US8395840B2 - Apparatus for positioning optical components in an optical device - Google Patents
Apparatus for positioning optical components in an optical device Download PDFInfo
- Publication number
- US8395840B2 US8395840B2 US12/844,506 US84450610A US8395840B2 US 8395840 B2 US8395840 B2 US 8395840B2 US 84450610 A US84450610 A US 84450610A US 8395840 B2 US8395840 B2 US 8395840B2
- Authority
- US
- United States
- Prior art keywords
- holding device
- toothing
- optical components
- motor shaft
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/24—Base structure
- G02B21/248—Base structure objective (or ocular) turrets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
- G02B7/1822—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors comprising means for aligning the optical axis
- G02B7/1827—Motorised alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
- G02B7/005—Motorised alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/14—Mountings, adjusting means, or light-tight connections, for optical elements for lenses adapted to interchange lenses
- G02B7/16—Rotatable turrets
Definitions
- the invention relates to an apparatus for positioning optical components in an optical device, comprising a holding device having a plurality of receptacles on which the optical components are held, wherein the holding device is rotatable into a plurality of predetermined rotary positions, in which rotary positions respectively one of the optical components is arranged in a target position, a motor comprising a motor shaft for rotating the holding device, a controller for controlling the motor and a transmitting mechanism for transmitting the rotary movement of the motor shaft into a rotary movement of the holding device. Further the invention relates to a microscope having such an apparatus.
- Apparatuses of the aforementioned type are for example used in microscopes to pivot optical components such as objectives or filter blocks, which are held on a rotary disk, individually into a target position located in a beam path. Thereby it is important to bring the optical components into the target position as fast, noiseless and accurately as possible.
- an apparatus for positioning optical components in an optical device comprising: a holding device having a plurality of receptacles on which the optical components can be fixed, wherein the holding device is rotatable into a plurality of predetermined rotary positions, in which rotary positions respectively one of the optical components is arranged in a target position, a motor comprising a motor shaft for rotating the holding device, and a transmitting mechanism for transmitting the rotary movement of the motor shaft into a rotary movement of the holding device, wherein the transmitting mechanism comprises a toothed belt that is engaged with a first toothing arranged at the holding device and a second toothing arranged at the motor shaft, the first toothing includes Z1 teeth and the second toothing includes Z2 teeth and the ratio Z1/Z2 is n times the number of the receptacles, provided with uniform angular distances from each other on the holding device, for the optical components, wherein n is a natural integer not equal to 0, the motor is
- the transmission mechanism comprises a toothed belt which is engaged with a first toothing arranged at the holding device and a second toothing arranged at the motor shaft.
- toothed belt allows for a low noise and vibration-free transmission of the rotary movement of the motor shaft to the holding device. Latching of the holding device for positioning an optical component in the target position is not necessary at all. Thus the mechanical stresses caused during rotation of the holding device inside the inventive apparatus are minimized, whereby the operating life of the apparatus is extended.
- the first toothing includes Z1 teeth and the second toothing includes Z2 teeth and the ratio Z1/Z2 is n times the number of the receptacles, provided with uniform angular distances from each other on the holding device, for the optical components, wherein n is a natural integer not equal to 0.
- the motor shaft performs n full rotations when changing from one predetermined rotary position into the next predetermined rotary position of the holding device, i.e. when switching from one optical component to the next optical component. This facilitates the control of the motor, in particular when n equals 1, i.e. when the ratio Z1/Z2 is equal to the number of receptacles, provided on the holding device, for the optical components.
- the motor is a stepper motor.
- a stepper motor guarantees an exact, step-by-step positioning of the optical components.
- a comparatively weak and thus cost-efficient stepper motor is sufficient to bring the holding device into the desired rotary position and hold it there.
- the stepper motor is installed such that the motor shaft thereof is in a full step position when one of the optical components is arranged in the target position.
- This is advantageous when using a conventional stepper motor which does not only work in full steps, but e.g. in half steps, quarter steps etc.
- a stepper motor of this type the largest holding forces as well as the highest positioning accuracy result in a full step position of the motor shaft in which two coils of the stepper motor being adjacent to each other are maximally energized. Thereby the optical component is locked exactly and with the highest possible holding force in the target position.
- the controller comprises an initializing device which controls the stepper motor in the beginning of the operation of the apparatus such that the motor shaft is rotated into a predetermined initialization position.
- the holding device is in a specific rotary position in the beginning of the operation.
- the above-mentioned initialization position is one of the predetermined rotary positions in which one of the optical components is arranged in the target position.
- the initializing device For detecting the predetermined initialization position the initializing device preferably includes a light barrier, e.g. formed as fork light barrier, which detects an appropriate coding element, e.g. a light passage slot, when the holding device is in the initialization position.
- a light barrier e.g. formed as fork light barrier, which detects an appropriate coding element, e.g. a light passage slot, when the holding device is in the initialization position.
- this residual error may be undesirable, because it causes e.g. a very little lateral offset in an illumination beam path, e.g. an offset of the image of a field stop.
- this offset is in the direction of rotation of the positioning apparatus, there is the possibility to do a fine correction by systematically positioning the optical components slightly next to the originally planned target position.
- This correctable offset can be in the angular range of a few seconds.
- the controller controls the motor taking into consideration correction amounts which respectively indicate a correction offset with respect to the respective predetermined rotary position of the holding device.
- the inventive apparatus is preferably determined for positioning objectives and/or filter blocks in a microscope which are usually held on rotary disks.
- the invention is not limited to such use. It is rather adapted to position arbitrary optical components, which are held on a holding device in an optical device and are rotated, precisely, low noise, vibration-free and fast.
- FIG. 1 shows a cross-sectional view of a microscope including a positioning apparatus according to a first embodiment
- FIG. 2 shows a top view of the positioning apparatus
- FIG. 3 shows illustrations of various embodiments of the toothed belt
- FIG. 4 shows a cross-sectional view of a microscope including a positioning apparatus according to a second embodiment.
- FIG. 1 shows a fluorescence microscope 10 in cross section.
- the fluorescence microscope 10 has a microscope body 12 on which a tube 14 with a tube lens 16 is installed.
- a CCD-camera 18 is connected to the tube 14 .
- a stage 20 is attached to the microscope body 12 on which stage 20 a specimen 22 is arranged.
- the specimen 22 is imaged by an objective 24 and brought to view on the CCD-camera 18 .
- An optical axis O passes through the objective 24 .
- a light source 26 for emitting light is arranged, which light passes through the lenses 28 and 30 .
- a first diaphragm 32 and a second diaphragm 34 which forms a field stop, are arranged between the two lenses 28 and 30 .
- the fluorescence microscope 10 includes a positioning apparatus, generally referred to by 40 .
- the positioning apparatus 40 comprises a disk 42 which is rotatable about a rotation axis 44 .
- Four filter blocks 46 , 48 , 50 and 52 are held on the disk 42 in receptacles 43 provided therefor, said receptacles 43 being not further illustrated in the Figures.
- FIG. 1 In the cross-sectional view according to FIG. 1 , only the filter blocks 46 and 48 are shown, whereas in the top view according to FIG. 2 all of the four filter blocks 46 , 48 , 50 and 52 are illustrated.
- the filter blocks 46 , 48 , 50 and 52 respectively include an excitation filter 54 or 56 , a dichromatic beam splitter 58 or 60 as well as a blocking filter 62 or 64 (cf. FIG. 1 ).
- the excitation filters 54 , 56 only allow light components of the light emitted by the light source 26 to transmit, the wavelengths of which are suitable to excite the specimen 22 to emit fluorescence radiation.
- the dichromatic beam splitters 58 , 60 reflect the excitation light transmitted by the excitation filters 54 , 56 in the direction of the optical axis O, so that the excitation light falls through the objective 24 on the specimen 22 .
- the blocking filters 62 , 64 prevent the excitation light reflected by the specimen 22 into the objective 24 from getting into the tube 14 .
- the filter blocks 46 , 48 , 50 and 52 differ from each other in that the optical components 54 , 56 , 58 and 60 included therein have different characteristics, in particular filter characteristics. By pivoting the filter blocks 46 , 48 , 50 and 52 selectively into the optical axis O, as described in the following, different fluorescence incident light can be realized.
- the positioning apparatus 40 further includes a stepper motor 70 having a rotatable motor shaft 72 .
- a toothed disk 74 is installed on the motor shaft 72 , said toothed disk 74 rotating with the motor shaft 72 .
- the toothed disk 74 has a circumferential toothing 76 along its circumference, which is formed by a plurality of teeth 78 .
- the disk 42 on which the filter blocks 46 , 48 , 50 and 52 are held is also formed as toothed disk. It also includes a toothing 80 along its circumference, which is formed by a plurality of teeth 82 .
- the toothing 80 of the disk 42 in the following referred to as first toothing, and the toothing 76 of the toothed disk 74 , in the following referred to as second toothing, have corresponding pitches, i.e. their teeth 82 or 78 have the same distances from each other.
- the first toothing 80 and the second toothing 76 are engaged with a toothed belt 90 , which comprises a toothing with a pitch corresponding to the pitches of the first toothing 80 and the second toothing 76 .
- the toothed belt 90 serves to transmit the rotary movement of the motor shaft 72 and thus the toothed disk 74 to the disk 42 .
- the reduction ratio, with which the rotary movement of the motor shaft 72 is transmitted to the disk 42 is determined by the ratio of the number Z1 of teeth 82 provided in the first toothing 80 to the number of teeth 78 provided in the second toothing 76 .
- the ratio Z1/Z2 equals 4 and is thus equal to the number of receptacles 43 provided on the disk 42 , in which receptacles 43 the filter blocks 46 , 48 , 50 and 52 are held.
- the disk 42 is turned by a quarter turn through a complete turn of the motor shaft 72 and thus the toothed disk 74 , whereby the adjacent filter block is pivoted into the optical axis O.
- the positioning apparatus 40 further comprises a controller 100 which is connected with the stepper motor 70 and controls said stepper motor 70 such that the disk 42 is rotated into the desired rotary positions in which respectively one of the filter blocks 46 , 48 , 50 and 52 is pivoted into the optical axis O.
- the controller 100 is further connected to a fork light barrier 102 serving to initialize the stepper motor 70 at the start of operation of the fluorescence microscope 10 , i.e. to bring the motor shaft 72 into an initialization position.
- the initialization position is predetermined such that one of the filter blocks 46 , 48 , 50 and 52 is arranged in its target position on the optical axis O.
- the fork light barrier 102 interacts with a coding element, not illustrated in the Figures, which is formed on the disk 42 and assigned to the initialization position.
- This coding element can e.g. be a slot passing through the disk 42 , which, as soon as it is arranged in the region of the fork light barrier 102 allows a passage of light from a light transmitter to a light receiver, which are parts of the fork light barrier 102 and are arranged above or below the disk 42 (not illustrated in detail in FIG. 1 ).
- the fork light barrier 102 outputs a detection signal to the controller 100 , whereby the controller 100 detects that the disk 42 is arranged in the predetermined initialization position.
- an operating element 104 is arranged on the microscope body 12 which is connected with the controller 100 .
- An operator can actuate the positioning apparatus 70 via the operating element 104 and as required bring one of the filter blocks 46 , 48 , 50 and 52 into the target position by rotating the disk 42 .
- correction amounts which are assigned to the individual rotary positions of the disk 42 via the operating element 104 . Via these correction amounts which are e.g. stored in a not shown memory included in the controller 100 , slight misalignments of the filter blocks 46 , 48 , 50 and 52 can be corrected subsequently.
- the controller 100 then takes into account these correction amounts when controlling the stepper motor 70 .
- the positioning apparatus 70 moves the filter blocks 46 , 48 , 50 and 52 selectively into the target position.
- This accuracy influences the position of the field stop image at the location of the specimen 22 .
- the field stop 34 is imaged via the dichromatic beam splitter 58 or 60 onto the specimen 22 .
- Different alignments of the filter blocks 46 , 48 , 50 and 52 on the disk 42 lead to shiftings of the field stop image at the location of the specimen 22 .
- a rotation of the disk 42 causes a horizontal movement of the field stop image over the specimen 22 . If the disk 42 is turned out of the target position about an angle ⁇ , the light beam obliquely enters the objective 24 by the same angle ⁇ .
- the predetermined rotary positions of the disk 42 have to be moved to with this angular accuracy.
- the slip of the toothed belt 90 on the disk 42 and the toothed disk 74 i.e. the clearance which the toothing 90 exhibits with respect to the first and the second toothing 80 , 76 , should be smaller than x.
- the value for x is 0.15 mm.
- FIG. 3 embodiments of the toothed belt 90 with different clearance x are shown.
- the tooth space forms are also referred to as “normal gap”, “SE gap” and “0 gap” from top to bottom.
- SE gap exhibits a constricted backlash with respect to the normal gap.
- the clearance x equals zero, i.e. the toothed belt 90 engages positively with the toothing 80 or 76 .
- the previously explained determination of the clearance x allows for reaching a good compromise between a sufficient positioning accuracy and a least possible abrasion.
- FIG. 4 shows a second embodiment of the invention.
- objectives are positioned in the microscope in contrast to filter blocks as demonstrated in the first embodiment according to FIG. 1 .
- the same reference numerals are used in both Figures and it is referred to the description of the embodiment of FIG. 1 .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
d=f·tan δ,
wherein f[mm] refers to a reference focal length, in the present embodiment to the focal length of the
δ=arctan (Δy/f).
x=r·tan δ.
- 10 fluorescence microscope
- 12 microscope body
- 14 tube
- 16 tube lens
- 18 CCD camera
- 20 stage
- 22 specimen
- 24 objective
- 26 light source
- 28 lens
- 30 lens
- 32 diaphragm
- 34 diaphragm
- 40 positioning apparatus
- 42 disk
- 44 rotation axis
- 43 receptacle
- 46 filter block
- 48 filter block
- 50 filter block
- 52 filter block
- 54 excitation filter
- 56 excitation filter
- 58 dichromatic beam splitter
- 60 dichromatic beam splitter
- 62 blocking filter
- 64 blocking filter
- 70 stepper motor
- 72 motor shaft
- 74 toothed disk
- 76 toothing
- 78 teeth
- 80 toothing
- 82 teeth
- 90 toothed belt
- 100 controller
- 102 fork light barrier
- 104 operating element
Claims (10)
x≦r tan δ (1), wherein
δ=arctan(Δy/f),
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009035365A DE102009035365B3 (en) | 2009-07-30 | 2009-07-30 | Device for positioning optical components in an optical device |
DE102009035365 | 2009-07-30 | ||
DEDE102009035365.8 | 2009-07-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110026112A1 US20110026112A1 (en) | 2011-02-03 |
US8395840B2 true US8395840B2 (en) | 2013-03-12 |
Family
ID=43526753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/844,506 Expired - Fee Related US8395840B2 (en) | 2009-07-30 | 2010-07-27 | Apparatus for positioning optical components in an optical device |
Country Status (3)
Country | Link |
---|---|
US (1) | US8395840B2 (en) |
JP (1) | JP3165363U (en) |
DE (1) | DE102009035365B3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10641932B2 (en) * | 2015-12-16 | 2020-05-05 | Olympus Corporation | Imaging device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012013951A (en) * | 2010-06-30 | 2012-01-19 | Sony Corp | Optical element switching device and microscope system |
DE102012004901A1 (en) * | 2012-03-09 | 2013-09-12 | Carl Zeiss Microscopy Gmbh | Device for positioning optical components on a microscope |
DE102014204994A1 (en) * | 2014-03-18 | 2015-09-24 | Carl Zeiss Microscopy Gmbh | Method for fluorescence microscopy of a sample |
CN111694143A (en) * | 2020-07-20 | 2020-09-22 | 上海轶德医疗科技股份有限公司 | Microscope and microscope integrated fluorescence imaging device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1262121B (en) | 1964-06-13 | 1968-02-29 | Fernseh Gmbh | Gear unit for converting a uniform rotary movement of a drive element into a rotary movement occurring intermittently |
US4421411A (en) * | 1981-05-07 | 1983-12-20 | E. I. Du Pont De Nemours & Co. | Photometric analyzer |
US4486078A (en) * | 1982-04-16 | 1984-12-04 | Nippon Kogaku K. K. | Driving device for a revolver in a microscope |
DE29604667U1 (en) | 1996-03-13 | 1996-08-22 | Luigs & Neumann Feinmechanik und Elektrotechnik GmbH, 40882 Ratingen | Changer for optical elements |
US5867310A (en) * | 1995-02-13 | 1999-02-02 | Olympus Optical Co., Ltd. | Revolver assembly of a microscope |
DE19924686A1 (en) | 1999-05-28 | 2000-11-30 | Zeiss Carl Fa | Change system for optical components |
US6437911B1 (en) * | 1999-09-16 | 2002-08-20 | Olympus Optical Co., Ltd. | Objective changing-over apparatus |
EP1403672A1 (en) | 2002-09-26 | 2004-03-31 | Leica Microsystems Wetzlar GmbH | Device and method for positioning an optical element |
US20080112070A1 (en) * | 2006-11-14 | 2008-05-15 | Yokogawa Electric Corporation | Filter wheel |
US8223428B2 (en) * | 2008-07-04 | 2012-07-17 | Olympus Corporation | Microscope |
-
2009
- 2009-07-30 DE DE102009035365A patent/DE102009035365B3/en not_active Expired - Fee Related
-
2010
- 2010-07-27 US US12/844,506 patent/US8395840B2/en not_active Expired - Fee Related
- 2010-07-27 JP JP2010005019U patent/JP3165363U/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1262121B (en) | 1964-06-13 | 1968-02-29 | Fernseh Gmbh | Gear unit for converting a uniform rotary movement of a drive element into a rotary movement occurring intermittently |
US4421411A (en) * | 1981-05-07 | 1983-12-20 | E. I. Du Pont De Nemours & Co. | Photometric analyzer |
US4486078A (en) * | 1982-04-16 | 1984-12-04 | Nippon Kogaku K. K. | Driving device for a revolver in a microscope |
US5867310A (en) * | 1995-02-13 | 1999-02-02 | Olympus Optical Co., Ltd. | Revolver assembly of a microscope |
DE29604667U1 (en) | 1996-03-13 | 1996-08-22 | Luigs & Neumann Feinmechanik und Elektrotechnik GmbH, 40882 Ratingen | Changer for optical elements |
DE19924686A1 (en) | 1999-05-28 | 2000-11-30 | Zeiss Carl Fa | Change system for optical components |
US6392796B1 (en) | 1999-05-28 | 2002-05-21 | Carl-Zeiss-Stiftung | Changeover system for optical components |
US6437911B1 (en) * | 1999-09-16 | 2002-08-20 | Olympus Optical Co., Ltd. | Objective changing-over apparatus |
EP1403672A1 (en) | 2002-09-26 | 2004-03-31 | Leica Microsystems Wetzlar GmbH | Device and method for positioning an optical element |
US20040061861A1 (en) | 2002-09-26 | 2004-04-01 | Leica Microsystems Wetzlar Gmbh | Apparatus and method for positioning an optical component |
US20080112070A1 (en) * | 2006-11-14 | 2008-05-15 | Yokogawa Electric Corporation | Filter wheel |
US8223428B2 (en) * | 2008-07-04 | 2012-07-17 | Olympus Corporation | Microscope |
Non-Patent Citations (1)
Title |
---|
English abstract of the Germany reference No. DE 296 04 667. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10641932B2 (en) * | 2015-12-16 | 2020-05-05 | Olympus Corporation | Imaging device |
Also Published As
Publication number | Publication date |
---|---|
US20110026112A1 (en) | 2011-02-03 |
DE102009035365B3 (en) | 2011-03-17 |
JP3165363U (en) | 2011-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8395840B2 (en) | Apparatus for positioning optical components in an optical device | |
US7634182B2 (en) | Lens apparatus | |
US6072642A (en) | Focusing lens position detection apparatus and an auto-focus surveying apparatus | |
WO2014097489A1 (en) | Spectral sensor | |
US7057162B2 (en) | Apparatus and method for positioning an optical component | |
TWI398717B (en) | Automatic focus control unit, electronic device and automatic focus control method | |
JP2008145160A (en) | Optical displacement sensor and its adjusting method | |
US6946649B2 (en) | Rotary encoder and position adjuster therefor | |
US7978424B2 (en) | Lens barrel | |
US7830531B2 (en) | Displacement detecting device and optical instrument having the same | |
KR102165511B1 (en) | Optical apparatus, machining apparatus, and article manufacturing method, and computer readable storage medium | |
JP4796952B2 (en) | Lens barrel | |
JP5963432B2 (en) | microscope | |
US6542313B2 (en) | Lens barrel position detecting device and method | |
JP2008107274A (en) | Device for measuring focal position | |
JP4350186B2 (en) | Focusing device | |
JP4456319B2 (en) | camera | |
KR100767498B1 (en) | Uneveness inspecting apparatus and uneveness inspecting method | |
JPH11194286A (en) | Multibeam scanning device | |
JP2011039387A (en) | Lens barrel and imaging apparatus | |
JP3705280B2 (en) | Optical encoder | |
CN118197958A (en) | Wafer defect detection equipment | |
JP2010117393A (en) | Laser scanning optical device | |
JP2000214373A (en) | Mechanism for detecting original point of lens | |
JPH02266313A (en) | Lens barrel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LEICA MICROSYSTEMS CMS GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GANSER, MICHAEL;WEISS, ALBRECHT;REEL/FRAME:024748/0516 Effective date: 20100723 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20210312 |