plasma display panel driver |
JP2005097352A (en) * | 2003-09-22 | 2005-04-14 | Dainippon Ink & Chem Inc | Epoxy resin composition, semiconductor sealing material, and semiconductor device |
US7820079B2 (en) * | 2004-06-14 | 2010-10-26 | Nissin Chemical Industry Co., Ltd. | Vehicle interior material coating composition and vehicle interior material |
JP4984451B2 (en) * | 2005-07-20 | 2012-07-25 | Dic株式会社 | Epoxy resin composition and cured product thereof |
CN100360543C (en) * | 2006-04-11 | 2008-01-09 | 四川师范大学 | A kind of preparation method of cyclohexanepentyl phosphate amine salt |
-
2009
- 2009-11-24 KR KR1020117015506A patent/KR101699988B1/en active Active
- 2009-11-24 EP EP09795840.9A patent/EP2358805B1/en active Active
- 2009-11-24 JP JP2011539590A patent/JP5769629B2/en not_active Expired - Fee Related
- 2009-11-24 CA CA2745245A patent/CA2745245A1/en not_active Abandoned
- 2009-11-24 US US13/128,846 patent/US8710122B2/en active Active
- 2009-11-24 MX MX2011005592A patent/MX2011005592A/en active IP Right Grant
- 2009-11-24 BR BRPI0922176A patent/BRPI0922176A2/en not_active Application Discontinuation
- 2009-11-24 RU RU2011120267/05A patent/RU2488615C2/en not_active IP Right Cessation
- 2009-11-24 WO PCT/US2009/065624 patent/WO2010077493A1/en active Application Filing
- 2009-11-24 CN CN200980155941.XA patent/CN102300916B/en not_active Expired - Fee Related
- 2009-12-03 TW TW98141391A patent/TWI471391B/en not_active IP Right Cessation
Patent Citations (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1105953A (en) | 1964-03-31 | 1968-03-13 | Lankro Chem Ltd | Phosphorus-containing polyethers and polyurethane foams |
US3811992A (en) | 1966-01-14 | 1974-05-21 | Adachi Plywood Co Ltd | Fire-proof laminated plywood core |
US3819518A (en) | 1972-07-31 | 1974-06-25 | Apex Chem Co Inc | Scorch-resistant water-soluble flame-retardants for cellulose |
US3973074A (en) | 1973-02-20 | 1976-08-03 | Macmillan Bloedel Limited | Flame-proof cellulosic product |
GB1468053A (en) | 1973-11-12 | 1977-03-23 | Stauffer Chemical Co | Condensation products of beta-haloalkyl phosphates and dialkyl phosphonates |
US4122226A (en) | 1974-09-27 | 1978-10-24 | E. I. Du Pont De Nemours And Company | Heat-stable polymer coating composition with oxidation catalyst |
US4311634A (en) | 1974-09-27 | 1982-01-19 | E. I. Du Pont De Nemours And Company | Heat stable polymer coating composition with antioxidant |
US4165411A (en) | 1975-06-18 | 1979-08-21 | W. R. Grace & Co. | Flame retardant urethane and method |
SU952110A3 (en) | 1978-04-20 | 1982-08-15 | Стауффер Кемикал Компани (Фирма) | Process for producing poly(oxyorganophosphate)phosphonate |
JPS54141823A (en) | 1978-04-26 | 1979-11-05 | Hitachi Cable Ltd | Fire resistant coating composition |
JPS57123221A (en) * | 1981-01-23 | 1982-07-31 | Okura Ind Co Ltd | Metal-containing curable resin composition containing ionic bond |
US4837400A (en) * | 1986-08-22 | 1989-06-06 | Basf Aktiengesellschaft | Polyoxymethylene molding materials having improved thermal stability, their preparation and their use |
US5091608A (en) * | 1988-07-27 | 1992-02-25 | Minnesota Mining And Manufacturing Company | Flame retardant splicing system |
JPH02172847A (en) | 1988-12-23 | 1990-07-04 | Shinto Paint Co Ltd | Expandable fireproof coating composition |
JPH03119017A (en) | 1989-09-29 | 1991-05-21 | Hitachi Chem Co Ltd | Resin composition for foaming, foam and structure |
JPH0728994A (en) | 1992-06-13 | 1995-01-31 | Kanebo Ltd | Density gradation correcting device |
US5268393A (en) * | 1992-07-17 | 1993-12-07 | Blount David H | Flame-retardant polyurethane foam produced without additional blowing agents |
US5656709A (en) * | 1994-05-24 | 1997-08-12 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Hybrid material and process for producing the same |
US5587448A (en) * | 1994-12-29 | 1996-12-24 | Minnesota Mining And Manufacturing | Reaction system for producing a polyurethane and method of using same to seal a surface |
US5739187A (en) | 1995-04-10 | 1998-04-14 | Shin-Etsu Chemical Co., Ltd. | Semiconductor encapsulating epoxy resin compositions and semiconductor devices encapsulated therewith |
EP0742261A2 (en) | 1995-04-10 | 1996-11-13 | Shin-Etsu Chemical Co., Ltd. | Semiconductor encapsulating epoxy resin compositions suitable for semiconductor encapsulation, their manufacture and use, semiconductor devices encapsulated therewith |
WO1999043390A1 (en) | 1995-12-29 | 1999-09-02 | No Fire Technologies, Inc. | Intumescent fire-retardant composition for high temperature and long duration protection |
JPH1017796A (en) | 1996-07-05 | 1998-01-20 | Dainippon Toryo Co Ltd | Foam type fireproof coating agent |
US6362279B2 (en) | 1996-09-27 | 2002-03-26 | The United States Of America As Represented By The Secretary Of The Air Force | Preceramic additives as fire retardants for plastics |
US6001270A (en) | 1998-03-16 | 1999-12-14 | The United States Of America As Represented By The Secretary Of The Army | Sticky high water content gels for extinguishers |
US6171702B1 (en) * | 1998-07-17 | 2001-01-09 | Xerox Corporation | Coated substrates |
US6448324B1 (en) | 1998-08-18 | 2002-09-10 | Idemitsu Petrochemical Co., Ltd. | Flame-retardant polycarbonate resin composition and its blow moldings |
JP2002057442A (en) | 2000-05-30 | 2002-02-22 | Fujikura Ltd | Insulation structure and manufacturing method of flexible printed circuit board |
US6551417B1 (en) * | 2000-09-20 | 2003-04-22 | Ge Betz, Inc. | Tri-cation zinc phosphate conversion coating and process of making the same |
US6518357B1 (en) | 2000-10-04 | 2003-02-11 | General Electric Company | Flame retardant polycarbonate-silsesquioxane compositions, method for making and articles made thereby |
US20040099178A1 (en) * | 2000-11-01 | 2004-05-27 | Jones William H. | Novel fire retardant materials and method for producing same |
JP2002201344A (en) | 2000-11-06 | 2002-07-19 | Toray Ind Inc | Liquid crystalline resin composition, method for producing the same and molded product |
EP1285953A1 (en) | 2000-11-17 | 2003-02-26 | Ecodevice Laboratory Co., Ltd | Coating responding to visible light, coating film and article |
US20030166765A1 (en) | 2000-11-17 | 2003-09-04 | Shinichi Sugihara | Coating responding to a visible light, coating film and article |
US6534601B1 (en) | 2001-10-29 | 2003-03-18 | Kukdo Chemical Co., Ltd. | Flame retardant epoxy resin modified with phosphorus and silicon |
WO2004007603A2 (en) | 2002-07-13 | 2004-01-22 | Chance & Hunt Limited | Flame retardant products |
EP1403310A1 (en) | 2002-09-25 | 2004-03-31 | Clariant GmbH | Masses duroplastiques ignifuges |
US20040110878A1 (en) | 2002-09-25 | 2004-06-10 | Clariant Gmbh | Flame-retardant thermoset compositions |
US6982049B1 (en) | 2003-12-03 | 2006-01-03 | No-Burn Investments, L.L.C. | Fire retardant with mold inhibitor |
JP2005236273A (en) | 2004-01-20 | 2005-09-02 | Showa Denko Kk | Flame-retardant composition for solder resist, hardening method and use thereof |
WO2005078012A2 (en) | 2004-02-18 | 2005-08-25 | Huntsman Advanced Materials (Switzerland) Gmbh | Fire retardant compositions using siloxanes |
EP1580320A2 (en) | 2004-03-25 | 2005-09-28 | Walter Navarrini | Compositions for porous materials |
US20050215670A1 (en) * | 2004-03-29 | 2005-09-29 | Akihiko Shimasaki | Coating composition and article coated therewith |
WO2005106089A2 (en) | 2004-04-26 | 2005-11-10 | Certain Teed Corporation | Flame resistant fibrous insulation and methods of making the same |
US20080090950A1 (en) | 2004-06-10 | 2008-04-17 | Italmatch Chemicals | Polyester Compositions Flame Retarded With Halogen-Free Additives |
US20070244229A1 (en) | 2004-06-17 | 2007-10-18 | Hong Sang H | Flameproof Thermoplastic Resin Composition |
US20050287362A1 (en) | 2004-06-23 | 2005-12-29 | 3M Innovative Properties Company | Halogen free tapes & method of making same |
US20070259582A1 (en) | 2004-08-25 | 2007-11-08 | Kawashima Selkon Textile Co., Ltd. | Polyphosphate Flame Retardant |
US20070166454A1 (en) * | 2005-11-08 | 2007-07-19 | Gupta Laxmi C | Methods for applying fire retardant systems, compositions and uses |
WO2007100724A2 (en) | 2006-02-23 | 2007-09-07 | E. I. Du Pont De Nemours And Company | A halogen-free phosphorous epoxy resin composition |
US20100048766A1 (en) | 2006-02-23 | 2010-02-25 | Yu Hsain Cheng | Halogen-free phosphorous epoxy resin composition |
WO2007100725A2 (en) | 2006-02-24 | 2007-09-07 | Wms Gaming Inc. | Suspending wagering game play on wagering game machines |
JP2007302762A (en) | 2006-05-10 | 2007-11-22 | Gun Ei Chem Ind Co Ltd | Foaming resin composition and foamed body thereof |
US20080087466A1 (en) | 2006-10-17 | 2008-04-17 | Emerson Tod D | Splice for down hole electrical submersible pump cable |
US20090104444A1 (en) | 2007-10-19 | 2009-04-23 | 3M Innovative Properties Company | Halogen-free flame retardant adhesive compositions and article containing same |
US20090124734A1 (en) | 2007-11-05 | 2009-05-14 | 3M Innovative Properties Company | Halogen-free flame retardant resin composition |
US20100087079A1 (en) | 2008-10-07 | 2010-04-08 | Eumi Pyun | Composition, method of making the same, and use therefor |
US7915436B2 (en) | 2008-11-03 | 2011-03-29 | 3M Innovative Properties Company | Phosphorus-containing silsesquioxane derivatives as flame retardants |
Non-Patent Citations (6)
Title |
---|
3M Data Sheet: "Scotchcast(TM) 4 Electrical Insulating Resin," (1992) 2 pages. |
3M Data Sheet: "Scotchcast™ 4 Electrical Insulating Resin," (1992) 2 pages. |
Alexander B. Morgan et al., "Cone Calorimeter Analysis of UL-94 V-Rated Plastics," Fire and Materials, Nov. 6, 2007, pp. 254-283. |
Office Action in Corresponding Japanese Patent Application No. 2011-539590. |
Test: ASTM Designation: E1354-08, "Standard Test Method for Heat and visible Smoke Release Rates for Materials and Products Using an Oxygen consumption Calorimeter1," (2008) 19 pages. |
Test: ASTM Designation: E1740-07a, "Standard Test Method for Determining the Heat Release Rate and Other Fire-Test-Response Characteristics of Wallcovering composites Using a Cone Calorimeter1," (2008) 11 pages. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2616943C1 (en) * | 2016-04-22 | 2017-04-18 | К5 Лтд | Self-supporting extinguishing media |
RU2628375C1 (en) * | 2016-04-22 | 2017-08-16 | К5 Лтд | Microencapsulated fire extinguishing agent and method of its obtaining |
RU2630530C1 (en) * | 2016-04-22 | 2017-09-11 | К5 Лтд | Combined gas fire extinguishing agent |
WO2017184021A1 (en) * | 2016-04-22 | 2017-10-26 | К5 Лтд | Combined gas fire-extinguishing composition |
US10954446B2 (en) | 2017-08-16 | 2021-03-23 | International Business Machines Corporation | Sorbitol, glucaric acid, and gluconic acid based flame-retardants |
Also Published As
Publication number | Publication date |
---|---|
EP2358805B1 (en) | 2016-09-21 |
RU2011120267A (en) | 2012-11-27 |
TWI471391B (en) | 2015-02-01 |
EP2358805A1 (en) | 2011-08-24 |
KR101699988B1 (en) | 2017-01-26 |
JP5769629B2 (en) | 2015-08-26 |
MX2011005592A (en) | 2011-06-16 |
RU2488615C2 (en) | 2013-07-27 |
CN102300916B (en) | 2014-11-12 |
WO2010077493A1 (en) | 2010-07-08 |
CN102300916A (en) | 2011-12-28 |
KR20110096149A (en) | 2011-08-29 |
US20110224331A1 (en) | 2011-09-15 |
JP2012511083A (en) | 2012-05-17 |
CA2745245A1 (en) | 2010-07-08 |
TW201033303A (en) | 2010-09-16 |
BRPI0922176A2 (en) | 2018-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8710122B2 (en) | Halogen-free flame retardants for epoxy resin systems | |
US4198493A (en) | Self-extinguishing polymeric compositions | |
EP2609173B1 (en) | Flame protection agent compositions containing triazine intercalated metal phosphates | |
Lu et al. | Recent developments in the chemistry of halogen-free flame retardant polymers | |
EP2907847B1 (en) | Thermal expansion resin composition | |
CN109233101B (en) | Heat-resistant flame-retardant polypropylene composition and preparation method thereof | |
Zhang et al. | Comparison of intumescence mechanism and blowing-out effect in flame-retarded epoxy resins | |
TW200524981A (en) | Halogen-free flame-retardant resin composition and prepreg and laminate using the same | |
CN107207779A (en) | The flame retardant compositions of phosphorus compound and melam comprising heat treatment | |
US4265806A (en) | Flame retardant thermoplastic synthetic resin | |
Bourbigot | Intumescence‐based flame retardant | |
ES2901620T3 (en) | Antimony Free Epoxy Flame Retardant Compositions | |
Zhuang et al. | Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate | |
Pack | A review of non-halogen flame retardants in epoxy-based composites and nanocomposites: Flame retardancy and rheological properties | |
Chen et al. | Study on flame retardance of co-microencapsulated ammonium polyphosphate and pentaerythritol in polypropylene | |
CN110520467B (en) | Flame retardant styrene-containing polymer composition | |
RU2391362C2 (en) | Polyurethane coating composition | |
Pavel et al. | Epoxy Resins and Their Hardeners Based on Phosphorus–Nitrogen Compounds | |
KR101891338B1 (en) | Polycyclohexylenedimethyleneterephtalate resin composition comprising non-halogen flame retardant and flame retardant aid | |
EP2743308B1 (en) | Flame retardant and flame retardant composition for styrene resins | |
Tang | Nitrogen-based flame retardants for epoxy thermosets and composites | |
WO2006096112A1 (en) | Intumescent coating and use thereof | |
Jia et al. | Synthesis of Aluminum Hypophosphite Flame Retardant and Its Application in PBT | |
Rapi | The Synthesis of Bio-Based Flame-Retarded Epoxy-Precursors | |
WO2017087298A1 (en) | Flame retardant liquid solution, polyurethane foam-forming compositions, polyurethane foam and articles made therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |