US8389941B2 - Composite gamma-neutron detection system - Google Patents
Composite gamma-neutron detection system Download PDFInfo
- Publication number
- US8389941B2 US8389941B2 US12/976,861 US97686110A US8389941B2 US 8389941 B2 US8389941 B2 US 8389941B2 US 97686110 A US97686110 A US 97686110A US 8389941 B2 US8389941 B2 US 8389941B2
- Authority
- US
- United States
- Prior art keywords
- gamma
- neutron
- scintillator
- detector
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/167—Measuring radioactive content of objects, e.g. contamination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/30—Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/208—Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T3/00—Measuring neutron radiation
- G01T3/06—Measuring neutron radiation with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/22—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
- G01V5/222—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/281—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects detecting special nuclear material [SNM], e.g. Uranium-235, Uranium-233 or Plutonium-239
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J40/00—Photoelectric discharge tubes not involving the ionisation of a gas
- H01J40/02—Details
- H01J40/04—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/06—Electrode arrangements
- H01J43/08—Cathode arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/06—Electrode arrangements
- H01J43/18—Electrode arrangements using essentially more than one dynode
Definitions
- the present invention generally relates to the field of detection of radioactive materials, specifically to systems and techniques for detecting neutrons and gamma rays and more specifically to a neutron and gamma-ray based detection system and method that is cost-effective, compact, and fabricated from readily available materials.
- Physical shipment of materials is an integral part of any economy.
- the materials are shipped in a type of shipping containment or cargo box.
- Such containments or boxes include semi-trailers, large trucks, and rail cars as well as inter-modal containers that can be carried on container ships or cargo planes.
- shipping or cargo containers can be used for illegal transportation of contraband such as nuclear and radioactive materials. Detection of these threats require a rapid, safe and accurate inspection system for determining the presence of hidden nuclear materials, especially at state and national borders, along with transit points such as airports and shipping ports.
- passive and active detection techniques are employed for the detection of concealed nuclear materials.
- Passive detection techniques are based on the principle that nuclear and radiological threats emit gamma, and in some cases neutron, radiation that can be detected.
- passive detection systems can be easily deployed, they suffer from a number of drawbacks, including high rates of false positives and misdetections caused by unavoidable factors such as depression of the natural background by the vehicle being scanned and its contents, variation in natural background spectrum due to benign cargo such as clay tiles, fertilizers, etc., and the presence of radio therapeutic isotopes in the cargo with gamma lines at or near threat lines.
- gamma sources are self-shielded and/or can readily be externally shielded, which makes them difficult to detect, since the radiation is absorbed in the shielding.
- gamma detectors make poor neutron detectors and good neutron detectors tend to be poor gamma detectors.
- DDA Differential Dieaway Analysis
- Detection of delayed neutrons is an unequivocal method to detect fissile materials even in the presence of shielding mechanism(s) to hide the nuclear materials and notwithstanding the low background compared to delayed gamma rays. Because the number of delayed neutrons is two orders of magnitude lower than the number of delayed gamma rays, efficient and large area detectors are required for best sensitivity in neutron detection.
- Each of the detector systems described above is not without drawbacks.
- these devices generally utilize accelerators that produce high energy neutrons with a broad spectrum of energies.
- the absorption/scattering of neutrons traveling at specific energies is difficult to detect given the large number of neutrons that pass through the object without interaction.
- the “fingerprint” generated from the device is extremely small, difficult to analyze, and often leads to significant numbers of false positive or false negative test results.
- the most commonly used neutron detector is a He-3 gas proportional chamber.
- He-3 interacts with a neutron to produce a He-4 ion.
- This ion is accelerated in the electric field of the detector to the point that it becomes sufficiently energetic to cause ionisation of other gas atoms.
- an avalanche breakdown of the gas can be generated, which results in a measurable current pulse at the output of the detector.
- pressurizing the gas the probability of a passing thermal neutron interacting in the gas can be increased to a reasonable level.
- He-3 is a relative scarce material and it does not occur naturally. This makes the availability and future supply of such detectors somewhat uncertain. Further, a special permit is required to transport pressurized He-3 tubes, which can be cumbersome and potentially problematic.
- the most common globally deployed passive radioactive material detectors employ a neutron moderator 105 in an upper portion, having a plurality of He-3 detector tubes 116 embedded therein covered by a lead shield 108 and a lower portion comprising a plastic scintillator and moderator 110 with a PMT 115 embedded therein, as shown in FIG. 1A .
- This detector configuration however, still employs the scarce He-3.
- FIG. 1B another commonly deployed detector where the gamma-ray and neutron detectors are separate is shown in FIG. 1B . As shown in FIG.
- neutron moderator 105 comprising a plurality of He-3 detector tubes 116 is positioned adjacent to plastic scintillator 110 , comprising a PMT 115 and a lead shield 108 .
- This detector configuration still employs the scarce He-3 and takes up a larger footprint.
- the system further comprises a first counter and a second counter for counting the pulses generated by the first photodetector and the second photodetector, respectively.
- second counter is a Multi-Channel Analyzer (MCA) that is used to measure the spectra of the gamma rays.
- MCA Multi-Channel Analyzer
- the plastic scintillator comprises polyvinyl toluene (PVT).
- the system of the present invention further comprises a Pulse-Shape Discrimination (PSD) circuit that separates the neutron and gamma-ray events measured by the first photodetector.
- PSD Pulse-Shape Discrimination
- the present invention is a system for detection of neutrons and gamma rays, comprising: a plurality of screens comprising of thermal neutron absorber materials, said materials interacting with neutrons to emit heavy particles; a plastic scintillator into which said screens are embedded, said plastic scintillator producing light on interaction with said heavy particles and serving as a neutron moderator and light guide; at least one photodetector which collects the produced light and converts the light to a measurable signal, and a Pulse-Shape Discrimination (PSD) circuit that separates the neutron and gamma-ray events measured by the at least one photodetector.
- PSD Pulse-Shape Discrimination
- the scintillator material is silver activated zinc sulfide (ZnS(Ag)) phosphorous.
- the thermal neutron absorber materials comprise 6 Li or 10 B.
- the system further comprises at least one counter for counting the pulses generated by the at least one photodetector.
- the plastic scintillator is fabricated from polyvinyl toluene (PVT).
- the present invention is a system for detection of neutrons and gamma rays, comprising: a plurality of scintillator screens comprising thermal neutron absorber materials, said materials interacting with neutrons to emit heavy particles, and said heavy particles interacting with scintillator screens to produce light, a plurality of light guides into which said scintillator screens are embedded, said light guides serving as a neutron moderating medium, and a first photodetector which receives the produced light through said light guides, and converts the light to a measurable signal, a plastic scintillator producing light on interaction with gamma-rays, a reflector placed between said plastic scintillator and said scintillator screens to prevent cross-contamination between optical signals from the neutron and gamma detection materials, a second photodetector which collects the produced light from said plastic scintillator, and converts the light to a measurable signal, and a first counter and a second counter for counting the
- the present specification discloses a gamma-neutron detector, comprising: a first gamma-sensitive scintillation panel; a second gamma-sensitive scintillation panel; and a neutron detector, wherein said neutron detector is positioned between the first gamma-sensitive scintillation panel and the second gamma-sensitive scintillation panel.
- the neutron detector comprises a neutron sensitive composite scintillator.
- the neutron sensitive composite scintillator comprises a mixture of neutron sensitive material and ZnS.
- the neutron sensitive material comprises Li-6 or B-10.
- the neutron sensitive material has a density of up to 30% by volume of the neutron sensitive composite scintillator.
- the gamma-sensitive scintillation panel comprises at least one of an organic solid scintillator, an inorganic solid scintillator, or a liquid scintillator positioned between glass sheets or pieces.
- the gamma-neutron detector further comprises a glass layer, plastic layer, or any substantially impermeable, transparent material barrier, is placed between the neutron detector and at least one of the first or second gamma-sensitive scintillation panels.
- the first and second gamma-sensitive scintillation panels and neutron detector are adapted to generate an optical signal and wherein the gamma-neutron detector further comprises at least one photodetector to detect said optical signal.
- At least one of the first or second gamma-sensitive scintillation panels are thicker than the neutron detector.
- the first and second gamma-sensitive scintillation panels have a faster decay time than the neutron detector.
- the pulse shapes of the detected optical signals are analyzed to discriminate between gamma interactions and neutron interactions.
- the gamma-neutron detector further comprises more than two gamma sensitive scintillation panels and more than one neutron detector.
- the gamma sensitive scintillation panels and neutron detectors are angled relative to the direction of incoming radiation.
- the present specification discloses a portal gantry detection system having a top, right, and left side wherein said top, left, and right sides each comprise a gamma-neutron detector comprising: a first gamma-sensitive scintillation panel; a second gamma-sensitive scintillation panel; and a neutron detector, wherein said neutron detector is positioned between the first gamma-sensitive scintillation panel and the second gamma-sensitive scintillation panel.
- the present specification discloses a mobile detection system comprising a boom wherein said boom comprises a first gamma-sensitive scintillation panel; a second gamma-sensitive scintillation panel; and a neutron detector, wherein said neutron detector is positioned between the first gamma-sensitive scintillation panel and the second gamma-sensitive scintillation panel.
- FIG. 1A illustrates a prior art radioactive material detector comprising a neutron moderator and a plastic scintillator, in which He-3 is employed;
- FIG. 1B illustrates a prior art radioactive material detector comprising a neutron moderator and a plastic scintillator, in which He-3 is employed;
- FIG. 1 is a schematic layout of the composite gamma-neutron detector according to one embodiment of the present invention
- FIG. 2 illustrates an exemplary neutron detector based on mixtures of silver activated zinc sulfide
- FIG. 3 illustrates an exemplary neutron detector based on mixtures of silver activated zinc sulfide that also uses a plastic scintillator for gamma ray detection
- FIG. 4 illustrates experimental results with the silver activated zinc sulfide based neutron detector
- FIG. 5 illustrates pulse signals as a function of time for gamma interactions and neutron interactions, respectively
- FIG. 6 illustrates discrimination between gamma ray and neutron measurement signals
- FIG. 7 a illustrates one embodiment of the detector of present invention with multiple layers of gamma and neutron detector materials to increase neutron sensitivity
- FIG. 7 b illustrates another embodiment of the detector of present invention with angled detector slabs to increase neutron detection efficiency
- FIG. 8 illustrates an exemplary readout circuit used with the detection system of the present invention
- FIG. 9 illustrates an exemplary application of the gamma-neutron detector of the present invention in a drive-by vehicle
- FIG. 10 illustrates another exemplary application of gamma-neutron detectors in a drive-thru scanning configuration
- FIG. 11 illustrates yet another exemplary application of the gamma-neutron detector combined with a mobile X-ray scanner for generating composite gamma-neutron X-ray images
- FIG. 12 illustrates another embodiment of the combined gamma-neutron detector and based X-ray imaging system in a portal or gantry configuration
- FIG. 13 illustrates the gamma-neutron detector in a portable configuration, according to one embodiment of the present invention.
- the present specification discloses systems and methods for detecting radiological threats using a composite gamma-neutron detector which can be configured to have a high sensitivity for both gamma and neutron detection, with a sufficient separation of the gamma and neutron signatures.
- the system of the present invention allows for maximum threat detection with minimum false alarms, and thus increased throughput.
- the present invention is directed towards a composite gamma-neutron detection system and method that is cost-effective, compact, and wherein the neutron detector is fabricated from readily available materials.
- the present invention is directed towards multiple embodiments.
- the following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention.
- Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein.
- the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention.
- the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting.
- the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed.
- details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.
- nuclei have a high cross-section for detection of thermal neutrons. These nuclei include He, Gd, Cd and two particularly high cross-section nuclei: Li-6 and B-10. In each case, after the interaction of a high cross-section nucleus with a thermal neutron, the result is an energetic ion and a secondary energetic charged particle.
- n +B-10 ⁇ Li-7+He-4(945 barns,Q 4.79 MeV) Equation 1
- materials such as Cd, Gd and other materials having a high thermal capture cross section with no emission of heavy particles produce low energy internal conversion electrons, Auger electrons, X-rays, and gamma rays ranging in energy from a few keV to several MeV emitted at substantially the same time. Therefore, a layer of these materials, either when mixed in a scintillator base or when manufactured in a scintillator, such as Gadolinium Oxysulfide (GOS) or Cadmium Tungstate (CWO) will produce light (probably less than heavier particles).
- GOS typically comes with two activators, resulting in slow (on the order of 1 ms) and fast (on the order of 5 ⁇ s) decays.
- CWO has a relatively fast decay constant. Depending on the overall energy, a significant portion of the energy will be deposited in the layer, while some of the electrons will deposit the energy in the surrounding scintillator. In addition, the copious X-rays and gamma rays produced following thermal capture will interact in the surrounding scintillator. Thus, neutron interactions will result in events with both slow and fast decay constants. In many cases, neutron signals will consist of a signal with both slow and fast components (referred to as “coincidence”) due to electron interlacing in the layer and gamma rays interacting in the surrounding scintillator.
- the scintillation response of the material that surrounds the Li-6 or B-10 nuclei can be tuned such that this light can be transported through a second scintillator, such as a plastic scintillator in one embodiment, with a characteristic which is selected to respond to gamma radiation only.
- a second scintillator such as a plastic scintillator in one embodiment, with a characteristic which is selected to respond to gamma radiation only.
- the material that surrounds the Li-6 or B-10 is not a scintillator, but a transparent non-scintillating plastic resulting in a detector that is only sensitive to neutrons.
- the plastic scintillator is both neutron and gamma sensitive.
- a neutron is thermalized and subsequently captured by the H in the detector, a 2.22 MeV gamma ray is also emitted and often detected.
- the present invention achieves a composite gamma-neutron detector capable of detecting neutrons as well as gamma radiation with high sensitivity.
- the composite detector of the present invention also provides an excellent separation of the gamma and neutron signatures. It should be noted herein that in addition to charged particles, B-10 produces gamma rays. Therefore, in using materials that produce gamma rays following neutron capture, the result may be a detection that looks like gamma rays. Most applications, however, want to detect neutrons; thus, the detector of the present invention is advantageous in that it also detects the neutrons.
- FIG. 1 illustrates a schematic layout of the composite gamma-neutron detector 100 according to one embodiment of the present invention.
- the detector design employs two gamma-sensitive scintillation panels (gamma-detectors) 101 and 102 that surround a single neutron detector 103 .
- the neutron detector 103 further comprises a single slab of neutron sensitive composite scintillator, in which nuclei of a neutron sensitive material such as Li-6 or B-10 are mixed with a scintillation material such as ZnS.
- a density of 20-30% by volume can be achieved for the neutron sensitive material (such as Li-6) while maintaining an efficient scintillation response from ZnS.
- gamma detector panels can be fabricated from solid scintillation materials (without a substrate) such as, but not limited to organic scintillators, including solid plastic scintillators (e.g. NE102) and anthracene; inorganic scintillators including NaI(Tl), CsI(Tl), CsI(Na), and BaF 2 .
- organic scintillators including solid plastic scintillators (e.g. NE102) and anthracene
- inorganic scintillators including NaI(Tl), CsI(Tl), CsI(Na), and BaF 2 .
- liquid scintillators between glass sheets to act as the gamma detector.
- organic solvents formed with the anthracene molecule as their base with organometallic compounds to enhance scintillation efficiency and therefore are generally less easy to use than solid scintillators.
- the neutron detector may be comprised of binder molecules such as, but not limited to styrenes dissolved in suitable solvents as the base substrate.
- binder molecules such as, but not limited to styrenes dissolved in suitable solvents as the base substrate.
- a plastic film forms which, once dry, is quite stable and self-supporting.
- the scintillation material for example ZnS
- the neutron specific element i.e. Gd, Li, B, etc.
- a Gd, Li or B loaded liquid scintillator (generally based on the anthracene molecule with suitable organometallic compounds to increase scintillation efficiency) can be sealed in the gap between the gamma scintillation panels.
- a thin glass barrier will be placed between the neutron scintillator and the gamma-detector to prevent chemical interaction between the two scintillator materials.
- a typical panel size ranges from 0.1 m ⁇ 0.1 m for handheld applications up to 2 m ⁇ 1 m for large fixed site installations. Above this maximum size, light collection starts to become an issue as does physical handling and packaging. Below the minimum size, detection efficiency will start to drop below useful levels, resulting in increasingly long measurement times.
- the gamma detector is thicker than the neutron detector.
- the gamma detector thickness will advantageously be no less than 0.01 m (for hand held applications) up to 0.2 m for large fixed site systems.
- the front gamma detector may be optimized to a different thickness compared to the back gamma detector in order to maximize overall gamma and neutron detection efficiency. For example, a front gamma detector thickness of 0.05 m and a rear gamma detector thickness of 0.1 m would be applicable to a large fixed site system.
- the neutron detector will generally be thin to minimize gamma interaction probability and to maximize the chance of light escape from the scintillator.
- a typical neutron detector based on a solid screen scintillator would be in the range of 0.5-1 mm thick while a liquid neutron scintillator may be in the range of 0.01 to 0.05 m thick.
- Optical signals from both the gamma detectors 101 , 102 and the neutron detector 103 are readout by one or more photodetectors, which in one embodiment are photomultiplier tubes (PMTS) 104 .
- the optical signals are thus converted to electronic signals which are then processed by a pulse processor 105 which assigns interactions separately due to gamma and neutron interactions 106 and 107 , respectively.
- PMTS photomultiplier tubes
- the gamma-sensitive 101 and 102 panels are advantageously fabricated from a plastic scintillator with a fast decay time, such as less than 0.1 ⁇ s.
- the Li-6 or B-10 nuclei of the neutron detector 103 are advantageously mixed with a scintillation material having a slower decay time, such as ZnS.
- the decay time for the scintillation material is greater than 1 ⁇ s.
- the difference in decay times for scintillators in gamma detectors and in neutron detector contributes to provide a significant separation between the gamma and neutron signatures 106 and 107 .
- it is desirable to select a scintillation material with low atomic number so as to minimise the probability of direct excitation by a passing gamma ray which causes enhanced gamma-neutron rejection.
- the Li-6 or B-10 is mixed with a material with very fast response ( ⁇ 10 ns) and surrounded by a material with slow response ( ⁇ 1 ⁇ s).
- the detector can measure neutrons at a very high counting rate, in particular when no scintillator is used to surround it.
- scintillation materials such as ZnS can absorb their own light, particularly when in the power form, and therefore there is a limit to the thickness of a scintillation based detector in ZnS. It may be noted that this thickness is typically only a few millimeters. Further, since light is emitted isotropically during each scintillation event, it is efficient to form the scintillator into a wide area screen where light emission can be captured from both sides of the screen simultaneously. Therefore, in one embodiment the scintillator based neutron detector 103 is designed as a screen with a wide area, such that light may be collected with a high efficiency from both sides of the screen.
- the detection efficiency of a 1 mm thick Li-6/ZnS screen is of the same order as that of a pressurised He-3 gas proportional tube several cm in diameter. That is, the Li-6/Zns based neutron detector of the present invention offers equivalent or greater detection efficiency as compared to the pressurised He-3 gas tube detector, at a much reduced size.
- a neutron detector is based on mixtures of silver activated zinc sulfide, ZnS(Ag), with the mixtures containing materials with high thermal neutron-capture cross section with emission of heavy particles, such as 6 Li or 10 B. That is, the mixtures consist of thermal neutron absorbers that produce heavy-particle emission following thermal capture.
- FIG. 2 illustrates one such exemplary neutron detector 200 .
- the detector 200 consists of one or more thin screens 201 , comprising the ZnS(Ag) based mixtures, as described above.
- the screens 201 in one embodiment, have a thickness of about 0.5 mm and are embedded in a transparent hydrogenous light guide 202 .
- Light guide 202 also serves as a neutron moderator.
- the light produced by neutron interaction in the ZnS(Ag) phosphorus screen is collected by the light guide 202 into a photodetector, such as a photomultiplier tube (PMT) 203 , which produces a signal from which the neutrons are counted, using the counter 204 .
- a photodetector such as a photomultiplier tube (PMT) 203
- the detector 200 further comprises a plastic scintillator 205 , which serves as a gamma-ray detector and moderator.
- the plastic scintillator may be made up polyvinyl toluene or PVT, or any other suitable plastic scintillator material known in the art.
- Light produced by gamma-ray interactions in the scintillator 205 is detected by another PMT 206 , which produces a signal from which the gamma-ray events are counted, using the counter 207 .
- counter 207 is a Multi-Channel Analyzer (MCA) that is used to measure the spectra of the gamma rays.
- MCA Multi-Channel Analyzer
- a reflector foil 208 is placed between the plastic scintillator 205 and the screen(s) 201 to prevent cross-contamination between optical signals from the neutron and gamma detection materials.
- the reflector is used to prevent light produced from the gamma rays to be collected with the same PMT as light produced by the neutrons. This prevents appearance of false neutron counts from gamma rays. Due to the reflector 208 , some of the light produced by neutron interactions in the screen will be reflected back into the light guide.
- FIG. 2 provides a compact gamma-ray/neutron detector with the advantages of standard electronics and significantly high gamma-ray rejection. A small fraction of gamma rays will interact with the Li-6 sheet and will produce a low-intensity signal. This signal can be removed by thresholding, at the expense of some neutron detection.
- a pulse shape discriminator can be employed within neutron channel 204 to enhance gamma-ray rejection.
- FIG. 3 Another exemplary detector 300 for simultaneous neutron and gamma-ray detection is shown in FIG. 3 .
- the light guide material is replaced by a plastic scintillator 301 , which serves as the gamma-ray detector, moderator and light guide.
- the detector 300 also includes screens 302 , which are preferably thin and fabricated from ZnS(Ag) based mixtures for neutron detection.
- the neutrons and gamma-ray events are separated employing a Pulse-Shape Discrimination (PSD) circuit 303 between the pulses 304 generated from the ZnS(Ag) and plastic scintillator (PVT).
- PSD Pulse-Shape Discrimination
- gamma-ray rejection is obtained as the light produced by electron interaction in the screen have similar decay time as the PVT's and will be eliminated with PSD.
- the light produced is transported via the transparent and neutron moderating medium 301 to a Photomultiplier Tube (PMT) 305 where the light is converted to a measurable signal to measure gamma as well as neutron events.
- PMT Photomultiplier Tube
- FIG. 4 illustrates the performance of an exemplary detector with a 6 LiF:ZnS(Ag) screen embedded in a light-guide with two 6 LiF concentrations and thickness.
- the results in FIG. 4 show the signal for the 1:2 weight ratio and screen thickness of 0.45 mm. Similar results were obtained with simulations employing 1, 2 and 3 6 LiF:ZnS(Ag) screens embedded in polyethylene, and detection efficiencies ranging from around 12% to 22% were obtained. One of ordinary skill in the art would appreciate that this efficiency is comparable to the highest efficiency achievable with closely-packed three rows 3 He detectors, which is around 25%.
- the signal distribution in FIG. 4 shows that not all the particle energy absorption is converted to light and that some of the light may be absorbed by the screen. This demonstrates the need for a comprehensive optimization where the right concentration of 6 Li is obtained to produce high neutron absorption, while still having sufficient interactions in the scintillator to produce a sizeable light output.
- the screen thickness, the number of screens and moderator thickness are also important optimization parameters.
- a major advantage of ZnS(Ag) phosphorus is the large light output for heavy particles compared with electrons produced by gamma-ray interactions. Also, due to the small thickness of the screen, the gamma-ray detection efficiency is low. Further, since the time-decay of the PVT light is ⁇ 3 ns, similar to that of the light produced by electrons in the ZnS(Ag) screen, PSD will also reject gamma rays interacting in the PVT.
- neutrons generated by radioactive materials of interest have a range of energies, and that the efficiency of neutron interaction in the detector will generally increase markedly as the energy of the interacting neutron decreases.
- most He-3 detectors are located within a hydrogen rich moderating material, such as polythene, whose function is to promote neutron scattering of high energy neutrons such that they lose substantial amounts of energy in order to increase the probability of detection in the He-3 gas proportional counter.
- the gamma detector is advantageously designed to provide a dual function of gamma detection and neutron moderation to further improve the detection efficiency for neutrons.
- a plastic scintillator material is quite an efficient moderator as this feature is incorporated in the overall detector design.
- FIG. 5 illustrates pulse signals, as a function of time corresponding to gamma interactions and neutron interactions in the composite detector of the present invention.
- the scintillation characteristics curve 502 of the neutron sensitive scintillator is very different from the characteristics 501 of the surrounding gamma sensitive detector.
- These two characteristic signals 501 and 502 can be further tuned to exhibit a significant difference. This can be done by using appropriate pulse shape discrimination methods.
- both the total energy deposited in the detector and the types of interaction are determined. While the total energy can be determined by analysing the peak magnitude of the pulse signal, the type of interaction is determined by analysing the rate of decay of the scintillation pulse.
- FIG. 6 illustrates the discrimination between gamma rays and neutrons for 252Cf and 60Co source, when analog Pulse-Shape Discrimination is applied to separate gamma rays from neutron events. While curve 601 reflects measurement of gamma rays emitted from 60Co source, curve 602 reflects measurement of neutrons emitted from 252Cf source. It would be apparent to those of ordinary skill in the art that the two curves are separate and distinctly identifiable.
- the digital pulse processing is advantageously performed directly at the output of the detector. Since data rates can be quite high, processing at the detector helps filter the data down to a low bandwidth for transmission on to other processing systems. This data can be used to monitor the amount of radioactivity that is detected and to raise suitable alarms and/or display data by a number of means.
- the neutron reaction may also create an associated gamma-ray emission.
- the excited Gd-158 nucleus decays with the emission of a gamma-ray.
- This gamma-ray is produced within a finite time of the neutron interaction and, therefore, it is possible to include the gamma-ray response that is measured in the surrounding gamma-detector in combination with the neutron scintillator response to produce a combined signal using the principle of pulse shape discrimination and time domain correlation.
- the efficiency of the gamma-neutron detector scales in proportion to the number of slabs of detector material; although this is a diminishing effect due to preferential absorption of radiation in the first layers of the detector compared to the later layers of the detector.
- Neutron sensitivity is significantly enhanced when the detector slabs are arranged in this configuration.
- FIG. 7 b In another configuration shown in FIG. 7 b , multiple layers of gamma detector materials 710 and neutron detector materials 720 are placed alternately with each other and are oriented at an angle to the direction of the incoming radiation 715 . That is, layers 710 and 720 are not parallel to the direction of the incoming radiation 715 .
- Such a detector configuration with angled detector slabs significantly increases neutron detection efficiency. This is because a neutron or photon in this case has a longer path length through each detector slab, which contributes to detection efficiency, as compared to the arrangement of slabs shown in FIG. 7 a .
- this arrangement of detectors is also more expensive to fabricate and requires more extensive readout circuits.
- the composite gamma-neutron detector of the present invention described with reference to FIGS. 1 and 7 is not limited to plastic scintillator gamma detector with Li-6/ZnS neutron detector.
- the composite detector may be configured using NaI(Tl) as the gamma detector, along with a lithium, boron or gadolinium based liquid scintillator with a very fast decay time.
- the NaI(Tl) gamma detector will provide significant pulse height information about the gamma ray interaction while the neutron detector will continue to provide information about the incident neutron flux.
- a neutron scintillator can be used which provides different pulse shapes due to fast and thermal neutron interactions, where each pulse shape is different to that selected for the gamma detector.
- FIG. 8 illustrates an exemplary detector readout circuit architecture.
- the circuit 800 comprises a photomultiplier tube (PMT) 801 , which is operated with its cathode 802 held at negative high voltage with a grounded anode 803 .
- the anode 803 is AC coupled using a transformer 804 to a high speed sampling analogue-to-digital converter (ADC) 805 .
- the ADC 805 forms a time domain sample of the incoming signal from the PMT 801 .
- the ADC operates at a clock speed of 100 MHz or more to provide at most 10 ns sampling periods for accurate measurement of peak height and of the rise and fall decay times.
- a filtering circuit is advantageously included between the PMT 801 and the input to the ADC 805 to act as a Nyquist filter to prevent unwanted aliasing in the sampled data.
- an LCR multi-pole filter is implemented using the AC coupling transformer 804 as the inductive component.
- the digital data produced by the ADC is advantageously passed directly to a digital processing circuit, such as a field programmable gate array (FPGA) 806 .
- the FPGA provides high speed digital pulse shape processing and is configured to (1) record the time of arrival of a pulse, (2) determine the magnitude of the pulse and (3) determine the fall time of the pulse in order to discriminate between neutron and gamma interactions.
- This pulse-by-pulse data is histogrammed to a random access memory 807 and can subsequently be analysed by a software program running on a computer 808 to resolve detected count rates relative to a dynamically adjusted baseline.
- the result may be indicated to an operator through a visual display screen 809 , a visual indicator, an audible sounder or any other suitable device in order to signal when a radioactive substance has been detected.
- FIG. 9 shows an application of a composite gamma-neutron detector in a mobile system, in a drive-by scanning configuration.
- the gamma-neutron detector 901 is positioned in a vehicle 902 .
- This configuration allows rapid re-location of the detector 901 from one site to another, and is also useful for covert scanning of vehicles as they pass along a road.
- the vehicle 902 is driven to a location, such as a roadside, and the detection system 901 is activated.
- one or more sensors that are located on the vehicle 902 determine the presence of a passing object to be scanned, such as a passing vehicle, and the detection system 901 is turned on automatically.
- the gamma-neutron detector 901 is turned off automatically. Once scanning at a given location is completed, the vehicle 902 can simply be driven to a new location and scanning can recommence as required. This feature provides the capability for random location scanning in a reasonably covert manner.
- the composite gamma-neutron detector 901 is installed in a vehicle 902 that can be driven past stationary targets at a known velocity. As the vehicle 902 drives by, radiation emission data is collected in order to determine the presence of radioactive materials in the stationary object.
- one or more gamma-neutron detectors of the present invention are installed with a baggage handling system employed at airports. In this manner, the system of present invention may also be used for detection of radioactive materials in baggage passing through an airport terminal. In another alternative configuration, one or more gamma detectors of the present invention can be installed in air cargo facilities and at the entrance of scrap metal facilities.
- a gamma-neutron detector is combined with a mobile X-ray scanner for generating composite gamma-neutron X-ray images.
- a gamma-neutron detector 1101 is installed on a mobile X-ray scanner 1100 .
- the mobile X-ray scanner 1100 further comprises an X-ray scanning system 1102 mounted on a vehicle 1103 .
- the radioactive signal from the gamma-neutron detector 1101 is acquired simultaneously with a transmission X-ray image from the X-ray scanning system 1102 .
- the gamma-neutron detector of the present invention is combined with an X-ray imaging system, in a portal or gantry configuration.
- a plurality of gamma-neutron detectors 1201 are co-located with a transmission X-ray system 1202 arranged in a portal configuration.
- Objects or vehicles under inspection can be passed through this portal or gantry.
- This mode of operation again allows the radioactive signals to be correlated with an X-ray image of the object under inspection thereby increasing detection efficiency.
- the occurrence of a high-attenuation area observed in the X-ray image and a small increase in gamma-ray and/or neutron signal below the threshold could indicate the presence of a shielded radioactive source.
- FIG. 13 shows another embodiment of a gamma-neutron detector in a portable, hand-held configuration.
- a gamma-neutron detection instrument 1300 is shown.
- the instrument comprises a main unit 1301 and a handle 1302 .
- the scintillation panels of the composite gamma-neutron detector (not shown) are located in the main unit 1301 , while the electronics and battery are advantageously located in the handle 1302 of the instrument.
- An embedded indicator 1303 provides feedback to the operator on the amount of radiation present in the vicinity of the instrument 1300 . This configuration is very useful for random searching, especially small objects and in searching nooks and corners within a vehicle.
- the novel approach of the present invention combines a neutron scintillation detector with a gamma detector to form a hybrid gamma-neutron detector.
- This approach provides the advantage of detecting dual signatures, thereby increasing detection efficiency.
- the system of present invention also provides an excellent separation of the neutron signal from the gamma signal.
- the system of present invention may be used in various configurations, depending upon the application, including but not limited to, fixed, drive-through portal, gantry, portable and hand-held.
- the combined detector can be used for sea cargo inspection, and vehicle inspection in land crossings and scrap-metal facilities, in baggage and air cargo scanning, and other applications.
- the combined neutron-gamma detector of the present invention and/or the neutron detector portion and/or the gamma detector portion is further designed to meet ANSI standards for radiation detection.
- the present invention does not limit the use of the system with a particular nucleus.
- any suitable material with high neutron thermal capture cross-section with emission of particles such as Lithium (Li-6), Boron (B-10), Cadmium (Cd), Gadolinium (Gd), and Helium (3-He) may be used for radioactive material detection with the system of present invention.
- This feature helps to keep cost and supply under control.
- the combined gamma-neutron detector of the present invention is more compact and lighter as compared to He-3 based systems, as the detector of present invention only uses, in one embodiment, one set of electronics whereas He-3 based systems multiple sets of electronics are employed. It should be noted herein that in other embodiments, the present invention may be used with a plurality of electronic sets.
- RPM Radiation Portal Monitors
- plastic scintillators to detect gamma rays and moderated 3 He detectors to measure neutrons. It is important to note that in typical RPMs, only one or two 3 He tubes are used per module with a suboptimal moderating configuration to reduce cost. This results in a neutron detection efficiency of few percent.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Measurement Of Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
Abstract
Description
n+B-10→Li-7+He-4(945 barns,Q=4.79 MeV)
n+Li-6→H-3+He-4(3840 barn,Q=2.79 MeV)
Claims (15)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/976,861 US8389941B2 (en) | 2008-06-11 | 2010-12-22 | Composite gamma-neutron detection system |
US13/753,458 US8963094B2 (en) | 2008-06-11 | 2013-01-29 | Composite gamma-neutron detection system |
US14/597,129 US9329285B2 (en) | 2008-06-11 | 2015-01-14 | Composite gamma-neutron detection system |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0810638.7 | 2008-06-11 | ||
GBGB0810638.7A GB0810638D0 (en) | 2008-06-11 | 2008-06-11 | Photomultiplier and detection systems |
US12/997,251 US8389942B2 (en) | 2008-06-11 | 2009-06-11 | Photomultiplier and detection systems |
PCT/GB2009/001444 WO2009150416A2 (en) | 2008-06-11 | 2009-06-11 | Photomultiplier and detection systems |
US28920709P | 2009-12-22 | 2009-12-22 | |
US12/976,861 US8389941B2 (en) | 2008-06-11 | 2010-12-22 | Composite gamma-neutron detection system |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/997,251 Continuation-In-Part US8389942B2 (en) | 2008-06-11 | 2009-06-11 | Photomultiplier and detection systems |
PCT/GB2009/001444 Continuation-In-Part WO2009150416A2 (en) | 2008-06-11 | 2009-06-11 | Photomultiplier and detection systems |
US99725111A Continuation-In-Part | 2008-06-11 | 2011-03-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/753,458 Continuation-In-Part US8963094B2 (en) | 2008-06-11 | 2013-01-29 | Composite gamma-neutron detection system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110204243A1 US20110204243A1 (en) | 2011-08-25 |
US8389941B2 true US8389941B2 (en) | 2013-03-05 |
Family
ID=39650786
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/997,251 Active US8389942B2 (en) | 2008-06-11 | 2009-06-11 | Photomultiplier and detection systems |
US12/976,861 Active US8389941B2 (en) | 2008-06-11 | 2010-12-22 | Composite gamma-neutron detection system |
US13/775,253 Expired - Fee Related US8735833B2 (en) | 2008-06-11 | 2013-02-25 | Photomultiplier and detection systems |
US14/082,658 Active US8993970B2 (en) | 2008-06-11 | 2013-11-18 | Photomultiplier and detection systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/997,251 Active US8389942B2 (en) | 2008-06-11 | 2009-06-11 | Photomultiplier and detection systems |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/775,253 Expired - Fee Related US8735833B2 (en) | 2008-06-11 | 2013-02-25 | Photomultiplier and detection systems |
US14/082,658 Active US8993970B2 (en) | 2008-06-11 | 2013-11-18 | Photomultiplier and detection systems |
Country Status (5)
Country | Link |
---|---|
US (4) | US8389942B2 (en) |
BR (1) | BRPI0915030A2 (en) |
GB (2) | GB0810638D0 (en) |
MX (1) | MX2010013595A (en) |
WO (1) | WO2009150416A2 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120126127A1 (en) * | 2010-11-12 | 2012-05-24 | Saint-Gobain Ceramics & Plastics, Inc. | Radiation detection system and a method of using the same |
US20130105679A1 (en) * | 2011-10-28 | 2013-05-02 | Ge Energy Oilfield Technology, Inc. | Dual gamma ray and neutron detector in a multi-sensor apparatus and related methods |
US8735833B2 (en) | 2008-06-11 | 2014-05-27 | Rapiscan Systems, Inc | Photomultiplier and detection systems |
US8837670B2 (en) | 2006-05-05 | 2014-09-16 | Rapiscan Systems, Inc. | Cargo inspection system |
US8903046B2 (en) | 2011-02-08 | 2014-12-02 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US8908831B2 (en) | 2011-02-08 | 2014-12-09 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US8963094B2 (en) | 2008-06-11 | 2015-02-24 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
US9052403B2 (en) | 2002-07-23 | 2015-06-09 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US9218933B2 (en) | 2011-06-09 | 2015-12-22 | Rapidscan Systems, Inc. | Low-dose radiographic imaging system |
US9223049B2 (en) | 2002-07-23 | 2015-12-29 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
US9223050B2 (en) | 2005-04-15 | 2015-12-29 | Rapiscan Systems, Inc. | X-ray imaging system having improved mobility |
US9285498B2 (en) | 2003-06-20 | 2016-03-15 | Rapiscan Systems, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
WO2016062816A1 (en) | 2014-10-24 | 2016-04-28 | Commissariat à l'énergie atomique et aux énergies alternatives | Device for detecting thermal neutrons |
US9332624B2 (en) | 2008-05-20 | 2016-05-03 | Rapiscan Systems, Inc. | Gantry scanner systems |
US9557427B2 (en) | 2014-01-08 | 2017-01-31 | Rapiscan Systems, Inc. | Thin gap chamber neutron detectors |
US9625606B2 (en) | 2009-05-16 | 2017-04-18 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
US9702988B1 (en) * | 2016-01-06 | 2017-07-11 | Raytheon Company | Combined neutron and gamma-ray detector and coincidence test method |
US20170212270A1 (en) * | 2014-09-29 | 2017-07-27 | Halliburton Energy Services, Inc. | Signal stabilization and calibration for neutron detection |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
US9804290B2 (en) | 2013-04-02 | 2017-10-31 | Morpho Detection, Llc | Cross-correlated gamma ray and neutron detector |
US9835741B1 (en) * | 2014-07-09 | 2017-12-05 | National Technology & Engineering Solutions Of Sandia, Llc | Single volume fission energy neutron detector |
US9910168B2 (en) | 2014-05-05 | 2018-03-06 | Raytheon Company | Combined neutron and gamma-ray detector and method |
US10066962B2 (en) | 2013-07-01 | 2018-09-04 | Battelle Energy Alliance, Llc | Apparatus, system, and method for sensor authentication |
US10191161B1 (en) | 2017-03-30 | 2019-01-29 | Consolidated Nuclear Security, LLC | Device and method for the location and identification of a radiation source |
US11366239B2 (en) * | 2018-08-01 | 2022-06-21 | Varex Imaging Corporation | Hybrid dosimetry and imaging system |
US11796489B2 (en) | 2021-02-23 | 2023-10-24 | Rapiscan Systems, Inc. | Systems and methods for eliminating cross-talk signals in one or more scanning systems having multiple X-ray sources |
US20240111065A1 (en) * | 2022-09-30 | 2024-04-04 | The United States Of America, As Represented By The Secretary Of The Navy | Layered Scintillating Neutron Detector |
US12385854B2 (en) | 2022-07-26 | 2025-08-12 | Rapiscan Holdings, Inc. | Methods and systems for performing on-the-fly automatic calibration adjustments of X-ray inspection systems |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9958569B2 (en) | 2002-07-23 | 2018-05-01 | Rapiscan Systems, Inc. | Mobile imaging system and method for detection of contraband |
GB0803640D0 (en) | 2008-02-28 | 2008-04-02 | Rapiscan Security Products Inc | Scanning systems |
CN102686999B (en) | 2009-10-29 | 2017-02-08 | 拉皮斯坎系统股份有限公司 | mobile aircraft inspection system |
DE102009060309A1 (en) * | 2009-12-18 | 2011-06-22 | Carl Zeiss Microlmaging GmbH, 07745 | Operating circuit and control method for a photomultiplier |
US8748830B2 (en) | 2010-06-01 | 2014-06-10 | Saint-Gobain Ceramics & Plastics, Inc. | Radiation sensor to detect different targeted radiation and radiation detection system including the radiation sensor |
CN102455431B (en) * | 2010-11-25 | 2013-08-28 | 上海新漫传感技术研究发展有限公司 | Channel type radioactive detector with low detection limit |
DE102011104379B4 (en) | 2011-06-18 | 2021-11-25 | Carl Zeiss Microscopy Gmbh | Scanning confocal microscope and use, control method and programmable control unit for such a microscope |
ES2675308T3 (en) | 2011-09-07 | 2018-07-10 | Rapiscan Systems, Inc. | X-ray inspection system that integrates manifest data with imaging / detection processing |
CN103176201B (en) * | 2011-12-23 | 2015-03-25 | 同方威视技术股份有限公司 | Method and device for routing inspection and positioning of radioactive substance |
US8878135B2 (en) | 2012-01-26 | 2014-11-04 | General Electric Company | Lithium based scintillators for neutron detection |
IN2014DN06514A (en) | 2012-02-03 | 2015-06-12 | Rapiscan Systems Inc | |
CA2863633C (en) * | 2012-02-04 | 2017-02-21 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
CA2864354C (en) | 2012-02-14 | 2023-02-28 | American Science And Engineering, Inc. | X-ray inspection using wavelength-shifting fiber-coupled scintillation detectors |
US10670740B2 (en) | 2012-02-14 | 2020-06-02 | American Science And Engineering, Inc. | Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors |
US9018586B2 (en) * | 2012-06-27 | 2015-04-28 | Batelle Energy Alliance, Llc | Apparatuses for large area radiation detection and related method |
US20140158895A1 (en) * | 2012-07-05 | 2014-06-12 | Los Alamos National Security, Llc | Pulse-shape discrimination of neutrons using drift tubes |
US9389191B2 (en) | 2012-10-22 | 2016-07-12 | Troxler Electronic Laboratories, Inc. | Conveyor system and measuring device for determining water content of a construction material |
US8859981B1 (en) * | 2012-11-08 | 2014-10-14 | Leidos, Inc. | Method for autonomous self-blanking by radiation portal monitors to minimize the interference from pulsed X-rays radiation |
FR3000807A1 (en) * | 2013-01-07 | 2014-07-11 | Commissariat Energie Atomique | SCINTILLATOR FOR THE DETECTION OF NEUTRONS AND / OR PHOTONS GAMMA AND DETECTOR |
US20140197321A1 (en) * | 2013-01-11 | 2014-07-17 | Joseph Bendahan | Composite gamma-neutron detection system |
WO2014126571A1 (en) * | 2013-02-14 | 2014-08-21 | Halliburton Energy Services, Inc. | Stabilizing a spectrum |
GB2511107A (en) * | 2013-02-25 | 2014-08-27 | Symetrica Ltd | Neutron detector and method for detecting neutrons |
US9261624B2 (en) * | 2013-06-14 | 2016-02-16 | Baker Hughes Incorporated | Thermal and epithermal neutrons from an earth formation |
CN105637350A (en) | 2013-07-23 | 2016-06-01 | 拉皮斯坎系统股份有限公司 | Methods for improving processing speed for object inspection |
JP6208554B2 (en) * | 2013-11-18 | 2017-10-04 | 鹿島建設株式会社 | Method and system for measuring removal contamination level |
CN104730563A (en) * | 2013-12-24 | 2015-06-24 | 上海新漫传感技术研究发展有限公司 | Passage type personnel radioactivity monitor |
US9244023B2 (en) * | 2014-02-18 | 2016-01-26 | The Boeing Company | Systems and methods for radiation monitoring |
WO2015173203A1 (en) * | 2014-05-11 | 2015-11-19 | Target Systemelektronik Gmbh & Co. Kg | Gain stabilization of photomultipliers |
US10228487B2 (en) | 2014-06-30 | 2019-03-12 | American Science And Engineering, Inc. | Rapidly relocatable modular cargo container scanner |
US10302780B2 (en) * | 2014-10-17 | 2019-05-28 | Silverside Detectors Inc. | Fissile neutron detector |
CN104374784B (en) | 2014-11-05 | 2017-05-17 | 同方威视技术股份有限公司 | Detection system and method for synchronously positioning radioactive substances |
CN104614754B (en) * | 2015-01-26 | 2017-08-25 | 苏州瑞派宁科技有限公司 | Combine scintillation crystal, combination scintillation detector and activity-sensing equipment |
US20160259063A1 (en) * | 2015-03-06 | 2016-09-08 | Senaya, Inc. | Integrated solid state scintillator dosimeter |
CN107615052A (en) | 2015-03-20 | 2018-01-19 | 拉皮斯坎系统股份有限公司 | Handheld Portable Backscatter Inspection System |
JP2017009393A (en) * | 2015-06-19 | 2017-01-12 | 株式会社東芝 | Neutron measurement device, neutron measurement method, and treatment apparatus for boron neutron capture therapy |
GB2558464C (en) | 2015-09-08 | 2021-10-27 | American Science & Eng Inc | Backscatter imaging for precision agriculture |
US11536672B2 (en) | 2015-09-08 | 2022-12-27 | American Science And Engineering, Inc. | Systems and methods for using backscatter imaging in precision agriculture |
US10345479B2 (en) | 2015-09-16 | 2019-07-09 | Rapiscan Systems, Inc. | Portable X-ray scanner |
US10302807B2 (en) | 2016-02-22 | 2019-05-28 | Rapiscan Systems, Inc. | Systems and methods for detecting threats and contraband in cargo |
EP3452561A4 (en) | 2016-03-30 | 2019-12-25 | Saint-Gobain Ceramics&Plastics, Inc. | Alkali halide scintillator and uses thereof |
WO2018144630A1 (en) | 2017-01-31 | 2018-08-09 | Rapiscan Systems, Inc. | High-power x-ray sources and methods of operation |
US10317541B2 (en) | 2017-04-14 | 2019-06-11 | Silverside Detectors, Inc. | Advanced fissile neutron detection system and method |
WO2019018032A2 (en) | 2017-04-15 | 2019-01-24 | Silverside Detectors Inc. | Advanced thermal neutron detectors and associated methods |
GB2582466A (en) * | 2017-12-11 | 2020-09-23 | Rapiscan Systems Inc | X-Ray Tomography inspection systems and methods |
CN112424644A (en) | 2018-06-20 | 2021-02-26 | 美国科学及工程股份有限公司 | Wavelength-shifting patch-coupled scintillation detector |
CN112997102B (en) * | 2018-06-25 | 2024-09-10 | Kth控股公司 | Radiation detection system and method |
US11027152B1 (en) | 2018-08-06 | 2021-06-08 | Integrated Sensors, Llc | Ionizing-radiation beam monitoring system |
CN110767521B (en) * | 2019-11-19 | 2021-12-14 | 西安中科英威特光电技术有限公司 | Method for improving dynamic range of photomultiplier |
GB2607516B (en) | 2020-01-23 | 2024-01-03 | Rapiscan Systems Inc | Systems and methods for Compton scatter and/or pulse pileup detection |
US11212902B2 (en) | 2020-02-25 | 2021-12-28 | Rapiscan Systems, Inc. | Multiplexed drive systems and methods for a multi-emitter X-ray source |
EP4115215A1 (en) | 2020-03-05 | 2023-01-11 | Target Systemelektronik GmbH & Co. KG | Method for determining the neutron flux by using a portable radionuclide identification device (rid) comprising scintillation material with iodine |
US11193898B1 (en) | 2020-06-01 | 2021-12-07 | American Science And Engineering, Inc. | Systems and methods for controlling image contrast in an X-ray system |
US11175245B1 (en) | 2020-06-15 | 2021-11-16 | American Science And Engineering, Inc. | Scatter X-ray imaging with adaptive scanning beam intensity |
CN111856235B (en) * | 2020-07-24 | 2024-01-23 | 北方夜视技术股份有限公司 | Vacuum ultraviolet photomultiplier testing device |
CN112083471B (en) * | 2020-09-15 | 2022-12-06 | 成都理工大学 | anti-Compton aviation gamma energy spectrum measuring system and measuring method thereof |
CN112433137A (en) * | 2020-11-10 | 2021-03-02 | 西安工程大学 | Measuring method for silicon photomultiplier PDE and Pct space two-dimensional distribution |
US11340361B1 (en) | 2020-11-23 | 2022-05-24 | American Science And Engineering, Inc. | Wireless transmission detector panel for an X-ray scanner |
EP4330729A1 (en) * | 2021-04-30 | 2024-03-06 | Target Systemelektronik GmbH & Co. KG | System and method to count neutrons |
EP4409607A1 (en) | 2021-10-01 | 2024-08-07 | Rapiscan Holdings, Inc. | Methods and systems for the concurrent generation of multiple substantially similar x-ray beams |
EP4472732A2 (en) | 2022-02-03 | 2024-12-11 | Rapiscan Holdings, Inc. | Systems and methods for real-time energy and dose monitoring of an x-ray linear accelerator |
WO2024254632A1 (en) * | 2023-06-14 | 2024-12-19 | Commonwealth Scientific And Industrial Research Organisation | Apparatus and method for analysis of ore |
CN117572115B (en) * | 2023-11-15 | 2024-05-10 | 河北工程大学 | Photomultiplier signal detection method based on FPGA |
Citations (156)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2831123A (en) | 1956-07-11 | 1958-04-15 | Webster J Daly | X-ray fluoroscopic device |
US3676783A (en) * | 1968-04-23 | 1972-07-11 | Japan Atomic Energy Res Inst | Waveform discriminating circuit |
US3766387A (en) | 1972-07-11 | 1973-10-16 | Us Navy | Nondestructive test device using radiation to detect flaws in materials |
US3767850A (en) * | 1972-02-22 | 1973-10-23 | Abbott Lab | Graphic recording apparatus and method |
US3770955A (en) | 1970-09-17 | 1973-11-06 | Hitachi Roentgen | Tomographic apparatus |
US3784837A (en) | 1972-05-08 | 1974-01-08 | Siemens Ag | X-ray device with a stand |
USRE28544E (en) | 1971-07-07 | 1975-09-02 | Radiant energy imaging with scanning pencil beam | |
US3904923A (en) | 1974-01-14 | 1975-09-09 | Zenith Radio Corp | Cathodo-luminescent display panel |
US4047035A (en) | 1975-07-18 | 1977-09-06 | Heimann Gmbh | Baggage inspection device |
US4139771A (en) | 1975-07-18 | 1979-02-13 | Heimann Gmbh | Device for examining luggage by means of X-rays |
US4210811A (en) | 1975-11-03 | 1980-07-01 | Heimann Gmbh | Drive for moveable shield in luggage screening apparatus |
US4216499A (en) | 1977-08-05 | 1980-08-05 | Heimann Gmbh | Inspection system for baggage |
US4366382A (en) | 1980-09-09 | 1982-12-28 | Scanray Corporation | X-Ray line scan system for use in baggage inspection |
US4430568A (en) | 1980-09-22 | 1984-02-07 | Mitsubishi Denki Kabushiki Kaisha | Container inspection system |
US4566113A (en) | 1981-11-13 | 1986-01-21 | Heimann Gmbh | Method and apparatus for examining the content of containers |
US4599740A (en) | 1983-01-06 | 1986-07-08 | Cable Arthur P | Radiographic examination system |
US4626688A (en) | 1982-11-26 | 1986-12-02 | Barnes Gary T | Split energy level radiation detection |
US4641330A (en) | 1984-08-23 | 1987-02-03 | Heimann Gmbh | High voltage supply circuit for an x-ray tube |
US4709382A (en) | 1984-11-21 | 1987-11-24 | Picker International, Inc. | Imaging with focused curved radiation detectors |
US4736401A (en) | 1985-04-03 | 1988-04-05 | Heimann Gmbh | X-ray scanner |
US4788704A (en) | 1985-03-04 | 1988-11-29 | Heimann Gmbh | X-ray scanner & detector signal processing system |
US4817123A (en) | 1984-09-21 | 1989-03-28 | Picker International | Digital radiography detector resolution improvement |
US4825454A (en) | 1987-12-28 | 1989-04-25 | American Science And Engineering, Inc. | Tomographic imaging with concentric conical collimator |
US4872188A (en) | 1987-11-27 | 1989-10-03 | Picker International, Inc. | Registration correction for radiographic scanners with sandwich detectors |
US4884289A (en) | 1986-05-28 | 1989-11-28 | Heimann Gmbh | X-ray scanner for detecting plastic articles |
US4979202A (en) | 1989-08-25 | 1990-12-18 | Siczek Aldona A | Support structure for X-ray imaging apparatus |
US4991189A (en) | 1990-04-16 | 1991-02-05 | General Electric Company | Collimation apparatus for x-ray beam correction |
US5022062A (en) | 1989-09-13 | 1991-06-04 | American Science And Engineering, Inc. | Automatic threat detection based on illumination by penetrating radiant energy using histogram processing |
US5065418A (en) | 1989-08-09 | 1991-11-12 | Heimann Gmbh | Apparatus for the transillumination of articles with fan-shaped radiation |
US5091924A (en) | 1989-08-09 | 1992-02-25 | Heimann Gmbh | Apparatus for the transillumination of articles with a fan-shaped radiation beam |
US5098640A (en) | 1990-01-10 | 1992-03-24 | Science Applications International Corporation | Apparatus and method for detecting contraband using fast neutron activation |
EP0176314B1 (en) | 1984-09-21 | 1992-06-10 | Picker International, Inc. | Radiography system |
US5179581A (en) | 1989-09-13 | 1993-01-12 | American Science And Engineering, Inc. | Automatic threat detection based on illumination by penetrating radiant energy |
US5181234A (en) | 1990-08-06 | 1993-01-19 | Irt Corporation | X-ray backscatter detection system |
US5182764A (en) | 1991-10-03 | 1993-01-26 | Invision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5221843A (en) | 1992-04-23 | 1993-06-22 | Alvarez Robert E | Active energy selective x-ray image detection |
US5224144A (en) | 1991-09-12 | 1993-06-29 | American Science And Engineering, Inc. | Reduced mass flying spot scanner having arcuate scanning lines |
US5237598A (en) | 1992-04-24 | 1993-08-17 | Albert Richard D | Multiple image scanning X-ray method and apparatus |
US5247561A (en) | 1991-01-02 | 1993-09-21 | Kotowski Andreas F | Luggage inspection device |
US5253283A (en) | 1991-12-23 | 1993-10-12 | American Science And Engineering, Inc. | Inspection method and apparatus with single color pixel imaging |
US5313511A (en) | 1986-06-20 | 1994-05-17 | American Science And Engineering, Inc. | X-ray imaging particularly adapted for low Z materials |
US5367552A (en) | 1991-10-03 | 1994-11-22 | In Vision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5379334A (en) | 1992-07-20 | 1995-01-03 | Heimann Systems Gmbh & Co. Kg | Object testing system |
US5493596A (en) | 1993-11-03 | 1996-02-20 | Annis; Martin | High-energy X-ray inspection system |
US5548123A (en) | 1994-12-06 | 1996-08-20 | Regents Of The University Of California | High resolution, multiple-energy linear sweep detector for x-ray imaging |
US5606167A (en) | 1994-07-11 | 1997-02-25 | Miller; Thomas G. | Contraband detection apparatus and method |
US5638420A (en) | 1996-07-03 | 1997-06-10 | Advanced Research And Applications Corporation | Straddle inspection system |
US5642394A (en) | 1996-04-03 | 1997-06-24 | American Science And Engineering, Inc. | Sidescatter X-ray detection system |
US5642393A (en) | 1995-09-26 | 1997-06-24 | Vivid Technologies, Inc. | Detecting contraband by employing interactive multiprobe tomography |
US5666393A (en) | 1994-02-17 | 1997-09-09 | Annis; Martin | Method and apparatus for reducing afterglow noise in an X-ray inspection system |
US5687210A (en) | 1993-05-28 | 1997-11-11 | Europ Scan | Method and device for determining the attenuation function of an object with respect to the transmission of a reference material thickness |
US5692028A (en) | 1995-09-07 | 1997-11-25 | Heimann Systems Gmbh | X-ray examining apparatus for large-volume goods |
US5751837A (en) | 1993-03-25 | 1998-05-12 | Kabushiki Kaisha Toshiba | X-ray CT scanner system having a plurality of x-ray scanner apparatus |
US5764683A (en) | 1996-02-12 | 1998-06-09 | American Science And Engineering, Inc. | Mobile X-ray inspection system for large objects |
US5768334A (en) | 1993-05-28 | 1998-06-16 | Europ Scan | Method and device for identifying designated materials in the composition of an object |
US5787145A (en) | 1995-03-21 | 1998-07-28 | Heimann Systems Gmbh | Method and arrangement for identifying crystalline and polycrystalline materials |
US5805660A (en) | 1993-07-30 | 1998-09-08 | Europ Scan S.A. | Method and device for carrying out detection of at least one non-visible object containing a given material |
US5838759A (en) | 1996-07-03 | 1998-11-17 | Advanced Research And Applications Corporation | Single beam photoneutron probe and X-ray imaging system for contraband detection and identification |
US5910973A (en) | 1996-07-22 | 1999-06-08 | American Science And Engineering, Inc. | Rapid X-ray inspection system |
US5930326A (en) | 1996-07-12 | 1999-07-27 | American Science And Engineering, Inc. | Side scatter tomography system |
US5940468A (en) | 1996-11-08 | 1999-08-17 | American Science And Engineering, Inc. | Coded aperture X-ray imaging system |
US5974111A (en) | 1996-09-24 | 1999-10-26 | Vivid Technologies, Inc. | Identifying explosives or other contraband by employing transmitted or scattered X-rays |
US6031890A (en) | 1993-04-05 | 2000-02-29 | Heimann Systems Gmbh & Co. Kg | Monitoring installation for containers and trucks |
EP0919186A3 (en) | 1997-11-26 | 2000-04-05 | Picker International, Inc. | Apparatus for and method of imaging |
US6058158A (en) | 1997-07-04 | 2000-05-02 | Eiler; Peter | X-ray device for checking the contents of closed cargo carriers |
US6067344A (en) | 1997-12-19 | 2000-05-23 | American Science And Engineering, Inc. | X-ray ambient level safety system |
US6081580A (en) | 1997-09-09 | 2000-06-27 | American Science And Engineering, Inc. | Tomographic inspection system |
US6094472A (en) | 1998-04-14 | 2000-07-25 | Rapiscan Security Products, Inc. | X-ray backscatter imaging system including moving body tracking assembly |
US6151381A (en) | 1998-01-28 | 2000-11-21 | American Science And Engineering, Inc. | Gated transmission and scatter detection for x-ray imaging |
US6188747B1 (en) | 1998-01-24 | 2001-02-13 | Heimann Systems Gmbh | X-ray generator |
US6192104B1 (en) | 1998-11-30 | 2001-02-20 | American Science And Engineering, Inc. | Fan and pencil beams from a common source for x-ray inspection |
US6192101B1 (en) | 1997-08-21 | 2001-02-20 | American Science & Engineering, Inc. | X-ray determination of the mass distribution in containers |
US6195413B1 (en) | 1998-06-12 | 2001-02-27 | Heimann Systems Gmbh | Method and arrangement for detecting X-rays |
US6198795B1 (en) | 1998-03-19 | 2001-03-06 | Heimann Systems Gmbh | Method of processing images for material recognition by X-rays |
US6218943B1 (en) | 1998-03-27 | 2001-04-17 | Vivid Technologies, Inc. | Contraband detection and article reclaim system |
US6249567B1 (en) | 1998-12-01 | 2001-06-19 | American Science & Engineering, Inc. | X-ray back scatter imaging system for undercarriage inspection |
US6256369B1 (en) | 1999-03-31 | 2001-07-03 | Analogic Corporation | Computerized tomography scanner with longitudinal flying focal spot |
US6278115B1 (en) | 1998-08-28 | 2001-08-21 | Annistech, Inc. | X-ray inspection system detector with plastic scintillating material |
US6282260B1 (en) | 1998-12-14 | 2001-08-28 | American Science & Engineering, Inc. | Unilateral hand-held x-ray inspection apparatus |
US6301326B2 (en) | 1998-11-02 | 2001-10-09 | Perkinelmer Detection Systems, Inc. | Sheet detection system |
US6320933B1 (en) | 1998-11-30 | 2001-11-20 | American Science And Engineering, Inc. | Multiple scatter system for threat identification |
US6347132B1 (en) | 1998-05-26 | 2002-02-12 | Annistech, Inc. | High energy X-ray inspection system for detecting nuclear weapons materials |
US6356620B1 (en) | 1999-07-30 | 2002-03-12 | American Science & Engineering, Inc. | Method for raster scanning an X-ray tube focal spot |
US6424695B1 (en) | 1998-12-22 | 2002-07-23 | American Science And Engineering, Inc. | Separate lateral processing of backscatter signals |
US6434219B1 (en) | 2000-07-24 | 2002-08-13 | American Science And Engineering, Inc. | Chopper wheel with two axes of rotation |
US6435715B1 (en) | 1998-11-30 | 2002-08-20 | Siemens Aktiengesellschaft | Radiography device |
US6442233B1 (en) | 1998-06-18 | 2002-08-27 | American Science And Engineering, Inc. | Coherent x-ray scatter inspection system with sidescatter and energy-resolved detection |
US6445765B1 (en) | 2000-09-07 | 2002-09-03 | Heimann Systems Gmbh | X-ray detecting apparatus |
US6453003B1 (en) | 2000-12-13 | 2002-09-17 | Heimann Systems Gmbh | Apparatus for transilluminating objects |
US6453007B2 (en) | 1998-11-30 | 2002-09-17 | American Science And Engineering, Inc. | X-ray inspection using co-planar pencil and fan beams |
US6456684B1 (en) | 1999-07-23 | 2002-09-24 | Inki Mun | Surgical scanning system and process for use thereof |
US6459761B1 (en) | 2000-02-10 | 2002-10-01 | American Science And Engineering, Inc. | Spectrally shaped x-ray inspection system |
US6459764B1 (en) | 1999-01-27 | 2002-10-01 | American Science And Engineering, Inc. | Drive-through vehicle inspection system |
US6473487B1 (en) | 2000-12-27 | 2002-10-29 | Rapiscan Security Products, Inc. | Method and apparatus for physical characteristics discrimination of objects using a limited view three dimensional reconstruction |
USRE37899E1 (en) | 1996-03-11 | 2002-11-05 | American Science And Engineering, Inc. | Tomographic method of x-ray imaging |
US6483894B2 (en) | 1999-11-13 | 2002-11-19 | Heimann Systems Gmbh | Apparatus and method for adjusting a collimator |
US6507025B1 (en) | 1995-10-23 | 2003-01-14 | Science Applications International Corporation | Density detection using real time discrete photon counting for fast moving targets |
US6542578B2 (en) | 1999-11-13 | 2003-04-01 | Heimann Systems Gmbh | Apparatus for determining the crystalline and polycrystalline materials of an item |
US6542580B1 (en) | 2002-01-15 | 2003-04-01 | Rapiscan Security Products (Usa), Inc. | Relocatable X-ray imaging system and method for inspecting vehicles and containers |
US6542574B2 (en) | 1998-12-01 | 2003-04-01 | American Science And Engineering, Inc. | System for inspecting the contents of a container |
US6546072B1 (en) | 1999-07-30 | 2003-04-08 | American Science And Engineering, Inc. | Transmission enhanced scatter imaging |
US6552346B2 (en) | 1995-10-23 | 2003-04-22 | Science Applications International Corporation | Density detection using discrete photon counting |
US6563903B2 (en) | 2000-03-01 | 2003-05-13 | Tsinghua University | Container inspection apparatus |
US6580778B2 (en) | 2001-05-23 | 2003-06-17 | Heimann Systems Gmbh | Inspection device |
US6584170B2 (en) | 2001-08-11 | 2003-06-24 | Heimann Systems Gmbh | Method and apparatus for inspecting an object, particularly a piece of luggage |
US6597760B2 (en) | 2001-05-23 | 2003-07-22 | Heimann Systems Gmbh | Inspection device |
US6606516B2 (en) | 2001-04-12 | 2003-08-12 | Pacesetter, Inc. | System and method for programmably controlling stimulation electrode configurations and activation sequence in a multi-site cardiac stimulation device |
US6636581B2 (en) | 2001-08-31 | 2003-10-21 | Michael R. Sorenson | Inspection system and method |
US6653588B1 (en) | 1998-05-05 | 2003-11-25 | Rapiscan Security Products Limited | Auto reject unit |
US6658087B2 (en) | 2001-05-03 | 2003-12-02 | American Science And Engineering, Inc. | Nautical X-ray inspection system |
US6663280B2 (en) | 2001-06-28 | 2003-12-16 | Heimann Systems Gmbh | Inspection unit |
US6665373B1 (en) | 2002-03-12 | 2003-12-16 | Rapiscan Security Products (Usa), Inc. | X-ray imaging system with active detector |
US6665433B2 (en) | 2001-07-31 | 2003-12-16 | Agilent Technologies, Inc. | Automatic X-ray determination of solder joint and view Delta Z values from a laser mapped reference surface for circuit board inspection using X-ray laminography |
US20040017888A1 (en) | 2002-07-24 | 2004-01-29 | Seppi Edward J. | Radiation scanning of objects for contraband |
EP1413898A1 (en) | 2002-10-23 | 2004-04-28 | Hitachi, Ltd. | Radiological imaging apparatus |
US20040086078A1 (en) | 2002-11-06 | 2004-05-06 | William Adams | X-ray backscatter mobile inspection van |
US20040125914A1 (en) | 2002-10-16 | 2004-07-01 | Tsinghua University & Nuctech Company Limited | Vehicle-carried mobile container inspection apparatus |
US6763635B1 (en) | 1999-11-30 | 2004-07-20 | Shook Mobile Technology, Lp | Boom with mast assembly |
US20040141584A1 (en) | 2003-01-16 | 2004-07-22 | Bernardi Richard T. | High energy x-ray mobile cargo inspection system with penumbra collimator |
US6812426B1 (en) | 2000-07-24 | 2004-11-02 | Rapiscan Security Products | Automatic reject unit spacer and diverter |
US6816571B2 (en) | 2002-02-06 | 2004-11-09 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US20040258198A1 (en) | 2003-06-20 | 2004-12-23 | James Carver | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US6837422B1 (en) | 2000-09-01 | 2005-01-04 | Heimann Systems Gmbh | Service unit for an X-ray examining device |
US6839403B1 (en) | 2000-07-24 | 2005-01-04 | Rapiscan Security Products (Usa), Inc. | Generation and distribution of annotation overlays of digital X-ray images for security systems |
US6843599B2 (en) | 2002-07-23 | 2005-01-18 | Rapiscan, Inc. | Self-contained, portable inspection system and method |
US20050023479A1 (en) | 2003-06-05 | 2005-02-03 | Niton Llc | Neutron and gamma ray monitor |
US20050117700A1 (en) | 2003-08-08 | 2005-06-02 | Peschmann Kristian R. | Methods and systems for the rapid detection of concealed objects |
US20050135668A1 (en) | 2003-12-23 | 2005-06-23 | Science Applications International Corporation | Measuring linear separations in digital radiographs |
US20050157842A1 (en) | 2002-07-23 | 2005-07-21 | Neeraj Agrawal | Single boom cargo scanning system |
US20050156734A1 (en) * | 2001-09-28 | 2005-07-21 | Zerwekh William D. | Integrated detection and monitoring system |
US20050161611A1 (en) * | 2002-03-26 | 2005-07-28 | Commissariat A L'energie | Two-dimensional ionising particle detector |
US20050169421A1 (en) | 2004-01-30 | 2005-08-04 | Muenchau Ernest E. | Method and system for automatically scanning and imaging the contents of a moving target |
US20050275545A1 (en) * | 2003-01-31 | 2005-12-15 | Alioto John I | Inverse ratio of gamma-ray and neutron emissions in the detection of radiation shielding of containers |
US20060027751A1 (en) | 2004-08-05 | 2006-02-09 | Mitsubishi Heavy Industries, Ltd | Nondestructive inspection device and crane equipped with nondestructive inspection device |
WO2006036076A1 (en) | 2004-09-30 | 2006-04-06 | S.C. Mb Telecom Ltd.-S.R.L. | Nonintrusive radiographic inspection method and system for vehicles using two autonimous but synchronously movable mobile units, one carring the source and the other the detector |
WO2006095188A1 (en) | 2005-03-11 | 2006-09-14 | Corus Uk Limited | Detection of radioactive matrials for example in trucks using gamma spectroscopy and neutron detection |
US20060284094A1 (en) | 2005-02-04 | 2006-12-21 | Dan Inbar | Detection of nuclear materials |
US7166844B1 (en) | 2004-06-01 | 2007-01-23 | Science Applications International Corporation | Target density imaging using discrete photon counting to produce high-resolution radiographic images |
US20070110215A1 (en) | 2003-12-10 | 2007-05-17 | Nuctech Company Limited | Combined mobile container inspection system with low target |
US20070140423A1 (en) | 2005-11-11 | 2007-06-21 | Foland Andrew D | Imaging system with long-standoff capability |
US7244947B2 (en) | 2004-04-13 | 2007-07-17 | Science Applications International Corporation | Neutron detector with layered thermal-neutron scintillator and dual function light guide and thermalizing media |
US20070172129A1 (en) | 2005-04-07 | 2007-07-26 | L-3 Communications Security And Detection Systems, Inc. | Method of registration in a contraband detection system |
US20070189454A1 (en) | 2006-02-10 | 2007-08-16 | Georgeson Gary E | System and method for determining dimensions of structures/systems for designing modifications to the structures/systems |
US20070210255A1 (en) | 2004-03-01 | 2007-09-13 | Paul Bjorkholm | Dual energy radiation scanning of objects |
US20070269005A1 (en) | 2002-11-06 | 2007-11-22 | Alex Chalmers | X-Ray Backscatter Detection Imaging Modules |
US20070280416A1 (en) | 2006-06-06 | 2007-12-06 | General Electric Company | Inspection system and method |
US20070280502A1 (en) | 2001-10-01 | 2007-12-06 | L-3 Communications Security And Detection Systems, Inc. | Networked security system |
US20070286337A1 (en) | 2006-05-19 | 2007-12-13 | Xuewu Wang | Detector array and device using the same |
US20080044801A1 (en) | 2006-01-30 | 2008-02-21 | Peter Modica | Method and System for Certifying Operators of X-ray Inspection Systems |
US20080084963A1 (en) | 2003-01-31 | 2008-04-10 | Clayton James E | Rotating carriage assembly for use in scanning cargo conveyances transported by a crane |
US20080128624A1 (en) | 2005-12-21 | 2008-06-05 | Cooke D Wayne | Nanocomposite scintillator and detector |
US20080304622A1 (en) | 2005-12-16 | 2008-12-11 | Edward James Morton | X-Ray Tomography Inspection Systems |
US7525101B2 (en) * | 2006-05-26 | 2009-04-28 | Thermo Niton Analyzers Llc | Neutron and gamma ray monitor |
US20090127459A1 (en) | 2004-08-12 | 2009-05-21 | Navotek Medical Ltd. | Localization of a Radioactive Source |
US20090140158A1 (en) * | 2007-12-03 | 2009-06-04 | Brent Allen Clothier | Moldable neutron sensitive compositions, articles, and methods |
US20090200480A1 (en) * | 2008-02-07 | 2009-08-13 | General Electric Company | Integrated neutron-gamma radiation detector with optical waveguide and neutron scintillating material |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2971433A (en) * | 1959-01-07 | 1961-02-14 | Royal H Akin | Transistorized photomultiplier photometer circuit |
DE3140145A1 (en) | 1981-10-09 | 1983-04-21 | Heimann Gmbh, 6200 Wiesbaden | DEVICE FOR PRODUCING A X-RAY IMAGE OF BODIES |
JPS6057762A (en) * | 1983-09-08 | 1985-04-03 | Dainippon Screen Mfg Co Ltd | Adjusting method of impress voltage of photomultiplier tube in picture scanning and recording device |
US5114662A (en) | 1987-05-26 | 1992-05-19 | Science Applications International Corporation | Explosive detection system |
US5006299A (en) | 1987-05-26 | 1991-04-09 | Science Applications International Corporation | Explosive detection system |
US4853595A (en) * | 1987-08-31 | 1989-08-01 | Alfano Robert R | Photomultiplier tube having a transmission strip line photocathode and system for use therewith |
US5076993A (en) | 1990-01-12 | 1991-12-31 | Science Applications International Corporation | Contraband detection system using direct imaging pulsed fast neutrons |
GB2255634A (en) * | 1991-05-10 | 1992-11-11 | British Steel Plc | Photomultiplier tube for thickness measurement |
US5608214A (en) * | 1995-10-30 | 1997-03-04 | Protechnics International, Inc. | Gamma ray spectral tool for well logging |
US20060115109A1 (en) | 2001-10-01 | 2006-06-01 | L-3 Communications Security And Detection Systems, Inc. | Ensuring airline safety while safeguarding personal passenger information |
US7760103B2 (en) | 2001-10-26 | 2010-07-20 | Innovative American Technology, Inc. | Multi-stage system for verification of container contents |
JP2003207453A (en) * | 2002-01-16 | 2003-07-25 | Hitachi High-Technologies Corp | Fluorescence and phosphorescence measurement equipment |
US7551715B2 (en) | 2005-10-24 | 2009-06-23 | American Science And Engineering, Inc. | X-ray inspection based on scatter detection |
US7453987B1 (en) | 2004-03-04 | 2008-11-18 | Science Applications International Corporation | Method and system for high energy, low radiation power X-ray imaging of the contents of a target |
KR101000182B1 (en) | 2004-04-09 | 2010-12-10 | 아메리칸 사이언스 앤 엔지니어링, 인크. | Backscatter Inspection Portal |
EP1809992A2 (en) | 2004-10-18 | 2007-07-25 | Technology Management Consulting Services, Inc. | Detector system for traffic lanes |
US20070085010A1 (en) | 2005-06-14 | 2007-04-19 | The Regents Of The University Of California | Scintillator with a matrix material body carrying nano-material scintillator media |
JP2010500714A (en) | 2006-08-10 | 2010-01-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Handwheel electrode |
GB0810638D0 (en) | 2008-06-11 | 2008-07-16 | Rapiscan Security Products Inc | Photomultiplier and detection systems |
EP3663807A1 (en) | 2009-12-22 | 2020-06-10 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
-
2008
- 2008-06-11 GB GBGB0810638.7A patent/GB0810638D0/en not_active Ceased
-
2009
- 2009-06-11 GB GB1020691.0A patent/GB2473373B/en not_active Expired - Fee Related
- 2009-06-11 MX MX2010013595A patent/MX2010013595A/en active IP Right Grant
- 2009-06-11 WO PCT/GB2009/001444 patent/WO2009150416A2/en active Application Filing
- 2009-06-11 US US12/997,251 patent/US8389942B2/en active Active
- 2009-06-11 BR BRPI0915030A patent/BRPI0915030A2/en not_active Application Discontinuation
-
2010
- 2010-12-22 US US12/976,861 patent/US8389941B2/en active Active
-
2013
- 2013-02-25 US US13/775,253 patent/US8735833B2/en not_active Expired - Fee Related
- 2013-11-18 US US14/082,658 patent/US8993970B2/en active Active
Patent Citations (172)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2831123A (en) | 1956-07-11 | 1958-04-15 | Webster J Daly | X-ray fluoroscopic device |
US3676783A (en) * | 1968-04-23 | 1972-07-11 | Japan Atomic Energy Res Inst | Waveform discriminating circuit |
US3770955A (en) | 1970-09-17 | 1973-11-06 | Hitachi Roentgen | Tomographic apparatus |
USRE28544E (en) | 1971-07-07 | 1975-09-02 | Radiant energy imaging with scanning pencil beam | |
US3767850A (en) * | 1972-02-22 | 1973-10-23 | Abbott Lab | Graphic recording apparatus and method |
US3784837A (en) | 1972-05-08 | 1974-01-08 | Siemens Ag | X-ray device with a stand |
US3766387A (en) | 1972-07-11 | 1973-10-16 | Us Navy | Nondestructive test device using radiation to detect flaws in materials |
US3904923A (en) | 1974-01-14 | 1975-09-09 | Zenith Radio Corp | Cathodo-luminescent display panel |
US4047035A (en) | 1975-07-18 | 1977-09-06 | Heimann Gmbh | Baggage inspection device |
US4139771A (en) | 1975-07-18 | 1979-02-13 | Heimann Gmbh | Device for examining luggage by means of X-rays |
US4210811A (en) | 1975-11-03 | 1980-07-01 | Heimann Gmbh | Drive for moveable shield in luggage screening apparatus |
US4216499A (en) | 1977-08-05 | 1980-08-05 | Heimann Gmbh | Inspection system for baggage |
US4366382A (en) | 1980-09-09 | 1982-12-28 | Scanray Corporation | X-Ray line scan system for use in baggage inspection |
US4366382B1 (en) | 1980-09-09 | 1996-01-23 | Scanray Corp | X-ray line scan system for use in baggage inspection |
US4366382B2 (en) | 1980-09-09 | 1997-10-14 | Scanray Corp | X-ray line scan system for use in baggage inspection |
US4430568A (en) | 1980-09-22 | 1984-02-07 | Mitsubishi Denki Kabushiki Kaisha | Container inspection system |
US4566113A (en) | 1981-11-13 | 1986-01-21 | Heimann Gmbh | Method and apparatus for examining the content of containers |
US4626688A (en) | 1982-11-26 | 1986-12-02 | Barnes Gary T | Split energy level radiation detection |
EP0287707A2 (en) | 1982-11-26 | 1988-10-26 | The Board Of Trustees Of The University Of Alabama For Its Division University Of Alabama In Birmingham | Energy discriminating apparatus |
US4599740A (en) | 1983-01-06 | 1986-07-08 | Cable Arthur P | Radiographic examination system |
US4641330A (en) | 1984-08-23 | 1987-02-03 | Heimann Gmbh | High voltage supply circuit for an x-ray tube |
US4817123A (en) | 1984-09-21 | 1989-03-28 | Picker International | Digital radiography detector resolution improvement |
EP0176314B1 (en) | 1984-09-21 | 1992-06-10 | Picker International, Inc. | Radiography system |
US4709382A (en) | 1984-11-21 | 1987-11-24 | Picker International, Inc. | Imaging with focused curved radiation detectors |
US4788704A (en) | 1985-03-04 | 1988-11-29 | Heimann Gmbh | X-ray scanner & detector signal processing system |
US4736401A (en) | 1985-04-03 | 1988-04-05 | Heimann Gmbh | X-ray scanner |
US4884289A (en) | 1986-05-28 | 1989-11-28 | Heimann Gmbh | X-ray scanner for detecting plastic articles |
US5313511C1 (en) | 1986-06-20 | 2001-01-30 | Us Trust Company | X-ray imaging particularly adapted for low z materials |
US5313511A (en) | 1986-06-20 | 1994-05-17 | American Science And Engineering, Inc. | X-ray imaging particularly adapted for low Z materials |
US4872188A (en) | 1987-11-27 | 1989-10-03 | Picker International, Inc. | Registration correction for radiographic scanners with sandwich detectors |
US4825454A (en) | 1987-12-28 | 1989-04-25 | American Science And Engineering, Inc. | Tomographic imaging with concentric conical collimator |
US5091924A (en) | 1989-08-09 | 1992-02-25 | Heimann Gmbh | Apparatus for the transillumination of articles with a fan-shaped radiation beam |
US5065418A (en) | 1989-08-09 | 1991-11-12 | Heimann Gmbh | Apparatus for the transillumination of articles with fan-shaped radiation |
US4979202A (en) | 1989-08-25 | 1990-12-18 | Siczek Aldona A | Support structure for X-ray imaging apparatus |
US5179581A (en) | 1989-09-13 | 1993-01-12 | American Science And Engineering, Inc. | Automatic threat detection based on illumination by penetrating radiant energy |
US5022062A (en) | 1989-09-13 | 1991-06-04 | American Science And Engineering, Inc. | Automatic threat detection based on illumination by penetrating radiant energy using histogram processing |
US5098640A (en) | 1990-01-10 | 1992-03-24 | Science Applications International Corporation | Apparatus and method for detecting contraband using fast neutron activation |
US4991189A (en) | 1990-04-16 | 1991-02-05 | General Electric Company | Collimation apparatus for x-ray beam correction |
US5181234A (en) | 1990-08-06 | 1993-01-19 | Irt Corporation | X-ray backscatter detection system |
US5181234B1 (en) | 1990-08-06 | 2000-01-04 | Rapiscan Security Products Inc | X-ray backscatter detection system |
US5247561A (en) | 1991-01-02 | 1993-09-21 | Kotowski Andreas F | Luggage inspection device |
US5224144A (en) | 1991-09-12 | 1993-06-29 | American Science And Engineering, Inc. | Reduced mass flying spot scanner having arcuate scanning lines |
US5367552A (en) | 1991-10-03 | 1994-11-22 | In Vision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5182764A (en) | 1991-10-03 | 1993-01-26 | Invision Technologies, Inc. | Automatic concealed object detection system having a pre-scan stage |
US5253283A (en) | 1991-12-23 | 1993-10-12 | American Science And Engineering, Inc. | Inspection method and apparatus with single color pixel imaging |
US5221843A (en) | 1992-04-23 | 1993-06-22 | Alvarez Robert E | Active energy selective x-ray image detection |
US5237598A (en) | 1992-04-24 | 1993-08-17 | Albert Richard D | Multiple image scanning X-ray method and apparatus |
US5379334A (en) | 1992-07-20 | 1995-01-03 | Heimann Systems Gmbh & Co. Kg | Object testing system |
US5751837A (en) | 1993-03-25 | 1998-05-12 | Kabushiki Kaisha Toshiba | X-ray CT scanner system having a plurality of x-ray scanner apparatus |
US6031890A (en) | 1993-04-05 | 2000-02-29 | Heimann Systems Gmbh & Co. Kg | Monitoring installation for containers and trucks |
US5687210A (en) | 1993-05-28 | 1997-11-11 | Europ Scan | Method and device for determining the attenuation function of an object with respect to the transmission of a reference material thickness |
US5768334A (en) | 1993-05-28 | 1998-06-16 | Europ Scan | Method and device for identifying designated materials in the composition of an object |
US5805660A (en) | 1993-07-30 | 1998-09-08 | Europ Scan S.A. | Method and device for carrying out detection of at least one non-visible object containing a given material |
US5493596A (en) | 1993-11-03 | 1996-02-20 | Annis; Martin | High-energy X-ray inspection system |
US5666393A (en) | 1994-02-17 | 1997-09-09 | Annis; Martin | Method and apparatus for reducing afterglow noise in an X-ray inspection system |
US5606167A (en) | 1994-07-11 | 1997-02-25 | Miller; Thomas G. | Contraband detection apparatus and method |
US5548123A (en) | 1994-12-06 | 1996-08-20 | Regents Of The University Of California | High resolution, multiple-energy linear sweep detector for x-ray imaging |
US5787145A (en) | 1995-03-21 | 1998-07-28 | Heimann Systems Gmbh | Method and arrangement for identifying crystalline and polycrystalline materials |
US5692028A (en) | 1995-09-07 | 1997-11-25 | Heimann Systems Gmbh | X-ray examining apparatus for large-volume goods |
US5642393A (en) | 1995-09-26 | 1997-06-24 | Vivid Technologies, Inc. | Detecting contraband by employing interactive multiprobe tomography |
US6552346B2 (en) | 1995-10-23 | 2003-04-22 | Science Applications International Corporation | Density detection using discrete photon counting |
US6507025B1 (en) | 1995-10-23 | 2003-01-14 | Science Applications International Corporation | Density detection using real time discrete photon counting for fast moving targets |
US6292533B1 (en) | 1996-02-12 | 2001-09-18 | American Science & Engineering, Inc. | Mobile X-ray inspection system for large objects |
US6252929B1 (en) | 1996-02-12 | 2001-06-26 | American Science & Engineering, Inc. | Mobile x-ray inspection system for large objects |
US5903623A (en) | 1996-02-12 | 1999-05-11 | American Science & Engineering, Inc. | Mobile X-ray inspection system for large objects |
US5764683A (en) | 1996-02-12 | 1998-06-09 | American Science And Engineering, Inc. | Mobile X-ray inspection system for large objects |
US5764683B1 (en) | 1996-02-12 | 2000-11-21 | American Science & Eng Inc | Mobile x-ray inspection system for large objects |
USRE37899E1 (en) | 1996-03-11 | 2002-11-05 | American Science And Engineering, Inc. | Tomographic method of x-ray imaging |
US5642394A (en) | 1996-04-03 | 1997-06-24 | American Science And Engineering, Inc. | Sidescatter X-ray detection system |
US5638420A (en) | 1996-07-03 | 1997-06-10 | Advanced Research And Applications Corporation | Straddle inspection system |
US5838759A (en) | 1996-07-03 | 1998-11-17 | Advanced Research And Applications Corporation | Single beam photoneutron probe and X-ray imaging system for contraband detection and identification |
US5930326A (en) | 1996-07-12 | 1999-07-27 | American Science And Engineering, Inc. | Side scatter tomography system |
US5910973A (en) | 1996-07-22 | 1999-06-08 | American Science And Engineering, Inc. | Rapid X-ray inspection system |
US5974111A (en) | 1996-09-24 | 1999-10-26 | Vivid Technologies, Inc. | Identifying explosives or other contraband by employing transmitted or scattered X-rays |
US5940468A (en) | 1996-11-08 | 1999-08-17 | American Science And Engineering, Inc. | Coded aperture X-ray imaging system |
US6058158A (en) | 1997-07-04 | 2000-05-02 | Eiler; Peter | X-ray device for checking the contents of closed cargo carriers |
US6192101B1 (en) | 1997-08-21 | 2001-02-20 | American Science & Engineering, Inc. | X-ray determination of the mass distribution in containers |
US6081580A (en) | 1997-09-09 | 2000-06-27 | American Science And Engineering, Inc. | Tomographic inspection system |
EP0919186A3 (en) | 1997-11-26 | 2000-04-05 | Picker International, Inc. | Apparatus for and method of imaging |
US6067344A (en) | 1997-12-19 | 2000-05-23 | American Science And Engineering, Inc. | X-ray ambient level safety system |
US6188747B1 (en) | 1998-01-24 | 2001-02-13 | Heimann Systems Gmbh | X-ray generator |
US6151381A (en) | 1998-01-28 | 2000-11-21 | American Science And Engineering, Inc. | Gated transmission and scatter detection for x-ray imaging |
US6198795B1 (en) | 1998-03-19 | 2001-03-06 | Heimann Systems Gmbh | Method of processing images for material recognition by X-rays |
US6218943B1 (en) | 1998-03-27 | 2001-04-17 | Vivid Technologies, Inc. | Contraband detection and article reclaim system |
US6094472A (en) | 1998-04-14 | 2000-07-25 | Rapiscan Security Products, Inc. | X-ray backscatter imaging system including moving body tracking assembly |
US6653588B1 (en) | 1998-05-05 | 2003-11-25 | Rapiscan Security Products Limited | Auto reject unit |
US6347132B1 (en) | 1998-05-26 | 2002-02-12 | Annistech, Inc. | High energy X-ray inspection system for detecting nuclear weapons materials |
US6195413B1 (en) | 1998-06-12 | 2001-02-27 | Heimann Systems Gmbh | Method and arrangement for detecting X-rays |
US6442233B1 (en) | 1998-06-18 | 2002-08-27 | American Science And Engineering, Inc. | Coherent x-ray scatter inspection system with sidescatter and energy-resolved detection |
US6278115B1 (en) | 1998-08-28 | 2001-08-21 | Annistech, Inc. | X-ray inspection system detector with plastic scintillating material |
US6301326B2 (en) | 1998-11-02 | 2001-10-09 | Perkinelmer Detection Systems, Inc. | Sheet detection system |
US6320933B1 (en) | 1998-11-30 | 2001-11-20 | American Science And Engineering, Inc. | Multiple scatter system for threat identification |
US6453007B2 (en) | 1998-11-30 | 2002-09-17 | American Science And Engineering, Inc. | X-ray inspection using co-planar pencil and fan beams |
US6192104B1 (en) | 1998-11-30 | 2001-02-20 | American Science And Engineering, Inc. | Fan and pencil beams from a common source for x-ray inspection |
US6435715B1 (en) | 1998-11-30 | 2002-08-20 | Siemens Aktiengesellschaft | Radiography device |
US6249567B1 (en) | 1998-12-01 | 2001-06-19 | American Science & Engineering, Inc. | X-ray back scatter imaging system for undercarriage inspection |
US6542574B2 (en) | 1998-12-01 | 2003-04-01 | American Science And Engineering, Inc. | System for inspecting the contents of a container |
US6282260B1 (en) | 1998-12-14 | 2001-08-28 | American Science & Engineering, Inc. | Unilateral hand-held x-ray inspection apparatus |
US6424695B1 (en) | 1998-12-22 | 2002-07-23 | American Science And Engineering, Inc. | Separate lateral processing of backscatter signals |
US6459764B1 (en) | 1999-01-27 | 2002-10-01 | American Science And Engineering, Inc. | Drive-through vehicle inspection system |
US6256369B1 (en) | 1999-03-31 | 2001-07-03 | Analogic Corporation | Computerized tomography scanner with longitudinal flying focal spot |
US6456684B1 (en) | 1999-07-23 | 2002-09-24 | Inki Mun | Surgical scanning system and process for use thereof |
US6546072B1 (en) | 1999-07-30 | 2003-04-08 | American Science And Engineering, Inc. | Transmission enhanced scatter imaging |
US6356620B1 (en) | 1999-07-30 | 2002-03-12 | American Science & Engineering, Inc. | Method for raster scanning an X-ray tube focal spot |
US6532276B1 (en) | 1999-11-13 | 2003-03-11 | Heimann Systems Gmbh | Method and apparatus for determining a material of a detected item |
US6483894B2 (en) | 1999-11-13 | 2002-11-19 | Heimann Systems Gmbh | Apparatus and method for adjusting a collimator |
US6542578B2 (en) | 1999-11-13 | 2003-04-01 | Heimann Systems Gmbh | Apparatus for determining the crystalline and polycrystalline materials of an item |
US6763635B1 (en) | 1999-11-30 | 2004-07-20 | Shook Mobile Technology, Lp | Boom with mast assembly |
US7207713B2 (en) | 1999-11-30 | 2007-04-24 | Shook Mobile Technology, L.P. | Boom with mast assembly |
US6459761B1 (en) | 2000-02-10 | 2002-10-01 | American Science And Engineering, Inc. | Spectrally shaped x-ray inspection system |
US6563903B2 (en) | 2000-03-01 | 2003-05-13 | Tsinghua University | Container inspection apparatus |
US6839403B1 (en) | 2000-07-24 | 2005-01-04 | Rapiscan Security Products (Usa), Inc. | Generation and distribution of annotation overlays of digital X-ray images for security systems |
US6434219B1 (en) | 2000-07-24 | 2002-08-13 | American Science And Engineering, Inc. | Chopper wheel with two axes of rotation |
US6812426B1 (en) | 2000-07-24 | 2004-11-02 | Rapiscan Security Products | Automatic reject unit spacer and diverter |
US6837422B1 (en) | 2000-09-01 | 2005-01-04 | Heimann Systems Gmbh | Service unit for an X-ray examining device |
US6445765B1 (en) | 2000-09-07 | 2002-09-03 | Heimann Systems Gmbh | X-ray detecting apparatus |
US6453003B1 (en) | 2000-12-13 | 2002-09-17 | Heimann Systems Gmbh | Apparatus for transilluminating objects |
US6473487B1 (en) | 2000-12-27 | 2002-10-29 | Rapiscan Security Products, Inc. | Method and apparatus for physical characteristics discrimination of objects using a limited view three dimensional reconstruction |
US6606516B2 (en) | 2001-04-12 | 2003-08-12 | Pacesetter, Inc. | System and method for programmably controlling stimulation electrode configurations and activation sequence in a multi-site cardiac stimulation device |
US6658087B2 (en) | 2001-05-03 | 2003-12-02 | American Science And Engineering, Inc. | Nautical X-ray inspection system |
US6597760B2 (en) | 2001-05-23 | 2003-07-22 | Heimann Systems Gmbh | Inspection device |
US6580778B2 (en) | 2001-05-23 | 2003-06-17 | Heimann Systems Gmbh | Inspection device |
US6663280B2 (en) | 2001-06-28 | 2003-12-16 | Heimann Systems Gmbh | Inspection unit |
US6665433B2 (en) | 2001-07-31 | 2003-12-16 | Agilent Technologies, Inc. | Automatic X-ray determination of solder joint and view Delta Z values from a laser mapped reference surface for circuit board inspection using X-ray laminography |
US6584170B2 (en) | 2001-08-11 | 2003-06-24 | Heimann Systems Gmbh | Method and apparatus for inspecting an object, particularly a piece of luggage |
US6636581B2 (en) | 2001-08-31 | 2003-10-21 | Michael R. Sorenson | Inspection system and method |
US20050156734A1 (en) * | 2001-09-28 | 2005-07-21 | Zerwekh William D. | Integrated detection and monitoring system |
US20070280502A1 (en) | 2001-10-01 | 2007-12-06 | L-3 Communications Security And Detection Systems, Inc. | Networked security system |
US6542580B1 (en) | 2002-01-15 | 2003-04-01 | Rapiscan Security Products (Usa), Inc. | Relocatable X-ray imaging system and method for inspecting vehicles and containers |
US6816571B2 (en) | 2002-02-06 | 2004-11-09 | L-3 Communications Security And Detection Systems Corporation Delaware | Method and apparatus for transmitting information about a target object between a prescanner and a CT scanner |
US6665373B1 (en) | 2002-03-12 | 2003-12-16 | Rapiscan Security Products (Usa), Inc. | X-ray imaging system with active detector |
US20050161611A1 (en) * | 2002-03-26 | 2005-07-28 | Commissariat A L'energie | Two-dimensional ionising particle detector |
US6843599B2 (en) | 2002-07-23 | 2005-01-18 | Rapiscan, Inc. | Self-contained, portable inspection system and method |
US20050157842A1 (en) | 2002-07-23 | 2005-07-21 | Neeraj Agrawal | Single boom cargo scanning system |
US20040017888A1 (en) | 2002-07-24 | 2004-01-29 | Seppi Edward J. | Radiation scanning of objects for contraband |
US20040125914A1 (en) | 2002-10-16 | 2004-07-01 | Tsinghua University & Nuctech Company Limited | Vehicle-carried mobile container inspection apparatus |
US6920197B2 (en) | 2002-10-16 | 2005-07-19 | Tsinghua University | Vehicle-carried mobile container inspection apparatus |
EP1413898A1 (en) | 2002-10-23 | 2004-04-28 | Hitachi, Ltd. | Radiological imaging apparatus |
US20040086078A1 (en) | 2002-11-06 | 2004-05-06 | William Adams | X-ray backscatter mobile inspection van |
US20070269005A1 (en) | 2002-11-06 | 2007-11-22 | Alex Chalmers | X-Ray Backscatter Detection Imaging Modules |
US20040141584A1 (en) | 2003-01-16 | 2004-07-22 | Bernardi Richard T. | High energy x-ray mobile cargo inspection system with penumbra collimator |
US6785357B2 (en) | 2003-01-16 | 2004-08-31 | Bio-Imaging Research, Inc. | High energy X-ray mobile cargo inspection system with penumbra collimator |
US20050275545A1 (en) * | 2003-01-31 | 2005-12-15 | Alioto John I | Inverse ratio of gamma-ray and neutron emissions in the detection of radiation shielding of containers |
US20080084963A1 (en) | 2003-01-31 | 2008-04-10 | Clayton James E | Rotating carriage assembly for use in scanning cargo conveyances transported by a crane |
US20050023479A1 (en) | 2003-06-05 | 2005-02-03 | Niton Llc | Neutron and gamma ray monitor |
US20040258198A1 (en) | 2003-06-20 | 2004-12-23 | James Carver | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US20050117700A1 (en) | 2003-08-08 | 2005-06-02 | Peschmann Kristian R. | Methods and systems for the rapid detection of concealed objects |
US20070110215A1 (en) | 2003-12-10 | 2007-05-17 | Nuctech Company Limited | Combined mobile container inspection system with low target |
US20050135668A1 (en) | 2003-12-23 | 2005-06-23 | Science Applications International Corporation | Measuring linear separations in digital radiographs |
US20050169421A1 (en) | 2004-01-30 | 2005-08-04 | Muenchau Ernest E. | Method and system for automatically scanning and imaging the contents of a moving target |
US7039159B2 (en) | 2004-01-30 | 2006-05-02 | Science Applications International Corporation | Method and system for automatically scanning and imaging the contents of a moving target |
US20070210255A1 (en) | 2004-03-01 | 2007-09-13 | Paul Bjorkholm | Dual energy radiation scanning of objects |
US7372040B2 (en) | 2004-04-13 | 2008-05-13 | Science Applications International Corporation | Neutron detector with layered thermal-neutron scintillator and dual function light guide and thermalizing media |
US20070228284A1 (en) | 2004-04-13 | 2007-10-04 | Science Applications International Corporation | Neutron Detector With Layered Thermal-Neutron Scintillator And Dual Function Light Guide And Thermalizing Media |
US7244947B2 (en) | 2004-04-13 | 2007-07-17 | Science Applications International Corporation | Neutron detector with layered thermal-neutron scintillator and dual function light guide and thermalizing media |
US7166844B1 (en) | 2004-06-01 | 2007-01-23 | Science Applications International Corporation | Target density imaging using discrete photon counting to produce high-resolution radiographic images |
US20060027751A1 (en) | 2004-08-05 | 2006-02-09 | Mitsubishi Heavy Industries, Ltd | Nondestructive inspection device and crane equipped with nondestructive inspection device |
US20090127459A1 (en) | 2004-08-12 | 2009-05-21 | Navotek Medical Ltd. | Localization of a Radioactive Source |
WO2006036076A1 (en) | 2004-09-30 | 2006-04-06 | S.C. Mb Telecom Ltd.-S.R.L. | Nonintrusive radiographic inspection method and system for vehicles using two autonimous but synchronously movable mobile units, one carring the source and the other the detector |
US20060284094A1 (en) | 2005-02-04 | 2006-12-21 | Dan Inbar | Detection of nuclear materials |
WO2006095188A1 (en) | 2005-03-11 | 2006-09-14 | Corus Uk Limited | Detection of radioactive matrials for example in trucks using gamma spectroscopy and neutron detection |
US20070172129A1 (en) | 2005-04-07 | 2007-07-26 | L-3 Communications Security And Detection Systems, Inc. | Method of registration in a contraband detection system |
US20070140423A1 (en) | 2005-11-11 | 2007-06-21 | Foland Andrew D | Imaging system with long-standoff capability |
US20080304622A1 (en) | 2005-12-16 | 2008-12-11 | Edward James Morton | X-Ray Tomography Inspection Systems |
US20080128624A1 (en) | 2005-12-21 | 2008-06-05 | Cooke D Wayne | Nanocomposite scintillator and detector |
US20080044801A1 (en) | 2006-01-30 | 2008-02-21 | Peter Modica | Method and System for Certifying Operators of X-ray Inspection Systems |
US20070189454A1 (en) | 2006-02-10 | 2007-08-16 | Georgeson Gary E | System and method for determining dimensions of structures/systems for designing modifications to the structures/systems |
US20070286337A1 (en) | 2006-05-19 | 2007-12-13 | Xuewu Wang | Detector array and device using the same |
US7525101B2 (en) * | 2006-05-26 | 2009-04-28 | Thermo Niton Analyzers Llc | Neutron and gamma ray monitor |
US20070280416A1 (en) | 2006-06-06 | 2007-12-06 | General Electric Company | Inspection system and method |
US20090140158A1 (en) * | 2007-12-03 | 2009-06-04 | Brent Allen Clothier | Moldable neutron sensitive compositions, articles, and methods |
US20090200480A1 (en) * | 2008-02-07 | 2009-08-13 | General Electric Company | Integrated neutron-gamma radiation detector with optical waveguide and neutron scintillating material |
Non-Patent Citations (10)
Title |
---|
"Mobile X-Ray Inspection Systems", Internet Citation, Feb. 12, 2007, pp. 1-2, URL:http://web.archive.org/web/20070212000928/http://www.bombdetection,com/cat-details.php?catid=20>. |
International Search Report PCT/GB2009/000515, Feb. 23, 2010, Rapiscan Security Products, Inc. |
International Search Report PCT/GB2009/001250, May 20, 2009, Rapiscan Security Products |
International Search Report PCT/GB2009/001275, Nov. 26, 2009, Rapiscan Security Products, Inc. |
International Search Report PCT/GB2009/001277, May 20, 2008, Rapiscan Systems, Inc. |
International Search Report PCT/GB2009/001444, Dec. 17, 2009, Rapiscan Security Products. |
Molchanov et al., "Nanosecond Gated Optical Sensors for Ocean Optic Applications," Sensors Applications Symposium, 2006, Proceedings of the 2006 IEEE, Feb. 7, 2006, 147-150. |
Search Report for WO 2011/087861, May 31, 2012, Rapiscan Systems, Inc. |
Search Report for WO2009/106847, Sep. 3, 2009, Rapiscan Security Products. |
Search Report PCT/GB2009/000497, Jan. 26, 2010, Rapiscan Security Products, Inc. |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10670769B2 (en) | 2002-07-23 | 2020-06-02 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US10007019B2 (en) | 2002-07-23 | 2018-06-26 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US9223049B2 (en) | 2002-07-23 | 2015-12-29 | Rapiscan Systems, Inc. | Cargo scanning system with boom structure |
US9052403B2 (en) | 2002-07-23 | 2015-06-09 | Rapiscan Systems, Inc. | Compact mobile cargo scanning system |
US9285498B2 (en) | 2003-06-20 | 2016-03-15 | Rapiscan Systems, Inc. | Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers |
US9223050B2 (en) | 2005-04-15 | 2015-12-29 | Rapiscan Systems, Inc. | X-ray imaging system having improved mobility |
US8837670B2 (en) | 2006-05-05 | 2014-09-16 | Rapiscan Systems, Inc. | Cargo inspection system |
US9279901B2 (en) | 2006-05-05 | 2016-03-08 | Rapiscan Systems, Inc. | Cargo inspection system |
US10098214B2 (en) | 2008-05-20 | 2018-10-09 | Rapiscan Systems, Inc. | Detector support structures for gantry scanner systems |
US9332624B2 (en) | 2008-05-20 | 2016-05-03 | Rapiscan Systems, Inc. | Gantry scanner systems |
US8993970B2 (en) | 2008-06-11 | 2015-03-31 | Rapiscan Systems, Inc. | Photomultiplier and detection systems |
US9329285B2 (en) | 2008-06-11 | 2016-05-03 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
US8963094B2 (en) | 2008-06-11 | 2015-02-24 | Rapiscan Systems, Inc. | Composite gamma-neutron detection system |
US8735833B2 (en) | 2008-06-11 | 2014-05-27 | Rapiscan Systems, Inc | Photomultiplier and detection systems |
US9625606B2 (en) | 2009-05-16 | 2017-04-18 | Rapiscan Systems, Inc. | Systems and methods for high-Z threat alarm resolution |
US20120126127A1 (en) * | 2010-11-12 | 2012-05-24 | Saint-Gobain Ceramics & Plastics, Inc. | Radiation detection system and a method of using the same |
US8866092B2 (en) * | 2010-11-12 | 2014-10-21 | Saint-Gobain Ceramics & Plastics, Inc. | Radiation detection system and a method of using the same |
US8908831B2 (en) | 2011-02-08 | 2014-12-09 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US11307325B2 (en) | 2011-02-08 | 2022-04-19 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US9562866B2 (en) | 2011-02-08 | 2017-02-07 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US11822041B2 (en) | 2011-02-08 | 2023-11-21 | Rapiscan Systems, Inc. | Systems and methods for improved atomic-number based material discrimination |
US9632205B2 (en) | 2011-02-08 | 2017-04-25 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US10942291B2 (en) | 2011-02-08 | 2021-03-09 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US10408967B2 (en) | 2011-02-08 | 2019-09-10 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US8903046B2 (en) | 2011-02-08 | 2014-12-02 | Rapiscan Systems, Inc. | Covert surveillance using multi-modality sensing |
US9218933B2 (en) | 2011-06-09 | 2015-12-22 | Rapidscan Systems, Inc. | Low-dose radiographic imaging system |
US20130105679A1 (en) * | 2011-10-28 | 2013-05-02 | Ge Energy Oilfield Technology, Inc. | Dual gamma ray and neutron detector in a multi-sensor apparatus and related methods |
US10317566B2 (en) | 2013-01-31 | 2019-06-11 | Rapiscan Systems, Inc. | Portable security inspection system |
US11550077B2 (en) | 2013-01-31 | 2023-01-10 | Rapiscan Systems, Inc. | Portable vehicle inspection portal with accompanying workstation |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
US9804290B2 (en) | 2013-04-02 | 2017-10-31 | Morpho Detection, Llc | Cross-correlated gamma ray and neutron detector |
US10066962B2 (en) | 2013-07-01 | 2018-09-04 | Battelle Energy Alliance, Llc | Apparatus, system, and method for sensor authentication |
US9557427B2 (en) | 2014-01-08 | 2017-01-31 | Rapiscan Systems, Inc. | Thin gap chamber neutron detectors |
US9910168B2 (en) | 2014-05-05 | 2018-03-06 | Raytheon Company | Combined neutron and gamma-ray detector and method |
US9835741B1 (en) * | 2014-07-09 | 2017-12-05 | National Technology & Engineering Solutions Of Sandia, Llc | Single volume fission energy neutron detector |
US10267947B2 (en) * | 2014-09-29 | 2019-04-23 | Halliburton Energy Services, Inc. | Signal stabilization and calibration for neutron detection |
US20170212270A1 (en) * | 2014-09-29 | 2017-07-27 | Halliburton Energy Services, Inc. | Signal stabilization and calibration for neutron detection |
WO2016062816A1 (en) | 2014-10-24 | 2016-04-28 | Commissariat à l'énergie atomique et aux énergies alternatives | Device for detecting thermal neutrons |
US9702988B1 (en) * | 2016-01-06 | 2017-07-11 | Raytheon Company | Combined neutron and gamma-ray detector and coincidence test method |
US10191161B1 (en) | 2017-03-30 | 2019-01-29 | Consolidated Nuclear Security, LLC | Device and method for the location and identification of a radiation source |
US11366239B2 (en) * | 2018-08-01 | 2022-06-21 | Varex Imaging Corporation | Hybrid dosimetry and imaging system |
US11796489B2 (en) | 2021-02-23 | 2023-10-24 | Rapiscan Systems, Inc. | Systems and methods for eliminating cross-talk signals in one or more scanning systems having multiple X-ray sources |
US12385854B2 (en) | 2022-07-26 | 2025-08-12 | Rapiscan Holdings, Inc. | Methods and systems for performing on-the-fly automatic calibration adjustments of X-ray inspection systems |
US20240111065A1 (en) * | 2022-09-30 | 2024-04-04 | The United States Of America, As Represented By The Secretary Of The Navy | Layered Scintillating Neutron Detector |
US12130393B2 (en) * | 2022-09-30 | 2024-10-29 | United States Of America As Represented By The Secretary Of The Navy | Layered scintillating neutron detector |
Also Published As
Publication number | Publication date |
---|---|
US8735833B2 (en) | 2014-05-27 |
US20110204243A1 (en) | 2011-08-25 |
BRPI0915030A2 (en) | 2015-10-27 |
GB0810638D0 (en) | 2008-07-16 |
WO2009150416A2 (en) | 2009-12-17 |
GB2473373A (en) | 2011-03-09 |
WO2009150416A3 (en) | 2010-05-27 |
US20130299703A1 (en) | 2013-11-14 |
GB201020691D0 (en) | 2011-01-19 |
US20140348293A1 (en) | 2014-11-27 |
US8993970B2 (en) | 2015-03-31 |
GB2473373A8 (en) | 2011-04-13 |
US8389942B2 (en) | 2013-03-05 |
US20110182407A1 (en) | 2011-07-28 |
MX2010013595A (en) | 2011-03-15 |
GB2473373B (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8389941B2 (en) | Composite gamma-neutron detection system | |
EP2517050B1 (en) | Composite gamma-neutron detection system | |
US9329285B2 (en) | Composite gamma-neutron detection system | |
US20140197321A1 (en) | Composite gamma-neutron detection system | |
CA2863633C (en) | Composite gamma-neutron detection system | |
US8325871B2 (en) | Radiation threat detection | |
US20050105665A1 (en) | Detection of neutrons and sources of radioactive material | |
US9557427B2 (en) | Thin gap chamber neutron detectors | |
US7141799B1 (en) | Fiber optic thermal/fast neutron and gamma ray scintillation detector | |
EP2539902B1 (en) | Systems and methods for detecting nuclear material | |
Slaughter et al. | Detection of special nuclear material in cargo containers using neutron interrogation | |
US8232530B2 (en) | Solid state neutron detector | |
Moss et al. | Neutron detectors for active interrogation of highly enriched uranium | |
EP1269166A2 (en) | Detection of fissile material | |
Pietropaolo et al. | Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources | |
Perot et al. | The EURITRACK project: development of a tagged neutron inspection system for cargo containers | |
WO2017156320A1 (en) | A new radiation detection material and enhanced radiation portal monitor | |
HK40028633A (en) | Composite gamma-neutron detection system | |
Proctor et al. | Detecting fissionable materials in a variety of shielding matrices via delayed gamma and neutron photofission signatures—Part 2: Experimental results | |
De Vita et al. | A large surface neutron and photon detector for civil security applications | |
Bishnoi | Fast Neutron Imaging Techniques | |
RU55139U1 (en) | CONTAINER | |
Toivonen | European Reference Network for Critical Infrastructure Protection:-Novel Detection Technologies for Nuclear Security | |
DeVolpi | Technologies for detection of nuclear materials | |
Moszyński | Nuclear techniques in homeland security |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RAPISCAN SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORTON, EDWARD JAMES;BENDAHAN, JOSEPH;REEL/FRAME:025983/0750 Effective date: 20110105 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, NORTH CAROLINA Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:RAPISCAN SYSTEMS, INC.;REEL/FRAME:071823/0748 Effective date: 20250701 |