CN101379415B - X-ray inspection based on scatter detection - Google Patents

X-ray inspection based on scatter detection Download PDF

Info

Publication number
CN101379415B
CN101379415B CN 200680039624 CN200680039624A CN101379415B CN 101379415 B CN101379415 B CN 101379415B CN 200680039624 CN200680039624 CN 200680039624 CN 200680039624 A CN200680039624 A CN 200680039624A CN 101379415 B CN101379415 B CN 101379415B
Authority
CN
China
Prior art keywords
detector
object
method according
radiation
ray
Prior art date
Application number
CN 200680039624
Other languages
Chinese (zh)
Other versions
CN101379415A (en
Inventor
彼得·罗思柴尔德
杰弗里·舒伯特
威廉·J·保库斯
威廉·韦德·小萨普
理查德·许勒尔
约瑟夫·卡勒拉穆
威廉·兰德尔·卡森
Original Assignee
美国科技工程公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US72954805P priority Critical
Priority to US72952805P priority
Priority to US60/729,528 priority
Priority to US60/729,548 priority
Priority to US74890905P priority
Priority to US60/748,909 priority
Application filed by 美国科技工程公司 filed Critical 美国科技工程公司
Priority to PCT/US2006/060158 priority patent/WO2007051092A2/en
Publication of CN101379415A publication Critical patent/CN101379415A/en
Application granted granted Critical
Publication of CN101379415B publication Critical patent/CN101379415B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/0008Detecting hidden objects, e.g. weapons, explosives
    • G01V5/0016Active interrogation, i.e. using an external radiation source, e.g. using pulsed, continuous or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/0008Detecting hidden objects, e.g. weapons, explosives
    • G01V5/0016Active interrogation, i.e. using an external radiation source, e.g. using pulsed, continuous or cosmic rays
    • G01V5/0025Measuring scattered radiation

Abstract

公开利用贯穿辐射的扫描束来检查对象的系统和方法。 Discloses a system and method for verifying an object using penetrating radiation scanning beam. 在后向或前向方向上检测来自束的散射辐射。 Detecting scattered radiation from the beam in the backward direction or forward. 将反向散射辐射的特性值与预期基准值进行比较来示出对象的特性。 The backscattered radiation characteristic values ​​are compared to target characteristics shown with the expected reference value. 此外,可以将透射通过受检对象的贯穿辐射与散射信息组合。 Further, the transmission information may be a combination of penetrating radiation scattered by the object under inspection. 在某些实施例中,检查的视野小于0.1立体弧度,以及检测器与贯穿辐射源分开且相对于对象布置检测器,以便在对象的视野中对向大于0.5立体弧度。 In certain embodiments, the visual field is less than 0.1 steradian, and through the radiation source and a detector separated from the object with respect to the detector arrangement, in order to more than 0.5 steradians in the object field of view.

Description

基于散射检测的X射线检查 X-ray inspection based on scattering detector

技术领域 FIELD

[0001] 本发明总的来说涉及检查系统,该检查系统基于由受检对象散射的贯穿辐射的远程检测。 [0001] The present invention generally relates to inspection systems, based on penetrating radiation scattered by the subject remote detection of the object inspection system.

背景技术 Background technique

[0002] 可以应用X射线散射来检查人员、车辆、货物或其他感兴趣的对象。 [0002] X-ray scattering may be applied to the inspection object persons, vehicles, cargo or other interested parties. 这里综合性地使用术语“对象”以包含以上的任何物体。 Comprehensive used herein the term "subject" to include any of the above objects. 在采用X射线散射的系统中,X射线形成为导向朝着感兴趣对象的束。 In the system using the X-ray scattering, X-ray beam is directed towards the object of interest is formed. 当该束碰撞对象时,利用X射线检测器来捕捉散射的X射线,并且全局地或相对于对象的像素图像地确定散射对象的多种特性。 When the collision object beam, X-ray detector to capture the scattered X-rays, or globally, and with respect to the object pixel image determining various characteristics of the scattering objects.

[0003] 关于询问的对象或人员获得的信息的分辨率取决于多个因素,包括在检查系统与对象之间的距离以及X射线通量的幅度和能量谱。 [0003] resolution information about an object or person inquiry obtained depends on several factors, including the distance and the magnitude and the X-ray flux between the inspection system and the energy spectrum of the object. 在当前系统中,随着X射线系统与对象之间的距离增加或随着通量的减小,图像分辨率和质量(例如体现在信噪比)降低。 In current systems, or with increasing distance between the object and the X-ray system with decreasing flux, image resolution and quality (e.g., signal to noise ratio reflected in) decreases. 质量的降低基本上由检测器捕捉的反向散射通量的减少所导致。 Reduced mass substantially reduce backscattered flux captured by the detector caused. 当前反向散射X射线成像系统将检测器定位在X射线源邻近,允许源和检测器的组合系统尽可能地接近正被检查的对象。 Current X-ray backscatter imaging system of the detector is positioned adjacent the X-ray source, allowing the source and detector combination system as close as possible to the object being examined. 系统到对象的接近无需高X射线通量就能够创建高质量图像。 The system is close to an object without having high X-ray flux will be able to create high-quality images.

[0004] 然而,具有很多应用,尤其是安全和监视应用,其中将需要在成像系统与受检对象之间的较大距离。 [0004] However, with many applications, especially in security and surveillance applications, where the need for a greater distance between the imaging system and the subject object. 一个这样的应用是,受检人员可能在衣物下携载或在背包或包里隐藏爆炸装置,存在自杀引爆的风险。 One such application is examined person may carry under clothing or in a backpack or bag hidden explosive device detonated suicide risk. 自杀爆炸经常在炸药周围装有大量的金属性弹片,通常如螺母、钉或滚珠,来使得爆炸装置的破坏性最大化。 Suicide blast often with large metallic dome around the explosives, typically such as a nut, pin or ball, to maximize such destructive explosive devices.

[0005] 当前X射线检查系统通常不适于这样的应用,以及很少用于需要大于5英尺的距离的应用中。 [0005] The current X-ray inspection systems are generally unsuitable for such applications, and an application seldom requires more than a distance of 5 feet. 当前系统可以通过增加检测器的尺寸或使用更高通量的X射线源来抵消图像质量的降低。 The current system can counteract the reduction in image quality by increasing the size of the detector or higher flux X-ray source. 然而,如果距离太大,所需检测器太大而不实用。 However, if the distance is too large, too large to be practical desired detector. 另外,随着通量的增加,对象辐射量也增加,这在对象包括或可能包括人员时会引起问题。 In addition, with throughput increases, the amount of radiation an object increases, which include an object or may cause problems including personnel.

[0006] 来自移动检查车辆的反向散射的一个场景在于2006年8月29日发布、授予Adams等的美国专利N0.7,099,434中进行了描述,该专利通过参考包括于此。 [0006] a scene from the mobile backscatter inspection vehicle is characterized in issued August 29, 2006, granted U.S. Patent No. N0.7,099,434 Adams or the like is described, which is incorporated by reference herein comprises. 该发明的实施例在检测车辆或其他容器内的大量爆炸物或其他有机材料时高度有效。 Embodiments of the invention are highly effective in the detection of explosives in a large number of vehicles or other containers, or other organic materials. 然而,一个考虑是在金属性容器(诸如车辆)内的金属性对象(诸如炮弹)可能不能被很好地检测到,除非相对于有机材料的明亮散射背景被有利地勾画轮廓。 However, a consideration is a metallic container (such as a vehicle) within the metallic objects (such as shells) may well not be detected unless the scattering with respect to the bright background of the organic material is advantageously outlining.

[0007] 反向散射技术的另一问题是,当有机材料被布置在大量的诸如钢铁的高Z材料中或之后时,反向散射技术有时候难以对该有机材料成像。 [0007] Another problem is that backscatter technology, when a high-Z material in a large amount of organic material is disposed of, such as steel or after the backscatter technique is sometimes difficult for the organic material forming. 这个问题的实例可以是,隐藏在车辆的车厢中的小量爆炸物。 Examples of this problem can be hidden compartment of a vehicle in a small amount of explosives. 因为通常在反向方向上检测反向散射X射线(散射角通常在140° < Θ < 180°的范围内),散射X射线的平均能量相当低(对于来自225kV X射线源的初级X射线束来说是68keV)。 Because backscatter X-ray detector is generally in the reverse direction (a scattering angle of generally 140 ° <Θ <180 ° in the range), the mean energy of the scattered X-rays is quite low (for the primary X-ray beam from the X-ray source 225kV it is 68keV). 然后,这些低能量的X射线被车辆的钢铁主体大大衰减,导致在反向散射检测器中检测到的散射X射线的数量大大减少。 Then, the low-energy X-rays are greatly attenuated steel body of the vehicle, resulting in the number of scattered X-rays detected in backscatter detectors greatly reduced. 这个问题经常加剧,因为到达反向散射检测器的散射X射线已经以斜角通过居间钢铁表面,从而导致钢铁的有效厚度大于钢铁的实际规格。 This problem is often exacerbated because the arrival of backscatter detectors have been scattered X-ray at an oblique angle through intervening steel surface, resulting in an effective thickness greater than the actual size of steel steel. 发明内容 SUMMARY

[0008] 本发明的例示实施例包括用于检查对象的系统和方法。 Example [0008] The illustrative embodiment of the present invention include systems and methods for inspecting objects. 利用贯穿辐射的准直束来辐射该对象。 This object is irradiated using a collimated beam of penetrating radiation. 检测来自该束的反向散射辐射。 Of the backscattered radiation from the detection beam. 将反向散射辐射的特性值与预期基准值进行比较。 The backscattered radiation characteristic value is compared with the expected reference value. 基于该比较,确定示出对象特征的描述性类别。 Based on the comparison, determining the class of the object shown descriptive features.

[0009] 在另一实施例中,贯穿辐射可以是X射线辐射。 [0009] In another embodiment, the penetrating radiation may be X-ray radiation. 描述性类别可以例如:当特性值小于预期基准值时,指示异常高的金属性内容;或当特性值大于预期基准值时,指示异常高的有机内容。 Descriptive categories may, for example: when the reference characteristic value is smaller than the expected value, indicating abnormally high metal content; or when the reference characteristic value is greater than the expected value, indicating abnormally high organic content. 描述性类别可以根据预设的安全威胁标准来指示潜在或确认的安全威胁。 Descriptive category may be indicated to confirm or potential security threats according to preset standards of security threats.

[0010] 在一些实施例中,该方法还可以包括选择用来照射的对象。 [0010] In some embodiments, the method may further comprise selecting the object for irradiation. 这可以基于,例如,感兴趣区域的光学或非光学监视。 This may be based, for example, an optical or non-optical interested in the monitoring area. 该方法还可以包括基于利用贯穿辐射照射基准对象来确定预期基准值。 The method may further comprise determining a reference value based on the expected use of the reference radiation penetrating the object.

[0011] 本发明的实施例还包括适于采用任何以下方法的系统和装置。 Example [0011] The present invention further comprises a system adapted to use any of the following methods and apparatus.

[0012] 根据本发明的另一方面,提供系统和方法以利用贯穿辐射检查受检对象。 [0012] According to another aspect of the present invention, there is provided a system and method for utilizing penetrating radiation inspection target subject. 贯穿辐射束利用隐藏源生成,并以时变束方向来横过对象扫描。 Using a beam of penetrating radiation source generating hidden, and time-varying direction across the beam scan the object. 检测由对象散射到隐藏透射检测器中的贯穿辐射,以及生成直接透射信号。 Detecting penetrating radiation scattered by the object to the hidden transmission detector, and generating a direct transmission signal. 部分地基于该直接透射信号,确定对象的内容的详细特性。 Part on the direct transmission signal, to determine the detailed characteristics of the content object.

[0013] 在另一实施例中,透射检测器包括一个或多个线性部,例如,L形检测器具有垂直部和水平部。 [0013] In another embodiment, the transmission detector comprises one or more linear portions, e.g., L-shaped detector having a vertical portion and a horizontal portion. 以及透射检测器可以被包括在减速带结构中。 And a transmission detector may be included in the deceleration of the belt structure.

[0014] 本发明的另一例示实施例包括用于利用贯穿辐射来检查受检对象的系统和方法,该贯穿辐射再次形成为束并以时变束方向横过对象扫描。 [0014] Another embodiment of the present invention is shown embodiments include a system and method for utilizing penetrating radiation to check the subject to be examined, the beam of penetrating radiation and is again formed as a time-varying beam across the target scanning direction. 检测由对象散射到前向散射检测器中的贯穿辐射,并生成前向散射信号。 Scattered by the object is detected before the backscatter detector penetrating radiation, and generates a backscatter signal former. 部分地基于该前向散射信号,确定对象的内容的详细特性。 In part based on the content of the detailed characteristics of the forward scatter signal to determine the object.

[0015]另外的实施例包括在单个系统中组合直接透射检测器和前向散射检测器。 [0015] Further embodiments include a combination of direct transmission and forward scatter detector in a single detector system. 在该布置中,组合直接透射信号和前向散射信号来创建增强的散射图像和/或增强的透射图像。 In this arrangement, a combination of direct transmission signals and forward scatter signal to create an enhanced image and the scattering image or an enhanced transmission /. 生成的任何图像可以被显示给操作员。 Any image generated may be displayed to the operator. 任何或全部检测器可以被包括在减速带结构中。 Any or all of the detectors may be included in the deceleration of the belt structure.

[0016] 实施例还包括一种改进类型的检查系统,该检查系统使用外壳,其中隐藏有:贯穿辐射源,具有可以沿着至少第一平面扫描的束;以及检测器,响应于来自受检对象的束的反向散射能量。 [0016] Example embodiments further include one type of inspection system improvement using the inspection system shell, which is hidden: penetrating radiation having a first beam may extend along at least a scanning plane; and a detector, in response to a subject the object beam backscattered energy. 该改进包括透射检测器模块,其用于检测透射通过受检对象的辐射能量,该模块与外壳物理地分离并且可在道路上部署该模块。 The improvement comprises transmission detector module for detecting radiation energy transmitted through the subject to be examined, this module is physically separated from the housing and the module can be deployed on the road.

[0017] 另外的实施例包括一种改进类型的检查系统,该检查系统使用外壳,其中隐藏有:贯穿辐射源,其具有可以沿着至少第一平面扫描的束;以及检测器,响应于来自受检对象的束的反向散射能量。 [0017] Further embodiments include an improved type of inspection system, the inspection system is the use of a housing which is hidden: penetrating radiation having a first beam may extend along at least a scanning plane; and a detector, in response to a subject object beam backscattered energy. 该改进包括前向散射检测器模块,用于检测已经由受检对象在前向方向上散射的辐射能量,该模块与外壳物理地分离并且可在道路上部署该模块。 The improvement includes a forward scatter detector module, it has previously been used to detect, and the module housing physically separated from the target subject to the direction of scattered radiant energy and the module can be deployed on the road.

[0018] 实施例还包括一种改进类型的检查系统,该检查系统使用外壳,其中隐藏有:贯穿辐射源,具有可以沿着至少第一平面扫描的束;以及检测器,响应于来自受检对象的束的反向散射能量。 [0018] Example embodiments further include one type of inspection system improvement using the inspection system shell, which is hidden: penetrating radiation having a first beam may extend along at least a scanning plane; and a detector, in response to a subject the object beam backscattered energy. 该改进包括斜坡模块,其容纳有(i)用于检测已经透射通过受检对象的辐射能量的透射检测器模块的水平部分;以及(ii)至少一个前向散射检测器,用于检测已经由受检对象在前向方向上散射的辐射能量,该模块与外壳物理地分离并且可在道路上部署该模块。 The improvement comprises a ramp module containing (i) for detecting the level of transmission has been partially transmissive radiant energy detector module object by a subject; and (ii) at least one forward scatter detector for detecting the already subject to be examined first, the module is physically separated from the housing to the energy of the scattered radiation and the direction of the module can be deployed on the road. [0019] 在上述实施例中,外壳可以形成能够在公路上行驶的车辆的外部。 [0019] In the above embodiment, the external housing may be formed capable of traveling on a road vehicle. 或者该外壳可以是加固的运载容器。 Alternatively the housing may be reinforced to carry the container.

[0020] 根据本发明的其他优选实施例,提供用于检查对象的检查系统,该检查系统具有贯穿辐射源,该贯穿辐射源被设置和配置为使得观察视野小于0.1球面度(Sr)。 [0020] According to another preferred embodiment of the present invention, there is provided inspection system for inspecting an object, the inspection system having a penetrating radiation source, the radiation source is disposed through and configured such that the field of observation of less than 0.1 steradian (Sr). 空间调制器将贯穿辐射形成为束,以照射受检的对象。 The spatial light modulator is formed as a beam of penetrating radiation to irradiate the object under examination. 设置检测器以与贯穿辐射源分开,并且检测器被布置为相对于对象在对象的视野中对向大于0.5sr。 Set the detector to separate the penetrating radiation source and the detector are arranged relative to the object in the visual field of the object is greater than 0.5sr.

[0021] 在多个实施例中,贯穿辐射源可以是X射线管。 [0021] In various embodiments, penetrating radiation may be an X-ray tube. 作为选择地,辐射源可以是伽马射线束。 Alternatively, the radiation source may be a gamma ray beam. 空间调制器可以包括一个或多个旋转断路器圈(chopper wheel)。 Spatial modulator may comprise one or more rotating rings breakers (chopper wheel).

[0022] 根据本发明的一个实施例,贯穿辐射源可以被放置在房间中央,并且一些便携式检测器被布置在房间的壁附近。 [0022] According to an embodiment of the present invention, the radiation source may be placed through the center of the room, and some of the portable detector is arranged in the vicinity of the wall of the room. 或者,贯穿辐射源可以被布置在相邻房间内,以及检测器置入在房间的壁内或位于相邻房间内。 Alternatively, the radiation source may be arranged through in the adjacent room, and a detector placed in the wall of the room or adjacent room.

[0023] 根据本发明的另外实施例,贯穿辐射源、检测器或两者可以位于一个或多个车辆中,包括能够在公路上行驶的无人驾驶车辆。 [0023] According to a further embodiment of the present invention, through the radiation source, the detector, or both may be located in one or more vehicles, including unmanned vehicle can travel on the road. 贯穿辐射源可以安装在转座(swivel mount)上,安装该转座以允许将束引导到不同位置的对象。 The radiation source may be mounted on the through transposition (swivel mount), which is mounted to allow transposition beam to different positions of the object. 检查系统还可以包括稳定系统,以最小化当车辆经过不平地形时的碰撞振动。 The inspection system may further include a stabilization system to minimize vibration when the vehicle passes a collision uneven terrain.

[0024] 在本发明的又一实施例中,检测器可以位于通道的地面中或天花板中,或可以被伪装。 [0024] In a further embodiment of the present invention, the detector may be located in the channel floor or ceiling, or may be camouflaged. 位于地面中的检测器还可以包括结构支持件来防止对象在上方通过时对检测器的损害,以及包括压力传感器来检测对象的存在。 The detector on the ground may further include a structural support member to prevent damage to the detector when the object above by, and comprising a pressure sensor to detect the presence of an object.

附图说明 BRIEF DESCRIPTION

[0025] 本发明的上述特征通过参考在下面列举的附图结合以下详细描述将更容易理解。 The above features [0025] the present invention with reference to the accompanying drawings listed below the following detailed description will be more readily understood by.

[0026] 图1示出根据本发明特定实施例的多个功能构件; [0026] FIG 1 illustrates a plurality of functional components according to a particular embodiment of the present invention;

[0027] 图2A和2B示出如特定实施例中使用的多个信号校准方案的方面; [0027] Figures 2A and 2B show a plurality of aspects of the signal calibration scheme used in a particular embodiment;

[0028] 图3示出其中快速建立多个询问点的实施例的细节; [0028] FIG. 3 shows details of an embodiment in which the rapid establishment of a plurality of interrogation points;

[0029] 图4示出根据本发明一个实施例放置在成像车辆的远侧的透射检测器; [0029] Figure 4 shows a transmission detectors disposed distally embodiment the imaging of the vehicle according to an embodiment of the present invention;

[0030] 图5示出根据本发明一个实施例放置在成像车辆下面的前向散射检测器; [0030] FIG. 5 shows the embodiment is placed in an imaging vehicle following a forward scatter detector in accordance with one embodiment of the present invention;

[0031] 图6示出根据本发明一个实施例将透射检测器的水平部和前向散射检测器完全包括到可快速部署的“减速带”中; [0031] FIG. 6 shows one embodiment of the present invention the transmission detector of the horizontal portion and forward scatter detector comprises a fully deployed quickly to a "speed bump";

[0032] 图7示出设计用来检查人员的检查系统; [0032] FIG. 7 shows a design inspection system for inspection personnel;

[0033] 图8示出设计用来检查建筑物壁的外来对象的检查系统; [0033] FIG. 8 shows a design for a foreign object inspection system inspection building wall;

[0034] 图9示出设计用来利用置入房间壁内的检测器来定位在相邻房间内的人员的检查系统; [0034] FIG. 9 shows a design for use in the detector into a room wall inspection system to locate a person in the adjacent rooms;

[0035] 图10示出设计用来利用位于与感兴趣房间相邻的房间内的检测器来定位在相邻房间内的人员的检查系统; [0035] FIG. 10 shows a design of a detector for use in a room adjacent to the room of interest to locate personnel inspection system in adjacent rooms;

[0036] 图11示出设计用来通过将检测器再定位为更接近受检对象来扩展现有检查系统的范围的检查系统; [0036] FIG. 11 shows a design for the detector by repositioning the subject closer to the object to extend the range of existing inspection system inspection system;

[0037] 图12示出贯穿辐射源和检测器位于能够在公路上行驶的车辆上的检查系统; [0037] FIG. 12 illustrates a penetrating radiation source and the detector are located on the inspection system capable of traveling on a road vehicle;

[0038] 图13示出设计以利用位于前向部署的机器人上的检测器来检查可能的IED的检查系统;[0039] 图14示出检查系统的俯视图,其中,贯穿辐射源被安装在能够行驶在公路上的车辆上的底座上,并且检测器被安装在无人驾驶车辆上; [0038] FIG. 13 shows a design to take advantage of the detector on the robot deployed to check for possible IED of the inspection system located in front; [0039] FIG 14 shows a top view of an inspection system in which, through the radiation source is mounted can be the base on a vehicle traveling on the road, and the detector is mounted on an unmanned vehicle;

[0040] 图15示出检查系统的侧视图,其中,贯穿辐射源被安装在能够行驶在公路上的车辆上的底座上,而检测器被安装在无人驾驶车辆上; [0040] FIG. 15 shows a side view of the inspection system, wherein the penetrating radiation source is mounted on the base can be on the vehicle traveling on the road, while the detectors are mounted on an unmanned vehicle;

[0041] 图16示出用于利用安装在天花板中的X射线源来检查可疑驾驶员的检查系统; [0041] FIG. 16 shows an inspection system to check the suspicious driver using X-ray source is mounted in the ceiling;

[0042] 图17示出用于检查通过车辆的检查系统,其中,检测器沿着车道布置,而X射线源被安装在车道上方; [0042] FIG. 17 illustrates a vehicle checked by the inspection system, wherein the detector is disposed along the lane, while the X-ray source is mounted above the lane;

[0043] 图18示出位于地面中的具有结构支持件的检测器的俯视图; [0043] FIG. 18 shows a plan view of the detector's structural support member having a ground;

[0044] 图19示出位于地面内的具有结构支持件和伪装层的检测器的侧视图; [0044] Figure 19 shows a side view of a structural support member and the detector is located within the camouflage layer ground;

[0045] 图20示出具有位于地面中且围绕X射线源的检测器阵列的检查系统的侧视图; [0045] FIG. 20 shows a side view of an inspection system located in the ground and around the detector array of the X-ray source;

[0046] 图21示出具有位于地面中且围绕X射线源的检测器阵列的检查系统的俯视图; [0046] FIG. 21 shows a top view of the inspection system located in the ground and around the detector array of the X-ray source;

[0047] 图22示出其中检测器是独立单体件的检查系统的俯视图; [0047] FIG. 22 illustrates an example in which the detector is a plan view of the inspection system independent single piece;

[0048]图23示出其中分离来自不同距离的检测器的信号的检查系统。 [0048] FIG. 23 shows a separator in which the detector at different distances from the inspection system signals.

具体实施方式 Detailed ways

[0049] 反向散射的远距离检测 [0049] The distance detecting backscattered

[0050] 本发明的实施例(可以称为“Z-雷达” ™)现在参考图1进行描述。 [0050] Example embodiments of the present invention (may be referred to as "Z- radar" ™) Referring now to FIG. 1 will be described. 通常用数字100表示的反向散射检查系统,使用诸如X射线的贯穿辐射的准直束102来照射在相对较大距离的对象104(如上所述可以包括人员),来确定例如对象上或对象内的金属性内容。 Typically backscatter inspection system by numeral 100, using penetrating radiation such as X-rays of the collimated beam 102 is irradiated to an object in a relatively large distance 104 (as described above may include a human), for example, be determined on the object or objects metallic content therein. 如果受检对象或其相关部分如从照射源看来在任何方向上对向小于5°的角度,则认为对象被布置在“较大距离”处。 If the object or subject from the illumination source as relevant part appears in any direction to an angle less than 5 °, the object is considered to be disposed in the "large distance" place. 贯穿辐射也可以包括例如在电磁谱的其他部分中的波,诸如伽马射线,但是在这里将贯穿辐射表示为X射线而不意图损失一般性。 Penetrating radiation may also comprise, for example, waves in other parts of the electromagnetic spectrum, such as gamma rays, but in this case represented by the penetrating X-ray radiation without loss of generality intended. 当贯穿辐射由X射线构成时,可以利用诸如X射线管110的X射线源来生成X射线。 When formed of an X-ray penetrating radiation may be an X-ray source such as an X-ray tube 110 generates X-rays.

[0051] 在大区域X射线检测器108中检测由受检对象散射的贯穿辐射106,以及利用控制器112将由检测器108生成的信号与来自在该距离以X射线照射的有机对象的预期信号进行比较。 [0051] In the detection of a large area X-ray detector 108 by the scattered radiation through an object subject 106 by the controller 112 and a signal 108 generated by the detector and the distance to the object an organic X-ray irradiation from the expected signal Compare. 包含金属的对象吸收X射线,导致反向散射信号弱于预期来自纯有机对象的信号。 Object contains an X-ray absorbing metal, resulting in backscatter signal is weaker than the signal expected from a purely organic objects.

[0052] 受检对象可以非限制性地包括人员或大部分由有机材料构成的任何对象,需要确定在该对象上或内的金属性内容。 [0052] The subject object may include, without limitation most any person or object is composed of an organic material, the metal content is determined on the object or within. 例如,可以检测由自杀引爆员使用以使得携载炸药破坏力最大的金属性弹片,或者可以检测金属性武器的存在,诸如枪和刀。 For example, it is possible to detect detonated by a suicide staff carrying explosives used in making the most destructive metallic shrapnel, or can detect the presence of metallic weapons such as guns and knives.

[0053] 在一些实施例中,受检对象最初利用使用一个或多个视频照相机114的系统来定位和跟踪,虽然在本发明的范围内也可以采用任何其他的光学或非光学器件。 [0053] In some embodiments, the subject to be examined by using one or more initial video camera system 114 to locate and track, any other optical or non-optical devices may be employed, although within the scope of the present invention. 图1示出根据本发明一个特定实施例的多个功能构件。 Figure 1 shows a plurality of functional members of the specific embodiments of the present invention. 光学监视系统的视频照相机114监视感兴趣的区域。 Monitoring the region of interest 114 of the optical monitoring system of a video camera. 可操纵X射线源110被安装在基座116上,该基座116可以旋转以及平移由X射线管110生成的贯穿X射线束的位置。 Steerable X-ray source 110 is mounted on the base 116, the base 116 may rotate and translate the position through X-ray beam generated by the X-ray tube 110. 反向散射检测器108检测来自被照射的目标对象104的反向散射X射线106。 106 target backscatter X-ray detector 108 detects backscattered from the illuminated object 104. 可以使用视频跟踪系统来将X射线束瞄准到感兴趣对象上。 Video tracking system may be used to aim at the X-ray beam to the object of interest. 然后,可以打开快门(未示出)以允许X射线在预定时期(已知为询问时间)内暂时照射目标对象。 You can then open a shutter (not shown) to allow X-rays in a predetermined period of time (known as the interrogation time) temporarily within the irradiation target object. 数据采集系统记录从反向散射检测器接收的信号的强度。 Data acquisition system records the intensity of the received backscattered from the detector signals.

[0054] 现在参考图2,为了准确地校准反向散射信号强度,可以在目标200上或在相同距离的相似目标上选择多个照射点(或“询问”点)202、204。 [0054] Referring now to Figure 2, in order to accurately calibrate backscatter signal strength, or may select a plurality of irradiation points (or "interrogation" points) 202, 204 similar to the target in the same distance on the target 200. 如果来自一个或多个询问点的信号呈现为显著弱于来自其他询问点的信号,则可以使用该信号来指示金属性材料的存在。 If the signal from one or more interrogation points is rendered much weaker than the signal from other interrogation point, the signal can be used to indicate the presence of metallic material. 在这样的基础上,根据本发明的实施例,确定描述性类别,诸如根据预设安全威胁标准来确定为高级安全威胁,然后可以采用适当的行动。 On this basis, according to an embodiment of the present invention, determining the descriptive categories, such as a security threat is determined according to a preset standard for advanced security threat, then appropriate action may be employed.

[0055] 实施例还可能适于确定在大部分由金属性材料构成的对象上或对象内的有机材料的存在。 [0055] Example embodiments may also be adapted to determine the presence of organic material on most objects made of metallic material or objects within. 这种情况的实例是,查找在车辆门中隐藏的炸药。 Examples of this situation is to find hidden explosives in the vehicle door. 针对该应用,信号高于预期信号的询问点指示隐藏有机材料的存在。 Ask for the application, higher than the expected signal point signal indicative of the presence of organic material hidden.

[0056] 对于相对接近X射线源的对象来说,也可以使用反向散射信号来检测在具有较低密度的有机目标对象上隐藏的致密有机材料(诸如炸药)的存在。 [0056] X-ray source is relatively close to the object, the backscattered signals may be used to detect the presence of hidden on having a relatively low density dense organic audiences organic materials (such as explosives) of. 这些材料会比诸如人体的较不致密有机材料显著强烈地反向散射X射线。 These materials can significantly strongly than backscattered X-rays, such as less dense body of an organic material.

[0057] 在表I中,示出对于在160kV、450kV以及1.2MeV的三个源电压下工作的X射线反向散射询问系统的计算机仿真的结果。 [0057] In Table I shows the X-ray working at 160kV, 450kV and three source voltage 1.2MeV backscatter interrogation system of the computer simulation results. 该仿真包括:查看来自不同距离的人员的反向散射信号;以及将该信号与来自携载钢片的人员或携载包含诸如弹片的滚珠的PETN炸药的人员的信号进行比较。 The simulation comprising: View art backscattered signals from different distances; and a signal with the signal from the person or persons carrying steel ball of PETN explosives such as shrapnel comprising carrying compared. 信噪比(SNR)定义为: Ratio (SNR) is defined as:

[0058] [0058]

Figure CN101379415BD00081

[0059] 其中,1_是来自未携载钢片的人员的检测的反向散射X射线的数量,以及NPerson+steel是来自携载钢片的人员的检测的反向散射X射线的数量。 Number of backscattered X-rays [0059] where 1_ art from the steel sheet not carrying detected, and the number NPerson + steel detected backscattered X-rays carry personnel from the steel carrier. 可以看到,225kV和450kV系统的性能基本上相同,但是比1.2MV系统的性能好很多。 You can see, the performance of 225kV and 450kV system is basically the same, but much better than the performance 1.2MV system. 因为160kV系统比450kV系统便宜得多并且更紧凑,所以优选的源电压是大约160kV。 Because the system is much cheaper than 160kV and 450kV system more compact, it is preferable that the source voltage is about 160kV. 以下表示出了计算机仿真的结果,该结果示出利用在三个不同的源电压和多个分开的距离下工作的X射线反向散射询问系统来检测人员上的金属(以钢片的形式或0.25”滚珠矩阵的形式)的信噪比。 The following table shows the results of computer simulation, the X-ray results are shown at three different operating voltages and a plurality of sources separated by a distance backscatter interrogation system to detect personnel on the metal (in the form of steel or 0.25 "form of ball matrix) signal to noise ratio.

[0060] [0060]

Figure CN101379415BD00082

[0061] 反向散射信号的校准 Calibration [0061] backscattered signal

[0062] 如前所述,一些实施例采用用于利用基准信号校准检测的反向散射信号的强度的技术,以确定来自询问点的信号是否低到足以表示金属的存在。 [0062] As described above, some embodiments employing techniques backscattered signal intensity for calibration using the reference signal detected from the interrogation signal to determine whether the point is low enough to indicate the presence of a metal. 这可以以多种方式实现: This can be achieved in various ways:

[0063] 1.(例如通过使用来自视频系统的信息或使用激光测距器)来确定到正被询问的目标对象的距离,以及使用查找表来确定对于金属性材料的最大反向散射信号。 [0063] 1 (e.g., by using information from the video system or using a laser range finder) to determine the distance to the target object being interrogated, and using a lookup table to determine the maximum backscatter signal to the metallic material. 该方法的一个缺点是系统硬件需要相对稳定。 One disadvantage of this method is that the system requires a relatively stable hardware.

[0064] 2.将来自全部大约相同距离处的对象的多个询问点的信号强度进行比较。 [0064] 2. from the interrogation signal strengths of all the plurality of points about the object at the same distance compared. [0065] 3.将来自相同对象上的不同位置的多个询问点202、204的信号强度进行比较。 [0065] 3. from multiple interrogation points at different positions on the same target 202, the signal strength is compared. 该方法示意性地在图2A中示出。 This method is schematically illustrated in FIG. 2A.

[0066] 4.获得由跨对象的很多询问点构成的线扫描210 (在图2B中示出),以及在对象上查找其中反向散射亮度显著低于对象206的剩余部分的区域208。 [0066] 4. obtained interrogation line composed of many points across the scan object 210 (shown in FIG. 2B), and to find the objects in the backscattered luminance region is significantly lower than the remaining portion 208 of the object 206. 该方法示意性地在图2B中示出。 This method is schematically illustrated in FIG. 2B.

[0067] 在图3中示出用于同时获得询问数据并获得基准信号的一种方法。 [0067] FIG. 3 shows a data interrogation and while achieving a method for obtaining a reference signal. 在该实施例中,校准方案,诸如多个准直器302允许同时地生成多个高度准直的X射线束304。 In this embodiment, the calibration program, such as a plurality of collimators 302 allows simultaneously generating a plurality of highly collimated X-ray beam 304. 然后,使用布置在由X射线束300生成的X射线锥形束308中的旋转快门306,来确保在任何时刻仅仅只有一束射线在照射目标对象104。 Then, using a rotary shutter arranged in the X-ray cone beam 308 generated by the X-ray beam 300, 306, to ensure that at any moment with only a bundle of rays irradiation target object 104. 对于图3所示的实例,这意味着,在使得快门旋转通过一周的时间内获得四个询问点。 For the example shown in FIG 3, this means that, in the shutter such that the rotation is obtained by the interrogation points within a four week period. 该实施例的一个优点是,因为束准直器物理上不需要在询问点之间重新导向,所以提高了系统的工作速度。 An advantage of this embodiment is that, because the beam collimator need not be physically redirects between interrogation points, thus improving the operating speed of the system. 该系统可能仅仅需要一次性瞄准到可疑对象的中央区域上。 The system may only need a one-time aiming to the central region of the suspicious object. 对于受检的特定目标对象,可以对束的数量以及它们相对于彼此的定向进行优化。 For specific audiences subject to be the number of beams and their relative orientation to one another are optimized.

[0068] 本发明的一个特定实施例如下操作: [0068] A particular embodiment of the present invention operates as follows:

[0069] 1.操作者识别他希望利用系统询问的可疑对象。 [0069] 1. operator to identify suspicious objects he hopes to use the system query. 这可以例如通过点击鼠标在视频图像中的可疑对象来执行。 This may for example be performed by clicking the mouse suspicious objects in the video image. 操作者可能希望识别例如穿着笨重衣服或携带背包的人员。 The operator may wish to identify, for example wearing bulky clothing or carry a backpack of staff.

[0070] 2.然后,询问系统以朝向目标对象的高度准直束发出X射线的脉冲。 [0070] 2. Then, the system asks a highly collimated beam emitted toward the target object of the X-ray pulses. 通过将返回反向散射信号与基准信号进行比较(使用之前所述的一种校准方法),系统自动地确定对象的威胁水平。 By returning the backscatter signal is compared with a reference signal (according to a calibration method previously used), the system automatically determines the threat level of an object.

[0071] 3.系统然后警告操作者,该操作者然后确定需要执行什么进一步的行为。 [0071] 3. The system may then alert the operator, the operator then determine what further acts need to be performed. 如果认为威胁确定不确定,则系统可以继续使用视频跟踪系统跟踪可疑对象,以及可以执行在更近距离处的进一步的确认询问(如果需要)。 If you think the threat is determined uncertain, the system can continue to use video tracking system to track suspicious objects, and can perform further confirmation inquiry in at closer (if needed).

[0072] 4.对于确认的威胁(具有充分金属性内容的目标),则系统可以使用附加系统起动进一步的检查,该附加系统采用其他检查或检测器械,诸如X射线反向散射成像、mm波成像或太赫兹(terra-Hertz)谱。 [0072] 4. For the identified threat (the target has a sufficient content of a metal), the system may start using additional system further inspection, the system uses the additional check or other detection devices, such as an X-ray backscatter imaging, mm-wave imaging or terahertz (terra-Hertz) spectrum. 这些可以用于确认在目标对象上或对象内的武器或炸药的存在。 These can be used to confirm the presence of the target object or weapon or explosives within the object. 在反向散射检查场景中的前向散射检测 A forward scattering detection backscatter inspection scene

[0073] 使用通过贯穿辐射的照射的检测可以相对于诸如可能隐藏在例如金属容器内的金属对象的检测进行增强,贯穿辐射来自诸如在美国专利N0.7,099,434中描述的移动检查车的移动平台,或者来自诸如加固检测成像模块™(RDIM)的固定平台。 [0073] with respect to such use may be hidden by detecting the penetrating radiation irradiated radiation inspection vehicle movement such as described in U.S. Patent No. N0.7,099,434 example, the detection of metal objects within the metal container enhanced throughout from mobile platform, such as a reinforcement or a fixed platform from an imaging detector module ™ (RDIM) a. 本发明的实施例通过在利用笔形束扫描的对象的另一侧上添加固定的透射检测器,来提供对于金属容器内的金属对象的改进的检测,其中从利于受检对象的观点来说隐藏了笔形束的源,和反向散射、前向散射或透射检测器。 Embodiments of the present invention, on the other side by using the object scanned pencil beam transmission detector fixed added to provide for an improved detection of metal objects within the metal container, wherein the hidden object from the viewpoint of a subject facilitates a source of a pencil beam, the backscatter and forward scatter or transmission detector.

[0074] 布置的厚金属材料可以在图4得到的透射图像中清楚看到,其中,由于在这些材料中的X射线的高度衰减而导致衰减或受屏蔽的透射。 [0074] The arrangement of a thick metal material can be clearly seen in the transmission image obtained in Fig. 4, wherein, in these materials due to the high X-ray attenuation caused by transmission attenuation or shielded. 如这里所用的,术语“金属性”是代表具有高“Z”的材料,其中Z表示材料的原子序数特性。 As used herein, the term "metallic" is representative of a high "Z" material, wherein Z represents the atomic properties of the material. 例如,在透射图像中炮弹将呈现为非常暗的对象,仅有很少或没有X射线贯穿它们。 For example, in the transmission image shells will appear as a very dark objects, only a few or no X-rays through them. 注意,这可以当在运动模式或固定端口模式下操作移动检查车400时来完成。 Note that this operation can be done when the inspection vehicle moves in the moving mode or a fixed port mode 400. 图4示出布置在移动检查车400中的源402和反向散射检测器模块404,以及扫描对象408的X射线束406。 FIG 4 illustrates an arrangement in a mobile inspection vehicle 400 and a source 402 of backscatter detector module 404, and a scanning X-ray beam target 408 406. 这里,透射检测模块410由竖立垂直部412和水平部414构成。 Here, the transmission detection block 410 is constituted by a vertical upright portion 412 and a horizontal portion 414. [0075] —种协助减轻对在大量的高Z材料(诸如金属)内或后面的有机材料成像的问题的方法是,如图5所示,添加一些前向散射检测器500。 [0075] - in kind to help alleviate a large number of high-Z material (such as metal) or a method of forming an organic material issues later is shown in Figure 5, add 500 to the front scattering detector. 因为在这些检测器中检测的前向散射X射线510仅仅通过小角度散射(通常在散射角5° < O < 30°的范围内),前向散射X射线的平均能量显著高于反向散射X射线的能量(对于来自225kV的X射线源的初级X射线束来说通常不大于大约90keV)。 Because the first detected in these detectors by small angle X-ray scattering only backscattered 510 (typically in the range of scattering angle of 5 ° <O <30 °), the average energy of the former to the scattered X-ray backscatter is significantly higher than X-ray energy (for the primary X-ray beam from the X-ray source 225kV is typically no greater than about 90keV). 这是由于在康普顿散射过程中的动量守恒所导致的。 This is due to conservation of momentum in Compton scattering process caused. 前向散射X射线的较高能量允许它们更容易贯穿在车辆主体内的钢铁并被检测到。 Before allowing them to higher energy X-rays scattered more easily through the vehicle body in steel and is detected. 来自前向散射检测器的信号可以与反向散射信号组合、或被单独地显示给操作者。 Combination of signals may be reversed from the front scattering, or separately displayed to the operator to signal scattering detector.

[0076] 用于将透射检测器414的水平部和前向散射检测器500集成到可快速部署的模块中的方法在图6中示出。 [0076] for the transmission detector 414 of the horizontal portion and the forward scatter detector 500 may be integrated into a method for rapid deployment of the module shown in FIG. 6. 已经将检测器集成到可重新定位的“减速带”600中,该“减速带”600可以便利地保存在移动检查车的后部中,并且在开始扫描车辆之前放置在车道上。 The detector has been integrated into relocatable "speed bump" 600, the "speed bump" 600 may be conveniently stored in the rear portion of the inspection vehicle movement, and placed on a lane before the vehicle starts scanning. 如果需要,则可以将减速带便利地拆分为三个较小的模块以便保存和操纵。 If desired, the reduction may conveniently be split into three bands of smaller modules for storage and manipulation. 透射检测器的垂直脚可以是设置在被扫描的车辆的远侧上的分立单元。 Foot vertical transmission detector may be provided on the distal discrete unit of the vehicle to be scanned. 示出X射线束轴602。 It shows the X-ray beam axis 602.

[0077] 应该注意,在本公开中做出的所有权利要求不仅仅可应用于在早先参考的专利申请中的移动检查车,还可以应用于辐射反向散射技术的任何应用,诸如应用于包含类似于移动检查车的子系统的加固运载容器中。 [0077] It should be noted that all the right to make the claims in the present disclosure may be applied to not only the inspection vehicle moves in the earlier referenced patent application, may also be applied to any application of radiation backscatter technology, such as applied comprising reinforcement similar container carrying a mobile subsystem of the inspection vehicle.

[0078] 双静态康普顿散射成像 [0078] bis static Compton scatter imaging

[0079] 在这里呈现实施例和方法,以通过将X射线检测器与X射线源的位置分开,来扩展康普顿散射成像系统的使用范围。 [0079] In the embodiments and methods presented herein, to a position separated by the X-ray detector and the X-ray source, to extend the use of Compton scattering of the imaging system. 在每个应用中,检测器比成像系统的剩余部分更接近对象,允许收集比将检测器与X射线源和其他设备协同定位时更多的散射通量。 In each application, the detector closer to the object than the rest of the imaging system, allowing to collect more than the scattered flux detector and the X-ray source and the other co-located devices. 源、目标和检测器的布置类似于双静态雷达的很多应用。 Source, destination, and the detector arrangement is similar to many applications bistatic radar.

[0080] 因为包括在从远距离形成图像的性能中的许多因素扩展了反向散射成像系统的有用范围,所以可以提供以下优点的一个或多个:针对给定距离的更好图像质量,对于给定距离处的给定图像质量的更大视野;生成给定距离处的给定图像质量的更短扫描时间,以及对于给定距离处的给定图像质量要瞄准的减少剂量。 [0080] Since the performance of many factors, including the distance from the image formed in the extended useful range backscatter imaging system, it is possible to provide one or more of the following advantages: better image quality for a given distance, for larger field of view for a given image quality at a predetermined distance; generating a shorter scan time given to the image quality at a given distance, and the reduction of the dose given to the image quality at a distance for a given aim. 长范围成像系统具有多个安全应用。 Long range imaging system having a plurality of security applications. 剂量减少的成像系统对于人员的检查尤其重要。 Dose reduction imaging system is particularly important for the inspectors.

[0081] 现在参考图7来描述根据本发明的优选实施例的检查系统。 [0081] Referring now to Figure 7 will be described according to a preferred embodiment of the inspection system of the present invention. 贯穿辐射源12将贯穿辐射束20导向对象16。 The radiation source 12 through radiation beam 20 directed through the object 16. 相对于对象16布置贯穿辐射源12,以便检查视野小于0.1立体弧度(sr)。 Disposed relative to the object 16 through the radiation source 12, in order to check the field of view of less than 0.1 steradian (sr). 对象16散射通量22,该通量22由检测器14检测到。 16 flux scattering objects 22, the flux detected by the detector 22 to 14. 相对于对象布置检测器14,以便在对象的视野中对向大于0.5立体弧度的角。 With respect to the object detector 14 is arranged so that the field of view of the object's angle of greater than 0.5 steradian.

[0082] 检查壁内外来对象的应用 Applications [0082] The inner and outer walls to check object

[0083] 在本发明的一个实施例中,参考图8所示,检查系统被配置为快速检查壁内的不预期对象,或者执行多种非破坏性的测试应用,诸如查找汽车的车身板材中隐藏的裂纹。 [0083] In one embodiment of the present invention, referring to FIG. 8, the inspection system is configured not to quickly check the intended object within a wall, or to perform a variety of non-destructive testing applications, such as an automobile body sheet material to find hidden cracks.

[0084] 图8示出这样的配置,其中,源12被移动到房间26的中央,从房间中央源12可以利用贯穿辐射快速地扫描房间26的壁24。 [0084] FIG. 8 shows a configuration in which the source 12 is moved to the center of the room 26, from the center of the room using a penetrating radiation source 12 can quickly scan the room 26 of wall 24. 检测器14被放置在壁24附近。 Detector 14 is placed near the wall 24. 在该配置中,系统可以对不被检测器14覆盖的壁24的所有部分成像。 In this configuration, all parts of the imaging system can not be covered by the wall 24 of the detector 14. 然后,可以移动检测器14的位置,来允许检查系统扫描剩余区域。 Then, the position can move the detector 14 to allow the inspection system scans the remaining region. 如果当移动检测器14时不移动源12,则可以在软件中将两种情况下的图像缝合在一起来提供房间26的适合质量的图像。 If the movement detector when the source 12 is not moved, the image may be stitched together in both cases will be provided room for software quality images of 14 26.

[0085] 使用其中尽可能接近受检区域地布置源12和检测器14的传统方法,可以更紧密地扫描发现感兴趣的区域。 [0085] wherein use is arranged as close as possible to the source region of the subject 12 and the conventional methods detector 14 may be more closely scan revealed regions of interest. [0086] 从相邻房间定位房间内的人员的应用 [0086] Application of the room from an adjacent room locating persons

[0087] 在本发明的另一实施例中,如图9所示,源12位于相邻房间28内,以及检测器14可以置入壁24内,如图9所示,或者位于相邻房间28内,如图10所示。 [0087] In another embodiment of the present invention, as shown in FIG, 9 is located within the source 12 is 28, and a detector 14 can be placed adjacent to the room wall 24, as shown in FIG. 9, or in adjacent rooms 28, 10 as shown in FIG. 检测器的隐藏在特定应用中有利。 Hide detector advantageous in certain applications. 可以使用无线发射机30来将检测器14连接到数据处理设备32,该数据处理设备32与X射线源12系统共同定位。 30 may be used to the wireless transmitter 14 is connected to the detector 32 the data processing device, the data processing device 32 and the X-ray source 12 is co-located systems.

[0088] 在这样的配置中,操作者能够首先生成低剂量/低质量扫描,该低剂量/低质量扫描可以提供足够信息来将罪犯与受害者分开。 [0088] In such a configuration, the operator can first generate a low dose / low mass scanning, the low dose / low mass scanning may provide enough information to separate the offender and victim. 然后,如果需要,则可以生成罪犯的更高质量更高剂量的图像。 Then, if necessary, you can generate higher quality criminals higher doses of images. 以这种方式,可以在最小化到无罪人质的剂量的同时,将高剂量限制到人质捕获者。 In this manner, the dose can be minimized to innocent hostages, while the high dose limiting hostage captors. 用来扩展现有检查系统的范围的应用 To extend the range of existing inspection system applications

[0089] 如图11所示,AS&E现在构建了已知为Z-反向散射车™(ZBV™)的反向散射成像产品,该产品例如在美国专利N0.7,099, 434中进行了描述。 [0089] 11, AS & E now constructed a vehicle known as backscatter Z- ™ (ZBV ™) backscatter imaging product, which for example in U.S. Patent No. N0.7,099, 434 description. 通常由数字90表示的ZBV被针对2-5英尺的目标距离进行优化。 Typically optimized for a certain distance of 2-5 feet ZBV 90 number represented. ZBV 90经常被部署在“端口模式”中,意味着:在目标13(通常是车辆)行驶通过扫描X射线束20的同时,该具有X射线源12和检测器15的ZBV是固定的。 ZBV 90 are often deployed in the "port mode", it means: 13 in the target (usually a vehicle) 20 while traveling by a scanning X-ray beam, the X-ray source 12 having ZBV and the detector 15 are fixed.

[0090] 在端口工作模式中,通过更接近目标13地部署附加的检测器14,来扩展ZBV 90的范围,如图11所示。 [0090] In the mode of the port, closer to the target 13 by the deployment of the additional detector 14, to extend the range of ZBV 90, as shown in FIG. 该配置可以具有依赖于ZBV的机载反向散射检测器阵列15的以下优 This configuration provides the following advantages can be dependent on the airborne ZBV backscatter detector array 15

占- Take up-

^ \\\.[0091].如果目标发生爆炸,仅仅辅助的检测器14会被破坏。 ^ \\\. [0091] If the target explosion, only the auxiliary detector 14 will be destroyed.

[0092].可以部署任何数量的检测器14,允许现场用户在需要时和需要的地方用提高成本来增加图像质量。 [0092] It can be deployed in any number of detectors 14, allowing the user when a site where it is needed and to increase the cost by improving the image quality.

[0093].可以由用户重新布置检测器14的位置,以改变遮蔽;强调来自侧向散射或前向散射的数据;或甚至生成透射X射线图像。 . [0093] can be rearranged by a user positions the detector 14 to change the shield; stressed side scatter or backscatter data from the front; or even to generate a transmission X-ray image.

[0094] 检测器14可以通过使用无线发射机50来发射数据到ZBV 90电子器件。 [0094] The detector 14 may be 50 to transmit data by using a wireless transmitter ZBV 90 to the electronic device. 检测器14所需要的功率仅仅是:由用于光电倍增管的电源所提供的直流,该电源可以利用电池供电;以及用于无线发射机50的功率。 Power detector 14 need only: a DC power supply for a photomultiplier tube is provided, the power source may be powered by the battery; and a power of a wireless transmitter 50. 或者,功率和信号电缆可以用于将ZBV 90连接到检测器14。 Alternatively, the power and signal cables may be used to connect to the detector 14 ZBV 90.

[0095] 检测器14是整个X射线系统的较轻构件之一。 [0095] The light detector 14 is one member of the entire X-ray system. 小量的辅助检测器可以配合到ZBV 90的车身(coach)中。 Minor amounts of auxiliary detector ZBV 90 can be fitted to a vehicle body (Coach) in. 可以在ZBV 90后面的小拖车内(未示出)拖动较大的检测器供应,或在其它支持车辆(没有示出)中运输。 (Not shown) supplying the drag larger detector, the other support or transport vehicle (not shown) in the back 90 ZBV small trailer. 如图12所示,为了在行驶通过模式下(其中ZBV 90行驶通过目标13以在目标13上方扫描X射线束20)来操作ZBV 90,辅助检测器14被安装在无人驾驶车辆42上。 12, in order to travel through mode (in which ZBV 90 with the target 13 through 13 above the target scanning X-ray beam 20) to operate ZBV 90, the auxiliary detector 14 is mounted on the unmanned vehicle 42. 在该情景下,使用无线链路以将指令发送到无人驾驶车辆42,以及从检测器14接收数据。 In this scenario, using a wireless transmission link 42 to the unmanned vehicle, and receiving data from the detector 14 to the instruction. 使用前向部署移动检测器来检查可能的IED或背包(left-behindpackage)的应用 Using a forward deployment movement detector to check for possible IED or backpack (left-behindpackage) applications

[0096] 现在参考图13来描述根据本发明的用于检测可能的简易爆炸装置(IED)的检查系统。 [0096] Referring now to FIG 13 described inspection system to detect a possible improvised explosive device (IED) according to the present invention. 检测器14被安装在小型的无人驾驶车辆42上。 Detector 14 is mounted on a small unmanned vehicle 42. 小型的无人驾驶车辆42将检测器14拉近IED 40,同时X射线源12保持在距离操作者(未示出)安全的距离处。 Small unmanned vehicle 42 of the detector 14 closer to IED 40, while the X-ray source 12 is held at a distance of the operator (not shown) at a safe distance. 虽然相较于反向散射X射线系统来说无人驾驶车辆42是成本相对较高的构件,但是针对军用设计的小型的无人驾驶车辆42经常经受爆炸,以及可以利用防爆装甲来进一步保护无人驾驶车辆42。 Although compared to the backscatter X-ray system, an unmanned vehicle 42 is a relatively high cost component, but for small unmanned vehicle designed for military explosive 42 are often subjected, and can be used to further protect the non-explosion-proof armor person driving the vehicle 42. [0097] 检测器14相对于IED 40的定位导致得到的图像中的不同遮蔽效果。 [0097] The detector 14 is positioned relative to the IED 40 lead to different shielding effects of the resulting image. 如果将检测器14仅仅放置在初级X射线束44的一侧上,则图像将具有类似于在如下情况下的照片中将看到的遮蔽:照相机在X射线源12的位置处,而光源在X射线检测器14的位置处。 If the detector 14 is placed only on one side of the primary X-ray beam 44, the image will have a similar shielding in the photo seen in the following: the camera at the position of the X-ray source 12, and light source at position 14 of the X-ray detector. 这些遮蔽经常在解释图像时证实是有用的,因为它们给予对象三维的外观并且使得某些边缘更明显。 These are often masked in the interpretation of the image is confirmed useful because they give the appearance of a three-dimensional object and more apparent that some of the edges. 可以通过将检测器14移动到新位置,或者同时地使用多个检测器并且分开地处理来自每个检测器14的数据,来增强更多的边缘。 It can be obtained by the motion detector 14 to a new position, or simultaneously using a plurality of detectors and processes the data from each detector 14 separately, to enhance more edges. 在AS&E处的实验显示出,以不同比率将来自两个或多个角度处的多个检测器的图像混合在一起,效果甚至更好。 In the experiments showed at AS & E, an image ratio different from the two or more detectors at a plurality of angles are mixed together, the effect is even better.

[0098] 在两个或多个机器人42上的两个或多个检测器14可以用于完全开发该检测器混合概念。 [0098] In two or more robots 42 on two or more detectors 14 may be used to fully exploit the hybrid concept detector. 或者,在使用单个检测器14生成单个图像之后,可以将检测器14移动到新的位置同时X射线源12不移动,然后生成第二图像。 Alternatively, after using 14 to generate a single image of a single detector, the detector 14 can be moved to a new position while the X-ray source 12 is not moved, and then generates the second image. 这些顺序的图像可以不同比率组合(以增加有效通量)并混合以开发不同的可能的遮蔽结构。 These images may be different from the order of the ratio of composition (to increase the effective flux) and mixed to develop different possible shielding structure.

[0099] 使用前向部署移动检测器对于IED扫描路旁的应用 [0099] Applications for scanning roadside IED deployment using forward movement detector

[0100] 之前实施例的完全移动变体能够“扫除”路旁的IED,如图14所示。 Before [0100] completely moved variant embodiment can "remove" the IED roadside, as shown in FIG. X射线源12被安装在车辆46上。 X-ray source 12 is mounted on the vehicle 46. 车辆46可以或可以不被锚定。 Vehicle 46 may or may not be anchored. 束断路器轮(未示出)在垂直于道路48的方向上扫描束20,同时车辆46在道路48的方向上缓慢行驶,从而生成二维图像。 Bundle breaker wheel (not shown) in a direction perpendicular to the scanning beam 20 of the road 48, while the vehicle 46 moving slowly in the direction of the road 48, thereby generating two-dimensional image. 检测器14将在小型无人驾驶车辆42上在车辆46前面行驶。 Detector 14 in front of the vehicle 46 traveling on a small unmanned vehicle 42. 如果在车辆46和无人驾驶车辆42之间的电缆管理出现问题,则可以利用无线通信系统50来替换电缆连接,从而导向无人驾驶车辆42并接收来自检测器14的信号。 If problems occur in the cable management 42 between the vehicle 46 and the unmanned vehicle, the system 50 may utilize wireless communication to replace the cables, so that the guide 42 and the unmanned vehicle receives a signal from detector 14.

[0101] 如图15所示,可以将X射线源12附加到转座52,以便可以对道路48的任一侧成像,或者检查位于道路48中的对象40。 [0101] As shown in FIG. 15, the X-ray source 12 may be attached to the transposition 52 to 48 may be located in the target road 40 to either side of the path 48 of the imaging or inspection.

[0102] 车辆46的速度变化会导致图像失真。 [0102] 46 the speed of the vehicle will cause change in image distortion. 这些变化通常不抑制反向散射图像的解释,然而,失真可能对于长范围应用更有问题。 These changes usually do not inhibit explain backscatter images, however, distortion may be more problematic for long-range applications. 可以采用扫描驱动器来调节携载X射线源12的车辆46以及携带检测器14的无人驾驶车辆42的速度。 The scan driver may be used to adjust the speed of the unmanned vehicle and a detector 14 carries 42 carrying the X-ray source 12 of the vehicle 46.

[0103] 遇到的更大挑战是不平坦的路面和道路中的碰撞振动。 [0103] greater challenge was the collision uneven pavement and road vibration. 这些导致X射线源12弹起和弹下,在图像中产生相应的失真。 Under these X-ray source 12 resulting in bounce and rebound, to produce distortion in the image. 虽然这些失真通常对于在几个英尺的距离的扫描不是问题,但是它们的效应将与该距离成比例地增长。 While these distortions are usually not a problem for the scanning distance of a few feet, but their effect will increase in proportion to the distance. I度的车辆的姿势的改变,例如在5英尺的距离将束20仅仅移动I”。然而,在30英尺的距离,束20将被移动6”。 I-degree change in posture of the vehicle, for example at a distance of 5 feet beam 20 will move only I ". However, at a distance of 30 feet, the beam 20 will be moved 6." 因为诸如本发明的长范围系统通常以相较短范围系统小得多的视野工作,所以给出的失真甚至更明显(相对于现有系统)。 Because the system of the present invention such as a long range is generally shorter with a much smaller field of view range of the system work, so that the distortion is even more pronounced analysis (relative to existing systems).

[0104] 根据本发明的多个实施例,使用用于在现代坦克上固定加农炮的相同技术来固定X射线源12。 [0104] In accordance with various embodiments of the present invention, the same technology in modern tank cannons using fixing means for fixing the X-ray source 12. 因为断路器轮(未示出)自身是大型回转仪,所以可以将断路器安装在万向节和减震器的悬挂上,以使得当车辆46在不平坦的地形上移动时X射线束20的姿势变化最小。 Because the breaker wheel (not shown) gyroscope itself is large, the circuit breaker can be mounted on the gimbal suspension and shock absorbers, so that when the vehicle 46 moves over uneven terrain X-ray beam 20 the smallest change in posture.

[0105] 图像对于检测器14的位置变化更不敏感。 [0105] Image less sensitive to changes in the position detector 14. 在扫描期间的检测器14的姿势或仰角的改变将仅导致在图像的遮蔽中的较小改变,该改变不会干扰图像的解释,以及甚至不会被注意到。 During the scanning position or elevation of the detector 14 will cause a change in only a small change in the mask image, this change does not interfere with interpretation of the image, and not even be noticed. 用于监视所选择的横穿定义的通道的车辆或人员的应用 Application for monitoring the selected channel defined traversing vehicle or person

[0106] 在双静态反向散射概念的另一实施例中,受检的人员或车辆可能被导向为横穿良好定义的区域。 Embodiment, the subject is a person or vehicle may be directed to well-defined region traversed [0106] In another embodiment bistatic backscattered concept. 该区域可以是车辆通过的机场内的走道或车道或隧道。 The area can be a walkway or driveway or in the airport tunnel passing vehicles.

[0107] 用于在这样的情况下检查每个人员的现有概念需要用于整个反向散射源和邻近该通道的检测器的空间。 [0107] Existing concepts used to check each person needs a space for the entire backscattered source and detector adjacent to the channel in such a case. 此外,对象必须以特定速度通过该束,仅从侧部检查对象,以及必须照射通过检查区域的每个对象。 Further, the object must be at a particular speed through the beam, only the side portion inspection object, and each object to be irradiated through the examination region.

[0108] 其中不接受上述任何一个约束条件的情况可以利用图16和17所示的结构来解决。 [0108] wherein any of the above situation does not accept constraints may utilize the structure shown in FIGS. 16 and 17 to solve. 将X射线源12附加到枢转架52,目的为选择较大区域的任何可选子集来利用X射线束20进行扫描。 The X-ray source 12 is pivotally attached to the frame 52, the purpose of selecting any of the optional subset of a larger region of the X-ray beam 20 to be scanned.

[0109] 在这些系统的每一个中,操作者选择人员56(图16中)或车辆(图17中),并且仅利用X射线来描绘目标。 [0109] In each of these systems, the operator selects the art 56 (FIG. 16) or vehicle (in FIG. 17), and only an X-ray target is depicted. 只要人员56或车辆58处于与检测器14成直线的通道60内,就可以对人员56或车辆58进行研究。 As long as the person 56 or the vehicle 58 is within the passage 60 and the detector 14 in a straight line, can be studied person 56 or the vehicle 58.

[0110] 如果通道60是狭窄的走廊(或如果车道通过隧道),则检测器14可以被容易地隐藏在壁和/或天花板内或伪装为壁或天花板的一部分。 [0110] If the channel 60 is a narrow corridor (or if the lane through the tunnel), the detector 14 can be easily concealed in the walls and / or ceiling or a wall portion of the camouflage or ceiling. 在一些环境中,还可以将检测器14置入通道60的表面内。 In some environments, the detector 14 may also be placed in the inner surface of passage 60. 在其中检测器14被部署在隧道的壁、地面和天花板内的结构中,可以获得接近4 π sr的覆盖度,从而利用最大可能部分的散射光子。 Wherein the walls, the floor structure of the detector 14 is deployed in the tunnel and the ceiling can be obtained in proximity of 4 π sr coverage to take advantage of the maximum possible part of the scattered photons. 该系统获得比当前近场康普顿散射成像系统高得多的散射光子的收集效率。 The system of collection much more efficient than the current near-field imaging system Compton scattered photons high.

[0111] 如图16所示,X射线源12可以位于天花板中,以便操作者能够更好地在不感兴趣人员周围进行导向。 As shown in [0111] FIG. 16, X-ray source 12 may be located in the ceiling, so that the operator is not interested in better guided around the art. 在图18中,X射线源12被绘制在通道60的侧部处。 In Figure 18, X-ray source 12 is plotted on a side of the channel 60. 然而,在隧道中,也可以从天花板悬挂X射线源12。 However, in the tunnel, or X-ray source 12 can be suspended from the ceiling.

[0112] 使用多个X射线源12或甚至单个X射线源12,这些X射线源可以从中部向着通道60的两端瞄准,允许操作者从多个角度对人员56或车辆58成像。 [0112] X-ray source 12 using a plurality of or even a single X-ray source 12, the X-ray source 60 may be aimed toward the ends of the channel from the center, allowing an operator from a plurality of imaging angles 58 of 56 persons or vehicles. 如果多个X射线源12瞄准相同的对象或者彼此接近的对象,则X射线源12需要电气同步,以便在任何时刻只有一个在拍摄。 If a plurality of X-ray source 12 aimed at the same object or objects close to each other, the X-ray source 12 needs to be electrically synchronized, so that only one shot at any time.

[0113] 可以使用在源瞄准机构上的编码器来识别(多个)目标位置,以及仅仅允许处理来自最近检测器的信号,从而限制电子噪声和空气散射。 [0113] can be used in the aiming mechanism on the source encoder identifies (s) of the target position, and allow only the processed signal from the nearest detector, electronic noise and to limit the air scattering.

[0114] 通过从某个距离对人员56或车辆58成像,速度变成相较近场成像系统更不重要的因子,因为当从某个距离来看时角速度要小得多。 [0114] 56 person or vehicle by image 58, the speed becomes near-field imaging system with a certain distance from the more important factor, because when the distance from the point of view of a much smaller angular speed. 从近乎与目标运动方向成直线的角度对目标成像,进一步减少了明显的角度运动,还便利了运动对象的成像。 From the approximately aligned with the direction of the target and the target moving image, further reducing the apparent angle of movement, but also facilitate the imaging of a moving object.

[0115] 置入地面或路面内的检测器14,如图18和19所示,必须能够支持可能在其上方运动的任何对象80 (人员、动物或车辆)的重量。 [0115] into the ground or the road surface detector 14, as shown in FIG. 18 and 19, may be able to support the weight of any object 80 (person, animal or vehicle) which is moved over. 诸如钢板的坚固固体支持件通常不用在康普顿散射检测器前面,因为康普顿散射X射线的能量通常太低以致于不能贯穿这样的结构。 Solid support such as a solid steel member generally without Compton scattering in front of the detector, because the Compton scattered X-ray energy is usually too low to penetrate such a configuration. 然而,由结构材料(诸如钢)制成的结构支持栅格62可以被放置在检测器14上方,如图18和19所示,检测器14的检测效率仅将减少被结构支持栅格62的固体部分阻挡的检测器区域的部分。 However, the structure is supported by a structural material (such as steel) grid 62 may be placed over the detector 14, 18 and 19, the detection efficiency of the detector 14 will only be reduced structural support grids 62 portion of the solid portions of the barrier detector area. 结构支持栅格62不会生成康普顿散射图像中的任何类型的伪影,因为利用初级X射线束的运动来空间调制康普顿散射X射线图像,而不是利用如大多数透射X射线和光学成像系统中那样利用检测器14的像素偏移(pixilation)来空间调制。 Support structure 62 does not generate raster Compton scattering image artifacts of any type, since the use of the motion to the primary X-ray beam spatial modulation Compton scattered X-ray image, instead of using transmitted X-rays and as most the optical imaging system with a detector such as 14 pixel offset of (pixilation) to spatial modulation.

[0116] 在一些情况下,以衰减X射线信号的代价,可以利用伪装或其他方式来隐藏检测器14。 [0116] In some instances, the cost of the X-ray attenuation of the signal may be utilized to disguise or otherwise hide the detector 14. 在室外应用中,可以使用薄层的泥土或树叶。 In outdoor applications, a thin layer of soil or foliage. 在机场走道内,具有装饰图案的塑料薄层会模糊检测器14的任何识别特征。 In an airport walkway, the plastic film having a decorative pattern may obscure any identifying feature detector 14.

[0117] 用于广泛区域监视的应用 [0117] Applications for wide area surveillance

[0118] 在另一实施例中,如图20和21所示,检测器阵列14位于感兴趣区域中,以及整个区域可以利用单一X射线源12来“绘制”。 [0118] In another embodiment, shown in FIG. 20 and, in the region of interest in the detector array 14, and the entire area may be an X-ray source 21 using a single 12 "drawing." [0119] 检测器14被布置在监视区域内的地面内或地面上。 [0119] detector 14 is disposed in the ground or in the monitoring area on the ground. X射线源12在中央位置,能够“拍摄”检测器14所位于的所有区域。 X-ray source 12 in a central position, can be "shot" all areas detector 14 is located. 以这种方式,因为不管对象82位于区域中的何处,对象82依然距离最近检测器14大致相同的距离,所以用于对给出目标的每个像素成像的X射线通量基本与距离无关。 , Because whether the object 82 is located in the region where the object 82 remains approximately the same distance 14, so that in this way a substantially independent from the nearest detector the X-ray flux gives each pixel of the imaging target distance and . X射线源12可以以类似于雷达系统的方式,从多达360度的方位角进行扫描。 X-ray source 12 can be scanned up to 360 degrees from the azimuth in a manner similar radar system.

[0120] 在该连续扫除模式中,一旦检查扫描区域,则任何点处的反向散射信号不会改变,除非引入新的对象。 [0120] In this continuous sweep mode, once the check scanning area, at any point of the backscatter signal will not change until a new object is introduced. 因此,计算机可以监视图像,或仅仅来自图像中任何给出区域的集成信号,以及在发生改变时向人类操作者报警。 Thus, the computer can monitor images, or any given integrated signal only from the area in the image, and to alert a human operator when changes occur. 图像密度的突然增加可能指示活体入侵者(人类或动物)的存在。 A sudden increase in image density may indicate the presence of an intruder in vivo (human or animal). 更多微小变化可能指示对象的运动(例如车辆进入区域、或在扫描开始之前已经隐藏在区域中的伪装的人类/车辆的运动)。 More small changes may indicate a moving object (such as a vehicle enters the area, or have been hidden before the start of scanning motion camouflage human / vehicle in the area). 或者,可以以相似方式来使用光学或红外成像系统以自动地检测潜在威胁。 Alternatively, in a similar manner using an optical or infrared imaging system to automatically detect potential threats. 一旦标记了潜在威胁,系统可以自动起动更详细的康普顿X射线扫描,以生成图像供人类操作者分析。 Once labeled a potential threat, the system can automatically start a more detailed Compton X-ray scanning, to generate an image analysis for a human operator.

[0121] 压力传感器(未示出)可以与地面内的检测器14集成。 [0121] The pressure sensor (not shown) may be integrated with the inner surface 14 of the detector. 在这种情况下,压力传感器会是第一检测系统。 In this case, the pressure sensor will be the first detection system. 然后,计算机可以自动地将X射线束20瞄准可疑的区域并生成图像。 Then, the computer may automatically X-ray beam 20 aimed at the suspicious region to generate an image.

[0122] 可以使用连续的扫除模式来扫描人群以寻找潜在的自杀引爆者。 [0122] using a continuous sweep mode to scan the crowd to find a potential suicide bomber.

[0123] 与检测器14集成并围绕检测器14放置在地面内的压力传感器可以用于感应何时对象82与束的路径并行地移动。 [0123] integrated with the detector 14 and the detector 14 is placed around the inner surface of the pressure sensing sensor may be used when moving the object 82 in parallel with the path of the beam. 该信息可由自动安全系统使用,以通过切断束20或改变扫除路径从而限制到对象82的剂量。 This information may be automatic safety system, thereby limiting the dose to the object 82 through the beam 20 to eliminate or change the cutting path. 利用对于地面“地毯式”布置的检测器14的平铺图案获得最佳的固体角度覆盖。 Optimum use of the solid angular coverage for ground tiling patterns "blanket" arrangement of the detector 14.

[0124] 在本发明的一些实施例中,检测器14可以利用薄层的泥土来伪装或者以另外方式隐藏,虽然一些形式的伪装可能导致信号的减少。 [0124] In some embodiments of the present invention, the detector 14 may utilize a thin layer of soil to disguise or otherwise hide, although some form of camouflage may result in reduced signal. 或作为选择地或附加地,也可以在诸如人工岩石或树木的地面上对象中隐藏检测器14,虽然在这种情况下大的固体角度覆盖是不可能的。 Or alternatively or additionally, it may be on the ground, such as rocks or trees artificial hidden object detector 14, although in this case the large solid angle coverage is not possible.

[0125] 如图22所示,检测器14可以被部署为独立单体件68,虽然大固体角度将需要利用单体件68填充大部分区域,其会阻挡从X射线源12到潜在感兴趣目标的视线。 [0125] 22, the detector 14 may be deployed as an independent single member 68, although the need to use a large solid angle area 68 to fill most of the single piece, which blocks the potential interest from the X-ray source 12 to sight of goal. 建筑物70和其他敏感结构可在建筑物壁上安装有检测器14。 Building structures 70 and other sensitive detector 14 may be mounted in a building wall.

[0126] 可以通过仅仅处理来自接近X射线束20的目标的那些检测器14的信号,来限制 [0126] simply by processing the signals from those detector approaches the target 20 of the X-ray beam 14 to limit the

电子噪声。 Electronic noise.

[0127] 如果束20直接朝向检测器14发射,该信号被独立处理,因为其主要是透射图像信号而不是康普顿散射信号。 [0127] If the beam 20 is directed toward detector 14 transmits the signal being processed independently, since it is a transmission main signal instead of the image signal Compton scattering. 在源定位装置上的编码器可以指示X射线束点的位置,从而向控制系统指不何时检测器14在束20的直接路径上。 The encoder on the source positioning means may indicate the position of the point X-ray beam, so that the finger when the detector 14 is not in the direct path of the beam 20 to the control system.

[0128] 电子器件和软件被设计为允许用户以任何选择结构来部署并配置任何数量的检测器14。 [0128] Electronic devices and software are designed to allow a user to select any configuration to deploy and configure any number of detectors 14. 不同的地形和不同应用会需要不同的结构和不同数量的检测器14。 Different terrain and different applications may require different configurations and different numbers of detectors 14.

[0129] 当在一定距离处扫描时,空气散射变成更重要的考虑。 [0129] When the scanning at a distance, air scattering becomes more important consideration. 接近初级束20的检测器14接收空气散射信号,该空气散射信号将“模糊”图像。 Air scattering signal reception detector 14 in proximity to the primary beam 20, the air scattering signal "fuzzy" picture. 由该效应导致的噪声可以通过在独立通道74中读取来自不同距离处的检测器14的信号来减轻,如图23所示,以便仅在一个检测器中对人员76成像,以及该图像包括仅来自检测器(或在该区域中的检测器集)的空气散射背景。 Noise caused by this effect may be mitigated by reading at different distances from a detector signal 14 in the independent passage 74, 23, 76 so that only the image of the person, and the image comprises a detector only background scattering from the air detector (or detector set in this region) is. 不接近目标的沿着初级束20的路径定位的检测器14接收到来自目标的少得多的信号,由此具有更高的噪声信号比。 Not located close to the target 20 along the path of the primary beam detector 14 receives a signal from the target is much less, thus having a higher signal-noise ratio. 通过忽略来自这些检测器的全部信号,可以改进整体的信噪比。 By ignoring all signals from these detectors, the overall signal to noise ratio can be improved.

[0130] 虽然已经公开本发明的多个例示实施例,对于本领域技术人员显而易见的是,在不偏离本发明的真实范围的情况下,可以做出获得本发明一些优点的多个改变和修改。 [0130] Although a plurality of embodiments have been disclosed illustrative embodiments of the present invention, the skilled person will be apparent that, without departing from the true scope of the present invention, a plurality of changes and modifications may be made to obtain some of the advantages of the present invention. .

Claims (18)

1.一种用于检查目标对象的方法,该方法包括: 选择所述目标对象; 利用由源提供的贯穿辐射的准直束来照射选择的目标对象,设置所述源,使得检查所述目标对象小于0.1立体弧度; 利用检测器来检测来自所述选择的目标对象的反向散射的辐射,以便在所述目标对象的视野中对向大于0.5立体弧度; 基于对于所述选择的目标对象的部分的参考,得到预期的基准值; 将所述反向散射的辐射的特性值与所述预期基准值进行比较;以及基于所述比较来确定描述性的类别,所述描述性的类别示出所述选择的目标对象的特性。 A method for inspecting a target object, the method comprising: selecting the target object; target object using penetrating radiation provided by the source of the collimated beam is irradiated to a selected set of the source, so that the inspection target objects smaller than 0.1 steradians; using a detector to detect backscattered from the target object selected radiation so that the field of view of the target object in the perspective of greater than 0.5 radians; for the target object based on the selected reference section, to give the desired reference value; the backscattered radiation characteristic value and the expected reference value; and determining based on the comparison of descriptive categories, the categories shown descriptive characteristics of the selected target object.
2.根据权利要求1所述的方法,其中,所述贯穿辐射是X射线辐射。 2. The method according to claim 1, wherein the penetrating radiation is an X-ray radiation.
3.根据权利要求1所述的方法,其中,当所述特性值小于所述预期基准值时,所述描述性类别指示异常高的金属性内容,且其中,当所述特性值大于所述预期基准值时,所述描述性类别指示异常高的有机内容。 3. The method according to claim 1, wherein, when said characteristic value is less than the expected reference value, the descriptive categories indicated abnormally high metal content, and wherein, when said characteristic value is greater than the It is expected that the reference value, the class indication of an abnormally high organic content description.
4.根据权利要求1所述的方法,其中,所述描述性类别根据预设安全威胁标准来指示潜在的安全威胁。 4. The method according to claim 1, wherein the descriptive categories according to preset criteria threats to indicate a potential security threat.
5.根据权利要求1所述的方法,其中,所述描述性类别根据预设安全威胁标准来指示确认的安全威胁。 The method according to claim 1, wherein the categories described security threat to security threats according to preset criteria to indicate the acknowledgment.
6.根据权利要求1所述的方法,其中,所述选择是基于感兴趣的区域的光学监视的。 6. The method according to claim 1, wherein said selection is based on the optical region of interest being monitored.
7.根据权利要求1所述的方法,其中,所述选择是基于感兴趣的区域的非光学监视的。 7. The method according to claim 1, wherein said selection is based on non-optical monitoring of the region of interest.
8.根据权利要求1所述的方法,还包括: 基于利用所述贯穿辐射照射参考对象,来确定所述预期基准值。 8. The method according to claim 1, further comprising: based on penetrating radiation with the reference object, determining the expected reference value.
9.根据权利要求1所述的方法,进一步包括: 检测透射通过所述目标对象到隐藏的透射检测器中的贯穿辐射,并生成直接透射信号;以及部分地基于所述直接透射信号,确定所述目标对象的内容的特定特性。 9. The method according to claim 1, further comprising: detecting transmitted through the target object to the hidden transmission of penetrating radiation detector, and generates the directly transmitted signal; and in part on the direct transmission signal, determining specific characteristics of the content of said target object.
10.根据权利要求9所述的方法,其中,所述透射检测器包括一个或多个线性部。 10. The method according to claim 9, wherein the transmission detector comprises one or more linear portions.
11.根据权利要求9所述的方法,其中,所述透射检测器包括具有垂直部和水平部的L形检测器。 11. The method according to claim 9, wherein the transmission detector comprises a detector having an L-shaped vertical section and a horizontal portion.
12.根据权利要求9所述的方法,其中,所述透射检测器被完全包括在减速带结构中。 12. The method according to claim 9, wherein the transmission detector is completely included in the deceleration of the belt structure.
13.根据权利要求9所述的方法,还包括: 检测由所述对象散射到前向散射检测器中的贯穿辐射,并生成前向散射信号;以及部分地基于所述散射信号,确定所述对象的内容的特定特性。 13. The method of claim 9, further comprising: before detecting the radiation scattered by the object to the detector through scattering, and the scattering signal generated before; and the part on the scatter signal, determining specific nature of the content of the object.
14.根据权利要求13所述的方法,其中,所述直接透射信号和所述前向散射信号被组合以创建增强散射图像。 14. The method according to claim 13, wherein said direct transmission signal and the forward scattered signals are combined to create enhanced scattering image.
15.根据权利要求13所述的方法,其中,所述直接透射信号和所述前向散射信号被组合以创建增强透射图像。 15. The method according to claim 13, wherein said direct transmission signal and the forward scattered signals are combined to create enhanced transmission image.
16.根据权利要求14或15所述的方法,还包括将所述图像显示给操作者。 16. The method of claim 14 or claim 15, further comprising the image display to an operator.
17.根据权利要求13所述的方法,其中,所述前向散射检测器被完全包括在减速带结构中。 17. The method of claim 13, wherein the front is completely backscatter detector comprising a band structure in the deceleration.
18.—种适于使用根据权利要求9-17的任何一项所述的方法的系统。 18.- The system of any of the types suitable for use in a method according to claim 9-17.
CN 200680039624 2005-10-24 2006-10-23 X-ray inspection based on scatter detection CN101379415B (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US72954805P true 2005-10-24 2005-10-24
US72952805P true 2005-10-24 2005-10-24
US60/729,528 2005-10-24
US60/729,548 2005-10-24
US74890905P true 2005-12-09 2005-12-09
US60/748,909 2005-12-09
PCT/US2006/060158 WO2007051092A2 (en) 2005-10-24 2006-10-23 X-ray inspection based on scatter detection

Publications (2)

Publication Number Publication Date
CN101379415A CN101379415A (en) 2009-03-04
CN101379415B true CN101379415B (en) 2013-07-17

Family

ID=37890870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200680039624 CN101379415B (en) 2005-10-24 2006-10-23 X-ray inspection based on scatter detection

Country Status (4)

Country Link
US (1) US7551715B2 (en)
EP (1) EP1949139A2 (en)
CN (1) CN101379415B (en)
WO (1) WO2007051092A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182516B2 (en) 2007-02-01 2015-11-10 Rapiscan Systems, Inc. Personnel screening system
US9285325B2 (en) 2007-02-01 2016-03-15 Rapiscan Systems, Inc. Personnel screening system
US9291741B2 (en) 2007-02-01 2016-03-22 Rapiscan Systems, Inc. Personnel screening system

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110237446A1 (en) * 2006-06-09 2011-09-29 Chemlmage Corporation Detection of Pathogenic Microorganisms Using Fused Raman, SWIR and LIBS Sensor Data
US8503605B2 (en) 2002-07-23 2013-08-06 Rapiscan Systems, Inc. Four sided imaging system and method for detection of contraband
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
US7809109B2 (en) 2004-04-09 2010-10-05 American Science And Engineering, Inc. Multiple image collection and synthesis for personnel screening
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
US8582089B2 (en) * 2006-06-09 2013-11-12 Chemimage Corporation System and method for combined raman, SWIR and LIBS detection
US8379193B2 (en) 2008-08-27 2013-02-19 Chemimage Corporation SWIR targeted agile raman (STAR) system for on-the-move detection of emplace explosives
EP1902301A4 (en) 2005-07-14 2010-09-22 Chemimage Corp Time and space resolved standoff hyperspectral ied explosives lidar detector
US8368880B2 (en) * 2005-12-23 2013-02-05 Chemimage Corporation Chemical imaging explosives (CHIMED) optical sensor using SWIR
US9103714B2 (en) * 2009-10-06 2015-08-11 Chemimage Corporation System and methods for explosives detection using SWIR
US7526064B2 (en) 2006-05-05 2009-04-28 Rapiscan Security Products, Inc. Multiple pass cargo inspection system
US7620150B1 (en) * 2007-01-30 2009-11-17 Martin Annis X-ray backscatter system for imaging at shallow depths
CA2677439A1 (en) 2006-09-18 2008-03-27 Optosecurity Inc. Method and apparatus for assessing characteristics of liquids
US7742568B2 (en) * 2007-06-09 2010-06-22 Spectrum San Diego, Inc. Automobile scanning system
US8199996B2 (en) * 2007-06-21 2012-06-12 Rapiscan Systems, Inc. Systems and methods for improving directed people screening
WO2009046529A1 (en) * 2007-10-10 2009-04-16 Optosecurity Inc. Method, apparatus and system for use in connection with the inspection of liquid merchandise
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
US9036779B2 (en) 2008-02-28 2015-05-19 Rapiscan Systems, Inc. Dual mode X-ray vehicle scanning system
GB0803644D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803643D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Mobile scanning systems
GB0803640D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803642D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Drive-through scanning systems
CN101576513B (en) * 2008-05-09 2011-12-21 同方威视技术股份有限公司 The method of using the scattered radiation prior to the inspection apparatus and the object
US8633445B2 (en) * 2008-05-19 2014-01-21 Varian Medical Systems, Inc. Multi-energy X-ray imaging
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
GB0809109D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Scanner systems
GB0810638D0 (en) 2008-06-11 2008-07-16 Rapiscan Security Products Inc Photomultiplier and detection systems
US8963094B2 (en) 2008-06-11 2015-02-24 Rapiscan Systems, Inc. Composite gamma-neutron detection system
WO2010091493A1 (en) * 2009-02-10 2010-08-19 Optosecurity Inc. Method and system for performing x-ray inspection of a product at a security checkpoint using simulation
WO2010025539A1 (en) * 2008-09-05 2010-03-11 Optosecurity Inc. Method and system for performing x-ray inspection of a liquid product at a security checkpoint
WO2010028474A1 (en) * 2008-09-15 2010-03-18 Optosecurity Inc. Method and apparatus for assessing properties of liquids by using x-rays
US8705692B2 (en) * 2009-05-12 2014-04-22 Nutech Ventures, Inc. Laser-based accelerator for interrogation of remote containers
US9310323B2 (en) 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
WO2010145016A1 (en) 2009-06-15 2010-12-23 Optosecurity Inc. Method and apparatus for assessing the threat status of luggage
WO2011011583A1 (en) * 2009-07-24 2011-01-27 Nucsafe, Inc. Spatial sequenced backscatter portal
US8824632B2 (en) * 2009-07-29 2014-09-02 American Science And Engineering, Inc. Backscatter X-ray inspection van with top-down imaging
WO2011011894A1 (en) 2009-07-31 2011-02-03 Optosecurity Inc. Method and system for identifying a liquid product in luggage or other receptacle
US8094783B2 (en) * 2009-10-02 2012-01-10 Morpho Detection, Inc. Method and system for performing materials analysis with reflected inelastic scatter
US8314394B1 (en) 2009-11-04 2012-11-20 Science Applications International Corporation System and method for three-dimensional imaging using scattering from annihilation coincidence photons
US8625744B2 (en) * 2009-11-20 2014-01-07 U.S. Department Of Energy Apparatus and methods for real-time detection of explosives devices
US8094782B1 (en) 2010-02-22 2012-01-10 Martin Annis X-ray backscatter system for imaging soft tissue regions
AU2011227502B2 (en) 2010-03-14 2014-08-07 Rapiscan Systems, Inc. Multiple screen detection systems
EP2548009A4 (en) * 2010-03-14 2017-08-02 Rapiscan Systems, Inc. Personnel screening system
US9052290B2 (en) 2012-10-15 2015-06-09 Chemimage Corporation SWIR targeted agile raman system for detection of unknown materials using dual polarization
US8743358B2 (en) 2011-11-10 2014-06-03 Chemimage Corporation System and method for safer detection of unknown materials using dual polarized hyperspectral imaging and Raman spectroscopy
US8766764B2 (en) 2010-09-23 2014-07-01 Rapiscan Systems, Inc. Automated personnel screening system and method
US8848871B2 (en) * 2010-11-04 2014-09-30 Ut-Battelle, Llc X-ray backscatter imaging of nuclear materials
US8994934B1 (en) 2010-11-10 2015-03-31 Chemimage Corporation System and method for eye safe detection of unknown targets
CN102012527A (en) * 2010-11-25 2011-04-13 上海英迈吉东影图像设备有限公司 Mobile X-ray inspection vehicle and inspection method thereof
US9486839B2 (en) 2011-01-07 2016-11-08 Huron Valley Steel Corporation Scrap metal sorting system
EP3252506A1 (en) 2011-02-08 2017-12-06 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
US8908831B2 (en) 2011-02-08 2014-12-09 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
BR112013026050A2 (en) * 2011-04-15 2017-02-14 American Science & Eng Inc detector array variable size backscatter system
RU2595291C2 (en) * 2011-04-15 2016-08-27 Американ Сайенс Энд Инжиниринг, Инк. Methods of performing back-scattering survey complex targets in confined spaces
DE102011112652A1 (en) * 2011-05-16 2012-11-22 Eads Deutschland Gmbh Image Analysis for explosive ordnance disposal and security checks
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
CN102854539B (en) * 2011-06-29 2016-05-04 上海英迈吉东影图像设备有限公司 One kind of plug-in mobile inspection system based on the backscatter imaging
US9121809B2 (en) * 2011-11-18 2015-09-01 Visuum, Llc Multi-linear X-ray scanning systems and methods for X-ray scanning
KR101651026B1 (en) * 2011-11-25 2016-08-24 아리벡스, 인코포레이티드 X-ray distance indicator and related methods
DE202013011828U1 (en) * 2012-01-27 2014-10-17 American Science And Engineering, Inc. Hand X-ray imaging device using backscatter
KR101997948B1 (en) 2012-02-03 2019-07-08 라피스캔 시스템스, 인코포레이티드 Combined scatter and transmission multi-view imaging system
US9274065B2 (en) * 2012-02-08 2016-03-01 Rapiscan Systems, Inc. High-speed security inspection system
ES1154460Y (en) 2012-02-14 2016-07-08 American Science & Eng Inc X-ray inspection portal device
US8879688B2 (en) * 2012-05-22 2014-11-04 The Boeing Company Reconfigurable detector system
US9440289B1 (en) * 2012-10-12 2016-09-13 Raytheon Company Method and apparatus for X-ray laser interrogation
CN103901485A (en) * 2012-12-27 2014-07-02 同方威视技术股份有限公司 Human body safety check system
MX350070B (en) 2013-01-31 2017-08-25 Rapiscan Systems Inc Portable security inspection system.
WO2015034893A1 (en) 2013-09-04 2015-03-12 United Parcel Service Of America, Inc. X-ray scanning system and method
US9535019B1 (en) 2013-10-04 2017-01-03 American Science And Engineering, Inc. Laterally-offset detectors for long-range x-ray backscatter imaging
US9557427B2 (en) 2014-01-08 2017-01-31 Rapiscan Systems, Inc. Thin gap chamber neutron detectors
CN103810678B (en) * 2014-01-21 2017-01-25 公安部第研究所 One kind of back-scatter x-ray image distortion correction method for human safety inspection apparatus
BR112016020638A2 (en) 2014-03-07 2018-06-19 Rapiscan Systems Inc ultra broadband detectors
WO2016003547A1 (en) 2014-06-30 2016-01-07 American Science And Engineering, Inc. Rapidly relocatable modular cargo container scanner
US9277897B1 (en) * 2014-08-20 2016-03-08 ADANI Systems, Inc. Multi-beam stereoscopic X-ray body scanner
AU2015353439A1 (en) 2014-11-25 2017-06-29 Rapiscan Systems, Inc. Intelligent security management system
US9204848B2 (en) 2015-01-26 2015-12-08 Martin Annis Patent Trust—2009 Low-dose X-ray backscatter system for three dimensional medical imaging using a conventional X-ray tube
JP2018508787A (en) 2015-03-20 2018-03-29 ラピスカン システムズ、インコーポレイテッド Handheld portable backscatter inspection system
CN104777178B (en) 2015-04-07 2017-08-25 同方威视技术股份有限公司 An x-ray scanning system and scanning method
US9989483B2 (en) * 2015-08-17 2018-06-05 The Boeing Company Systems and methods for performing backscatter three dimensional imaging from one side of a structure
EP3459462A1 (en) * 2017-09-26 2019-03-27 Koninklijke Philips N.V. Mobile x-ray imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249567B1 (en) 1998-12-01 2001-06-19 American Science & Engineering, Inc. X-ray back scatter imaging system for undercarriage inspection
US6278115B1 (en) 1998-08-28 2001-08-21 Annistech, Inc. X-ray inspection system detector with plastic scintillating material
US6282260B1 (en) 1998-12-14 2001-08-28 American Science & Engineering, Inc. Unilateral hand-held x-ray inspection apparatus
CN2526863Y (en) 2002-01-17 2002-12-18 中国原子能科学研究院 Portable metal detector

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569708A (en) * 1967-07-26 1971-03-09 American Mach & Foundry Straight through and backscatter radiation inspection apparatus for tubular members and method
USRE28544E (en) * 1971-07-07 1975-09-02 Radiant energy imaging with scanning pencil beam
US3790785A (en) 1971-11-18 1974-02-05 American Science & Eng Inc Radiographic imaging
DK134687C (en) * 1972-11-22 1977-05-23 Isotopcentralen
JPS5222553B2 (en) * 1973-02-20 1977-06-17
US4047029A (en) * 1976-07-02 1977-09-06 Allport John J Self-compensating X-ray or γ-ray thickness gauge
US4052617A (en) * 1976-09-29 1977-10-04 The Regents Of The University Of California Lettuce maturity gage
US4260898A (en) * 1978-09-28 1981-04-07 American Science And Engineering, Inc. X-ray imaging variable resolution
US4472822A (en) * 1980-05-19 1984-09-18 American Science And Engineering, Inc. X-Ray computed tomography using flying spot mechanical scanning mechanism
US4342914A (en) * 1980-09-29 1982-08-03 American Science And Engineering, Inc. Flying spot scanner having arbitrarily shaped field size
US4458152A (en) * 1982-05-10 1984-07-03 Siltec Corporation Precision specular proximity detector and article handing apparatus employing same
US4768214A (en) * 1985-01-16 1988-08-30 American Science And Engineering, Inc. Imaging
EP0247491B1 (en) * 1986-05-28 1990-08-16 Heimann GmbH X-ray scanning system
US4799247A (en) * 1986-06-20 1989-01-17 American Science And Engineering, Inc. X-ray imaging particularly adapted for low Z materials
US5132995A (en) * 1989-03-07 1992-07-21 Hologic, Inc. X-ray analysis apparatus
US4809312A (en) * 1986-07-22 1989-02-28 American Science And Engineering, Inc. Method and apparatus for producing tomographic images
JPS6379042A (en) 1986-09-24 1988-04-09 Hitachi Medical Corp Hand baggage x-ray inspecting device
JPH07118788B2 (en) * 1986-10-28 1995-12-18 株式会社東芝 Electronic still camera
US4839913A (en) * 1987-04-20 1989-06-13 American Science And Engineering, Inc. Shadowgraph imaging using scatter and fluorescence
US4899283A (en) * 1987-11-23 1990-02-06 American Science And Engineering, Inc. Tomographic apparatus including means to illuminate the bounded field of view from a plurality of directions
US4974247A (en) * 1987-11-24 1990-11-27 The Boeing Company System for radiographically inspecting an object using backscattered radiation and related method
US4864142A (en) * 1988-01-11 1989-09-05 Penetron, Inc. Method and apparatus for the noninvasive interrogation of objects
US5002397A (en) * 1988-04-13 1991-03-26 International Integrated Systems, Inc. System of fluid inspection and/or identification
DE58902570D1 (en) * 1989-08-09 1992-12-03 Heimann Gmbh Device for irradiating objects with faecherfoermiger radiation.
DE58906047D1 (en) * 1989-08-09 1993-12-02 Heimann Systems Gmbh & Co Device for irradiating objects by means of fan-shaped radiation.
CA2014918A1 (en) * 1989-09-06 1991-03-06 James A. Mcfaul Scanning mammography system with improved skin line viewing
US5179581A (en) * 1989-09-13 1993-01-12 American Science And Engineering, Inc. Automatic threat detection based on illumination by penetrating radiant energy
US5022062A (en) * 1989-09-13 1991-06-04 American Science And Engineering, Inc. Automatic threat detection based on illumination by penetrating radiant energy using histogram processing
US5014293A (en) * 1989-10-04 1991-05-07 Imatron, Inc. Computerized tomographic x-ray scanner system and gantry assembly
US5068883A (en) * 1990-05-11 1991-11-26 Science Applications International Corporation Hand-held contraband detector
US5181234B1 (en) * 1990-08-06 2000-01-04 Rapiscan Security Products Inc X-ray backscatter detection system
US5247561A (en) * 1991-01-02 1993-09-21 Kotowski Andreas F Luggage inspection device
DE69205652T2 (en) * 1991-06-21 1996-05-23 Toshiba Kawasaki Kk X-ray detector and examination system.
US5224144A (en) * 1991-09-12 1993-06-29 American Science And Engineering, Inc. Reduced mass flying spot scanner having arcuate scanning lines
US5253283A (en) * 1991-12-23 1993-10-12 American Science And Engineering, Inc. Inspection method and apparatus with single color pixel imaging
NZ237767A (en) * 1992-04-09 1994-09-27 Inst Geolog Nuclear Sciences Luggage scanning by fast neutrons and gamma radiation
US5600303A (en) * 1993-01-15 1997-02-04 Technology International Incorporated Detection of concealed explosives and contraband
DE4311174C2 (en) * 1993-04-05 1996-02-15 Heimann Systems Gmbh & Co X-ray inspection of containers and trucks
DE4406956C2 (en) 1994-03-03 1997-01-30 Heimann Systems Gmbh & Co A method of detecting improper baggage items
US5591462A (en) * 1994-11-21 1997-01-07 Pressco Technology, Inc. Bottle inspection along molder transport path
US5615244A (en) * 1995-05-25 1997-03-25 Morton International, Inc. Real time radiographic inspection system
DE19532965C2 (en) * 1995-09-07 1998-07-16 Heimann Systems Gmbh & Co X-ray inspection of large-volume goods
US7045787B1 (en) * 1995-10-23 2006-05-16 Science Applications International Corporation Density detection using real time discrete photon counting for fast moving targets
US5764683B1 (en) * 1996-02-12 2000-11-21 American Science & Eng Inc Mobile x-ray inspection system for large objects
US5638420A (en) * 1996-07-03 1997-06-10 Advanced Research And Applications Corporation Straddle inspection system
US5838759A (en) * 1996-07-03 1998-11-17 Advanced Research And Applications Corporation Single beam photoneutron probe and X-ray imaging system for contraband detection and identification
US6026135A (en) * 1997-04-04 2000-02-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Multisensor vehicle-mounted mine detector
EP1040489A1 (en) * 1997-12-19 2000-10-04 American Science &amp; Engineering, Inc. X-ray ambient level safety system
US6151381A (en) * 1998-01-28 2000-11-21 American Science And Engineering, Inc. Gated transmission and scatter detection for x-ray imaging
US6094472A (en) * 1998-04-14 2000-07-25 Rapiscan Security Products, Inc. X-ray backscatter imaging system including moving body tracking assembly
US6421420B1 (en) 1998-12-01 2002-07-16 American Science & Engineering, Inc. Method and apparatus for generating sequential beams of penetrating radiation
US6124647A (en) * 1998-12-16 2000-09-26 Donnelly Corporation Information display in a rearview mirror
EP1147406A1 (en) * 1998-12-22 2001-10-24 American Science &amp; Engineering, Inc. Unilateral hand-held x-ray inspection apparatus
US6356620B1 (en) * 1999-07-30 2002-03-12 American Science & Engineering, Inc. Method for raster scanning an X-ray tube focal spot
US6269142B1 (en) * 1999-08-11 2001-07-31 Steven W. Smith Interrupted-fan-beam imaging
US7010094B2 (en) * 2000-02-10 2006-03-07 American Science And Engineering, Inc. X-ray inspection using spatially and spectrally tailored beams
US6434219B1 (en) * 2000-07-24 2002-08-13 American Science And Engineering, Inc. Chopper wheel with two axes of rotation
EP1428048A2 (en) * 2001-05-03 2004-06-16 American Science &amp; Engineering, Inc. Nautical x-ray inspection system
US6618465B2 (en) 2001-11-12 2003-09-09 General Electric Company X-ray shielding system and shielded digital radiographic inspection system and method
US6727506B2 (en) * 2002-03-22 2004-04-27 Malcolm C. Mallette Method and apparatus for a radiation monitoring system
US7099434B2 (en) * 2002-11-06 2006-08-29 American Science And Engineering, Inc. X-ray backscatter mobile inspection van
GB2400480A (en) * 2003-04-10 2004-10-13 Adbury Electronics Ltd Detection of vehicles carrying radioactive sources on a highway

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278115B1 (en) 1998-08-28 2001-08-21 Annistech, Inc. X-ray inspection system detector with plastic scintillating material
US6249567B1 (en) 1998-12-01 2001-06-19 American Science & Engineering, Inc. X-ray back scatter imaging system for undercarriage inspection
US6282260B1 (en) 1998-12-14 2001-08-28 American Science & Engineering, Inc. Unilateral hand-held x-ray inspection apparatus
CN2526863Y (en) 2002-01-17 2002-12-18 中国原子能科学研究院 Portable metal detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9182516B2 (en) 2007-02-01 2015-11-10 Rapiscan Systems, Inc. Personnel screening system
US9285325B2 (en) 2007-02-01 2016-03-15 Rapiscan Systems, Inc. Personnel screening system
US9291741B2 (en) 2007-02-01 2016-03-22 Rapiscan Systems, Inc. Personnel screening system

Also Published As

Publication number Publication date
US20070098142A1 (en) 2007-05-03
CN101379415A (en) 2009-03-04
EP1949139A2 (en) 2008-07-30
WO2007051092A2 (en) 2007-05-03
US7551715B2 (en) 2009-06-23
WO2007051092A3 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
KR101034753B1 (en) X-ray inspection with contemporaneous and proximal transmission and backscatter imaging
US6282260B1 (en) Unilateral hand-held x-ray inspection apparatus
US6292533B1 (en) Mobile X-ray inspection system for large objects
EP1690115B1 (en) Adaptive scanning of materials using nuclear resonance fluorescence imaging
ES2206599T3 (en) Contraband detection by interactive use of multiple probes scan.
US7335887B1 (en) System and method for target inspection using discrete photon counting and neutron detection
US7166844B1 (en) Target density imaging using discrete photon counting to produce high-resolution radiographic images
US6856667B2 (en) X-ray inspection system
US7505556B2 (en) X-ray backscatter detection imaging modules
US4918315A (en) Neutron scatter method and apparatus for the noninvasive interrogation of objects
CN103064125B (en) Receiving guidance systems and methods for improving and screened
CN1798970B (en) Vehicle mounted inspection systems and methods
CN1318841C (en) X-ray backscatter mobile inspection van
RU2523771C2 (en) Improved security system for screening people
EP0986745B1 (en) Single beam photoneutron probe and x-ray imaging system for contraband detection and identification
US9348040B2 (en) Adaptive scanning in an imaging system
CN101506688B (en) Scattering tomography attenuation
US6473487B1 (en) Method and apparatus for physical characteristics discrimination of objects using a limited view three dimensional reconstruction
US20060022140A1 (en) Methods and apparatus for detection of contraband using terahertz radiation
JP5258752B2 (en) A system for rapid and sensitive remote detection of surface contaminants
US8135112B2 (en) Personnel security screening system with enhanced privacy
US6347132B1 (en) High energy X-ray inspection system for detecting nuclear weapons materials
KR101000182B1 (en) Backscatter inspection portal
US20070258562A1 (en) X-ray Imaging of Baggage and Personnel Using Arrays of Discrete Sources and Multiple Collimated Beams
US9052403B2 (en) Compact mobile cargo scanning system

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted