US8405279B2 - Coupling piezoelectric material generated stresses to devices formed in integrated circuits - Google Patents
Coupling piezoelectric material generated stresses to devices formed in integrated circuits Download PDFInfo
- Publication number
- US8405279B2 US8405279B2 US13/532,991 US201213532991A US8405279B2 US 8405279 B2 US8405279 B2 US 8405279B2 US 201213532991 A US201213532991 A US 201213532991A US 8405279 B2 US8405279 B2 US 8405279B2
- Authority
- US
- United States
- Prior art keywords
- buffer structure
- deposition
- stiffener
- stiffener structure
- soft buffer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 258
- 230000008878 coupling Effects 0.000 title claims abstract description 38
- 238000010168 coupling process Methods 0.000 title claims abstract description 38
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 38
- 239000003351 stiffener Substances 0.000 claims abstract description 82
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims abstract description 9
- 230000001419 dependent effect Effects 0.000 claims abstract description 5
- 230000008021 deposition Effects 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 40
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 20
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 20
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 6
- 239000012782 phase change material Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000015654 memory Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 239000007779 soft material Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 150000004033 porphyrin derivatives Chemical class 0.000 description 2
- UDEIUPWDUYZMDI-UHFFFAOYSA-N samarium(3+);selenium(2-) Chemical compound [Se-2].[Se-2].[Se-2].[Sm+3].[Sm+3] UDEIUPWDUYZMDI-UHFFFAOYSA-N 0.000 description 2
- 208000034819 Mobility Limitation Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000334 poly[3-(3'-N,N,N-triethylamino-1-propyloxy)-4-methylthiophene-2,5-diyl hydrochloride] polymer Polymers 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C10/00—Adjustable resistors
- H01C10/10—Adjustable resistors adjustable by mechanical pressure or force
- H01C10/103—Adjustable resistors adjustable by mechanical pressure or force by using means responding to magnetic or electric fields, e.g. by addition of magnetisable or piezoelectric particles to the resistive material, or by an electromagnetic actuator
Definitions
- the present invention relates generally to integrated circuit devices and, more particularly, to coupling piezoelectric material generated stresses to devices formed in integrated circuits.
- FETs Complementary Field Effect Transistors
- CMOS complementary metal oxide semiconductor
- FETs exploit high channel mobility to control few-carrier currents electrostatically.
- limitations in this highly successful technology are appearing at current and future device scales.
- CMOS complementary metal-oxide-semiconductor
- a new technology in which straightforward lithographic processes can build multilayer structures could open up significant new applications such as high capacity multilayer memories and combinations of logic and memory at different levels optimized to reduce wiring length.
- a coupling structure for coupling piezoelectric material generated stresses to an actuated device of an integrated circuit includes a rigid stiffener structure formed around a piezoelectric (PE) material and the actuated device, the actuated device comprising a piezoresistive (PR) material that has an electrical resistance dependent upon an applied pressure thereto; and a soft buffer structure formed around the PE material and PR material, the buffer structure disposed between the PE and PR materials and the stiffener structure, wherein the stiffener structure clamps both the PE and PR materials to a substrate over which the PE and PR materials are formed, and wherein the soft buffer structure permits the PE material freedom to move relative to the PR material, thereby coupling stress generated by an applied voltage to the PE material to the PR material so as change the electrical resistance of the PR material.
- PE piezoelectric
- PR piezoresistive
- a coupling structure for coupling piezoelectric material generated stresses within a piezo-effect transistor (PET) device formed in an integrated circuit includes a rigid stiffener structure formed around the PET device, the PET device further comprising a piezoelectric (PE) material disposed between first and second electrodes, and a piezoresistive (PR) material disposed between the second electrode and a third electrode, wherein the first electrode comprises a gate terminal, the second electrode comprises a common terminal, and the third electrode comprises an output terminal such that an electrical resistance of the PR material is dependent upon an applied voltage across the PE material by way of an applied pressure to the PR material by the PE material; and a soft buffer structure formed around the PET device, the buffer structure disposed between the PE and PR materials and the stiffener structure, wherein the stiffener structure clamps both the PE and PR materials to a substrate over which the PE and PR materials are formed, and wherein the soft buffer structure permits the PE material freedom to move relative to the PR material, thereby coupling stress generated by the applied voltage to the PE
- a method of forming a coupling structure for coupling piezoelectric material generated stresses within a piezo-effect transistor (PET) device of an integrated circuit includes performing a first deposition of a rigid stiffener structure material over a substrate; forming a lower electrode of the PET device; performing a second deposition of the rigid stiffener structure material over the lower electrode and the first deposition of the rigid stiffener structure material; performing a first deposition of a soft buffer structure material within the second deposition of the rigid stiffener structure material, and atop the lower electrode; forming a piezoelectric (PE) material of the PET device within the first deposition of a soft buffer structure material, and atop the lower electrode; performing a third deposition of the rigid stiffener structure material over the second deposition of the rigid stiffener structure material, and performing a second deposition of the soft buffer structure material over the first deposition of the soft buffer structure material; forming a common electrode of the PET device over the PE material; performing a fourth deposition of
- FIGS. 1( a ) and 1 ( b ) are schematic diagrams of an exemplary piezo-effect transistor (PET) device suitable for use in accordance with an embodiment of the invention
- FIG. 2 is a graph that illustrates pressure versus resistance properties of samarium selenide (SmSe);
- FIG. 3( a ) illustrates the molecular structure of a photoconductive, porphyrin derivative known as ZnODEP;
- FIG. 3( b ) is a graph illustrating photocurrent as a function of distance during the compression of a ZnODEP film
- FIG. 4 is a schematic cross-sectional diagram of another embodiment of a PET device having a coupling structure for coupling piezoelectric material generated stresses to a PCM or PR portion of the PET device, in accordance with an embodiment of the invention
- FIGS. 5( a ) through 5 ( c ) illustrate a mechanical software pressure simulation for the PET device and coupling structure of FIG. 4 ;
- FIG. 6 is a more detailed view of the simulated pressure distribution within the PR material
- FIG. 7 is a graph illustrating the dependence of pressure on PCM or PR material thickness
- FIGS. 8( a ) and 8 ( b ) are cross sectional views illustrating a mechanical model of a C-shaped coupling structure used to couple piezo-generated stress to the PR layer;
- FIGS. 9( a ) through 9 ( l ) are cross sectional views illustrating an exemplary method of forming a PET device and associated coupling structure, in accordance with a further embodiment of the invention.
- FIGS. 10( a ) through 10 ( e ) are top down, cross sectional views illustrating exemplary sidewall arrangements of the stiffener structure, in accordance with further embodiments of the invention.
- FIGS. 11( a ) through 11 ( f ) illustrate top capping layers above the sidewall arrangements of the stiffener structure in FIGS. 10( a ) through 10 ( e ).
- a coupling structure for coupling piezoelectric material generated stresses to actuated devices formed in integrated circuits.
- an actuated device could be, for example, a device formed of a material that exhibits a phase change or a resistance change from an applied stress thereto originating from a piezoelectric material.
- an actuated device may be a nonvolatile memory incorporating a phase change material (PCM), wherein a piezo-effect transistor has a piezoresistive material driven by a voltage-controlled piezoelectric material.
- PCM phase change material
- a piezoelectric (PE) material either expands or contracts, depending on the polarity of the voltage applied across it.
- a piezoresistive (PR) material is pressure sensitive, in that it may have a high or low resistance depending on its compression.
- the juxtaposition of a PE material and a PR material in a way that allows the expansion and contraction of the PE material to compress and decompress the PR material results in a sensitive switch in which the resistance in the PR material can be controlled by varying the voltage across the PE material.
- a three-terminal device with one terminal connected to a thin metallic layer between the PE and PR, another to the far side of the PE and a third to the far side of the PR forms a transistor-like switch that may be used for logic and memory functionalities.
- a piezo-effect transistor or PET such a device is referred to as a piezo-effect transistor or PET.
- the stress generated by application of a small voltage to the PE material should be effectively coupled to the PR/PCM so as to result in the desired resistance changes therein.
- a coupling structure and associated process of forming the same is disclosed, wherein the coupling structure incorporates a rigid stiffener structure of a high modulus material.
- the high modulus material is formed around the PET the device and over the substrate (e.g., silicon) and PE/PR (or PCM) stack, while a soft (low modulus) material or air gap is disposed between the stiffener and the PET device.
- the stiffener structure clamps the PET device to the substrate (over which the PET is formed) so as to constrain the overall deformation of the PE and PR materials of the PET device.
- the soft material or air gap disposed between the PET device and the stiffener gives the PE material freedom to move relative to the other device material.
- the stress generated by an applied voltage to the PE material may be effectively used to drive the PCM or piezoresistive material for high performance.
- Exemplary high modulus materials that may be used for the stiffener include silicon nitride (SiN) and tungsten (W), while exemplary low modulus material used for the buffer region may include a low-k material such as SiCOH, or possibly an airgap.
- FIGS. 1( a ) and 1 ( b ) there is shown a schematic diagram of a PET device 100 shown in an n-type configuration and a p-type configuration, respectively, along with a three-terminal symbolic representation thereof.
- the PET device 100 is characterized by a sandwich structure ( FIG. 1) , in which a PE material 102 is sandwiched between a pair of electrodes, a first of which represents a PE electrode 104 or “gate” (control) terminal and a second of which represents a common electrode 106 .
- a PR material 108 is sandwiched between the common electrode 106 and a third electrode, which represents an output electrode 110 .
- the output electrode 110 comprises a metal layer (e.g., about 10-20 nanometers (nm) in thickness) that acts as a conductor through which significant current can be passed only if the PR material 108 is in the “ON” or low resistance state.
- the common electrode 106 comprises another metal layer, which is moderately flexible so as to transmit the pressure applied by the PE material 102 therebeneath. This middle metal layer acts as the common terminal for the transistor.
- the PE electrode or gate electrode 104 comprises another metal layer (e.g., about 10-20 nm in thickness) through which a programming voltage is applied to the PE layer 102 .
- each conductor electrode also provides a barrier layer against diffusion of the PE/PR materials.
- the +/ ⁇ indications depict the piezo polarization to be applied to the PE layer 102 in order for the PR layer 108 to be in the low resistance “ON” state, assuming that the PR conductance increases with pressure.
- the sign of the response of the PE layer to a voltage across it (expansion or contraction) is set in a poling step during processing.
- the drive polarity is reversed by reversing the poling of the piezoelectric.
- an exemplary height of the PET device 100 is about 35-120 nm, with dimensions of about 45-90 nm in the x-y plane.
- the PET device 100 is scalable and many of the problems associated with conventional FET scaling are absent. For example, carrier transport is enhanced by the favorable geometry of the PET, in that current flows transversely through the thin channel film (instead of longitudinally as in the FET). In addition, there are no short-channel effects, as the input is screened from the output by the common electrode. Because the PET does not have a dopant non-uniformity problem, it should be less impurity/geometry sensitive than FETs, due to short mean free paths and efficient screening by the high density of carriers. The PET should have theoretically similar performance to that of FETs (as described in more detail below), and is capable of low ON impedance at very small scales.
- FIG. 2 is a graph that illustrates pressure versus resistance properties of samarium selenide (SmSe), which is one suitable example of a PR material that may be used in the PET device.
- SmSe is a semiconductor at ordinary pressures, and continuously converts to a metallic phase under pressures of about 4 GPa, and with a substantially large conductivity change (about 5 orders of magnitude) even at about 2 GPa. While the present invention embodiments may advantageously exploit the continuous conductivity change versus pressure of materials of the SmSe type, it is also contemplated that discontinuous transition materials can also be used for the PR layer in PET device. An example of the latter type is shown in FIG.
- FIG. 3( a ) which illustrates the molecular structure of a photoconductive, porphyrin derivative known as ZnODEP.
- FIG. 3( b ) is a graph illustrating photocurrent as a function of distance during the compression of a ZnODEP film.
- continuous transition materials such as SmSe are expected to pressurize reversibly and their transition speed may be controlled essentially by the velocity of sound, while their materials degradation due to cycling should be minimal.
- materials with a discontinuous transition is also expected to be effective.
- PR materials that experience an insulator-to-metal transition under applied pressure include, but are not limited to: EuNiO 3 , Ni(S,Se) 2 , hexagonal BaTiO 3- ⁇ , InSb, and (2,5 DM-DCNQI) 2 Cu.
- piezoelectric materials include, for example lead-zirconate-titanate (PZT), strontium-doped lead-zirconate-titanate (PSZT), PSN-PMN-PNN-PSZT, PZNT 91/9 and PMNT 70/30 [Y. J. Yamashita and Y. Hosono, Jap. J. Appl. Phys. 43, 6679-6682 (2004)] with piezoelectric coefficients (d 33 ) lying in the range of about 200-1500 pm/V.
- PZT lead-zirconate-titanate
- PSZT strontium-doped lead-zirconate-titanate
- PSN-PMN-PNN-PSZT PZNT 91/9
- PMNT 70/30 Y. J. Yamashita and Y. Hosono, Jap. J. Appl. Phys. 43, 6679-6682 (2004)
- FIG. 4 there is shown a schematic cross-sectional diagram of another embodiment of a PET device with an associated coupling structure, generally indicated at 400 .
- the PET device including PE element 102 , PR element 108 , and electrodes 104 , 106 , 110 ) is formed over a substrate 401 , such as silicon for example. Insulating regions 402 (such as silicon dioxide (SiO 2 ) for example) are also shown for purposes of illustration.
- the PET device is surrounded by a coupling structure that includes a stiffener structure 404 , formed from a high Young's modulus (E) material, such as silicon nitride (Si 3 N 4 ) or tungsten (W) for example.
- a high Young's modulus material may be on the order of about 60 gigapascals (GPa) or greater, and more specifically on the order of about 100 GPa or greater.
- GPa gigapascals
- Such a relatively high value of E ensures that the piezoelectric displacement of the PE element 102 is transmitted to the PR element 108 , rather than to a surrounding medium such as insulating regions 402 or the substrate 401 .
- a soft (low Young's modulus) material spacer 406 Disposed between the stiffener structure 404 and the PET device is a soft (low Young's modulus) material spacer 406 or, alternatively, an air gap.
- the soft spacer material 406 in an exemplary embodiment has a low Young's modulus on the order of about 20 GPa or less, and more specifically on the order of about 10 GPa or less.
- Such a material may be, for example, SiCOH.
- the stiffener structure 404 clamps the PET device to the substrate 401 (over which the PET is formed) so as to constrain the overall deformation of the PE and PR materials 102 , 108 , respectively of the PET device.
- the soft material spacer 406 or air gap disposed between the PET device and the stiffener structure 404 gives the PE material 102 freedom to move relative to the other device material.
- E z is the electric field in the z-direction
- E denotes the Young's modulus of the given element (E PR or E PE )
- t denotes film thickness of the given element (t PR or t PE ) parallel to the z-axis
- A denotes surface area of the given element (A PR or A PE ) normal to the z-axis
- d 33 denotes the zz-component of the piezoelectric coupling coefficient of the PE material.
- the pressure rise is about 1 GPa.
- an organic PR material such as ZnODEP
- the exemplary PET with associated coupling device 400 is configured for a mechanical simulation, using engineering simulation software from ANSYS, Inc.
- the exemplary distances shown in FIG. 5( a ) are in nanometers.
- the simulated structure 400 also includes a silicon substrate 401 , a soft spacer material (e.g., SiCOH or other process-compatible soft material) buffer structure 406 surrounding the cell, a silicon nitride (SiN) clamp or yoke stiffener structure 404 on the substrate 401 surrounding the transistor, and silicon dioxide (SiO 2 ) regions 402 within the SiN stiffener structure 404 .
- a soft spacer material e.g., SiCOH or other process-compatible soft material
- SiN silicon nitride
- SiO 2 silicon dioxide
- the nitride stiffener structure 404 forms a rigid frame so that the electrically induced displacement of the PE material 102 is mechanically coupled to (and focused primarily towards) the PR material 108 .
- Tungsten forms the conducting electrodes (leads not shown), and is also mechanically rigid, while the low-K buffer structure 406 (being a soft material) does not impede the operating displacements significantly.
- FIG. 5( b ) shows the stress distribution of the simulated structure 400 when 1.6 V is applied to the PE material 102 with a resulting electric field of 0.02 V/nm. It is noted that a contraction (tension) of the PE element 102 results in an expansion (negative pressure) of the PR element 108 and vice-versa. It will be seen from FIG. 5( b ) that the PE material 102 expands at its sides (due to its Poisson ratio), and exerts pressure at both the top and bottom sides thereof due to its voltage-induced expansion. Due to some degree of force concentration, the highest pressure is in the PR material 108 , as reflected in FIG. 5( b ), and the pressure legend of FIG. 5( c ).
- FIG. 6 is a more detailed view of the simulated pressure distribution within the PR material 108 .
- the pressure is seen to be fairly uniform therein, and on the order of about 0.6 GPa.
- FIG. 8( a ) With respect to the clamping stiffener structure 404 used to couple piezo-generated stress to the PR layer, a simple mechanical model which aids in further understanding of the operation of the pressure cell is shown in FIG. 8( a ).
- the model only considers compressive stresses/strains.
- the mechanics of a C-shaped clamp as shown in FIG. 15( a ) are in accordance with the following expressions:
- FIG. 8( b ) illustrates a similar analysis, only with the insertion of a hard (e.g., tungsten) T-shaped force concentrator (s) between the piezo element and the PR material.
- a hard (e.g., tungsten) T-shaped force concentrator (s) may be desirable in the event that the force concentrator area ratio is so large as to risk significant bending distortion in the driver structure.
- the applied stress to the PR material is in accordance with the following expression:
- the force concentrator(s) is made stiff, the PR material is made small and/or the piezo element is made large.
- FIGS. 9( a ) through 9 ( l ) are cross sectional views illustrating an exemplary method of forming a PET device and coupling structure as depicted in FIG. 4 .
- the exemplary method described herein is fully compatible with existing CMOS processing techniques.
- a substrate 401 e.g., silicon
- an insulating layer 402 e.g., SiO2
- stiffener material 404 e.g. SiN
- a portion of the stiffener material 404 is lithographically patterned and removed to define the location of the lower electrode of the PET device.
- FIG. 9( b ) illustrates a diffusion barrier layer 902 (e.g., Ti/TiN) formed over the insulating layer 402 , followed by deposition and/or plating of the electrode metal (e.g., W, Cu) and chemical mechanical polishing (CMP) as known in the art to form the lower electrode 104 .
- the electrode metal e.g., W, Cu
- CMP chemical mechanical polishing
- a second deposition of SiN stiffener material 404 covers the lower electrode 104 , to a thickness roughly corresponding to the height of the PE material for the PET device.
- a patterning step is used to open a portion of the stiffener material down to the top of the lower electrode 104 , followed by deposition and CMP of the soft buffer structure material 406 that will surround the PET cell.
- the soft buffer structure material is SiCOH, although an air gap could also be used, for example.
- another patterning step is then used to open the buffer structure material 406 for the formation of another diffusion barrier layer 904 and PE material (e.g., PSZT) 102 thereupon.
- a third deposition of SiN stiffener material 404 builds additional height roughly corresponding to the thickness of the common electrode for the PET device.
- This additional SiN is then patterned and opened so as to allow deposition and CMP of additional soft buffer structure material 406 above the PE material 102 , as also shown in FIG. 9( f ).
- portions of the soft buffer structure material 406 and the SiN stiffener material 104 are patterned and removed so as to facilitate deposition and/or plating of another diffusion barrier layer 906 and metal for the common electrode 106 .
- a fourth deposition of SiN stiffener material 404 builds additional height roughly corresponding to the thickness of the PR phase change material of the PET device.
- This additional SiN is then patterned and opened so as to allow deposition and CMP of additional soft buffer structure material 406 above the common electrode 106 , as also shown in FIG. 9( h ).
- a patterning step may then be performed so as to form vias for contacting the bottom and common electrodes 104 , 106 .
- barrier layers 908 and conductive studs (e.g., W filled vias) 910 are formed in contact with bottom and common electrodes 104 , 106 . Then, as shown in FIG.
- the PR element 108 may comprise a stack of materials such as, for example, SmSe, SmS, etc.
- the PR element 108 or a metal/PR stack may also include an intervening liner layer to the PR material (such as Ti, for example) to ensure good mechanical adhesion.
- This PR material is shown planarized in FIG. 9( j ) prior to formation of a top contact thereto.
- FIG. 9( k ) another diffusion barrier layer 912 is deposited and patterned so as to contact PR element 108 , as well as the common and lower electrode studs 910 .
- a fifth deposition of SiN stiffener material 404 over the diffusion barrier layer 912 builds additional height roughly corresponding to the thickness of the top electrode for the PET device.
- This additional SiN is then patterned and opened so as to allow deposition and CMP of metal that forms the top electrode 110 of the PET device, as well as electrodes 914 contacting the studs 910 . From this point, additional CMOS device processing as known in the art may continue.
- a capping layer (not shown in FIG. 9( l )) may be formed over the device.
- a capping layer may be opened though one or more access holes such that the soft buffer structure material 406 can be etched out.
- the soft buffer structure material 406 would constitute a sacrificial material.
- FIG. 10( a ) is a top down, cross sectional view that illustrates sidewalls of the stiffener structure 404 completely surrounding the PET device 100 and soft buffer structure 406 .
- FIG. 10( b ) illustrates an alternate sidewall arrangement, in which the PET device 100 and soft buffer structure 406 are partially surrounded by sidewalls of the stiffener structure 406 on three sides thereof.
- FIGS. 10( c ) and 10 ( d ) depict the PET device 100 and soft buffer structure 406 partially surrounded by sidewalls of the stiffener structure 406 on two sides thereof.
- FIG. 10( e ) depicts the PET device 100 and soft buffer structure 406 partially surrounded by sidewalls of the stiffener structure 406 on one side thereof. It should further be noted that although the embodiment of FIG. 10( a ) illustrates the sidewalls of the stiffener structure 404 in a generally square configuration, other sidewall shapes are also contemplated including, for example, rectangular, circular, oval, etc.
- FIGS. 11( a ) through 11 ( e ) illustrate various capping layer/opening options with respect to the sidewall arrangements of FIG. 10( a ) through 10 ( e ), respectively.
- a top capping layer 1102 of a relatively high modulus material e.g., SiN or other suitable dielectric
- one or more openings 1104 are formed within the top capping so as to allow for etching and removal of a sacrificial material. It will be noted that the openings are not formed directly over the (center) portion of the structure, corresponding to the location of the PET device.
- the capping layer 1102 remains intact in an embodiment, for example, where a material such as SiCOH will remain as the buffer structure material.
Landscapes
- Pressure Sensors (AREA)
- Micromachines (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Measuring Fluid Pressure (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/532,991 US8405279B2 (en) | 2009-12-07 | 2012-06-26 | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/632,154 US8247947B2 (en) | 2009-12-07 | 2009-12-07 | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
US13/532,991 US8405279B2 (en) | 2009-12-07 | 2012-06-26 | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/632,154 Division US8247947B2 (en) | 2009-12-07 | 2009-12-07 | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120270353A1 US20120270353A1 (en) | 2012-10-25 |
US8405279B2 true US8405279B2 (en) | 2013-03-26 |
Family
ID=43629090
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/632,154 Active 2030-11-09 US8247947B2 (en) | 2009-12-07 | 2009-12-07 | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
US13/532,991 Active US8405279B2 (en) | 2009-12-07 | 2012-06-26 | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/632,154 Active 2030-11-09 US8247947B2 (en) | 2009-12-07 | 2009-12-07 | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
Country Status (5)
Country | Link |
---|---|
US (2) | US8247947B2 (en) |
CN (1) | CN102640314B (en) |
DE (1) | DE112010004700B4 (en) |
GB (1) | GB2485749B (en) |
WO (1) | WO2011069920A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9058868B2 (en) | 2012-12-19 | 2015-06-16 | International Business Machines Corporation | Piezoelectronic memory |
US9251884B2 (en) * | 2014-03-24 | 2016-02-02 | International Business Machines Corporation | Non-volatile, piezoelectronic memory based on piezoresistive strain produced by piezoelectric remanence |
US9263664B1 (en) | 2014-10-31 | 2016-02-16 | International Business Machines Corporation | Integrating a piezoresistive element in a piezoelectronic transistor |
US9287489B1 (en) | 2014-10-31 | 2016-03-15 | International Business Machines Corporation | Piezoelectronic transistor with co-planar common and gate electrodes |
US9293687B1 (en) | 2014-10-31 | 2016-03-22 | International Business Machines Corporation | Passivation and alignment of piezoelectronic transistor piezoresistor |
US9425381B2 (en) | 2014-08-26 | 2016-08-23 | International Business Machines Corporation | Low voltage transistor and logic devices with multiple, stacked piezoelectronic layers |
US9472368B2 (en) | 2014-10-31 | 2016-10-18 | International Business Machines Corporation | Piezoelectronic switch device for RF applications |
US9941472B2 (en) | 2014-03-10 | 2018-04-10 | International Business Machines Corporation | Piezoelectronic device with novel force amplification |
US10564757B2 (en) | 2017-01-17 | 2020-02-18 | Boe Technology Group Co., Ltd. | Force touch sensor, display device and driving method thereof |
US10573482B2 (en) | 2017-01-30 | 2020-02-25 | International Business Machines Corporation | Piezoelectric vacuum transistor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8247947B2 (en) | 2009-12-07 | 2012-08-21 | International Business Machines Corporation | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
US20130009668A1 (en) * | 2011-07-06 | 2013-01-10 | International Business Machines Corporation | 4-terminal piezoelectronic transistor (pet) |
EP3118906B1 (en) * | 2014-03-14 | 2018-08-22 | Japan Science and Technology Agency | Transistor using piezoresistor as channel, and electronic circuit |
US9461236B1 (en) * | 2015-05-22 | 2016-10-04 | Rockwell Collins, Inc. | Self-neutralized piezoelectric transistor |
US10153421B1 (en) * | 2016-02-09 | 2018-12-11 | Rockwell Collins, Inc. | Piezoelectric transistors with intrinsic anti-parallel diodes |
US10332753B2 (en) * | 2017-01-13 | 2019-06-25 | International Business Machines Corporation | Wet etching of samarium selenium for piezoelectric processing |
CN109212326B (en) * | 2018-10-24 | 2020-10-02 | 清华大学 | Micro electric field sensing device based on piezoelectric effect and piezoresistive effect multi-mode coupling |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3138726A (en) | 1960-11-17 | 1964-06-23 | Gulton Ind Inc | Transducer |
US4419598A (en) | 1980-12-15 | 1983-12-06 | Thomson-Csf | Piezoelectrically controlled piezoresistor |
US5231326A (en) | 1992-01-30 | 1993-07-27 | Essex Electronics, Inc. | Piezoelectric electronic switch |
US5760675A (en) | 1995-12-08 | 1998-06-02 | Electronics And Telecommunications Research Institute | Piezoresistive device and fabrication method thereof |
US5872372A (en) | 1995-12-08 | 1999-02-16 | Electronics And Telecommunications Research Institute | Thin film transistor with piezoelectric film |
US5883419A (en) * | 1994-11-17 | 1999-03-16 | Electronics And Telecommunications Research Institute | Ultra-thin MO-C film transistor |
US6083762A (en) * | 1996-05-31 | 2000-07-04 | Packard Instruments Company | Microvolume liquid handling system |
US6392934B1 (en) | 1998-11-17 | 2002-05-21 | Commissariat A L'energie Atomique | Method for reading and writing a data storage medium comprising a material with a succession of zones having a first and second physical state respectively |
US6548942B1 (en) * | 1997-02-28 | 2003-04-15 | Texas Instruments Incorporated | Encapsulated packaging for thin-film resonators and thin-film resonator-based filters having a piezoelectric resonator between two acoustic reflectors |
US20060054926A1 (en) | 2004-09-13 | 2006-03-16 | Hacene Lahreche | High electron mobility transistor piezoelectric structures |
US7221579B2 (en) | 2005-06-13 | 2007-05-22 | International Business Machines Corporation | Method and structure for high performance phase change memory |
US7253488B2 (en) | 2002-04-23 | 2007-08-07 | Sharp Laboratories Of America, Inc. | Piezo-TFT cantilever MEMS |
US20070235784A1 (en) | 2006-03-30 | 2007-10-11 | International Business Machines Corporation | Three-terminal cascade switch for controlling static power consumption in integrated circuits |
US7394089B2 (en) | 2006-08-25 | 2008-07-01 | International Business Machines Corporation | Heat-shielded low power PCM-based reprogrammable EFUSE device |
US7411818B1 (en) | 2007-02-07 | 2008-08-12 | International Business Machines Corporation | Programmable fuse/non-volatile memory structures using externally heated phase change material |
US20080289417A1 (en) * | 2007-02-02 | 2008-11-27 | Wacoh Corporation | Sensor for detecting acceleration and angular velocity |
US20090026890A1 (en) | 2007-03-14 | 2009-01-29 | Christopher Andrew Goat | Reducing stress gradients within piezoelectric actuators |
US20100328984A1 (en) * | 2009-06-30 | 2010-12-30 | International Business Machines Corporation | Piezo-effect transistor device and applications |
US20110133603A1 (en) | 2009-12-07 | 2011-06-09 | International Business Machines Corporation | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1149589A (en) * | 1966-11-15 | 1969-04-23 | Matsushita Electric Ind Co Ltd | Thin film active element |
US3739201A (en) * | 1971-06-09 | 1973-06-12 | Zenith Radio Corp | High voltage regulator device |
CN1885584A (en) * | 2005-06-22 | 2006-12-27 | 昆明凯旋利科技有限公司 | Pressure sensing type contactless switch |
-
2009
- 2009-12-07 US US12/632,154 patent/US8247947B2/en active Active
-
2010
- 2010-12-03 CN CN201080055227.6A patent/CN102640314B/en active Active
- 2010-12-03 GB GB1205373.2A patent/GB2485749B/en not_active Expired - Fee Related
- 2010-12-03 WO PCT/EP2010/068872 patent/WO2011069920A1/en active Application Filing
- 2010-12-03 DE DE112010004700.6T patent/DE112010004700B4/en active Active
-
2012
- 2012-06-26 US US13/532,991 patent/US8405279B2/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3138726A (en) | 1960-11-17 | 1964-06-23 | Gulton Ind Inc | Transducer |
US4419598A (en) | 1980-12-15 | 1983-12-06 | Thomson-Csf | Piezoelectrically controlled piezoresistor |
US5231326A (en) | 1992-01-30 | 1993-07-27 | Essex Electronics, Inc. | Piezoelectric electronic switch |
US5883419A (en) * | 1994-11-17 | 1999-03-16 | Electronics And Telecommunications Research Institute | Ultra-thin MO-C film transistor |
US5760675A (en) | 1995-12-08 | 1998-06-02 | Electronics And Telecommunications Research Institute | Piezoresistive device and fabrication method thereof |
US5872372A (en) | 1995-12-08 | 1999-02-16 | Electronics And Telecommunications Research Institute | Thin film transistor with piezoelectric film |
US6083762A (en) * | 1996-05-31 | 2000-07-04 | Packard Instruments Company | Microvolume liquid handling system |
US6548942B1 (en) * | 1997-02-28 | 2003-04-15 | Texas Instruments Incorporated | Encapsulated packaging for thin-film resonators and thin-film resonator-based filters having a piezoelectric resonator between two acoustic reflectors |
US6392934B1 (en) | 1998-11-17 | 2002-05-21 | Commissariat A L'energie Atomique | Method for reading and writing a data storage medium comprising a material with a succession of zones having a first and second physical state respectively |
US7253488B2 (en) | 2002-04-23 | 2007-08-07 | Sharp Laboratories Of America, Inc. | Piezo-TFT cantilever MEMS |
US20060054926A1 (en) | 2004-09-13 | 2006-03-16 | Hacene Lahreche | High electron mobility transistor piezoelectric structures |
US7221579B2 (en) | 2005-06-13 | 2007-05-22 | International Business Machines Corporation | Method and structure for high performance phase change memory |
US20070235784A1 (en) | 2006-03-30 | 2007-10-11 | International Business Machines Corporation | Three-terminal cascade switch for controlling static power consumption in integrated circuits |
US7394089B2 (en) | 2006-08-25 | 2008-07-01 | International Business Machines Corporation | Heat-shielded low power PCM-based reprogrammable EFUSE device |
US20080289417A1 (en) * | 2007-02-02 | 2008-11-27 | Wacoh Corporation | Sensor for detecting acceleration and angular velocity |
US7411818B1 (en) | 2007-02-07 | 2008-08-12 | International Business Machines Corporation | Programmable fuse/non-volatile memory structures using externally heated phase change material |
US20090026890A1 (en) | 2007-03-14 | 2009-01-29 | Christopher Andrew Goat | Reducing stress gradients within piezoelectric actuators |
US20100328984A1 (en) * | 2009-06-30 | 2010-12-30 | International Business Machines Corporation | Piezo-effect transistor device and applications |
US20110133603A1 (en) | 2009-12-07 | 2011-06-09 | International Business Machines Corporation | Coupling piezoelectric material generated stresses to devices formed in integrated circuits |
Non-Patent Citations (25)
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9058868B2 (en) | 2012-12-19 | 2015-06-16 | International Business Machines Corporation | Piezoelectronic memory |
US10964881B2 (en) | 2014-03-10 | 2021-03-30 | International Business Machines Corporation | Piezoelectronic device with novel force amplification |
US9941472B2 (en) | 2014-03-10 | 2018-04-10 | International Business Machines Corporation | Piezoelectronic device with novel force amplification |
US9251884B2 (en) * | 2014-03-24 | 2016-02-02 | International Business Machines Corporation | Non-volatile, piezoelectronic memory based on piezoresistive strain produced by piezoelectric remanence |
US9679645B2 (en) * | 2014-03-24 | 2017-06-13 | International Business Machines Corporation | Non-volatile, piezoelectronic memory based on piezoresistive strain produced by piezoelectric remanence |
US20160111154A1 (en) * | 2014-03-24 | 2016-04-21 | International Business Machines Corporation | Non-volatile, piezoelectronic memory based on piezoresistive strain produced by piezoelectric remanence |
US9466781B2 (en) * | 2014-08-26 | 2016-10-11 | International Business Machines Corporation | Low voltage transistor and logic devices with multiple, stacked piezoelectronic layers |
US9425381B2 (en) | 2014-08-26 | 2016-08-23 | International Business Machines Corporation | Low voltage transistor and logic devices with multiple, stacked piezoelectronic layers |
US9881759B2 (en) | 2014-10-31 | 2018-01-30 | International Business Machines Corporation | Piezoelectronic switch device for RF applications |
US9444029B2 (en) | 2014-10-31 | 2016-09-13 | International Business Machines Corporation | Piezoelectronic transistor with co-planar common and gate electrodes |
US9419203B2 (en) | 2014-10-31 | 2016-08-16 | International Business Machines Corporation | Passivation and alignment of piezoelectronic transistor piezoresistor |
US9472368B2 (en) | 2014-10-31 | 2016-10-18 | International Business Machines Corporation | Piezoelectronic switch device for RF applications |
US9293687B1 (en) | 2014-10-31 | 2016-03-22 | International Business Machines Corporation | Passivation and alignment of piezoelectronic transistor piezoresistor |
US9419201B2 (en) | 2014-10-31 | 2016-08-16 | International Business Machines Corporation | Integrating a piezoresistive element in a piezoelectronic transistor |
US9287489B1 (en) | 2014-10-31 | 2016-03-15 | International Business Machines Corporation | Piezoelectronic transistor with co-planar common and gate electrodes |
US10354824B2 (en) | 2014-10-31 | 2019-07-16 | International Business Machines Corporation | Piezoelectronic switch device for RF applications |
US9263664B1 (en) | 2014-10-31 | 2016-02-16 | International Business Machines Corporation | Integrating a piezoresistive element in a piezoelectronic transistor |
US10564757B2 (en) | 2017-01-17 | 2020-02-18 | Boe Technology Group Co., Ltd. | Force touch sensor, display device and driving method thereof |
US10573482B2 (en) | 2017-01-30 | 2020-02-25 | International Business Machines Corporation | Piezoelectric vacuum transistor |
US10665414B2 (en) | 2017-01-30 | 2020-05-26 | International Business Machines Corporation | Piezoelectric vacuum transistor |
US11361928B2 (en) | 2017-01-30 | 2022-06-14 | International Business Machines Corporation | Piezoelectric vacuum transistor |
Also Published As
Publication number | Publication date |
---|---|
GB201205373D0 (en) | 2012-05-09 |
DE112010004700T5 (en) | 2012-10-31 |
US20120270353A1 (en) | 2012-10-25 |
CN102640314A (en) | 2012-08-15 |
WO2011069920A1 (en) | 2011-06-16 |
US20110133603A1 (en) | 2011-06-09 |
GB2485749A8 (en) | 2012-09-12 |
US8247947B2 (en) | 2012-08-21 |
GB2485749A (en) | 2012-05-23 |
GB2485749B (en) | 2012-10-03 |
DE112010004700B4 (en) | 2015-10-22 |
CN102640314B (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8405279B2 (en) | Coupling piezoelectric material generated stresses to devices formed in integrated circuits | |
US8159854B2 (en) | Piezo-effect transistor device and applications | |
US20130009668A1 (en) | 4-terminal piezoelectronic transistor (pet) | |
EP3759740B1 (en) | Ferroelectric low power 2d memory transistor and fabrication method thereof | |
US7848135B2 (en) | Piezo-driven non-volatile memory cell with hysteretic resistance | |
TWI412125B (en) | An electronic device and a method of manufacturing an electronic device | |
KR101684463B1 (en) | Hybrid phase field effect transistor | |
US7586158B2 (en) | Piezoelectric stress liner for bulk and SOI | |
Sacchetto et al. | Fabrication and characterization of vertically stacked gate-all-around Si nanowire FET arrays | |
EP2562837A1 (en) | Ferroelectric device | |
US7453108B2 (en) | Semiconductor device that is advantageous in complex stress engineering and method of manufacturing the same | |
US11491510B2 (en) | Semiconductor device having microelectromechanical systems devices with improved cavity pressure uniformity | |
CN111180443A (en) | Semiconductor device and chip comprising nanosheet field effect transistor unit architecture | |
US8035164B2 (en) | Semiconductor device and electronic apparatus | |
US9537006B2 (en) | Circuit element including a layer of a stress-creating material providing a variable stress | |
US10014462B2 (en) | Piezoelectric nanoelectromechanical relays | |
JP2007160435A (en) | Semiconductor device and its manufacturing method | |
JP2004039690A (en) | Semiconductor device | |
EP2690418A1 (en) | Pressure sensor having flexible diaphragm with active circuit components thereon | |
US11581476B2 (en) | Semiconductor structure and method for manufacturing thereof | |
US20210376166A1 (en) | Semiconductor device with passive magneto-electric transducer | |
Maita et al. | Flexible double stage POSTFT based on Poly-Si technology for robotic skin application | |
Ghoneim | Solid-state Memory on Flexible Silicon for Future Electronic Applications | |
JPH04317382A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:049490/0001 Effective date: 20181127 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:054633/0001 Effective date: 20201022 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:054636/0001 Effective date: 20201117 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001 Effective date: 20201117 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |