US8557944B2 - Polysiloxanes with nitrogen-containing groups - Google Patents
Polysiloxanes with nitrogen-containing groups Download PDFInfo
- Publication number
- US8557944B2 US8557944B2 US13/279,676 US201113279676A US8557944B2 US 8557944 B2 US8557944 B2 US 8557944B2 US 201113279676 A US201113279676 A US 201113279676A US 8557944 B2 US8557944 B2 US 8557944B2
- Authority
- US
- United States
- Prior art keywords
- hydroxyl
- polysiloxanes
- substituted
- radicals
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 C.C.C.C.C.C.C.C.C[7*]NC(=O)C(O)C(O)C(O)C(O)CO.[6*]OCCN([7*]C)CO[6*].[6*]OCCN([H])[7*]C.[H]N([7*]C)C(=N)N.[H]N([7*]C)C(=O)OCC(O)CO.[H]N([7*]C)CCCC(=N)N.[H]N([7*]C)CCN([H])C(=O)C(O)C(O)C(O)C(O)CO.[H]N([7*]C)CCN([H])C(=O)OCC(O)CO Chemical compound C.C.C.C.C.C.C.C.C[7*]NC(=O)C(O)C(O)C(O)C(O)CO.[6*]OCCN([7*]C)CO[6*].[6*]OCCN([H])[7*]C.[H]N([7*]C)C(=N)N.[H]N([7*]C)C(=O)OCC(O)CO.[H]N([7*]C)CCCC(=N)N.[H]N([7*]C)CCN([H])C(=O)C(O)C(O)C(O)C(O)CO.[H]N([7*]C)CCN([H])C(=O)OCC(O)CO 0.000 description 5
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/26—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/08—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/373—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
- C11D3/3742—Nitrogen containing silicones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
- D06M15/6436—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
- D06M15/647—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing polyether sequences
Definitions
- the present invention relates to polysiloxanes modified with lateral amino functions and at least one further lateral functional group in defined ratios, the process for preparing these multifunctional polysiloxanes, preparations comprising such multifunctional polysiloxanes and the use of these multifunctional polysiloxanes or of their preparations.
- Amino-functional siloxanes are widely used as constituents of textile-reconditioning compositions, more particularly of textile-softening compositions, as constituents of laundry detergent or cleaning compositions for textiles and hydrophobicizing agents.
- a multiplicity of structural variations of this group of compounds are described in the prior art and are obtainable via different routes.
- terminally amino-modified, purely linear polydimethylsiloxanes cannot be varied in their degree of modification in the course of preparation. This is disadvantageous because not only the number of the amino groups but also their type has considerable influence on the aminopolysiloxane's substantivity, i.e. the ability to bind to carriers such as keratinic substances for example, or else to textiles.
- the total nitrogen content of an aminosiloxane is an important parameter because it correlates directly with the substantivity of the aminosiloxane.
- ABn multiblock copolymers are described for extending the polymer chain without reducing the number of amino functionalities. However, as chain length increases, linear copolymers become very viscous and hence difficult to handle.
- U.S. Pat. No. 5,807,956 and U.S. Pat. No. 5,981,681 teach non-hydrolyzable block copolymers of the (AB) n A type with alternating units consisting of polysiloxane and amino-polyalkyleneoxide.
- ⁇ , ⁇ -dihydrogenpolydimethylsiloxanes are prepared by linking ⁇ , ⁇ -dihydrogenpolydimethylsiloxanes to epoxy-bearing olefins in SiC fashion by nobel metal-catalyzed hydrosilation and reacting the resulting epoxy-terminated siloxanes with amino-terminated polyalkylene oxides.
- ⁇ , ⁇ -dihydrogenpolydimethyl-siloxanes are linked to epoxy-terminated allyl polyethers by hydrosilation and the epoxy-functionalized siloxanes thus obtained are subsequently reacted with diamines.
- Polysiloxanes having high degrees of modification combined with a chain length which can be varied irrespective of the nitrogen content are obtainable by lateral functionalization of a polysiloxane with amino-containing organic substituents.
- Laterally modified aminosiloxanes are obtainable under base catalysis or under acid catalysis. Preparation by base-catalyzed equilibration, as described in paragraphs [0154] and [0155] in EP 1 972 330 (U.S. Patent Appl. Pub. 2011-104085) for example, can lead, depending on the starting materials used, either to terminally dihydroxy-functional, laterally amino-modified polysiloxanes, or to laterally amino-modified polysiloxanes endblocked with trimethylsilyl groups.
- Such endblocked polysiloxanes when compared with their structural analogues having free SiOH groups, not only have superior storage stability in the absence of a solvent, but also prevent gellike precipitations and accretions in the handling of aqueous emulsions of such polysiloxanes. These gel deposits are particularly unwelcome for applications in the textile sector.
- Amino-functional polysiloxanes are undergoing constant improvement in order that the textile fabrics treated therewith may be endowed with advantageous effects, for example a textile-softening effect and crease resistance, and/or to reduce the harmful or negative effects which can arise in the course of cleaning and/or conditioning and/or wearing, for example fading, greying, etc.
- sufficient hydrophilicity shall be achieved for the fabric as well as good softness.
- textile-softening formulations based on polysiloxanes of the prior art that the softening property of a fabric finished therewith may in the worst case be lost after just a single wash.
- textile-softening polysiloxanes having enhanced durability on textiles both in the OEM finishing of textile manufacture and in cleaning and reconditioning, for example in the rinse cycle softening of a washing machine.
- U.S. Pat. No. 6,171,515 B1 describes endblocked and also dialkoxy-functional aminopolysiloxanes which, in a synthesis step subsequent to the siloxane polymerization, undergo a functionalization of the primary and secondary amino groups with epoxy-functional monomers such as glycidol for example.
- a similar functionalization of aminosiloxanes with alkylene oxides is described in EP0399706. Further functionalizations of amino-functional polysiloxanes with glycerol carbonate or gluconolactone are described in EP 1 972 330 and in J. Phys. Chem. B 2010, 114, 6872-6877.
- JP 2002-167437-A describes laterally guanidino-functionalized polysiloxanes prepared by reacting the corresponding aminopolysiloxanes with cyanamide.
- WO 2006/081927 describes the condensation copolymerization of a dihydroxy-functional polydimethylsiloxane with a guanidino-containing silane and an amino-containing silane. Although a functionalization of the polysiloxane with nitrogen-containing groups that differ in type and quantity is possible in this way, WO 2006/081927 (U.S. Pat. No. 7,825,207) does not disclose any route to endblocked multiamino-functional polysiloxanes.
- the problem addressed by the present invention is that of providing alternative functionalized aminopolysiloxanes having enhanced durability and/or substantivity on textiles both in the OEM finishing of textile manufacture and in cleaning and reconditioning, for example in the rinse cycle softening of a washing machine.
- the present invention accordingly provides endblocked polysiloxanes modified with lateral amino functions and at least one further lateral and/or terminal functional group in defined ratios, and their method of making.
- the present invention provides polysiloxanes of formula 1 M a D b D A c D B d D C e T f Q g (formula 1)
- R 5 in formula 1 is at least one substituent selected from the formulae 1a to 1f, with the proviso that the index c in formula 1 is greater than the index e.
- the various monomer units of the siloxane chains indicated in the formulae can be arranged in blocks with any number of blocks and any sequence, or have a statistical distribution.
- the indices used in the formulae shall be regarded as statistical means. All references to % by weight related to the total weight of the composition.
- the invention does not intend to encompass within the scope of the invention any previously disclosed product, process of making the product or method of using the product, which meets the written description and enablement requirements of the USPTO (35 U.S.C. 112, first paragraph) or the EPO (Article 83 of the EPC), such that applicant(s) reserve the right and hereby disclose a disclaimer of any previously described product, method of making the product or process of using the product.
- the invention further provides the ionic adducts of the inventive polysiloxanes having nitrogen-containing groups with acids of the general formula H + A ⁇ .
- the anions A ⁇ are identical or different counter-ions to the positive charges, selected from organic or inorganic anions of the acids M + A ⁇ , and also derivatives thereof.
- Preferred anions are for example chloride, sulphate or hydrogensulphates, carbonate or hydrogencarbonate, phosphate or hydrogenphosphates, acetate or homologous carboxylates having linear or branched, saturated or olefinically unsaturated alkyl chains, aromatic carboxylates, amino acid carboxylates, citrates, malonates, fumarates, maleates, substituted and unsubstituted succinates and L-hydroxy carboxylates, such as lactate for example.
- the aminosiloxanes according to the invention and their ionic adducts can be present in dissociation equilibria, depending on the stability of the adduct formed.
- the present invention further provides compositions and preparations and also the use of these multifunctional polysiloxanes, which ensure simple formulation in textile conditioners for OEM finishing and in textile re-conditioning compositions for reconditioning repeated cleaning and good application properties thereof on textiles and fabrics.
- the invention further provides compositions comprising the multifunctional siloxanes according to the invention and further formulation and processing auxiliaries such as for example aliphatic and aromatic, protic and aprotic solvents, cosurfactants, betaines, emulsifiers, fatty alcohol alkoxylates, mono-, di- and triglycerides, oils of synthetic and natural origin.
- auxiliaries such as for example aliphatic and aromatic, protic and aprotic solvents, cosurfactants, betaines, emulsifiers, fatty alcohol alkoxylates, mono-, di- and triglycerides, oils of synthetic and natural origin.
- textile-conditioning composition in this context any composition used in the finishing of the manufactured textile before sale to the consumer.
- textile-reconditioning composition in this context any composition which endows textile fabrics treated therewith an advantageous effect, for example a textile-softening effect and crease resistance, and/or reduces the harmful or negative effects which can arise in the course of cleaning and/or conditioning and/or wearing, for example fading, greying, etc. It is particularly preferable for the textile-reconditioning composition to be a textile-softening composition (rinse cycle softener).
- the invention further provides laundry detergent or cleaner compositions comprising the multifunctional polysiloxanes.
- the invention also provides a process wherein different functional silanes can be reacted in a condensation process with terminally hydroxyl-functional polydimethylsiloxanes to form multifunctional endblocked polysiloxanes.
- aminoalkyldialkoxysilanes can be further functionalized at the amino group and cocondensed, in a second step, in specific ratios relative to each other, with hydroxyl-functional polydimethylsiloxanes in the presence of reagents releasing trimethylsilyl groups. It is unexpected and surprising to a person skilled in the art that trimethylsilyl groups endblock the silicone chain selectively without silating the amino groups or hydroxyl groups of the lateral organic modifications, as described in WO 99/17615 for example.
- the invention further provides for the use of the multifunctional siloxanes according to the invention in textile-conditioning and textile-reconditioning compositions, more particularly textile-softening compositions (rinse cycle softeners).
- textile-softening compositions are aqueous formulations which include as their main active constituent one or more cationic textile-softening compounds having one or more long-chain alkyl groups in a molecule.
- Widely used cationic textile-softening compounds include for example methyl-N-(2-hydroxyethyl)-N,N-di(tallowacyloxyethyl)ammonium compounds or N,N-dimethyl-N,N-di(tallowacyloxyethyl)-ammonium compounds.
- the rinse cycle softeners may further comprise additives and assistants, more particularly perfume, dyes, viscosity regulators, defoamers, preservatives, organic solvents, non-siloxane polymers and other siloxane polymers not according to the invention. More particularly, the compositions according to the invention may comprise between 0.001% and 25% and more preferably from 0.01% to 15% by weight of one or more different additives or assistants.
- any scent or scent mixture known to be suitable for aqueous rinse cycle softeners from the prior art can be used, preferably in the form of a perfume oil.
- scent and/or fragrance chemicals are disclosed inter alia in DE 197 51 151 A1 page 4 lines 11-17. More particularly, the compositions according to the invention may comprise between 0.01% and 10% and more preferably from 0.1% to 5% by weight of one or more scents or scent mixtures.
- compositions according to the invention may comprise between 0.001% and 0.1% by weight and more preferably from 0.002% to 0.05% by weight of one or more dyes or dye mixtures.
- the aqueous rinse cycle softener may comprise an alkali or alkaline earth metal salt, preferably calcium chloride, in an amount of 0.05-2% by weight.
- the aqueous rinse cycle softener may comprise a thickener known to be suitable from the prior art, in which case the polyurethane thickeners known from WO 2007/125005 (U.S. Patent Application Publication 2009-124533) are preferred.
- suitable thickeners are TEGO® Visco Plus 3030 (from Evonik Tego Chemie), Acusol® 880 and 882 (from Rohm & Haas), Rheovis® CDE (from BASF), Rohagit® KF 720 F (from Evonik Röhm GmbH) and Polygel® K100 from Neochem GmbH.
- compositions according to the invention may comprise between 0.0001% and 0.05% and more preferably from 0.001% and 0.01% by weight of one or more different defoamers.
- the aqueous rinse cycle softener may comprise bactericidal and/or fungicidal actives known to be suitable from the prior art, in which case water-soluble actives are preferred.
- suitable commercially available bactericides are methylparaben, 2-bromo-2-nitro-1,3-propanediol, 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one.
- the aqueous rinse cycle softener may equally comprise an oxidation inhibitor by way of a preservative.
- compositions according to the invention may comprise between 0.0001% and 0.5% and more preferably from 0.001% to 0.2% by weight of one or more different preservatives. More particularly, the compositions according to the invention may comprise between 0.001% and 0.01% and more preferably from 0.001% to 0.01% by weight of one or more different oxidation inhibitors.
- the rinse cycle softener may comprise short-chain alcohols, glycols and glycol monoethers, in which case ethanol, 2-propanol, 1,2-propanediol and dipropylene glycol is preferred. More particularly, the compositions according to the invention may comprise between 0.1% and 10% and more preferably from 0.2% to 5% by weight of one or more different organic solvents.
- the rinse cycle softener may comprise one or more non-siloxane polymers.
- non-siloxane polymers examples thereof are carboxymethyl-cellulose, polyethylene glycol, polyvinyl alcohol, poly(meth)acrylates, polyethyleneimines or polysaccharides.
- the compositions according to the invention may comprise between 0.01% and 25% and more preferably from 0.1% to 10% by weight of one or more different non-siloxane polymers.
- the invention further provides for the use of the multifunctional siloxanes according to the invention in laundry detergents or cleaner.
- Incorporation into a laundry detergent or cleaner compositions provides the consumers with a textile-reconditioning laundry detergent or cleaner (“2in1” laundry detergent or cleaner), and they no longer need to dose two products (laundry detergent or cleaner product one the one hand and rinse cycle softener on the other) as well as no separate rinse cycle.
- the laundry detergent or cleaner compositions can comprise further ingredients to further improve the performance and/or aesthetic characteristics of the laundry detergent or cleaner composition.
- Preferred laundry detergent or cleaner compositions further comprise one or more from the group of surfactants, builders, bleaches, bleach activators, enzymes, perfumes, perfume carriers, fluorescers, dyes, foam inhibitors, silicone oils, antiredeposition agents, optical brighteners, greyness inhibitors, shrinkage inhibitors, crease resistant agents, dye transfer inhibitors, antimicrobial actives, germicides, fungicides, antioxidants, preservatives, corrosion inhibitors, antistats, bittering agents, ironing aids, phobing and impregnating agents, swelling and non-slip agents, neutral filling salts and also UV absorbers. More particularly, the compositions of the invention may comprise between 0.001% and 90% and more preferably from 0.01% to 45% by weight of one or more of the further ingredients mentioned here.
- Examples of usable surfactants are described in WO 2007/115872 (U.S. Patent Application Publication 2009-042766) page 17 line 28 to page 21 line 24.
- Examples of builders, bleaches, bleach activators, bleach catalysts and enzymes are described in WO 2007/115872 page 22 line 7 to page 25 line 26.
- Antiredeposition agents, optical brighteners, greyness inhibitors, dye transfer inhibitors are described by way of example in WO 2007/115872 at page 26 line 15 to page 28 line 2.
- Examples of crease resist agents, antimicrobial actives, germicides, fungicides, antioxidants, preservatives, antistats, ironing aids, UV absorbers are described in WO 2007/115872 at page 28 line 14 to page 30 line 22 by way of example.
- hexamethyldisilazane or disilazanes which are substituted with different carbon radicals, for example divinyltetramethyldisilazane, preferably hexamethyldisilazane;
- R 1 and R 4 are each as defined for formula 1,
- R 8 is R 6 , preferably R 8 is a hydrogen atom, a methyl group or a carboxyl group, more preferably H or acetyl, and R 9 is an alkyl or acyl radical, more particularly methyl, ethyl or acetyl, are reacted with one another.
- the silanes are advantageously used as a monomer. When it is advantageous for later use, the silanes may be pre-condensed under hydrolytically acidic conditions to form oligomers before the polymer construction is initiated through addition of the dihydroxy-functional polysiloxanes.
- the dialkoxysilanes used are prepared using methods of synthesis which are known in the prior art.
- the guanidination of amino-functional silanes is carried out similarly to the guanidination of aminosiloxanes which is described in JP 2002 167437.
- the reaction of amino-functional siloxanes with glycerol carbonate or gluconolactone is carried out on the lines of EP 1 972 330 A1 and J. Phys. Chem. B 2010, Vol. 114, pp. 6872-6877.
- Catalysts used for the hydrolysis and condensation reaction are carboxylic acids such as, for example, acetic acid, propionic acid, isononanoic acid or oleic acid.
- the reaction can be carried out in the presence of small amounts of added water to speed the hydrolysis, but frequently sufficient moisture will be present in the reagents used undried.
- the reaction can be carried out without a solvent or in the presence of solvents, for example aliphatic and aromatic, protic and aprotic solvents, glycols, ethers, fatty alcohol alkoxylates, mono-, di- and triglycerides or oils of synthetic or natural origin. Using solvents will be advantageous for example when the chain lengths of the desired structures bring about high viscosities.
- the solvent can be added before, during or after the reaction.
- the reaction can be carried out at temperatures in the range from room temperature to 150° C., preferably at 50-100° C.
- the alcohols released in the hydrolysis are vacuum distilled off during or after the reaction. Neutralization and filtration steps are optional.
- NMR Spectra of Polymers and Polymer Additives by A. Brandolini and D. Hills, published in the year 2000 by Marcel Dekker Inc., may hereby be introduced as a reference.
- the molar ratios between the substituents of the polysiloxanes can be determined by NMR spectroscopy, more particularly by quantitative 13 C NMR methods, supplemented by selective nitrogen determination of primary as well as secondary as well as tertiary amine structures.
- 35.62 g of D(+)-glucono- ⁇ -lactone (99% pure, Sigma Aldrich) in 35 g of 2-propanol is suspended at 70° C. and stirred for 1 hour in a 250 ml four-neck flask equipped with connected KPG stirrer, dropping funnel, reflux condenser and internal thermometer.
- 38.62 g of 3-amino-propylmethyldiethoxysilane (Dynasylan® 1505, Evonik Degussa GmbH) are added dropwise at 75° C. during 5 minutes. This is followed by a further 4 hours of stirring at 75° C. to obtain a clear, slightly yellowish product of 64.8% solids content.
- Solids content is determined by two-hour distillative removal of the solvent in a rotary evaporator at 60° C. and 20 mbar and subsequent weighing.
- the 13 C NMR spectrum shows complete reaction with the gluconolactone, since there are no signals at 45 ppm to indicate residual quantities of a CH 2 —NH 2 group.
- a 500 ml four-neck flask equipped with connected KPG stirrer, dropping funnel, reflux condenser and internal thermometer is initially charged with 95.67 g of 3-aminopropylmethyldiethoxysilane (Dynasylan® 1505, Evonk Degussa GmbH) and 70 g of ethanol. Under stirring, 27 g of acetic acid (99-100% pure, J. T. Baker) are added dropwise at room temperature during 15 minutes. This is followed by heating to 79° C. and, under stirring, 10.51 g of Cyanamid F 1000 (Alzchem Trostberg GmbH) dissolved in 30 g of ethanol are added dropwise over a period of 2 hours.
- Cyanamid F 1000 Alzchem Trostberg GmbH
- a 500 ml four-neck flask equipped with connected KPG stirrer, dropping funnel, reflux condenser and internal thermometer is used to heat 200 g of dihydroxy-functional polydimethylsiloxane having a chain length of 47.2 dimethylsiloxane units, 6.52 g of 3-amino-propylmethyldiethoxysilane (Dynasylan® 1505, Evonik Degussa GmbH) and 6.48 g of the 64.8% 2-propanolic silane solution of Example 1 to 85° C. with stirring. 0.68 g of acetic acid (99-100% pure, J. T. Baker) are added and a vacuum is applied. The mixture is stirred at 85° C. and 20 mbar for one hour.
- a 1000 ml four-neck flask equipped with connected KPG stirrer, dropping funnel, reflux condenser and internal thermometer is used to heat 656.3 g of dihydroxy-functional polydimethylsiloxane having a chain length of 47.6 dimethylsiloxane units, 10.62 g of 3-amino-propylmethyldiethoxysilane (Dynasylan® 1505, Evonik Degussa GmbH) and 26.95 g of the 54.9% ethanolic silane solution of Example 2 to 85° C. with stirring. The mixture is stirred at 85° C. and 20 mbar for one hour.
- a 500 ml four-neck flask equipped with connected KPG stirrer, dropping funnel, reflux condenser and internal thermometer is used to heat 246.6 g of dihydroxy-functional polydimethylsiloxane having a chain length of 47.2 dimethylsiloxane units, 9.64 g of 3-amino-propylmethyldiethoxysilane (Dynasylan® 1505, Evonik Degussa GmbH), 2.01 g of octadecylmethyldimethoxysilane (Wacker AG) and 1.18 g of acetic acid (99-100% pure, J. T. Baker) to 85° C. with stirring. This is followed by distillation at 85° C. and 20 mbar for one hour.
- the formulations given in Table 1 were prepared similarly to the general formulation.
- the comparative product Biosoft 09 from BT Biotex SDN BHD Malaysia is an amino-functional silicone fluid which can be used as a soft-handle agent for fibres and textiles.
- knit cotton fabric 160 g/m 2
- terry cotton fabric 400 g/m 2
- a liquor containing in each case 12.5 g/l of the corresponding emulsion squeezed off to a wet pick-up of about 100% and dried at 100° C. for three minutes.
- woven cotton fabric 200 g/m 2
- a liquor containing in each case 150 g/l of the corresponding emulsion was squeezed off to a wet pick-up of about 100% and dried at 130° C. for three to five minutes.
- knit cotton fabric (160 g/m 2 ) and terry cotton fabric (400 g/m 2 ) were immersed in a 0.025% by weight (based on active silicone ingredient) liquor having a liquor ratio of 12:1 for 20 min with gentle mixing, gently wrung out and dried at 100° C. in an oven.
- woven cotton fabric (200 g/m 2 ) was immersed in a 0.025% by weight (based on active silicone ingredient) liquor having a liquor ratio of 120:1 for 20 min with gentle mixing and dried at 100° C. in an oven.
- Fabric handle was assessed by an experienced team who assessed the anonymized handle samples of the knit and terry fabrics finished with the emulsions, with the aid of a hand panel test.
- the handle samples of knit fabric additionally included an untreated sample not overtly labelled.
- the washing operations were performed in a commercial washing machine, Miele Novotronic W 918, with coloureds wash without prewash at 40° C. using wfk standard laundry detergent IECA base and 3 kg of cotton ballast fabric.
- the fabric thus treated was finally dried at room temperature for 12 hours.
- Hydrophilicity testing was performed using an in-house test method for measuring the height of rise of water, in line with German standard specification DIN 53924.
- the finished woven cotton test fabric is cut into five strips each 25 cm in length and 1.5 cm in width, marked with a water-soluble pen and secured in a taut perpendicular position, but without tension, to a holder.
- Pad-mangle Exhaust process knit terry knit terry Formulation used cotton cotton cotton cotton cotton 1 (inventive) +++ +++ +++ +++ 2 (not inventive) ++ ++ ++ ++ ++ untreated ⁇ ⁇ ⁇ ⁇ +++ excellent, ++ very good, + good, ⁇ satisfactory, ⁇ poor
- Terry cotton fabrics of 80 cm by 50 cm with a basis weight of about 350 g/m 2 were washed twice with fully-built powder, rinsed twice, hydroextracted and line dried in a single layer in the air.
- inventive-siloxane formulation as described above was diluted with cold tap water to form a rinse solution comprising 0.025% by weight of inventive siloxane.
- the cotton cloths were dipped for 10 min into two litres of the rinse solution. Care must be taken here to ensure that the cloths become evenly wetted by the rinse solution. The cloths were subsequently hydroextracted and line dried at room temperature in single layers. The terry cotton cloths treated were cut into 10 equal pieces measuring 16 cm by 25 cm.
- Softness was assessed by an experienced 9-strong team who assessed the anonymized handle samples, of the cotton fabrics finished with the emulsions, with the aid of a hand panel test. Each judge was given a separate cotton cloth to assess.
- the assessment scale ranged from 0 (harsh and unpleasant handle) to 5 (soft and pleasant handle) with the possibility of awarding whole-numbered intermediate values.
- the handle samples additionally always included an untreated sample (blank) not overtly labelled.
- a commercially available microemulsion of an amino-functionalized siloxane for example TEGOSIVIN® IE 11/59 having a solids content of 20% by weight, representing the prior art.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Silicon Polymers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Detergent Compositions (AREA)
Abstract
Description
MaDbDA cDB dDC eTfQg (formula 1)
-
- M=[R2R1 2SiO1/2]
- D=[R1 2SiO2/2]
- DA=[R1Si(R7NHR3)O2/2]
- DB=[R1SiR4O2/2]
- DC=[R1SiR5O2/2]
- T=[R1SiO3/2]
- Q=[SiO4/2]
- R1 in each occurrence independently represents identical or different linear or branched, saturated or unsaturated hydrocarbon radicals having 1 to 30 carbon atoms or else aromatic hydrocarbon radicals having 6 to 30 carbon atoms preferably methyl or phenyl, more particularly methyl;
- R2 in each occurrence independently represents R1, an alkoxy radical or a hydroxyl group, preferably R1 and more particularly methyl;
- R3 in each occurrence independently represents hydrogen or a hydrocarbon radical substituted with nitrogen atoms, for example an aminoethyl radical, more particularly hydrogen;
- R4 in each occurrence independently represents identical or different linear or branched, saturated or olefinically unsaturated hydrocarbon radicals having 8 to 30 carbon atoms, for example decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, more particularly hexadecyl and octadecyl;
- R5 in each occurrence independently represents identical or different linear or branched, saturated or unsaturated polar hydroxyl-substituted amide radicals having 1 to 30 carbon atoms and/or hydroxyl-substituted carbamate radicals having 1 to 30 carbon atoms and/or ethoxylated amine radicals having 1 to 30 carbon atoms and/or guanidine radicals or alkylenylguanidine radicals having 1 to 30 carbon atoms, preferably selected from the group of substituents of formula 1a to 1h
- R6 represents hydrogen, a hydrocarbon radical, an acyl radical, a carboxylate radical or a carbamate or carbonate radical, more particularly hydrogen and CH3—C(O);
- R7 in each occurrence independently represents identical or different linear or branched, saturated or unsaturated, divalent hydrocarbon groups having 1 to 20 and preferably 1 to 6 carbon atoms and more particularly a —(CH2)3— group,
- a=2 to 20; preferably 2 to 10, in particular 2;
- b=10 to 5000, preferably 20 to 2000, in particular 20-1000;
- c=1 to 500, preferably 1 to 100, in particular 1 to 30;
- d=0 to 500, preferably 0 to 100, in particular 0 to 30;
- e=0 to 500, preferably 1 to 100, in particular 1 to 30;
- f=0 to 20, preferably 0 to 10, in particular 0;
- g=0 to 20, preferably 0 to 10, in particular 0;
TABLE 1 |
Formulations produced |
Formulation | ||
example | Product used | Inventive |
1 | Synthesis Example 4 | yes |
2 | Biosoft 09 | no |
TABLE 2 |
Softness assessment of terry cotton after |
application by pad-mangle |
Formulation | Before | After 1st | After 3rd | After 5th | ||
used | wash | wash | wash | wash | ||
1 | +++ | +++ | ++ | ++ | ||
2 | ++ | ++ | + | + | ||
untreated | − | − | − | − | ||
+++ excellent, | ||||||
++ very good, | ||||||
+ good, | ||||||
∘ satisfactory, | ||||||
− poor |
TABLE 3 |
Softness assessment on knit cotton or terry cotton |
after application by pad-mangle compared with |
commercially available hydrophilic aminosiloxane |
Formulation used | Knit cotton | Terry cotton | ||
1 (inventive) | +++ | +++ | ||
2 (not inventive) | ++ | ++ | ||
untreated | − | − | ||
+++ excellent, | ||||
++ very good, | ||||
+ good, | ||||
∘ satisfactory, | ||||
− poor |
TABLE 4 |
Softness assessment after application by |
pad-mangle and exhaust process |
Pad-mangle | Exhaust process |
knit | terry | knit | terry | |||
Formulation used | cotton | cotton | cotton | cotton | ||
1 (inventive) | +++ | +++ | +++ | +++ | ||
2 (not inventive) | ++ | ++ | ++ | ++ | ||
untreated | − | − | − | − | ||
+++ excellent, | ||||||
++ very good, | ||||||
+ good, | ||||||
∘ satisfactory, | ||||||
− poor |
TABLE 5 |
Rewettability on woven cotton in % of |
height of rise of untreated cotton strip after |
application with pad-mangle |
Formulation 1 | 85 | ||
(inventive) | |||
Formulation 2 | 75 | ||
(inventive) | |||
untreated | 100 | ||
TABLE 6 |
Summary of softness results |
Cotton fabric treated with | ||||
Example | siloxane of synthesis example | Softness | ||
6 | 3 | 25 | ||
7 | 4 | 42 | ||
8 | 5 | 30 | ||
9 | comparative example | 20 | ||
10 | without siloxane (“blank”) | 0 | ||
Claims (11)
MaDbDA cDB dDC eTfQg (formula 1)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010042861 | 2010-10-25 | ||
DE102010042861.2 | 2010-10-25 | ||
DE102010042861 | 2010-10-25 | ||
DE102010062156.0 | 2010-11-30 | ||
DE102010062156A DE102010062156A1 (en) | 2010-10-25 | 2010-11-30 | Polysiloxanes with nitrogen-containing groups |
DE102010062156 | 2010-11-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120097883A1 US20120097883A1 (en) | 2012-04-26 |
US8557944B2 true US8557944B2 (en) | 2013-10-15 |
Family
ID=45563626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/279,676 Active US8557944B2 (en) | 2010-10-25 | 2011-10-24 | Polysiloxanes with nitrogen-containing groups |
Country Status (8)
Country | Link |
---|---|
US (1) | US8557944B2 (en) |
EP (1) | EP2444447B1 (en) |
JP (1) | JP5873685B2 (en) |
CN (1) | CN102558561A (en) |
BR (1) | BRPI1107157B1 (en) |
CA (1) | CA2757443C (en) |
DE (1) | DE102010062156A1 (en) |
ES (1) | ES2790625T3 (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9346919B2 (en) | 2013-04-09 | 2016-05-24 | Evonik Degussa Gmbh | Polysiloxane-polyether copolymers with amino groups and/or quaternary ammonium groups in the polyether moiety and processes for the preparation thereof |
US9353225B2 (en) | 2013-08-23 | 2016-05-31 | Evonik Degussa Gmbh | Compounds having guanidine groups and containing semi-organic silicon groups |
US9481695B2 (en) | 2013-07-18 | 2016-11-01 | Evonik Industries Ag | Amino acid-modified siloxanes, process for preparing them and application |
US9540500B2 (en) | 2014-12-05 | 2017-01-10 | Evonik Degussa Gmbh | Production of polyether siloxanes |
US9550928B2 (en) | 2013-04-17 | 2017-01-24 | Evonik Degussa Gmbh | Alkoxysilyl-containing adhesive sealants with intrinsically reduced viscosity |
US9783635B2 (en) | 2013-05-07 | 2017-10-10 | Evonik Degussa Gmbh | Polyoxyalkylenes with pendant long-chain acyloxy groups and method for producing same using DMC catalysts |
US9790327B2 (en) | 2013-08-23 | 2017-10-17 | Evonik Degussa Gmbh | Silicone resin compositions which can be cured at room temperature |
US10099211B2 (en) | 2014-11-12 | 2018-10-16 | Evonik Degussa Gmbh | Process for producing compositions comprising platinum |
US10106649B2 (en) | 2014-05-19 | 2018-10-23 | Evonik Degussa Gmbh | Ethoxylate production using highly active double metal cyanide catalysts |
US10160832B2 (en) | 2014-09-05 | 2018-12-25 | Evonik Degussa Gmbh | Process for the preparation of eugenol polyethers that can be hydrosilylated and eugenol polyethersiloxanes and use thereof |
US10287454B2 (en) | 2013-08-23 | 2019-05-14 | Evonik Degussa Gmbh | Coating compositions |
US10299471B2 (en) | 2015-06-16 | 2019-05-28 | Evonik Degussa Gmbh | Biodegradable super-spreading, organomodified trisiloxane |
US10407592B2 (en) | 2015-11-11 | 2019-09-10 | Evonik Degussa Gmbh | Curable polymers |
US10414872B2 (en) | 2017-08-01 | 2019-09-17 | Evonik Degussa Gmbh | Production of SiOC-bonded polyether siloxanes |
US10414871B2 (en) | 2016-11-15 | 2019-09-17 | Evonik Degussa Gmbh | Mixtures of cyclic branched siloxanes of the D/T type and conversion products thereof |
US10519280B2 (en) | 2017-06-13 | 2019-12-31 | Evonik Degussa Gmbh | Process for preparing SiC-Bonded polyethersiloxanes |
US10526454B2 (en) | 2017-06-13 | 2020-01-07 | Evonik Degussa Gmbh | Process for preparing SiC-bonded polyethersiloxanes |
US10544384B2 (en) | 2015-02-27 | 2020-01-28 | Evonik Degussa Gmbh | Skin cleansing composition containing rhamnolipid and siloxane |
US10544267B2 (en) | 2016-07-22 | 2020-01-28 | Evonik Degussa Gmbh | Method for producing siloxanes containing glycerin substituents |
US10766913B2 (en) | 2017-10-09 | 2020-09-08 | Evonik Operations Gmbh | Mixtures of cyclic branched siloxanes of the D/T type and conversion products thereof |
US10836867B2 (en) | 2014-07-11 | 2020-11-17 | Evonik Operations Gmbh | Composition containing platinum |
US11021608B2 (en) | 2018-02-08 | 2021-06-01 | Evonik Operations Gmbh | Aqueous polyorganosiloxane hybrid resin dispersion |
US11021575B2 (en) | 2018-08-15 | 2021-06-01 | Evonik Operations Gmbh | Process for producing acetoxy-bearing siloxanes |
US11028233B2 (en) * | 2018-05-31 | 2021-06-08 | Dow Silicones Corporation | Method for making an amino-functional polydiorganosiloxane using a removable solid catalyst |
US11066429B2 (en) | 2019-05-28 | 2021-07-20 | Evonik Operations Gmbh | Process for producing acetoxy-bearing siloxanes |
US11220578B2 (en) | 2019-05-28 | 2022-01-11 | Evonik Operations Gmbh | Process for producing SiOC-bonded polyether siloxanes branched in the siloxane portion |
US11254819B2 (en) | 2019-10-28 | 2022-02-22 | Evonik Operations Gmbh | Curing agent mixture |
US11261298B2 (en) | 2019-05-28 | 2022-03-01 | Evonik Operations Gmbh | Tailored SiOC-based polyethersiloxanes |
US11286351B2 (en) | 2019-05-28 | 2022-03-29 | Evonik Operations Gmbh | Process for producing acetoxy-bearing siloxanes |
US11286366B2 (en) | 2019-05-28 | 2022-03-29 | Evonik Operations Gmbh | Process for recycling silicones |
US11312926B2 (en) | 2017-09-25 | 2022-04-26 | Evonik Operations Gmbh | Polysiloxane-containing concentrates with improved storage stability and use thereof in textile care compositions |
US11420985B2 (en) | 2019-05-28 | 2022-08-23 | Evonik Operations Gmbh | Acetoxy systems |
US11472822B2 (en) | 2019-05-28 | 2022-10-18 | Evonik Operations Gmbh | Process for purifying acetoxysiloxanes |
US11485938B2 (en) | 2017-09-06 | 2022-11-01 | Evonik Operations Gmbh | Microemulsion comprising quaternary ammonium compound, especially for production of fabric softener formulations |
US11498996B2 (en) | 2019-05-28 | 2022-11-15 | Evonik Operations Gmbh | Process for producing polyoxyalkylene polysiloxane block polymers |
US11591448B2 (en) | 2020-03-27 | 2023-02-28 | Evonik Operations Gmbh | Physical reutilization of siliconized sheets |
US11692153B2 (en) | 2018-07-05 | 2023-07-04 | Evonik Operations Gmbh | Long-chain alkyl esterquats for highly viscous laundry and cleaning formulations |
US11725017B2 (en) | 2017-11-29 | 2023-08-15 | Evonik Operations Gmbh | Method for preparing SiOC-linked polyether siloxanes branched in the siloxane part |
US11732092B2 (en) | 2020-10-19 | 2023-08-22 | Evonik Operations Gmbh | Upcycling process for processing silicone wastes |
US11732091B2 (en) | 2019-05-28 | 2023-08-22 | Evonik Operations Gmbh | Process for producing SiOC-bonded polyether siloxanes branched in the siloxane portion |
US11795275B2 (en) | 2018-12-04 | 2023-10-24 | Evonik Operations Gmbh | Reactive siloxanes |
US11851583B2 (en) | 2016-07-19 | 2023-12-26 | Evonik Operations Gmbh | Process for producing porous polyurethane coatings using polyol ester additives |
US12018149B2 (en) | 2019-04-01 | 2024-06-25 | Evonik Operations Gmbh | Aqueous polyorganosiloxane hybrid resin dispersion |
US12053721B2 (en) | 2020-08-14 | 2024-08-06 | Evonik Operations Gmbh | Defoamer composition based on organofunctionally modified polysiloxanes |
US12054635B2 (en) | 2017-10-13 | 2024-08-06 | Evonik Operations Gmbh | Curable composition for coatings having an anti-adhesive property |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010001531A1 (en) | 2010-02-03 | 2011-08-04 | Evonik Goldschmidt GmbH, 45127 | Novel organomodified siloxanes with primary amino functions, novel organomodified siloxanes with quaternary ammonium functions and the process for their preparation |
DE102010062676A1 (en) * | 2010-12-09 | 2012-06-14 | Evonik Goldschmidt Gmbh | Preparations containing polysiloxanes with nitrogen-containing groups |
DE102011078382A1 (en) | 2011-06-30 | 2013-01-03 | Evonik Goldschmidt Gmbh | Microemulsion of quaternary ammonium group-containing polysiloxanes, their preparation and use |
DE102011079791A1 (en) | 2011-07-26 | 2013-01-31 | Evonik Goldschmidt Gmbh | Additive composition, which can be used to control the foam properties in the production of flexible polyurethane foams containing polyols based on renewable raw materials |
DE102011109547A1 (en) | 2011-08-03 | 2013-02-07 | Evonik Goldschmidt Gmbh | Polysiloxanpolyether copolymers with carbonate group-containing (polyether) radicals and their use as stabilizer for the production of polyurethane foams |
DE102011110100A1 (en) | 2011-08-12 | 2013-02-14 | Evonik Goldschmidt Gmbh | Process for the preparation of polysiloxanes with nitrogen-containing groups |
DE102011088787A1 (en) | 2011-12-16 | 2013-06-20 | Evonik Industries Ag | Siloxan lemon and its application |
DE102011089535A1 (en) | 2011-12-22 | 2013-06-27 | Evonik Industries Ag | Defoamer compositions for building material mixtures |
DE102012202521A1 (en) | 2012-02-20 | 2013-08-22 | Evonik Goldschmidt Gmbh | Branched polysiloxanes and their use |
DE102012203737A1 (en) | 2012-03-09 | 2013-09-12 | Evonik Goldschmidt Gmbh | Modified alkoxylation products having at least one non-terminal alkoxysilyl group and containing a plurality of urethane groups and their use |
KR20170034380A (en) * | 2014-06-16 | 2017-03-28 | 시카 테크놀러지 아게 | Cross-linking catalyst comprising siloxane structural units |
WO2016134538A1 (en) * | 2015-02-28 | 2016-09-01 | Evonik Degussa Gmbh | Oem textile finishing compositions |
DE102016207063A1 (en) * | 2016-04-26 | 2017-10-26 | Wacker Chemie Ag | Compositions containing carbamato-functionalized organopolysiloxanes and cationic surfactants |
SE542554C2 (en) * | 2016-09-06 | 2020-06-02 | Organoclick Ab | Emulsified liquid composition comprising amino functional siloxane and uses therof |
US11298634B2 (en) | 2017-09-27 | 2022-04-12 | Byk-Chemie Gmbh | Polysiloxane defoaming agent |
CN108409968A (en) * | 2018-03-29 | 2018-08-17 | 中国日用化学研究院有限公司 | A kind of preparation method of high grafting rate combed organosilicon glucoheptose sugar acidamide surfactant |
EP3611214A1 (en) | 2018-08-15 | 2020-02-19 | Evonik Operations GmbH | Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers |
WO2020223863A1 (en) * | 2019-05-06 | 2020-11-12 | Wacker Chemie Ag | A method for preparing polyorganosiloxanes |
CN111848960B (en) * | 2020-07-16 | 2023-09-29 | 抚顺天成环保科技有限公司 | Water-soluble silicone resin and application thereof |
Citations (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371161A (en) | 1992-11-21 | 1994-12-06 | Th. Goldschmidt Ag | Method for the preparation of organopolysiloxanes containing SIH groups |
EP0342830B1 (en) | 1988-05-17 | 1995-01-11 | Dow Corning Limited | Organosilicon compounds |
US5401871A (en) | 1993-02-25 | 1995-03-28 | Th. Goldschmidt Ag | Organopolysiloxane polyethers and their use as hydrolysis-resistant wetting agents in aqueous systems |
US5430167A (en) | 1993-06-24 | 1995-07-04 | Th. Goldschmidt Ag | Silanes with hydrophilic groups, their synthesis and use as surfactants in aqueous media |
EP0515915B1 (en) | 1991-05-31 | 1995-08-02 | Pfersee Chemie GmbH | Aqueous dispersions of polysiloxanes |
US5455367A (en) | 1993-04-22 | 1995-10-03 | Th. Goldschmidt Ag | Method for the synthesis of silanes or organosilicon hydrides by the reduction of the corresponding silicon halides or organosilicon halides |
US5475127A (en) | 1994-04-27 | 1995-12-12 | Th. Goldschmidt Ag | Organosilyl and organosiloxanyl derivatives of glycerin ethers and their use |
US5613988A (en) | 1993-12-17 | 1997-03-25 | Th. Goldschmidt Ag. | Use of organofunctionally modified polysiloxanes for defoaming diesel |
US5741876A (en) * | 1995-07-03 | 1998-04-21 | Dow Corning Corporation | Method of preparing powdered silicone resins |
US5804099A (en) | 1995-11-30 | 1998-09-08 | Th. Goldschmidt Ag. | Polysiloxane-polyoxyethylene-polyoxypropylene triblock copolymers and defoaming compounds containing them |
US5863966A (en) | 1995-09-07 | 1999-01-26 | Th. Goldschmidt Ag | Radiation-curing printing inks with enhanced scratch resistance and lubricity |
EP0915119A1 (en) | 1997-11-07 | 1999-05-12 | Wacker-Chemie GmbH | Aminosiloxane-containing compositions |
US5977282A (en) | 1996-12-02 | 1999-11-02 | Th. Goldschmidt Ag | Acrylate group-modified organosiloxanyl derivatives of alkanediol monovinyl ethers, process for their preparation, and their use as radiation-curable binders |
US5981812A (en) | 1996-11-25 | 1999-11-09 | Th. Goldschmidt Ag | Process for preparing α, ω-alkenols |
US6054534A (en) | 1996-10-11 | 2000-04-25 | R Th. Goldschmidt Ag | Silicone poly(meth) acrylates, their preparation and their use in coatings |
EP1035152A1 (en) | 1999-03-05 | 2000-09-13 | Dow Corning Corporation | Silicone terpolymers containing dimethylsiloxane, higher ( =C8) alkylsiloxane and aminoalkylsiloxane groups |
US6194596B1 (en) | 1999-03-09 | 2001-02-27 | Goldschmidt Ag | Polysiloxanes containing carbonate groups and modified with linear polyesters and their use as additives in coatings |
US6207781B1 (en) | 1999-08-20 | 2001-03-27 | Dow Corning Corporation | Polymerization of an organofunctional cocyclic siloxane |
US6255511B1 (en) | 1993-09-06 | 2001-07-03 | Th Goldschmidt Ag | Silanes with hydrophilic groups, their synthesis and use as surfactants in aqueous media |
US6255429B1 (en) | 1999-09-02 | 2001-07-03 | Dow Corning Corporation | Amine-, polyol-, amide-functional siloxane copolymers and methods for their preparation |
US6288129B1 (en) | 1998-11-03 | 2001-09-11 | Th. Goldschmidt Ag | Process for preparing acrylic esters and/or methacrylic esters of hydroxy-functional siloxanes and/or polyoxyalkylene-modified siloxanes and their use |
US6291622B1 (en) | 1998-12-23 | 2001-09-18 | Goldschmidt Ag | Process and apparatus for continuous hydrosilylation |
US6297331B1 (en) | 1996-06-22 | 2001-10-02 | Th. Goldschmidt Ag | Organosiloxanyl derivatives of alkanediol monovinyl ethers, process for their preparation, their modification and their use as paint additives |
US6307082B1 (en) | 1999-02-24 | 2001-10-23 | Goldschmidt Ag | Synergistic catalyst system and process for carrying out hydrosilylation reactions |
US6391831B1 (en) | 1999-05-14 | 2002-05-21 | Goldschmidt Ag | Use of water-insoluble polyoxyarylene-polysiloxane block copolymers for defoaming aqueous media |
US6420324B1 (en) | 1999-04-16 | 2002-07-16 | Goldschmidt Ag | Defoamers for aqueous media |
US6423785B1 (en) | 1999-02-05 | 2002-07-23 | Goldschmidt Ag | Maleic anhydride copolymers containing amine oxide groups and their use as dispersants for pigments of fillers |
US6433028B1 (en) | 1999-05-14 | 2002-08-13 | Goldschmidt Ag | Use of water-insoluble polyoxyalkylene-polysiloxane block copolymers for defoaming aqueous media |
US6451863B1 (en) | 1999-05-14 | 2002-09-17 | Golschmidt Ag | Use of water-insoluble poly(oxy-1,4-butanediyl)-containing polyoxyalkylene-polysiloxane block copolymers for defoaming aqueous media |
US20020161158A1 (en) | 2001-02-27 | 2002-10-31 | Georg Burkhart | Process for working-up polyethersiloxanes |
US6521771B2 (en) | 2000-05-19 | 2003-02-18 | Goldschmidt Ag | Use of zinc treated with metal hydride in organometallic synthesis |
US6552091B1 (en) | 1999-08-27 | 2003-04-22 | Goldschmidt Ag | Block-copolymeric polyalkylene oxides containing styrene oxide, obtained by alkoxylation, and their use |
DE10214139C2 (en) | 2002-03-28 | 2003-12-04 | Wacker Chemie Gmbh | Process for the preparation of emulsions of hydroxamic acid functional organopolysiloxane |
US20040024089A1 (en) | 2002-04-16 | 2004-02-05 | Stefan Busch | Use of epoxypolysiloxanes modified with oxyalkylene ether groups as additives for radiation-curing coatings |
US20040063818A1 (en) | 2000-03-09 | 2004-04-01 | Stefan Silber | Process for preparing polyorganosiloxane emulsions |
EP0856553B1 (en) | 1997-02-04 | 2004-05-12 | Dow Corning Limited | Process for stabilising siloxane polymers |
US20040186308A1 (en) | 2001-04-27 | 2004-09-23 | Matthias Koch | Amido-functional aminopolydiorganosiloxanes |
US6835420B1 (en) | 1999-08-16 | 2004-12-28 | Basf Coatings Ac | Coating material and its use for producing highly scratch resistant multilayer transparent lacquers |
US6858663B2 (en) | 2002-07-16 | 2005-02-22 | Goldschmidt Ag | Organopolysiloxanes for defoaming aqueous systems |
US6861493B2 (en) | 2002-02-23 | 2005-03-01 | Goldschmidt Ag | Branched polyurethanes, formulations comprising them, and their use for thickening aqueous systems |
US7018458B2 (en) | 2002-07-19 | 2006-03-28 | Goldschmidt Gmbh | Use of organofunctionally modified polysiloxanes containing phenyl derivatives as dispersants and wetting agents for fillers and pigments in aqueous pigment pastes and ink or paint formulations |
US20060155090A1 (en) | 2005-01-07 | 2006-07-13 | Goldschmidt Gmbh | Siloxane block copolymers |
JP2006213856A (en) * | 2005-02-04 | 2006-08-17 | Shin Etsu Chem Co Ltd | Method for producing amino group-containing organopolysiloxane |
US7118619B2 (en) | 2003-01-24 | 2006-10-10 | Goldschmidt Gmbh | Use of silicone resins as dispersants |
US7125585B2 (en) | 2002-09-26 | 2006-10-24 | Goldschmidt Gmbh | Siloxane compounds and their use as homogenizer in release agents with matting effect for producing moldings from plastics with matt surfaces |
US7157541B2 (en) | 2003-10-04 | 2007-01-02 | Goldschmidt Gmbh | Process for an addition reaction of organic silicon compounds having SiH groups with compounds having olefinic double bonds |
US7189772B2 (en) | 2002-09-27 | 2007-03-13 | Goldschmidt Gmbh | Polyurethane thickeners for aqueous systems |
US20070059539A1 (en) | 2005-09-14 | 2007-03-15 | Goldschmidt Gmbh | Use of epoxy-functional silanes as adhesion additives for cationically radiation curing silicone release coatings |
US7196153B2 (en) | 2003-01-16 | 2007-03-27 | Goldschmidt Ag | Equilibration of siloxanes |
EP1792609A1 (en) | 2005-12-03 | 2007-06-06 | Goldschmidt GmbH | Organomodified block-type polysiloxanes, method for production and use |
US20070197678A1 (en) | 2006-02-21 | 2007-08-23 | Goldschmidt Gmbh | Process for producing siloxane-containing release coatings |
US20070213226A1 (en) | 2006-03-13 | 2007-09-13 | Goldschmidt Gmbh | Agrochemical compositions comprising alkylenediol-modified polysiloxanes |
US20080034794A1 (en) | 2006-05-05 | 2008-02-14 | Goldschmidt Gmbh | Reactive liquid ceramic binder resin |
US20080076842A1 (en) | 2006-09-08 | 2008-03-27 | Goldschmidt Gmbh | Use of Polyethers Containing Urethane for Urea Groups for Stabilizing Polyurethane Foams |
US7361777B2 (en) | 2006-02-15 | 2008-04-22 | Goldschmidt Gmbh | Organically modified siloxanes and their use for producing preparations for water-repellent impregnations for mineral building materials |
US20080108709A1 (en) | 2006-10-06 | 2008-05-08 | Goldschmidt Gmbh | Cold-preparable, low-viscosity and prolonged cosmetic emulsions with coemulsifiers containing cationic groups |
US20080125503A1 (en) | 2006-07-01 | 2008-05-29 | Goldschmidt Gmbh | Silicone stabilizers for flame-retarded rigid polyurethane or polyisocyanurate foams |
US7393396B2 (en) | 2004-02-20 | 2008-07-01 | Goldschmidt Gmbh | Process for producing homogeneous and storage-stable pastes, inks and paints using ionic liquids as dispersing additives |
US7399348B2 (en) | 2003-05-14 | 2008-07-15 | Goldschmidt Gmbh | Low surface tension surfactants based on amino alcohol and their use |
US20080187702A1 (en) | 2007-02-03 | 2008-08-07 | Evonik Goldschmidt Gmbh | Method of reducing the increase in release force in the production of no-label-look labels |
US20080216708A1 (en) | 2007-03-08 | 2008-09-11 | Evonik Goldschmidt | Organically modified siloxanes and their use for producing preparations for water-repellent impregnations |
US20080251751A1 (en) | 2007-04-10 | 2008-10-16 | Evonik Goldschmidt | Silicone surfactant compositions and use thereof for generating foam |
US7442724B2 (en) | 2003-10-21 | 2008-10-28 | Goldschmidt Gmbh | Dispersants for preparing aqueous pigment pastes |
US20090054521A1 (en) | 2007-08-23 | 2009-02-26 | Evonik Goldschmidt Gmbh | Zwitterionic compounds and use thereof |
US20090087399A1 (en) | 2007-09-27 | 2009-04-02 | Dirk Kuppert | Polysiloxane block copolymers |
US20090104294A1 (en) | 2007-10-17 | 2009-04-23 | Evonik Goldschmidt Gmbh | Bioactive composition for cosmetic applications |
US20090137751A1 (en) | 2007-11-28 | 2009-05-28 | Evonik Goldschmidt Gmbh | Process for preparing polyether alcohols with DMC catalysts using compounds bearing SiH groups as additives |
US20090137752A1 (en) | 2007-11-28 | 2009-05-28 | Evonik Goldschmidt Gmbh | Process for preparing polyether alcohols with DMC catalysts using specific additives with aromatic hydroxyl functionalization |
US7598334B2 (en) | 2005-01-07 | 2009-10-06 | Goldschmidt Gmbh | Process for preparing equilibration products of organosiloxanes, the organopolysiloxanes thus obtainable, and use thereof |
US7605284B2 (en) | 2005-10-29 | 2009-10-20 | Goldschmidt Gmbh | Process for preparing organically modified polyorganosiloxanes |
US7612159B2 (en) | 2002-12-21 | 2009-11-03 | Goldschmidt Ag | Process for working up polyethersiloxanes |
US7619035B2 (en) | 2005-08-20 | 2009-11-17 | Goldschmidt Gmbh | Method of producing addition products of compounds containing SiH groups onto reactants having one double bond on aqueous media |
US7635581B2 (en) | 2006-02-04 | 2009-12-22 | Goldschmidt Gmbh | Process for preparing organically modified siloxanes |
US7645848B2 (en) | 2005-08-24 | 2010-01-12 | Goldschmidt Gmbh | Process for preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers |
US20100029587A1 (en) | 2006-12-20 | 2010-02-04 | Brueckner Arndt | Cyclic siloxanes and their use |
US20100036011A1 (en) | 2008-02-06 | 2010-02-11 | Berend-Jan De Gans | New types of compatibilising agents for improving the storage of polyol mixtures |
US20100034765A1 (en) | 2008-08-06 | 2010-02-11 | Evonik Goldschmidt Gmbh | Use of polysiloxanes with quaternary ammonium groups for protecting animal or human hair against heat damage |
US20100031852A1 (en) | 2008-08-05 | 2010-02-11 | Sascha Herrwerth | Hydrophobizing construction elements comprising mineral fibers |
US20100041910A1 (en) | 2008-02-21 | 2010-02-18 | Frank Schubert | Novel polyether alcohols bearing alkoxysilyl groups by alkoxylation of epoxy-functional alkoxysilances over double metal cyanide (dmc) catalysts, and processes for preparation thereof |
US20100056649A1 (en) | 2008-08-27 | 2010-03-04 | Evonik Goldschmidt Gmbh | PROCESS FOR PREPARING BRANCHED Si-H FUNCTIONAL POLYSILOXANES AND USE THEREOF FOR PREPARING LIQUID SiC- OR SiOC-LINKED, BRANCHED MODIFIED ORGANOMODIFIED POLYSILOXANES |
US20100055760A1 (en) | 2008-09-02 | 2010-03-04 | Evonik Goldschmidt Gmbh | Enzyme preparations |
US20100071849A1 (en) | 2008-09-24 | 2010-03-25 | Wilfried Knott | Polymeric materials and also adhesive and coating compositions composed thereof and based on multi-alkoxysilyl-functional prepolymers |
US20100081763A1 (en) | 2008-09-26 | 2010-04-01 | Evonik Goldschmidt Gmbh | Emulsifier systems for cosmetic and pharmaceutical oil-in-water emulsions |
US20100081781A1 (en) | 2008-04-01 | 2010-04-01 | Frank Schubert | Novel polyether alcohols which bear organosiloxane groups through alkoxylation of epoxy-functional (poly)organosiloxanes over double metal cyanide (dmc) catalysts and processes for preparation thereof |
US20100105843A1 (en) | 2008-10-29 | 2010-04-29 | Wilfried Knott | Silicone-polyether copolymer systems and process for preparing them by means of an alkoxylation reaction |
US20100113633A1 (en) | 2008-10-31 | 2010-05-06 | Frauke Henning | Silicone-polyether block copolymers having a defined polydispersity in the polyoxyalkylene part and their use as stabilizers for producing polyurethane foams |
US7727599B2 (en) | 2006-09-07 | 2010-06-01 | Goldschmidt Gmbh | Use of particulate emulsifiers in abhesive siloxane-containing coating materials |
US20100168367A1 (en) | 2008-06-27 | 2010-07-01 | Frank Schubert | NOVEL POLYETHER SILOXANE-CONTAINING ALKOXYLATION PRODUCTS BY DIRECT ALKOXYLATION OF ORGANOMODIFIED a,w-DIHYDROXYSILOXANES OVER DOUBLE METAL CYANIDE (DMC) CATALYSTS, AND ALSO PROCESS FOR PRODUCING THEM |
US7754778B2 (en) | 2007-07-27 | 2010-07-13 | Evonik Goldschmidt Gmbh | Linear polydimethylsiloxane-polyoxyalkylene block copolymers linked via Si-C groups and via carboxylic ester groups, a process for preparing them and their use |
US20100184913A1 (en) | 2008-12-05 | 2010-07-22 | Thomas Ebbrecht | Process for modifying surfaces |
US7776989B2 (en) | 2005-02-02 | 2010-08-17 | Evonik Goldschmidt Gmbh | UV-light-absorbing quaternary polysiloxanes |
US20100210445A1 (en) | 2008-02-13 | 2010-08-19 | Tadeusz Von Rymon Lipinski | Reactive, liquid ceramic binder |
US20100249339A1 (en) | 2007-11-21 | 2010-09-30 | Evonik Goldschmidt Gmbh | Method for producing branched sih functional polysiloxanes and the use thereof for producing sic- and sioc-linked, branched organomodified polysiloxanes |
US20100248325A1 (en) | 2009-03-31 | 2010-09-30 | Evonik Goldschmidt Gmbh | Self-crosslinking polysiloxanes in coatings of enzyme immobilizates |
EP1988116B1 (en) | 2007-05-02 | 2010-10-20 | Wacker Chemie AG | Process for preparing aminoalkylpolysiloxanes |
US20100266651A1 (en) | 2009-04-16 | 2010-10-21 | Evonik Goldschmidt Gmbh | Emulsifier including glycerin-modified organopolysiloxanes |
US7825205B2 (en) | 2006-12-22 | 2010-11-02 | Evonik Goldschmidt Gmbh | Process for the preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers and their use |
US7825209B2 (en) | 2006-12-22 | 2010-11-02 | Evonik Goldschmidt Gmbh | Process for the preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers and their use |
US7825207B2 (en) | 2005-02-02 | 2010-11-02 | Goldschmidt Gmbh | Siloxanes containing guanidino groups and use thereof for cosmetic formulations |
US7825206B2 (en) | 2006-12-22 | 2010-11-02 | Evonik Goldschmidt Gmbh | Process for reacting polyorganosiloxanes and their use |
US7834122B2 (en) | 2006-07-31 | 2010-11-16 | Goldschmidt Gmbh | Polysiloxanes with quaternary ammonium groups, preparation thereof and use thereof as textile softeners |
US20100292357A1 (en) | 2007-11-21 | 2010-11-18 | Evonik Goldschmidt Gmbh | Process for preparing polydimethylsiloxanes on sulphonic acid cation exchange resins |
US20100298455A1 (en) | 2009-05-20 | 2010-11-25 | Evonik Goldschmidt Gmbh | Compositions containing polyether-polysiloxane copolymers |
US7847123B2 (en) | 2006-11-14 | 2010-12-07 | Evonik Goldschmidt Gmbh | Antimicrobial compositions |
US7855265B2 (en) | 2007-08-29 | 2010-12-21 | Evonik Goldschmidt Gmbh | Use of ester-modified organopolysiloxanes for producing cosmetic or pharmaceutical compositions |
US20110021693A1 (en) | 2009-07-24 | 2011-01-27 | Evonik Goldschmidt Gmbh | Novel silicone polyether copolymers and process for preparation thereof |
US20110034576A1 (en) | 2008-02-11 | 2011-02-10 | Frauke Henning | The invention relates to the use of foam stabilizers, produced on the basis of sustainable raw materials, for prroducing polyurethane foams |
US7893128B2 (en) | 2006-06-13 | 2011-02-22 | Evonik Glodschmidt GmbH | Cationic radiation-curing controlled release coating materials |
US20110046305A1 (en) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Novel urethane-containing silylated prepolymers and process for preparation thereof |
US20110042004A1 (en) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Curable material comprising silylated polymers containing urethane groups, and use thereof in sealants, adhesives, binders and/or surface modifiers |
US7931747B2 (en) | 2008-12-19 | 2011-04-26 | Evonik Goldschmidt Gmbh | Hydrophobized cement-containing compositions |
US20110144269A1 (en) | 2008-08-11 | 2011-06-16 | Evonik Goldschmidt Gmbh | Dispersing agent and its use |
US7964694B2 (en) | 2006-07-31 | 2011-06-21 | Evonik Goldschmidt Gmbh | Polysiloxanes having quaternary ammonium groups, a process for the preparation thereof and the use thereof in cleaning and care formulations |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8911970D0 (en) | 1989-05-24 | 1989-07-12 | Dow Corning | Method of treating fibrous materials |
JP3859723B2 (en) | 1996-03-04 | 2006-12-20 | オーエスアイ スペシャルティーズ インコーポレーテッド | Silicone amino polyalkylene oxide block copolymer |
US5847179A (en) | 1997-10-02 | 1998-12-08 | Pcr, Inc. | High purity alkoxytrimethylsilane fluids |
DE19751151A1 (en) | 1997-11-19 | 1999-05-20 | Henkel Kgaa | Clear aqueous fabric softener composition |
US6171515B1 (en) | 1999-09-02 | 2001-01-09 | Dow Corning Corporation | Fiber treatment composition containing amine-, polyol-, functional siloxanes |
JP2002167437A (en) | 2000-11-29 | 2002-06-11 | Lion Corp | Guanidine-modified silicone, method for producing the same, hair cosmetic, and fiber-treating agent using the same |
GB0120058D0 (en) | 2001-08-17 | 2001-10-10 | Dow Corning | Polysiloxanes and their preparation |
DE102004036918A1 (en) * | 2004-07-29 | 2007-02-08 | Georg-August-Universität Göttingen | Protective agent and remuneration for wood |
JP4625324B2 (en) * | 2004-12-28 | 2011-02-02 | 東レ・ダウコーニング株式会社 | Organopolysiloxane having o-hydroxyphenyl group-containing organic group and method for producing the same |
WO2006098408A1 (en) * | 2005-03-17 | 2006-09-21 | Dow Corning Toray Co., Ltd. | Dihydroxycarboxylic acid amide group-containing organopolysiloxane and method for producing same |
DE102006016578A1 (en) | 2006-04-06 | 2007-10-11 | Henkel Kgaa | Solid textile softening composition with a water-soluble polymer |
EP1849855A1 (en) | 2006-04-27 | 2007-10-31 | Degussa GmbH | thixotropic softening compositions |
US8242071B2 (en) | 2006-10-06 | 2012-08-14 | Dow Corning Corporation | Process for preparing fabric softener compositions |
JP5160921B2 (en) * | 2008-02-25 | 2013-03-13 | 花王株式会社 | Organopolysiloxane compounds having urethane bond-containing groups |
ES2391913T3 (en) | 2008-06-13 | 2012-12-03 | Clariant Finance (Bvi) Limited | Cosmetic or pharmaceutical compositions comprising polysiloxanes modified with at least one carbamate group |
-
2010
- 2010-11-30 DE DE102010062156A patent/DE102010062156A1/en not_active Ceased
-
2011
- 2011-09-27 ES ES11182859T patent/ES2790625T3/en active Active
- 2011-09-27 EP EP11182859.6A patent/EP2444447B1/en active Active
- 2011-10-24 JP JP2011232982A patent/JP5873685B2/en active Active
- 2011-10-24 US US13/279,676 patent/US8557944B2/en active Active
- 2011-10-25 CN CN2011103430474A patent/CN102558561A/en active Pending
- 2011-10-25 CA CA2757443A patent/CA2757443C/en active Active
- 2011-10-25 BR BRPI1107157-5A patent/BRPI1107157B1/en active IP Right Grant
Patent Citations (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0342830B1 (en) | 1988-05-17 | 1995-01-11 | Dow Corning Limited | Organosilicon compounds |
EP0515915B1 (en) | 1991-05-31 | 1995-08-02 | Pfersee Chemie GmbH | Aqueous dispersions of polysiloxanes |
US5371161A (en) | 1992-11-21 | 1994-12-06 | Th. Goldschmidt Ag | Method for the preparation of organopolysiloxanes containing SIH groups |
US5401871A (en) | 1993-02-25 | 1995-03-28 | Th. Goldschmidt Ag | Organopolysiloxane polyethers and their use as hydrolysis-resistant wetting agents in aqueous systems |
US5455367A (en) | 1993-04-22 | 1995-10-03 | Th. Goldschmidt Ag | Method for the synthesis of silanes or organosilicon hydrides by the reduction of the corresponding silicon halides or organosilicon halides |
US5430167A (en) | 1993-06-24 | 1995-07-04 | Th. Goldschmidt Ag | Silanes with hydrophilic groups, their synthesis and use as surfactants in aqueous media |
US5430166A (en) | 1993-06-24 | 1995-07-04 | Th. Goldschmidt Ag | Silanes with hydrophilic groups, their synthesis and use as surfactants in aqueous media |
US6489498B2 (en) | 1993-09-06 | 2002-12-03 | Th. Goldschmidt Ag | Silanes with hydrophilic groups, their synthesis and use as surfactants in aqueous media |
US6255511B1 (en) | 1993-09-06 | 2001-07-03 | Th Goldschmidt Ag | Silanes with hydrophilic groups, their synthesis and use as surfactants in aqueous media |
US5613988A (en) | 1993-12-17 | 1997-03-25 | Th. Goldschmidt Ag. | Use of organofunctionally modified polysiloxanes for defoaming diesel |
US5475127A (en) | 1994-04-27 | 1995-12-12 | Th. Goldschmidt Ag | Organosilyl and organosiloxanyl derivatives of glycerin ethers and their use |
US5741876A (en) * | 1995-07-03 | 1998-04-21 | Dow Corning Corporation | Method of preparing powdered silicone resins |
US5863966A (en) | 1995-09-07 | 1999-01-26 | Th. Goldschmidt Ag | Radiation-curing printing inks with enhanced scratch resistance and lubricity |
US5804099A (en) | 1995-11-30 | 1998-09-08 | Th. Goldschmidt Ag. | Polysiloxane-polyoxyethylene-polyoxypropylene triblock copolymers and defoaming compounds containing them |
US6297331B1 (en) | 1996-06-22 | 2001-10-02 | Th. Goldschmidt Ag | Organosiloxanyl derivatives of alkanediol monovinyl ethers, process for their preparation, their modification and their use as paint additives |
US6054534A (en) | 1996-10-11 | 2000-04-25 | R Th. Goldschmidt Ag | Silicone poly(meth) acrylates, their preparation and their use in coatings |
US5981812A (en) | 1996-11-25 | 1999-11-09 | Th. Goldschmidt Ag | Process for preparing α, ω-alkenols |
US5977282A (en) | 1996-12-02 | 1999-11-02 | Th. Goldschmidt Ag | Acrylate group-modified organosiloxanyl derivatives of alkanediol monovinyl ethers, process for their preparation, and their use as radiation-curable binders |
EP0856553B1 (en) | 1997-02-04 | 2004-05-12 | Dow Corning Limited | Process for stabilising siloxane polymers |
EP0915119A1 (en) | 1997-11-07 | 1999-05-12 | Wacker-Chemie GmbH | Aminosiloxane-containing compositions |
US6288129B1 (en) | 1998-11-03 | 2001-09-11 | Th. Goldschmidt Ag | Process for preparing acrylic esters and/or methacrylic esters of hydroxy-functional siloxanes and/or polyoxyalkylene-modified siloxanes and their use |
US6291622B1 (en) | 1998-12-23 | 2001-09-18 | Goldschmidt Ag | Process and apparatus for continuous hydrosilylation |
US6423785B1 (en) | 1999-02-05 | 2002-07-23 | Goldschmidt Ag | Maleic anhydride copolymers containing amine oxide groups and their use as dispersants for pigments of fillers |
US6307082B1 (en) | 1999-02-24 | 2001-10-23 | Goldschmidt Ag | Synergistic catalyst system and process for carrying out hydrosilylation reactions |
EP1035152A1 (en) | 1999-03-05 | 2000-09-13 | Dow Corning Corporation | Silicone terpolymers containing dimethylsiloxane, higher ( =C8) alkylsiloxane and aminoalkylsiloxane groups |
US6194596B1 (en) | 1999-03-09 | 2001-02-27 | Goldschmidt Ag | Polysiloxanes containing carbonate groups and modified with linear polyesters and their use as additives in coatings |
US6420324B1 (en) | 1999-04-16 | 2002-07-16 | Goldschmidt Ag | Defoamers for aqueous media |
US6552092B2 (en) | 1999-04-16 | 2003-04-22 | Goldschmidt Ag | Defoamers for aqueous media |
US6686320B2 (en) | 1999-05-14 | 2004-02-03 | Goldschmidt Ag | Use of water-insoluble polyoxyalkylene-polysiloxane block copolymers for defoaming aqueous media |
US6391831B1 (en) | 1999-05-14 | 2002-05-21 | Goldschmidt Ag | Use of water-insoluble polyoxyarylene-polysiloxane block copolymers for defoaming aqueous media |
US6433028B1 (en) | 1999-05-14 | 2002-08-13 | Goldschmidt Ag | Use of water-insoluble polyoxyalkylene-polysiloxane block copolymers for defoaming aqueous media |
US6451863B1 (en) | 1999-05-14 | 2002-09-17 | Golschmidt Ag | Use of water-insoluble poly(oxy-1,4-butanediyl)-containing polyoxyalkylene-polysiloxane block copolymers for defoaming aqueous media |
US6525103B2 (en) | 1999-05-14 | 2003-02-25 | Goldschmift Ag | Water-insoluble poly(oxy-1,4-butanediyl)-containing polyoxyalkylene-polysiloxane block copolymers for defoaming aqueous media |
US6835420B1 (en) | 1999-08-16 | 2004-12-28 | Basf Coatings Ac | Coating material and its use for producing highly scratch resistant multilayer transparent lacquers |
US6207781B1 (en) | 1999-08-20 | 2001-03-27 | Dow Corning Corporation | Polymerization of an organofunctional cocyclic siloxane |
US6552091B1 (en) | 1999-08-27 | 2003-04-22 | Goldschmidt Ag | Block-copolymeric polyalkylene oxides containing styrene oxide, obtained by alkoxylation, and their use |
US6255429B1 (en) | 1999-09-02 | 2001-07-03 | Dow Corning Corporation | Amine-, polyol-, amide-functional siloxane copolymers and methods for their preparation |
US20040063818A1 (en) | 2000-03-09 | 2004-04-01 | Stefan Silber | Process for preparing polyorganosiloxane emulsions |
US6521771B2 (en) | 2000-05-19 | 2003-02-18 | Goldschmidt Ag | Use of zinc treated with metal hydride in organometallic synthesis |
US20020161158A1 (en) | 2001-02-27 | 2002-10-31 | Georg Burkhart | Process for working-up polyethersiloxanes |
US20040186308A1 (en) | 2001-04-27 | 2004-09-23 | Matthias Koch | Amido-functional aminopolydiorganosiloxanes |
US6958410B2 (en) * | 2001-04-27 | 2005-10-25 | Cht R. Beitlich Gmbh | Amido-functional aminopolydiorganosiloxanes |
US6861493B2 (en) | 2002-02-23 | 2005-03-01 | Goldschmidt Ag | Branched polyurethanes, formulations comprising them, and their use for thickening aqueous systems |
DE10214139C2 (en) | 2002-03-28 | 2003-12-04 | Wacker Chemie Gmbh | Process for the preparation of emulsions of hydroxamic acid functional organopolysiloxane |
US20040024089A1 (en) | 2002-04-16 | 2004-02-05 | Stefan Busch | Use of epoxypolysiloxanes modified with oxyalkylene ether groups as additives for radiation-curing coatings |
US6858663B2 (en) | 2002-07-16 | 2005-02-22 | Goldschmidt Ag | Organopolysiloxanes for defoaming aqueous systems |
US7018458B2 (en) | 2002-07-19 | 2006-03-28 | Goldschmidt Gmbh | Use of organofunctionally modified polysiloxanes containing phenyl derivatives as dispersants and wetting agents for fillers and pigments in aqueous pigment pastes and ink or paint formulations |
US7125585B2 (en) | 2002-09-26 | 2006-10-24 | Goldschmidt Gmbh | Siloxane compounds and their use as homogenizer in release agents with matting effect for producing moldings from plastics with matt surfaces |
US7189772B2 (en) | 2002-09-27 | 2007-03-13 | Goldschmidt Gmbh | Polyurethane thickeners for aqueous systems |
US7612159B2 (en) | 2002-12-21 | 2009-11-03 | Goldschmidt Ag | Process for working up polyethersiloxanes |
US7196153B2 (en) | 2003-01-16 | 2007-03-27 | Goldschmidt Ag | Equilibration of siloxanes |
US7612158B2 (en) | 2003-01-16 | 2009-11-03 | Goldschmidt Ag | Equilibration of siloxanes |
US7118619B2 (en) | 2003-01-24 | 2006-10-10 | Goldschmidt Gmbh | Use of silicone resins as dispersants |
US7399348B2 (en) | 2003-05-14 | 2008-07-15 | Goldschmidt Gmbh | Low surface tension surfactants based on amino alcohol and their use |
US7157541B2 (en) | 2003-10-04 | 2007-01-02 | Goldschmidt Gmbh | Process for an addition reaction of organic silicon compounds having SiH groups with compounds having olefinic double bonds |
US7442724B2 (en) | 2003-10-21 | 2008-10-28 | Goldschmidt Gmbh | Dispersants for preparing aqueous pigment pastes |
US7393396B2 (en) | 2004-02-20 | 2008-07-01 | Goldschmidt Gmbh | Process for producing homogeneous and storage-stable pastes, inks and paints using ionic liquids as dispersing additives |
US20060155090A1 (en) | 2005-01-07 | 2006-07-13 | Goldschmidt Gmbh | Siloxane block copolymers |
US7598334B2 (en) | 2005-01-07 | 2009-10-06 | Goldschmidt Gmbh | Process for preparing equilibration products of organosiloxanes, the organopolysiloxanes thus obtainable, and use thereof |
US7825207B2 (en) | 2005-02-02 | 2010-11-02 | Goldschmidt Gmbh | Siloxanes containing guanidino groups and use thereof for cosmetic formulations |
US7776989B2 (en) | 2005-02-02 | 2010-08-17 | Evonik Goldschmidt Gmbh | UV-light-absorbing quaternary polysiloxanes |
JP2006213856A (en) * | 2005-02-04 | 2006-08-17 | Shin Etsu Chem Co Ltd | Method for producing amino group-containing organopolysiloxane |
US7619035B2 (en) | 2005-08-20 | 2009-11-17 | Goldschmidt Gmbh | Method of producing addition products of compounds containing SiH groups onto reactants having one double bond on aqueous media |
US20100022435A1 (en) | 2005-08-20 | 2010-01-28 | Goldschmidt Gmbh | METHOD OF PRODUCING ADDITION PRODUCTS OF COMPOUNDS CONTAINING SiH GROUPS ONTO REACTANTS HAVING ONE DOUBLE BOND IN AQUEOUS MEDIA |
US7645848B2 (en) | 2005-08-24 | 2010-01-12 | Goldschmidt Gmbh | Process for preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers |
US20070059539A1 (en) | 2005-09-14 | 2007-03-15 | Goldschmidt Gmbh | Use of epoxy-functional silanes as adhesion additives for cationically radiation curing silicone release coatings |
US7605284B2 (en) | 2005-10-29 | 2009-10-20 | Goldschmidt Gmbh | Process for preparing organically modified polyorganosiloxanes |
US20070128143A1 (en) | 2005-12-03 | 2007-06-07 | Goldschmidt Gmbh | Polyether-modified polysiloxanes with block character and use thereof for producing cosmetic formulations |
EP1792609A1 (en) | 2005-12-03 | 2007-06-06 | Goldschmidt GmbH | Organomodified block-type polysiloxanes, method for production and use |
US7635581B2 (en) | 2006-02-04 | 2009-12-22 | Goldschmidt Gmbh | Process for preparing organically modified siloxanes |
US20100056818A1 (en) | 2006-02-04 | 2010-03-04 | Michael Ferenz | Process for preparing organically modified siloxanes |
US7361777B2 (en) | 2006-02-15 | 2008-04-22 | Goldschmidt Gmbh | Organically modified siloxanes and their use for producing preparations for water-repellent impregnations for mineral building materials |
US20070197678A1 (en) | 2006-02-21 | 2007-08-23 | Goldschmidt Gmbh | Process for producing siloxane-containing release coatings |
US20070213226A1 (en) | 2006-03-13 | 2007-09-13 | Goldschmidt Gmbh | Agrochemical compositions comprising alkylenediol-modified polysiloxanes |
US20080034794A1 (en) | 2006-05-05 | 2008-02-14 | Goldschmidt Gmbh | Reactive liquid ceramic binder resin |
US7893128B2 (en) | 2006-06-13 | 2011-02-22 | Evonik Glodschmidt GmbH | Cationic radiation-curing controlled release coating materials |
US20080125503A1 (en) | 2006-07-01 | 2008-05-29 | Goldschmidt Gmbh | Silicone stabilizers for flame-retarded rigid polyurethane or polyisocyanurate foams |
US7834122B2 (en) | 2006-07-31 | 2010-11-16 | Goldschmidt Gmbh | Polysiloxanes with quaternary ammonium groups, preparation thereof and use thereof as textile softeners |
US7964694B2 (en) | 2006-07-31 | 2011-06-21 | Evonik Goldschmidt Gmbh | Polysiloxanes having quaternary ammonium groups, a process for the preparation thereof and the use thereof in cleaning and care formulations |
US7727599B2 (en) | 2006-09-07 | 2010-06-01 | Goldschmidt Gmbh | Use of particulate emulsifiers in abhesive siloxane-containing coating materials |
US20080076842A1 (en) | 2006-09-08 | 2008-03-27 | Goldschmidt Gmbh | Use of Polyethers Containing Urethane for Urea Groups for Stabilizing Polyurethane Foams |
US20080108709A1 (en) | 2006-10-06 | 2008-05-08 | Goldschmidt Gmbh | Cold-preparable, low-viscosity and prolonged cosmetic emulsions with coemulsifiers containing cationic groups |
US7847123B2 (en) | 2006-11-14 | 2010-12-07 | Evonik Goldschmidt Gmbh | Antimicrobial compositions |
US20100029587A1 (en) | 2006-12-20 | 2010-02-04 | Brueckner Arndt | Cyclic siloxanes and their use |
US7825205B2 (en) | 2006-12-22 | 2010-11-02 | Evonik Goldschmidt Gmbh | Process for the preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers and their use |
US7825209B2 (en) | 2006-12-22 | 2010-11-02 | Evonik Goldschmidt Gmbh | Process for the preparation of SiOC-linked, linear polydimethylsiloxane-polyoxyalkylene block copolymers and their use |
US7825206B2 (en) | 2006-12-22 | 2010-11-02 | Evonik Goldschmidt Gmbh | Process for reacting polyorganosiloxanes and their use |
US20080187702A1 (en) | 2007-02-03 | 2008-08-07 | Evonik Goldschmidt Gmbh | Method of reducing the increase in release force in the production of no-label-look labels |
US20080216708A1 (en) | 2007-03-08 | 2008-09-11 | Evonik Goldschmidt | Organically modified siloxanes and their use for producing preparations for water-repellent impregnations |
US20080251751A1 (en) | 2007-04-10 | 2008-10-16 | Evonik Goldschmidt | Silicone surfactant compositions and use thereof for generating foam |
EP1988116B1 (en) | 2007-05-02 | 2010-10-20 | Wacker Chemie AG | Process for preparing aminoalkylpolysiloxanes |
US7754778B2 (en) | 2007-07-27 | 2010-07-13 | Evonik Goldschmidt Gmbh | Linear polydimethylsiloxane-polyoxyalkylene block copolymers linked via Si-C groups and via carboxylic ester groups, a process for preparing them and their use |
US20090054521A1 (en) | 2007-08-23 | 2009-02-26 | Evonik Goldschmidt Gmbh | Zwitterionic compounds and use thereof |
US7855265B2 (en) | 2007-08-29 | 2010-12-21 | Evonik Goldschmidt Gmbh | Use of ester-modified organopolysiloxanes for producing cosmetic or pharmaceutical compositions |
US20090087399A1 (en) | 2007-09-27 | 2009-04-02 | Dirk Kuppert | Polysiloxane block copolymers |
US20090104294A1 (en) | 2007-10-17 | 2009-04-23 | Evonik Goldschmidt Gmbh | Bioactive composition for cosmetic applications |
US20100292357A1 (en) | 2007-11-21 | 2010-11-18 | Evonik Goldschmidt Gmbh | Process for preparing polydimethylsiloxanes on sulphonic acid cation exchange resins |
US20100249339A1 (en) | 2007-11-21 | 2010-09-30 | Evonik Goldschmidt Gmbh | Method for producing branched sih functional polysiloxanes and the use thereof for producing sic- and sioc-linked, branched organomodified polysiloxanes |
US20090137752A1 (en) | 2007-11-28 | 2009-05-28 | Evonik Goldschmidt Gmbh | Process for preparing polyether alcohols with DMC catalysts using specific additives with aromatic hydroxyl functionalization |
US20090137751A1 (en) | 2007-11-28 | 2009-05-28 | Evonik Goldschmidt Gmbh | Process for preparing polyether alcohols with DMC catalysts using compounds bearing SiH groups as additives |
US20100036011A1 (en) | 2008-02-06 | 2010-02-11 | Berend-Jan De Gans | New types of compatibilising agents for improving the storage of polyol mixtures |
US20110034576A1 (en) | 2008-02-11 | 2011-02-10 | Frauke Henning | The invention relates to the use of foam stabilizers, produced on the basis of sustainable raw materials, for prroducing polyurethane foams |
US20100210445A1 (en) | 2008-02-13 | 2010-08-19 | Tadeusz Von Rymon Lipinski | Reactive, liquid ceramic binder |
US20100041910A1 (en) | 2008-02-21 | 2010-02-18 | Frank Schubert | Novel polyether alcohols bearing alkoxysilyl groups by alkoxylation of epoxy-functional alkoxysilances over double metal cyanide (dmc) catalysts, and processes for preparation thereof |
US20100081781A1 (en) | 2008-04-01 | 2010-04-01 | Frank Schubert | Novel polyether alcohols which bear organosiloxane groups through alkoxylation of epoxy-functional (poly)organosiloxanes over double metal cyanide (dmc) catalysts and processes for preparation thereof |
US20100168367A1 (en) | 2008-06-27 | 2010-07-01 | Frank Schubert | NOVEL POLYETHER SILOXANE-CONTAINING ALKOXYLATION PRODUCTS BY DIRECT ALKOXYLATION OF ORGANOMODIFIED a,w-DIHYDROXYSILOXANES OVER DOUBLE METAL CYANIDE (DMC) CATALYSTS, AND ALSO PROCESS FOR PRODUCING THEM |
US20100031852A1 (en) | 2008-08-05 | 2010-02-11 | Sascha Herrwerth | Hydrophobizing construction elements comprising mineral fibers |
US20100034765A1 (en) | 2008-08-06 | 2010-02-11 | Evonik Goldschmidt Gmbh | Use of polysiloxanes with quaternary ammonium groups for protecting animal or human hair against heat damage |
US20110144269A1 (en) | 2008-08-11 | 2011-06-16 | Evonik Goldschmidt Gmbh | Dispersing agent and its use |
US20100056649A1 (en) | 2008-08-27 | 2010-03-04 | Evonik Goldschmidt Gmbh | PROCESS FOR PREPARING BRANCHED Si-H FUNCTIONAL POLYSILOXANES AND USE THEREOF FOR PREPARING LIQUID SiC- OR SiOC-LINKED, BRANCHED MODIFIED ORGANOMODIFIED POLYSILOXANES |
US20100055760A1 (en) | 2008-09-02 | 2010-03-04 | Evonik Goldschmidt Gmbh | Enzyme preparations |
US20100071849A1 (en) | 2008-09-24 | 2010-03-25 | Wilfried Knott | Polymeric materials and also adhesive and coating compositions composed thereof and based on multi-alkoxysilyl-functional prepolymers |
US20100081763A1 (en) | 2008-09-26 | 2010-04-01 | Evonik Goldschmidt Gmbh | Emulsifier systems for cosmetic and pharmaceutical oil-in-water emulsions |
US20100105843A1 (en) | 2008-10-29 | 2010-04-29 | Wilfried Knott | Silicone-polyether copolymer systems and process for preparing them by means of an alkoxylation reaction |
US20100113633A1 (en) | 2008-10-31 | 2010-05-06 | Frauke Henning | Silicone-polyether block copolymers having a defined polydispersity in the polyoxyalkylene part and their use as stabilizers for producing polyurethane foams |
US20100184913A1 (en) | 2008-12-05 | 2010-07-22 | Thomas Ebbrecht | Process for modifying surfaces |
US7931747B2 (en) | 2008-12-19 | 2011-04-26 | Evonik Goldschmidt Gmbh | Hydrophobized cement-containing compositions |
US20100248325A1 (en) | 2009-03-31 | 2010-09-30 | Evonik Goldschmidt Gmbh | Self-crosslinking polysiloxanes in coatings of enzyme immobilizates |
US20100266651A1 (en) | 2009-04-16 | 2010-10-21 | Evonik Goldschmidt Gmbh | Emulsifier including glycerin-modified organopolysiloxanes |
US20100298455A1 (en) | 2009-05-20 | 2010-11-25 | Evonik Goldschmidt Gmbh | Compositions containing polyether-polysiloxane copolymers |
US20110021693A1 (en) | 2009-07-24 | 2011-01-27 | Evonik Goldschmidt Gmbh | Novel silicone polyether copolymers and process for preparation thereof |
US20110046305A1 (en) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Novel urethane-containing silylated prepolymers and process for preparation thereof |
US20110042004A1 (en) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Curable material comprising silylated polymers containing urethane groups, and use thereof in sealants, adhesives, binders and/or surface modifiers |
Non-Patent Citations (2)
Title |
---|
European Search Report for EP 11182859 dated Jun. 5, 2012. |
Machine translation of JP 2006-213856 into English. * |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9346919B2 (en) | 2013-04-09 | 2016-05-24 | Evonik Degussa Gmbh | Polysiloxane-polyether copolymers with amino groups and/or quaternary ammonium groups in the polyether moiety and processes for the preparation thereof |
US9550928B2 (en) | 2013-04-17 | 2017-01-24 | Evonik Degussa Gmbh | Alkoxysilyl-containing adhesive sealants with intrinsically reduced viscosity |
US9783635B2 (en) | 2013-05-07 | 2017-10-10 | Evonik Degussa Gmbh | Polyoxyalkylenes with pendant long-chain acyloxy groups and method for producing same using DMC catalysts |
US9481695B2 (en) | 2013-07-18 | 2016-11-01 | Evonik Industries Ag | Amino acid-modified siloxanes, process for preparing them and application |
US10287454B2 (en) | 2013-08-23 | 2019-05-14 | Evonik Degussa Gmbh | Coating compositions |
US9353225B2 (en) | 2013-08-23 | 2016-05-31 | Evonik Degussa Gmbh | Compounds having guanidine groups and containing semi-organic silicon groups |
US9790327B2 (en) | 2013-08-23 | 2017-10-17 | Evonik Degussa Gmbh | Silicone resin compositions which can be cured at room temperature |
US10106649B2 (en) | 2014-05-19 | 2018-10-23 | Evonik Degussa Gmbh | Ethoxylate production using highly active double metal cyanide catalysts |
US10836867B2 (en) | 2014-07-11 | 2020-11-17 | Evonik Operations Gmbh | Composition containing platinum |
US10160832B2 (en) | 2014-09-05 | 2018-12-25 | Evonik Degussa Gmbh | Process for the preparation of eugenol polyethers that can be hydrosilylated and eugenol polyethersiloxanes and use thereof |
US10407546B2 (en) | 2014-09-05 | 2019-09-10 | Evonik Degussa Gmbh | Acrylate-terminated urethane polybutadienes from low-monomer 1:1 monoadducts from reactive olefinic compounds and diisocyanates and hydroxy-terminated polybutadienes for liquid optically clear adhesives (LOCAs) |
US10099211B2 (en) | 2014-11-12 | 2018-10-16 | Evonik Degussa Gmbh | Process for producing compositions comprising platinum |
US9540500B2 (en) | 2014-12-05 | 2017-01-10 | Evonik Degussa Gmbh | Production of polyether siloxanes |
US10544384B2 (en) | 2015-02-27 | 2020-01-28 | Evonik Degussa Gmbh | Skin cleansing composition containing rhamnolipid and siloxane |
US10299471B2 (en) | 2015-06-16 | 2019-05-28 | Evonik Degussa Gmbh | Biodegradable super-spreading, organomodified trisiloxane |
US10407592B2 (en) | 2015-11-11 | 2019-09-10 | Evonik Degussa Gmbh | Curable polymers |
US11851583B2 (en) | 2016-07-19 | 2023-12-26 | Evonik Operations Gmbh | Process for producing porous polyurethane coatings using polyol ester additives |
US10544267B2 (en) | 2016-07-22 | 2020-01-28 | Evonik Degussa Gmbh | Method for producing siloxanes containing glycerin substituents |
US10752735B2 (en) | 2016-11-15 | 2020-08-25 | Evonik Operations Gmbh | Mixtures of cyclic branched siloxanes of the D/T type and conversion products thereof |
US10414871B2 (en) | 2016-11-15 | 2019-09-17 | Evonik Degussa Gmbh | Mixtures of cyclic branched siloxanes of the D/T type and conversion products thereof |
US10519280B2 (en) | 2017-06-13 | 2019-12-31 | Evonik Degussa Gmbh | Process for preparing SiC-Bonded polyethersiloxanes |
US10526454B2 (en) | 2017-06-13 | 2020-01-07 | Evonik Degussa Gmbh | Process for preparing SiC-bonded polyethersiloxanes |
US10414872B2 (en) | 2017-08-01 | 2019-09-17 | Evonik Degussa Gmbh | Production of SiOC-bonded polyether siloxanes |
US11485938B2 (en) | 2017-09-06 | 2022-11-01 | Evonik Operations Gmbh | Microemulsion comprising quaternary ammonium compound, especially for production of fabric softener formulations |
US11312926B2 (en) | 2017-09-25 | 2022-04-26 | Evonik Operations Gmbh | Polysiloxane-containing concentrates with improved storage stability and use thereof in textile care compositions |
US10766913B2 (en) | 2017-10-09 | 2020-09-08 | Evonik Operations Gmbh | Mixtures of cyclic branched siloxanes of the D/T type and conversion products thereof |
US12054635B2 (en) | 2017-10-13 | 2024-08-06 | Evonik Operations Gmbh | Curable composition for coatings having an anti-adhesive property |
US11725017B2 (en) | 2017-11-29 | 2023-08-15 | Evonik Operations Gmbh | Method for preparing SiOC-linked polyether siloxanes branched in the siloxane part |
US11021608B2 (en) | 2018-02-08 | 2021-06-01 | Evonik Operations Gmbh | Aqueous polyorganosiloxane hybrid resin dispersion |
US11028233B2 (en) * | 2018-05-31 | 2021-06-08 | Dow Silicones Corporation | Method for making an amino-functional polydiorganosiloxane using a removable solid catalyst |
US11692153B2 (en) | 2018-07-05 | 2023-07-04 | Evonik Operations Gmbh | Long-chain alkyl esterquats for highly viscous laundry and cleaning formulations |
US11021575B2 (en) | 2018-08-15 | 2021-06-01 | Evonik Operations Gmbh | Process for producing acetoxy-bearing siloxanes |
US11795275B2 (en) | 2018-12-04 | 2023-10-24 | Evonik Operations Gmbh | Reactive siloxanes |
US12018149B2 (en) | 2019-04-01 | 2024-06-25 | Evonik Operations Gmbh | Aqueous polyorganosiloxane hybrid resin dispersion |
US11732091B2 (en) | 2019-05-28 | 2023-08-22 | Evonik Operations Gmbh | Process for producing SiOC-bonded polyether siloxanes branched in the siloxane portion |
US11220578B2 (en) | 2019-05-28 | 2022-01-11 | Evonik Operations Gmbh | Process for producing SiOC-bonded polyether siloxanes branched in the siloxane portion |
US11498996B2 (en) | 2019-05-28 | 2022-11-15 | Evonik Operations Gmbh | Process for producing polyoxyalkylene polysiloxane block polymers |
US11472822B2 (en) | 2019-05-28 | 2022-10-18 | Evonik Operations Gmbh | Process for purifying acetoxysiloxanes |
US11066429B2 (en) | 2019-05-28 | 2021-07-20 | Evonik Operations Gmbh | Process for producing acetoxy-bearing siloxanes |
US11261298B2 (en) | 2019-05-28 | 2022-03-01 | Evonik Operations Gmbh | Tailored SiOC-based polyethersiloxanes |
US11420985B2 (en) | 2019-05-28 | 2022-08-23 | Evonik Operations Gmbh | Acetoxy systems |
US11286366B2 (en) | 2019-05-28 | 2022-03-29 | Evonik Operations Gmbh | Process for recycling silicones |
US11286351B2 (en) | 2019-05-28 | 2022-03-29 | Evonik Operations Gmbh | Process for producing acetoxy-bearing siloxanes |
US11254819B2 (en) | 2019-10-28 | 2022-02-22 | Evonik Operations Gmbh | Curing agent mixture |
US11591448B2 (en) | 2020-03-27 | 2023-02-28 | Evonik Operations Gmbh | Physical reutilization of siliconized sheets |
US12053721B2 (en) | 2020-08-14 | 2024-08-06 | Evonik Operations Gmbh | Defoamer composition based on organofunctionally modified polysiloxanes |
US11732092B2 (en) | 2020-10-19 | 2023-08-22 | Evonik Operations Gmbh | Upcycling process for processing silicone wastes |
Also Published As
Publication number | Publication date |
---|---|
ES2790625T8 (en) | 2020-11-19 |
US20120097883A1 (en) | 2012-04-26 |
JP5873685B2 (en) | 2016-03-01 |
EP2444447A3 (en) | 2012-07-18 |
EP2444447B1 (en) | 2020-03-25 |
CA2757443C (en) | 2018-04-24 |
CN102558561A (en) | 2012-07-11 |
BRPI1107157B1 (en) | 2020-08-18 |
BRPI1107157A2 (en) | 2015-11-10 |
DE102010062156A1 (en) | 2012-04-26 |
JP2012092336A (en) | 2012-05-17 |
EP2444447A2 (en) | 2012-04-25 |
ES2790625T3 (en) | 2020-10-28 |
CA2757443A1 (en) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8557944B2 (en) | Polysiloxanes with nitrogen-containing groups | |
CA2785475C (en) | Process for producing polysiloxanes with nitrogen-containing groups | |
US7834122B2 (en) | Polysiloxanes with quaternary ammonium groups, preparation thereof and use thereof as textile softeners | |
US9346919B2 (en) | Polysiloxane-polyether copolymers with amino groups and/or quaternary ammonium groups in the polyether moiety and processes for the preparation thereof | |
US8916511B2 (en) | Polysiloxanes having quaternary ammonium groups and use thereof | |
US10954342B2 (en) | Amino-organopolysiloxanes and preparation method therefor | |
CN112074559B (en) | Siloxanes for treating textiles and for use in cleaning and care formulations | |
US20120308494A1 (en) | Novel linear polydimethylsiloxane-polyether copolymers having amino and/or quaternary ammonium groups and use thereof | |
BRPI0409279B1 (en) | REACTIVE AMINO- AND / OR AMMONIUM-POLYSTYLOXANE COMPOUNDS, THEIR APPLICATIONS, FORMULATION UNDERSTANDING THE SAME, PREPARATION PROCESSES OF THE COMPOUND COMPOUNDS AND TREATMENT AND / OR FINISHING OF FIBERS, AS WELL AS MASS FIBER | |
US20060163524A1 (en) | Formulations used for the treatment of substrate surfaces | |
US20090113637A1 (en) | Treating textiles with silicone polyether-amide block copolymers | |
ES2282936T3 (en) | RAMIFIED POLYGANOSILOXANES CONTAINING QUATERNARY AMMONIA GROUPS. | |
JP4936893B2 (en) | Polyorganosiloxane composition for substrate treatment | |
PT1595910E (en) | Derivatised, permanently quaternised nitrogen atoms bearing, linear or branched aminofunctional organopolysiloxanes | |
US11401420B2 (en) | Composition, fiber treatment agent, fiber treatment method, and treated fiber | |
CA1118965A (en) | Textile treatment compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EVONIK GOLDSCHMIDT GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HENNING, FRAUKE, DR.;FERENZ, MICHAEL, DR.;KNOTT, WILFRIED, DR.;AND OTHERS;SIGNING DATES FROM 20111028 TO 20111116;REEL/FRAME:027363/0754 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: EVONIK DEGUSSA GMBH, GERMANY Free format text: MERGER;ASSIGNOR:EVONIK GOLDSCHMIDT GMBH;REEL/FRAME:032335/0326 Effective date: 20130730 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |