US8287590B2 - Medicated stent having multi-layer polymer coating - Google Patents
Medicated stent having multi-layer polymer coating Download PDFInfo
- Publication number
- US8287590B2 US8287590B2 US12/828,512 US82851210A US8287590B2 US 8287590 B2 US8287590 B2 US 8287590B2 US 82851210 A US82851210 A US 82851210A US 8287590 B2 US8287590 B2 US 8287590B2
- Authority
- US
- United States
- Prior art keywords
- polymer
- stent
- copolymer
- drug
- polymers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 269
- 238000000576 coating method Methods 0.000 title claims abstract description 111
- 239000011248 coating agent Substances 0.000 title claims description 71
- 239000003814 drug Substances 0.000 claims description 188
- 229940079593 drug Drugs 0.000 claims description 187
- 229920001577 copolymer Polymers 0.000 claims description 73
- 229920002635 polyurethane Polymers 0.000 claims description 63
- 239000004814 polyurethane Substances 0.000 claims description 63
- 239000013543 active substance Substances 0.000 claims description 46
- 239000000203 mixture Substances 0.000 claims description 46
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 40
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 40
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 37
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 36
- 229930012538 Paclitaxel Natural products 0.000 claims description 35
- 229960001592 paclitaxel Drugs 0.000 claims description 35
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 32
- 239000000020 Nitrocellulose Substances 0.000 claims description 30
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 claims description 30
- 229920001220 nitrocellulos Polymers 0.000 claims description 30
- 239000004593 Epoxy Substances 0.000 claims description 27
- 229920002678 cellulose Polymers 0.000 claims description 24
- 229920000058 polyacrylate Polymers 0.000 claims description 24
- 229920000669 heparin Polymers 0.000 claims description 21
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 claims description 18
- 229920001223 polyethylene glycol Polymers 0.000 claims description 17
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 16
- -1 dextan Chemical compound 0.000 claims description 16
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 15
- 239000002202 Polyethylene glycol Substances 0.000 claims description 15
- 229960002897 heparin Drugs 0.000 claims description 15
- 229920001692 polycarbonate urethane Polymers 0.000 claims description 15
- 229940044192 2-hydroxyethyl methacrylate Drugs 0.000 claims description 14
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 claims description 11
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 claims description 11
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 10
- 229920000515 polycarbonate Polymers 0.000 claims description 10
- 239000004417 polycarbonate Substances 0.000 claims description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 9
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 claims description 9
- 229960002930 sirolimus Drugs 0.000 claims description 9
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 claims description 9
- 230000000087 stabilizing effect Effects 0.000 claims description 9
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 8
- 229930189077 Rifamycin Natural products 0.000 claims description 8
- 230000002769 anti-restenotic effect Effects 0.000 claims description 8
- 239000004019 antithrombin Substances 0.000 claims description 8
- 229960000485 methotrexate Drugs 0.000 claims description 8
- 229960003292 rifamycin Drugs 0.000 claims description 8
- HJYYPODYNSCCOU-ODRIEIDWSA-N rifamycin SV Chemical compound OC1=C(C(O)=C2C)C3=C(O)C=C1NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@H](C)[C@@H](OC)\C=C\O[C@@]1(C)OC2=C3C1=O HJYYPODYNSCCOU-ODRIEIDWSA-N 0.000 claims description 8
- 229940117958 vinyl acetate Drugs 0.000 claims description 8
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 7
- 229920000909 polytetrahydrofuran Polymers 0.000 claims description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 7
- PUDHBTGHUJUUFI-SCTWWAJVSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s,3r)-1-amino-3-hydroxy-1-oxobutan-2-yl]-19-[[(2r)-2-amino-3-naphthalen-2-ylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-p Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=C2C=CC=CC2=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 PUDHBTGHUJUUFI-SCTWWAJVSA-N 0.000 claims description 6
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 claims description 6
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 6
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 claims description 6
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 claims description 6
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 claims description 6
- 229960001716 benzalkonium Drugs 0.000 claims description 6
- CYDRXTMLKJDRQH-UHFFFAOYSA-N benzododecinium Chemical compound CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 CYDRXTMLKJDRQH-UHFFFAOYSA-N 0.000 claims description 6
- IZEKFCXSFNUWAM-UHFFFAOYSA-N dipyridamole Chemical compound C=12N=C(N(CCO)CCO)N=C(N3CCCCC3)C2=NC(N(CCO)CCO)=NC=1N1CCCCC1 IZEKFCXSFNUWAM-UHFFFAOYSA-N 0.000 claims description 6
- 229960002768 dipyridamole Drugs 0.000 claims description 6
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 claims description 6
- 229960002437 lanreotide Drugs 0.000 claims description 6
- 108010021336 lanreotide Proteins 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229920002647 polyamide Polymers 0.000 claims description 6
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 6
- 229920001296 polysiloxane Polymers 0.000 claims description 6
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 229960005356 urokinase Drugs 0.000 claims description 6
- 230000002708 enhancing effect Effects 0.000 claims description 5
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 claims description 5
- 229920002717 polyvinylpyridine Polymers 0.000 claims description 5
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 4
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 claims description 4
- 238000004873 anchoring Methods 0.000 claims description 4
- 229960005167 everolimus Drugs 0.000 claims description 4
- 239000003862 glucocorticoid Substances 0.000 claims description 4
- 229920006393 polyether sulfone Polymers 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 4
- 230000002459 sustained effect Effects 0.000 claims description 4
- 229960001967 tacrolimus Drugs 0.000 claims description 4
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 claims description 4
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 claims description 4
- GQGRDYWMOPRROR-ZIFKCHSBSA-N (e)-7-[(1r,2r,3s,5s)-3-hydroxy-5-[(4-phenylphenyl)methoxy]-2-piperidin-1-ylcyclopentyl]hept-4-enoic acid Chemical compound O([C@H]1C[C@@H]([C@@H]([C@H]1CC\C=C\CCC(O)=O)N1CCCCC1)O)CC(C=C1)=CC=C1C1=CC=CC=C1 GQGRDYWMOPRROR-ZIFKCHSBSA-N 0.000 claims description 3
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 claims description 3
- 108010079709 Angiostatins Proteins 0.000 claims description 3
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000005528 B01AC05 - Ticlopidine Substances 0.000 claims description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 3
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 claims description 3
- 102400001047 Endostatin Human genes 0.000 claims description 3
- 108010079505 Endostatins Proteins 0.000 claims description 3
- 108010056764 Eptifibatide Proteins 0.000 claims description 3
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 3
- 102000007625 Hirudins Human genes 0.000 claims description 3
- 108010007267 Hirudins Proteins 0.000 claims description 3
- 108010007859 Lisinopril Proteins 0.000 claims description 3
- 108091034117 Oligonucleotide Proteins 0.000 claims description 3
- 108010023197 Streptokinase Proteins 0.000 claims description 3
- 229940122388 Thrombin inhibitor Drugs 0.000 claims description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims description 3
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims description 3
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 claims description 3
- 229960001138 acetylsalicylic acid Drugs 0.000 claims description 3
- 229960002684 aminocaproic acid Drugs 0.000 claims description 3
- KXNPVXPOPUZYGB-XYVMCAHJSA-N argatroban Chemical compound OC(=O)[C@H]1C[C@H](C)CCN1C(=O)[C@H](CCCN=C(N)N)NS(=O)(=O)C1=CC=CC2=C1NC[C@H](C)C2 KXNPVXPOPUZYGB-XYVMCAHJSA-N 0.000 claims description 3
- 229960003856 argatroban Drugs 0.000 claims description 3
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 claims description 3
- YEESUBCSWGVPCE-UHFFFAOYSA-N azanylidyneoxidanium iron(2+) pentacyanide Chemical compound [Fe++].[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.N#[O+] YEESUBCSWGVPCE-UHFFFAOYSA-N 0.000 claims description 3
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 claims description 3
- 229960002170 azathioprine Drugs 0.000 claims description 3
- 229960000830 captopril Drugs 0.000 claims description 3
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 claims description 3
- 229960000590 celecoxib Drugs 0.000 claims description 3
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 claims description 3
- 229920003086 cellulose ether Polymers 0.000 claims description 3
- HHHKFGXWKKUNCY-FHWLQOOXSA-N cilazapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H]1C(N2[C@@H](CCCN2CCC1)C(O)=O)=O)CC1=CC=CC=C1 HHHKFGXWKKUNCY-FHWLQOOXSA-N 0.000 claims description 3
- 229960005025 cilazapril Drugs 0.000 claims description 3
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims description 3
- 229960004316 cisplatin Drugs 0.000 claims description 3
- 229960001338 colchicine Drugs 0.000 claims description 3
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 claims description 3
- 239000003246 corticosteroid Substances 0.000 claims description 3
- 229960004397 cyclophosphamide Drugs 0.000 claims description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 3
- 229960004969 dalteparin Drugs 0.000 claims description 3
- 229960003957 dexamethasone Drugs 0.000 claims description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 3
- 229960000610 enoxaparin Drugs 0.000 claims description 3
- 229960004468 eptifibatide Drugs 0.000 claims description 3
- GLGOPUHVAZCPRB-LROMGURASA-N eptifibatide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCCNC(=N)N)NC(=O)CCSSC[C@@H](C(N)=O)NC(=O)[C@@H]2CCCN2C(=O)[C@@H]1CC1=CN=C2[C]1C=CC=C2 GLGOPUHVAZCPRB-LROMGURASA-N 0.000 claims description 3
- 229960002949 fluorouracil Drugs 0.000 claims description 3
- 229940006607 hirudin Drugs 0.000 claims description 3
- 238000003384 imaging method Methods 0.000 claims description 3
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 claims description 3
- 229960002394 lisinopril Drugs 0.000 claims description 3
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 claims description 3
- 229960004027 molsidomine Drugs 0.000 claims description 3
- XLFWDASMENKTKL-UHFFFAOYSA-N molsidomine Chemical compound O1C(N=C([O-])OCC)=C[N+](N2CCOCC2)=N1 XLFWDASMENKTKL-UHFFFAOYSA-N 0.000 claims description 3
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 claims description 3
- 229960000951 mycophenolic acid Drugs 0.000 claims description 3
- 229960001597 nifedipine Drugs 0.000 claims description 3
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 claims description 3
- 229960002460 nitroprusside Drugs 0.000 claims description 3
- 229940012957 plasmin Drugs 0.000 claims description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 3
- 229960005205 prednisolone Drugs 0.000 claims description 3
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 claims description 3
- 229960003912 probucol Drugs 0.000 claims description 3
- FYPMFJGVHOHGLL-UHFFFAOYSA-N probucol Chemical compound C=1C(C(C)(C)C)=C(O)C(C(C)(C)C)=CC=1SC(C)(C)SC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 FYPMFJGVHOHGLL-UHFFFAOYSA-N 0.000 claims description 3
- 229940107685 reopro Drugs 0.000 claims description 3
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 claims description 3
- 229960005202 streptokinase Drugs 0.000 claims description 3
- 239000003868 thrombin inhibitor Substances 0.000 claims description 3
- PHWBOXQYWZNQIN-UHFFFAOYSA-N ticlopidine Chemical compound ClC1=CC=CC=C1CN1CC(C=CS2)=C2CC1 PHWBOXQYWZNQIN-UHFFFAOYSA-N 0.000 claims description 3
- 229960005001 ticlopidine Drugs 0.000 claims description 3
- COKMIXFXJJXBQG-NRFANRHFSA-N tirofiban Chemical compound C1=CC(C[C@H](NS(=O)(=O)CCCC)C(O)=O)=CC=C1OCCCCC1CCNCC1 COKMIXFXJJXBQG-NRFANRHFSA-N 0.000 claims description 3
- 229960003425 tirofiban Drugs 0.000 claims description 3
- 229960001295 tocopherol Drugs 0.000 claims description 3
- 229930003799 tocopherol Natural products 0.000 claims description 3
- 235000010384 tocopherol Nutrition 0.000 claims description 3
- 239000011732 tocopherol Substances 0.000 claims description 3
- 229950007952 vapiprost Drugs 0.000 claims description 3
- 229960003048 vinblastine Drugs 0.000 claims description 3
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims description 3
- 229960004528 vincristine Drugs 0.000 claims description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 3
- 229940087652 vioxx Drugs 0.000 claims description 3
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 claims description 3
- 229960005080 warfarin Drugs 0.000 claims description 3
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims description 3
- 229920002126 Acrylic acid copolymer Polymers 0.000 claims description 2
- 229920006243 acrylic copolymer Polymers 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 2
- 238000002595 magnetic resonance imaging Methods 0.000 claims description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 2
- 229960000278 theophylline Drugs 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 claims 2
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 claims 1
- 102000012936 Angiostatins Human genes 0.000 claims 1
- 101000712605 Theromyzon tessulatum Theromin Proteins 0.000 claims 1
- 229940044600 maleic anhydride Drugs 0.000 claims 1
- 210000005166 vasculature Anatomy 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 254
- 239000002987 primer (paints) Substances 0.000 description 54
- 239000000243 solution Substances 0.000 description 46
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 32
- 238000000034 method Methods 0.000 description 32
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 22
- 238000010828 elution Methods 0.000 description 19
- 229920001477 hydrophilic polymer Polymers 0.000 description 19
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 16
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 16
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 15
- 229940113088 dimethylacetamide Drugs 0.000 description 15
- 239000002131 composite material Substances 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000010935 stainless steel Substances 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 229920001600 hydrophobic polymer Polymers 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 208000037803 restenosis Diseases 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 108010010803 Gelatin Proteins 0.000 description 8
- 239000012867 bioactive agent Substances 0.000 description 8
- 229920000159 gelatin Polymers 0.000 description 8
- 239000008273 gelatin Substances 0.000 description 8
- 235000019322 gelatine Nutrition 0.000 description 8
- 235000011852 gelatine desserts Nutrition 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 230000002965 anti-thrombogenic effect Effects 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 230000001954 sterilising effect Effects 0.000 description 7
- 229920002554 vinyl polymer Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 102000008100 Human Serum Albumin Human genes 0.000 description 6
- 108091006905 Human Serum Albumin Proteins 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 208000007536 Thrombosis Diseases 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229920000877 Melamine resin Polymers 0.000 description 5
- 239000013504 Triton X-100 Substances 0.000 description 5
- 229920004890 Triton X-100 Polymers 0.000 description 5
- 150000001408 amides Chemical group 0.000 description 5
- 238000002399 angioplasty Methods 0.000 description 5
- 239000003146 anticoagulant agent Substances 0.000 description 5
- 239000004599 antimicrobial Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 239000003791 organic solvent mixture Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 229920003332 Epotuf® Polymers 0.000 description 4
- 239000004349 Polyvinylpyrrolidone-vinyl acetate copolymer Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 102000019400 Tissue-type plasminogen activator Human genes 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- 229920006397 acrylic thermoplastic Polymers 0.000 description 4
- 230000001464 adherent effect Effects 0.000 description 4
- 150000001412 amines Chemical group 0.000 description 4
- 239000004037 angiogenesis inhibitor Substances 0.000 description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 description 4
- 239000002260 anti-inflammatory agent Substances 0.000 description 4
- 229940127090 anticoagulant agent Drugs 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 239000003527 fibrinolytic agent Substances 0.000 description 4
- 229920005570 flexible polymer Polymers 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 229940043355 kinase inhibitor Drugs 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- 235000019448 polyvinylpyrrolidone-vinyl acetate copolymer Nutrition 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 4
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 239000004971 Cross linker Substances 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 230000001772 anti-angiogenic effect Effects 0.000 description 3
- 230000001028 anti-proliverative effect Effects 0.000 description 3
- 229940127218 antiplatelet drug Drugs 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000000824 cytostatic agent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 3
- 239000013615 primer Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 0 *O[C@@H]1O[C@H](C)[C@@H](O[C@@H]2O[C@H](C)[C@@H](C)[C@H](C)[C@H]2C)[C@H](C)[C@H]1C.C.C Chemical compound *O[C@@H]1O[C@H](C)[C@@H](O[C@@H]2O[C@H](C)[C@@H](C)[C@H](C)[C@H]2C)[C@H](C)[C@H]1C.C.C 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- 239000005541 ACE inhibitor Substances 0.000 description 2
- 102400000068 Angiostatin Human genes 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229940127291 Calcium channel antagonist Drugs 0.000 description 2
- 102400001368 Epidermal growth factor Human genes 0.000 description 2
- 101800003838 Epidermal growth factor Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 230000002927 anti-mitotic effect Effects 0.000 description 2
- 239000000504 antifibrinolytic agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 239000000480 calcium channel blocker Substances 0.000 description 2
- 229940082638 cardiac stimulant phosphodiesterase inhibitors Drugs 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- 235000001671 coumarin Nutrition 0.000 description 2
- 150000004775 coumarins Chemical class 0.000 description 2
- 229940111134 coxibs Drugs 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229940116977 epidermal growth factor Drugs 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000021323 fish oil Nutrition 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000007974 melamines Chemical class 0.000 description 2
- 239000002829 mitogen activated protein kinase inhibitor Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229940012843 omega-3 fatty acid Drugs 0.000 description 2
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002571 phosphodiesterase inhibitor Substances 0.000 description 2
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920005596 polymer binder Polymers 0.000 description 2
- 239000002491 polymer binding agent Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 150000003815 prostacyclins Chemical class 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical class C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 2
- 229940075620 somatostatin analogue Drugs 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- RZWIIPASKMUIAC-VQTJNVASSA-N thromboxane Chemical compound CCCCCCCC[C@H]1OCCC[C@@H]1CCCCCCC RZWIIPASKMUIAC-VQTJNVASSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000003558 transferase inhibitor Substances 0.000 description 2
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 2
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229920003176 water-insoluble polymer Polymers 0.000 description 2
- NJVOHKFLBKQLIZ-UHFFFAOYSA-N (2-ethenylphenyl) prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1C=C NJVOHKFLBKQLIZ-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- FEWFXBUNENSNBQ-UHFFFAOYSA-N 2-hydroxyacrylic acid Chemical class OC(=C)C(O)=O FEWFXBUNENSNBQ-UHFFFAOYSA-N 0.000 description 1
- CVEPFOUZABPRMK-UHFFFAOYSA-N 2-methylprop-2-enoic acid;styrene Chemical compound CC(=C)C(O)=O.C=CC1=CC=CC=C1 CVEPFOUZABPRMK-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- BNCADMBVWNPPIZ-UHFFFAOYSA-N 2-n,2-n,4-n,4-n,6-n,6-n-hexakis(methoxymethyl)-1,3,5-triazine-2,4,6-triamine Chemical compound COCN(COC)C1=NC(N(COC)COC)=NC(N(COC)COC)=N1 BNCADMBVWNPPIZ-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- DSUFPYCILZXJFF-UHFFFAOYSA-N 4-[[4-[[4-(pentoxycarbonylamino)cyclohexyl]methyl]cyclohexyl]carbamoyloxy]butyl n-[4-[[4-(butoxycarbonylamino)cyclohexyl]methyl]cyclohexyl]carbamate Chemical compound C1CC(NC(=O)OCCCCC)CCC1CC1CCC(NC(=O)OCCCCOC(=O)NC2CCC(CC3CCC(CC3)NC(=O)OCCCC)CC2)CC1 DSUFPYCILZXJFF-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- WRPOOWMUTPTCKA-UHFFFAOYSA-N C.C.CCC(C)N1CCCC1=O Chemical compound C.C.CCC(C)N1CCCC1=O WRPOOWMUTPTCKA-UHFFFAOYSA-N 0.000 description 1
- SZQWBZDDEPXIOF-UHFFFAOYSA-N CCC(C)(CC(C)(C)C(=O)OCCO)C(=O)OC Chemical compound CCC(C)(CC(C)(C)C(=O)OCCO)C(=O)OC SZQWBZDDEPXIOF-UHFFFAOYSA-N 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 101000801481 Homo sapiens Tissue-type plasminogen activator Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 230000003527 anti-angiogenesis Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000702 anti-platelet effect Effects 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- BPOZNMOEPOHHSC-UHFFFAOYSA-N butyl prop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCCCOC(=O)C=C BPOZNMOEPOHHSC-UHFFFAOYSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000004193 disodium 5'-ribonucleotide Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229920001480 hydrophilic copolymer Polymers 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229960003574 milrinone Drugs 0.000 description 1
- PZRHRDRVRGEVNW-UHFFFAOYSA-N milrinone Chemical compound N1C(=O)C(C#N)=CC(C=2C=CN=CC=2)=C1C PZRHRDRVRGEVNW-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000001453 nonthrombogenic effect Effects 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920001849 poly(hydroxybutyrate-co-valerate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229940050929 polyethylene glycol 3350 Drugs 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- MNCGMVDMOKPCSQ-UHFFFAOYSA-M sodium;2-phenylethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=CC1=CC=CC=C1 MNCGMVDMOKPCSQ-UHFFFAOYSA-M 0.000 description 1
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 125000004962 sulfoxyl group Chemical group 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 231100000216 vascular lesion Toxicity 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/225—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/425—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/62—Compostable, hydrosoluble or hydrodegradable materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/08—Coatings comprising two or more layers
Definitions
- This invention relates to stents having medicated multi-layer hybrid polymer coatings, useful for the treatment of stenosed vasculature or other body passages.
- Angioplasty procedures have dramatically increased as a treatment for occluded arteries.
- vessels often experience reclosure following the angioplasty procedure.
- the closure of vessels following angioplasty is known as restenosis.
- the process of restenosis can occur in over 30% of the cases, depending upon the vessel location, lesion length, as well as other variables.
- Restenosis may be caused in some cases by simple mechanical reflex; e.g. caused by the elastic rebound of the arterial wall and/or by dissections in the vessel wall caused by the angioplasty procedure.
- These mechanical problems have been mitigated somewhat by the use of stents to hold open and prevent elastic rebound of the vessel, and reducing the level of restenosis for many patients.
- the stent is typically introduced by catheter into a vascular lumen and expanded into contact with the stenosed vascular lesion, thereby providing internal support for the vessel wall.
- Examples of stents, which have been used in the clinics include stents disclosed in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor which are incorporated herein by reference in their entirety.
- Another aspect of restenosis is believed to be a natural healing reaction to the injury of the arterial wall that is caused by the angioplasty procedure.
- the final result of the complex steps of the healing process is intimal hyperplasia, the migration and proliferation of medial smooth muscle cells, until the vessel is again occluded.
- Stents are typically tubular metallic devices, which are thin-metal screen-like scaffolds, and are inserted in a compressed form and then expanded at the target site.
- the stents are intended to provide long-term support for the expanded vessel, to keep it from restenosing over time.
- initial data from the clinic indicates that the stent implants are not entirely successful in their mission, and in as many as 30% or more of the cases, the vessel restenoses within one year. It would be desirable to have medication(s) available on the stent surface to cope with problems, which arise on the stent surface or in adjacent patient tissue.
- Thrombus formation on stent surfaces can be a natural consequence of placement of metal objects in the vasculature. It is recognized that the thrombi formed on stents may break loose from the stent, and produce undesired and dangerous occlusions elsewhere in the vasculature. Unfortunately, an aggressive anti-thrombogenic regime compromises a patient's ability to heal injuries that accompany the stenting procedure or other collateral procedures that may have been required. Thus, it is desirable that methods be found that reduce the need for the aggressive anti-thrombogenic therapy associated with coronary stent placement.
- Drugs listed include heparin and other anticoagulant agents, glucocorticoid or other anti-inflammatory agents, and various anti-replicate agents.
- Bioabsorbable polymers may depend on the enzymatic composition of the patient, and may be subject to patient to patient variation in drug release. Also, such polymers possess inferior adhesion for this application.
- Biostable polymers listed include silicone, polyurethanes, polyesters, vinyl homopolymers and copolymers, acrylate homopolymers and copolymers, polyethers, and cellulosics.
- the use of a single polymer in the drug release layer limits the drug release dynamics to that enabled by the specific polymer used in the layer, and is thus less able to regulate the drug release dynamics to the same extent as is possible using hybrid polymer layers. Further, optimizing drug release dynamics does not provide a coating with the necessary adhesion and flexibility to be clinically acceptable on a stent.
- stents which are seeded with endothelial cells.
- sheep endothelial cells that had undergone retrovirus-mediated gene transfer for either bacterial beta-galactosidase or human tissue-type plasminogen activator were seeded onto stainless steel stents and grown until the stents were covered. The cells could therefore able to be delivered to the vascular wall where they could provide therapeutic proteins.
- Other methods of providing therapeutic substances to the vascular wall include simple heparin-coated metallic stents, whereby a heparin coating is ionically or covalently bonded to the stent.
- U.S. Pat. No. 5,843,172 to Yan describes a porous metallic stent in which medication is loaded into the pores of the metal.
- the stent may also have a polymeric cover, which would contain a different drug than the drug that was loaded into the metal pores. This has the ability to deliver more than one drug, but the ability to mediate the drug release dynamics is limited by the fact that only one type of polymer is used, and the drug in the metallic pores is not bound in a polymeric medium. It has been found that the use of pores without polymer entrapment of the drug results in the drug release rate/profile being entirely dependent on the drug solubility.
- Prior coatings have inferior adhesion and flexibility during stent expansion because they are based on applying the drug(s) without a polymer binder, but instead over-coating it with a separate covering polymer layer which is used to control the drug elution rate. In addition, they use covering single polymer layers that have physical porosity that must be carefully controlled in order to control the drug elution rate(s).
- Prior coatings also do not provide drug-containing layers with useful cohesion. Therefore, even though polymer layers cover the drug layers, the drug layers can break up in the direction orthogonal to the device surface, causing catastrophic adhesion failures. Up to 40% of the drug can be lost during stent expansion with prior drug layer coatings. (G. W. Stone, May 5, 2003 TCTMD e-letter)
- the inventive coatings use a primer system with at least two polymers, preferably a hydrophilic and a hydrophobic polymer, that allows outstanding adhesion to metal substrates and the flexibility to meet the demanding requirements of vascular stents.
- the inventive hybrid coatings use a drug delivery layer which permits the loading and elution control of virtually any drug or combinations of drugs from the surface of a stent. This provides a valuable drug delivery platform which can be modified slightly to adapt to different substrate materials and shapes, and to different active agents, without major modifications.
- the inventive hybrid polymer binder controls the drug elution rate by using various ratios of hydrophilic polymer to hydrophobic polymer, the combination stabilizing the drug during manufacturing, sterilization, and deployment of the stent.
- the hybrid polymer matrix or alloy allows control of the elution rate with less need to control layer thickness as compared to previous efforts. Moreover, there is no drug loss upon expansion with stents coated according to the instant invention.
- the present invention comprises a stent on which multiple polymer layers are applied to the stent surfaces, at least one (but not all) of which polymer layers provide reservoirs for a variety of individual drugs or drug cocktails.
- the polymer layers may be hybrid polymer layers, and may serve different purposes in the multi-layer stent coating.
- the polymer layers of the invention typically comprise a bonding or primer layer, which can be applied directly onto the metallic stent surface.
- An intermediate polymer layer optionally can be applied over the primer layer.
- the intermediate polymer layer is used to enhance the flexibility, elasticity, and expandability of the composite hybrid polymer layers.
- one or more drug carrier polymer layers can be applied over the intermediate layer, or if an intermediate layer is not used, directly onto the primer layer.
- One or more of the polymer layers may be a hybrid polymer layer.
- a hybrid polymer layer is one in which two or more different polymers are combined forming a layer, which is a homogeneous polymeric alloy.
- a primer hybrid polymer contains polymers designed to provide anchorage to the stent surface.
- An intermediate hybrid polymer layer contains polymers capable of imparting enhanced flexibility and elasticity to the coating composite and adhesion to the primer and to the drug release layers.
- the drug release layer preferably is also a hybrid polymer layer, but contains different polymers from those used in the other two layers.
- the polymer layers of the invention possess excellent flexibility and elasticity, and they are expandable, so as to remain intact following sterilization, implantation in the patient, and stent expansion.
- the polymer layers are not significantly bioerodable, so that differences in hormonal activity from patient to patient are minimized.
- the polymer layers can regulate drug release dynamics because hydrophilic and hydrophobic polymers are employed.
- the drug-loaded layers of the invention provide technology for entrapping therapeutic drug mixtures in designed, biocompatible, hybrid polymer layers.
- the polymer layers serve as reservoirs for the drugs, and protect and stabilize the drugs during sterilization and storage.
- the polymer layers can be porous to body fluids, such that the drugs can become solubilized via diffusion of body fluids into the polymer layers, with subsequent diffusion of the solubilized drugs out of the layers at controlled rates.
- the polymer-drug layers can be deposited over the polymeric coated stent scaffolds, which can be deliverable to stenosed lesions via catheters, such as in the manner currently practiced in the clinic.
- the polymer layers are designed to provide efficacious drug concentrations for appropriate time periods at the stenosed site.
- drug-polymer layers may provide fast drug release for about one to three days, followed by a slower sustained drug release rate for one week, two weeks, 30 days or longer, as needed.
- the sum of the periods of fast and slow release may be referred to as a sustained period.
- the drug release layers can also be designed to provide different drug release rate profiles, if desired, by for instance adjusting the ratio of hydrophilic to hydrophobic polymers in the polymer drug release layer.
- the polymer layers comprise polymeric alloys of polyvinylpyrrolidone, cellulose esters, and polyurethanes, acrylate polymers and copolymers, polyethylene glycols, polyethylene oxides, hydrophilic acrylate polymers and copolymers, melamines or epoxides in order to alter diffusion dynamics, or to enhance physical properties such as adhesion, flexibility, and abrasion resistance by varying the components in the casting solution (especially the ratio of hydrophilic to hydrophobic polymers). It is contemplated that for a faster drug release, a higher ratio of hydrophilic polymer to hydrophobic polymer would be used and visa versa to slow the drug release.
- the surface properties of the coating can be further influenced by its relative composition, having varying degrees for example, from highly lubricious to essentially non-lubricious.
- the surface can become a drug reservoir and provide high regional drug concentrations, while systemic concentrations remain low.
- Such polymeric alloys are described herein, and also in U.S. Pat. No. 5,069,899, Whitbourne, et al., titled “Anti-thrombogenic, anti-microbial compositions containing heparin;” U.S. Pat. No. 5,525,348, Whitbourne, et al., titled “Coating compositions comprising pharmaceutical agents;” U.S. Pat. No.
- the coating composition can be used to coat a variety of stents.
- stents include: either self-expanding stents (such as the Wallstent variety), or balloon-expandable stents (as are available in a variety of styles, for instance, Gianturco-Roubin, Palmaz-Shatz, Wiktor, Strecker, Cordis, AVE Micro Stent, Boston Scientific Nir stent, and Guidant MULTI-LINK® coronary stent).
- the stents are typically prepared from materials such as stainless steel or tantalum, or nitinol. They have various mesh patterns having sharp edges, and are shorter or longer and have lower or higher diameters.
- the coatings of the invention are suitable for all such stents and others known to those of skill in the art or to be subsequently developed.
- One embodiment of the invention relates to a medicated stent having a coating comprising: (a) a primer layer comprising a first composition of one or more polymers, optionally a combination of hydrophilic and hydrophobic polymers, and (b) a drug reservoir layer comprising a polymeric matrix of a second composition of one or more polymers, optionally a combination of at least one hydrophilic polymer and at least one hydrophobic polymer, the polymer composition of the drug reservoir layer being distinct from the polymer composition of the primer layer, and the drug reservoir layer further comprising one or more active agents, the coating remaining intact upon stent expansion and during a sustained period thereafter, and releasing efficacious amounts of the active agent at the site of insertion and stent expansion in a subject.
- the medicated stent can further comprise an intermediate layer between the primer layer and the drug release layer, comprising a polymer composition distinct from the polymer composition of the primer and drug reservoir layers.
- This medicated stent may further comprise one or more image enhancing material(s) in one of the layers, or in a separate layer(s), that is capable of enhancing visibility if the device under ultra sound, magnetic resonance imaging, X ray imaging, and/or other imaging modality.
- the medicated stent may comprise different agents that are contained within the same and/or different layers.
- the primer layer and/or the drug reservoir layer may be a single layer or may comprise two or more layers.
- the intermediate layer may comprise multiple layers.
- the medicated stent may comprise more than one active agent.
- the primer layer comprises one or more polymers selected from the group consisting of acrylate polymer/copolymer, acrylate carboxyl and/or hydroxyl copolymer, polyvinylpyrrolidone/vinylacetate copolymer (PVP/VA), olefin acrylic acid copolymer, ethylene acrylic acid copolymer, epoxy polymer, polyethylene glycol, polyethylene oxide, polyvinylpyridine copolymers, polyamide polymers/copolymers polyimide polymers/copolymers, ethylene vinylacetate copolymer and/or polyether sulfones.
- PVP/VA polyvinylpyrrolidone/vinylacetate copolymer
- olefin acrylic acid copolymer ethylene acrylic acid copolymer
- epoxy polymer polyethylene glycol, polyethylene oxide, polyvinylpyridine copolymers
- polyamide polymers/copolymers polyimide polymers/copolymers
- the intermediate layer may comprise one or more polymers selected from the group consisting of acrylate polymer/copolymer, acrylate carboxyl and/or hydroxyl, PVP/VA, polyurethane, silicone urethane polymer, polycarbonate urethane polymer, polyvinylbutyral, and/or epoxy polymers.
- the primer and/or intermediate and/or drug reservoir layer may comprise one or more polymer selected from the group consisting of polyurethane, polycarbonate urethane polymer, and silicone urethane polymer.
- the medicated stent may comprise one or more polymers having a flexural modulus greater that 1000 psi and elongation at break greater than 200%.
- the medicated stent may have a drug reservoir layer comprising a polymer selected from acrylate polymer/copolymer, acrylate hydroxyl and/or carboxyl copolymer, polyvinyl pyrrolidone (PVP), PVP/VA, cellulose ester, polyurethane, polycarbonate-urethane polymer, silicone-urethane polymer, epoxy polymer, polyethylene glycol and/or polyethylene oxide.
- the medicated stent may have a drug reservoir comprising one or more polyurethanes, cellulose nitrate, and/or one or more other cellulose ester polymer(s).
- the medicated stent may have a drug reservoir layer comprising one or more polymers selected from acrylate polymer/copolymer, acrylate polymer/copolymer containing carboxyl and/or hydroxyl groups, cellulose nitrate and/or other cellulose ester.
- the medicated stent may have an active agent comprising an anti-restenotic agent effective at a stented site.
- the total coating thickness may be between about 0.3 and about 30 microns.
- the medicated stent may also have a primer layer having a thickness between about 0.01 and 5 or 0.1 and about 5 microns, and the drug reservoir layer having a thickness of between about 0.1 and about 10 microns.
- the medicated stent may comprise an intermediate layer having a thickness between about 0.1 and about 15 microns.
- the active agent is selected from one or more of anti-thrombogenic agents, anti-inflammatory agents, antineoplastic agents, anti-proliferative agents, cytostatic agents, cytotoxic agents, antimicrobial agents, anti-restenotic agents, anti-platelet agents, and anti-coagulant agents.
- the active agent may also be selected to from one or more of anti-fibrin and fibrinolytic agents, anti-platelet agents, prostacyclins (and analogues), glycoprotein IIb/IIIa agents, thromboxane inhibitors, anti-thrombin and anti-coagulant agents, anti-mitotic, antiproliferative and cytostatic agents, antiangiogenic and angiostatic agents, ACE inhibitors, growth factor antagonists, antioxidants, vitamins, calcium channel blockers, fish oil (omega 3-fatty acid), phosphodiesterase inhibitors, nitric acid donor, Somatostatin analogues, immunosuppressive agents and antiinflamatory agents, antimicrobials, radionuclides including alpha, beta and gamma emitting isotopes, COX-2 inhibitors, endothelial promoters, kinase inhibitors, epidermal growth factor kinase inhibitors, tyrosine kinase inhibitors, MAP kinase inhibitors, protein
- the active agent may be selected from one or more of plasmin, streptokinase, single chain urokinase, urokinase, t-PA (tissue type plasminogen activator), aminocaproic acid, aspirin, monoclonal antibodies, peptides, drugs (e.g.
- Cilastagel Cilastagel, eptifibatide, tirofiban, ticlopidine, Vapiprost, dipyridamole, forskolin, angiopeptin, argatroban, dextan, heparin, LMW heparin, heparin complexes, Enoxaparin, Dalteparin, hirudin, recombinant hirudin, anti-thrombin, synthetic antithrombins, thrombin inhibitors, Warfarin, other coumarins, vincristine, vinblastine, paclitaxel and its analogues, methotrexate, cisplatin, fluorouracil, rapamycin, sirolimus, tacrolimus, everolimus, azathioprine, cyclophosphamide, mycophenolic acid, corticosteroids, colchicine, nitroprusside, paclitaxel, angiostatin and endostatin; genetic materials, oli
- the medicated stent may have a primer layer comprising one or more of acrylate/carboxyl polymer, epoxy polymer, polyvinylpyrrolidone vinylacetate copolymer (PVP/VA).
- the primer layer may also comprise one or more of ethylene acrylic acid copolymer (EAA), epoxy polymer, and polycarbonate urethane.
- the intermediate layer may comprise polycarbonate polyurethane.
- the medicated stent may have a drug release layer comprising one or more of acrylate/carboxyl polymer, epoxy polymer, and polyvinylpyrrolidone vinylacetate copolymer (PVP/VA).
- the drug release layer may comprise nitrocellulose.
- the drug release layer may also comprise nitrocellulose and one or more of polytetramethylene ether glycol urethane, polycarbonate-urethane, silicone-urethane polymer, polyethylene glycol, polymethylmethacrylate-2-hydroxyethylmethacrylate copolymer, polyethylmethacrylate-2-hydroxyethylmethacrylate copolymer, polypropylmethacrylate-2-hydroxyethylmethacrylate copolymer, polybutylmethacrylate-2-hydroxyethylmethacrylate copolymer, polymethylacrylate-2-hydroxyethylmethacrylate copolymer, polyethylacrylate-2-hydroxyethylmethacrylate copolymer, polypropylacrylate-2-hydroxymethacrylate copolymer, polybutylacrylate-2-hydroxyethylmethacrylate copolymer, methylvinylether maleicanhydride copolymer, and poly (2-hydroxyethyl
- Another aspect of the invention relates to a method for making a medicated stent having struts becoming separated upon stent expansion, comprising: applying a primer polymer liquid comprising one or more polymers in a volatile medium, applying a drug reservoir polymer liquid comprising one or more polymers in a volatile medium, the one or more drug reservoir polymers being different from the one or more primer layer polymers, and applying an active agent either together with or after applying the drug reservoir polymer liquid, and removing the volatile media, the layers being applied without forming coating bridges between struts of the stent, the layers remaining intact upon stent expansion, and releasing efficacious amounts of the active agent at the site of stent expansion.
- the invention may involve application of an intermediate flexibilizing polymer liquid comprising one or more polymers that differ from the one or more polymers of the primer layer and the drug reservoir layer.
- the volatile media may have a boiling point greater than about 110 degrees C.
- the liquids may have a viscosity between about 20 and about 70 cps.
- the invention relates to a method for making a medicated stent comprising applying a primer polymer layer and a drug reservoir layer comprising at least two polymers and one or more active agent(s), wherein the polymer compositions of the primer and drug reservoir are different, without forming coating bridges between struts of the stent, the coating remaining intact upon stent expansion, and releasing efficacious amounts of the active agent(s) at the site of stent expansion.
- the invention relates to a method for administering a bioactive agent to a target site in a subject, comprising: implanting a stent at the target site of the subject, the stent comprising a coating having a primer layer and a drug release layer, the drug release layer comprising the bioactive agent, and the primer and drug release layers comprising different polymers, expanding the stent, and allowing the bioactive agent to elute from the coating during an extended period, the coating remaining intact during implanting, during stent expansion, and during the extended period.
- the drug release layer may comprise an ionic heparin complex, and at least one other bioactive agent that is not anti-thrombogenic such as an anti-angiogenic factor, an immunosuppressing agent, an antimicrobial agent, an anti-inflammatory agent, an anti-restenotic agent and combinations.
- the active agent may comprise heparin together with at least one anti-restenotic drug selected from the group consisting of paclitaxel, rapamycin sirolimus, tacrolimus, and everolimus.
- the active agent may be selected from the group consisting of heparin complexes and/or one or more of paclitaxel, rifamycin, and methotrexate, and/or combinations.
- the active agents may be benalkoniumheparinate and paclitaxel.
- the primer layer can comprise an ethylene acrylic acid copolymer and an epoxy polymer, wherein the ethylene acrylic acid copolymer can be one or more of PRIMACOR® 5989 and 5990.
- the epoxy can be one or more of EPOTUF® 38-505, EPOTUF® 37-618, and EPON 1001.
- the drug reservoir layer may include a polyurethane and a cellulose nitrate.
- the polyurethane may be polytetramethylene ether glycol urethane and/or polycarbonate urethane.
- Examples of polyurethane include Chronoflex AR, Chronoflex AL, Chronoflex C, and Bionate 80A.
- the primer layer may comprise an ethylene acrylic acid copolymer and an epoxy polymer and the drug reservoir layer comprises a polyurethane and a cellulose ester.
- the invention also relates to a medicated stent having a coating comprising a primer layer comprising a first composition of one or more polymers, and a drug reservoir layer comprising an alloy of a second composition of more than one polymer, the first composition being distinct from the second composition, with one or more active agents, the polymers of the second composition protecting and stabilizing the one or more active agents during sterilization and storage, the coating having sufficient adhesion and flexibility to remain intact upon stent expansion and during a sustained period thereafter, and releasing efficacious amounts of the active agent at the site of stent expansion.
- the invention also relates to a medicated stent comprising: a stent body, a biologically active agent, means for containing and controllably releasing the agent from the stent over an extended period, comprising a first polymer, and means for bonding the containing means to the stent body, comprising a second polymer, the containing and bonding means remaining intact upon stent expansion and during the extended period.
- FIG. 1 which contains data from Table 1, Example 1 shows the cumulative quantity of paclitaxel eluted, in micrograms, over a period of 336 hours (14 days). Approximately 10% of the paclitaxel eluted out over a period of 14 days.
- the total amount of eluted drug and length of elution time are influenced by the amount of or the number of coatings of the drug releasing layer, the hydrophilicity of the layer(s), and the solubility of the drug(s) in the medium into which it/they are being released.
- the active agents can be imbibed into a surface hybrid polymer layer, or incorporated directly into the hybrid polymer coating solutions. Imbibing drugs into surface polymer layers is an efficient method for evaluating polymer-drug performance in the laboratory, but for commercial production it may be preferred for the polymer and drug to be premixed in the casting mixture. Greater efficacy can be achieved by combining the two elements in the coating mixtures in order to control the ratio of active agent to polymer in the coatings. Such ratios are important parameters to the final properties of the medicated layers, i.e., they allow for better control of active agent concentration and duration of pharmacological activity.
- Typical polymers used in the drug-release system can include water-insoluble cellulose esters, various polyurethane polymers including hydrophilic and hydrophobic versions, hydrophilic polymers such as polyethylene glycol (PEG), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), PVP copolymers such as vinyl acetate, hydroxyethyl methacrylate (HEMA) and copolymers such as methylmethacrylate (PMMA-HEMA), and other hydrophilic and hydrophobic acrylate polymers and copolymers containing functional groups such as carboxyl and/or hydroxyl.
- hydrophilic polymers such as polyethylene glycol (PEG), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), PVP copolymers such as vinyl acetate, hydroxyethyl methacrylate (HEMA) and copolymers such as methylmethacrylate (PMMA-HEMA), and other hydrophilic and hydrophobic acrylate polymers
- Cellulose esters such as cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate may be used.
- the cellulose ester preferably serves as a polymer component in the hybrid polymer compositions.
- Cellulose nitrate is preferred because of its compatibility with the active agents and its ability to impart non-tackiness and cohesiveness to the coatings.
- Cellulose nitrate has been shown to stabilize entrapped drugs in ambient and processing conditions.
- Viscosity grades such as 3.5, 0.5 or 0.25 seconds, are used in order to provide proper rheological properties when combined with the coating solids used in these formulations. Higher or lower viscosity grades could be used. However, the higher viscosity grades can be more difficult to use because of the high viscosities that obtain at the solids concentrations preferred in this invention. Lower viscosity grades, such as 3.5, 0.5 or 0.25 seconds, preferably are used in order to provide proper rheological properties when combined with the coating solids used in these formulations. Physical properties such as tensile strength, elongation, flexibility, and softening point are related to viscosity (molecular weight) and can decrease with the lower molecular weight species, especially below the 0.25 second grades.
- the cellulose derivatives comprise anhydroglucose structures.
- Cellulose nitrate is a hydrophobic, water-insoluble polymer, and has high water resistance properties. This structure leads to high compatibility with many active agents, accounting for the high degree of stabilization provided to drugs entrapped in cellulose nitrate.
- the structure of nitrocellulose is given below:
- Cellulose nitrate is a hard, relatively inflexible polymer, and has limited adhesion to many polymers that are typically used to make medical devices. Also, control of drug elution dynamics is limited if only one polymer is used in the binding matrix, since the stent has significant variables such as coating thickness and the ratio of polymer to entrapped drug.
- this invention uses polyurethane polymers with cellulose nitrate in the hybrid polymer drug loaded matrix. Polyurethanes provide the hybrid polymer matrix with greater flexibility and adhesion to the polymer coated stent surfaces of the invention. Polyurethanes can also be used to slow the drug elution from coatings. Aliphatic, aromatic, polytetramethylene ether glycol, and polycarbonate are among the polyurethanes, which can be used in the coatings.
- hydrophilic polyurethane polymers may be created based on the number of hydrophilic groups contained in the polymer structures.
- the polyurethanes used in the invention are water-insoluble, flexible, and compatible with the cellulose esters.
- Polyvinylpyrrolidone is a polyamide that possesses unusual complexing and colloidal properties and is essentially physiologically inert. PVP and other hydrophilic polymers are typically biocompatible. PVP is incorporated in drug loaded hybrid polymer compositions in order to increase drug release rates. In one embodiment, the concentration of PVP that is used in drug loaded hybrid polymer compositions can be less than 20%. This concentration would not make the layers bioerodable or lubricious. In addition, PVP concentrations from ⁇ 1% to greater than 80% are deemed workable.
- PMMA polymethylmethacrylate
- PMMA/HEMA polymethylmethacrylate hydroxyethyl methacrylate
- the drug-loaded coatings can be prepared as coating solutions in organic solvents.
- the solutions are non-reactive and can have a shelf life of up to 18 months when stored at room temperature.
- simple procedures such as dipping or spraying, followed by air-drying
- drying the devices at elevated temperatures can remove the residual solvents to produce biocompatible surface layers of approximately 0.3 to 30 microns thick. Once dried, the surface layers are stable for substantially the life of the sterile packaging, generally three to five years, depending on the drug(s) entrapped in the hybrid polymer layer, and on the storage conditions.
- the polymers used in the primer layer may be cross-linkable and the coating may comprise a cross-linker for the polymers, such as epoxy resin, melamine resin, other amino resin, and phenolic resins.
- the polymers may be selected from a carboxyl function acrylic polymer, hydroxyl function acrylic polymer, amine function acrylic polymer, methylol function, and amide function acrylic polymer.
- They may be a cross-linkable acrylic selected from methylmethacrylate, butylmethacrylate, isobutylmethacrylate, ethylmethacrylate, methylacrylate, ethylacrylate, butyl acrylate acrylic acid, methacrylic acid, styrene methacrylate, and styrene acrylate, and copolymers thereof, and other non-acrylic polymers such as polyurethanes, polycarbonate-urethanes, silicone-urethanes, aliphatic polyurethanes, polyvinyl pyridine copolymers, polyethylene glycol, polyethylene oxide, polyamide copolymer, polyimide copolymer, other polymers known to those of skill in the art may be used in the primer layer.
- a cross-linkable acrylic selected from methylmethacrylate, butylmethacrylate, isobutylmethacrylate, ethylmethacrylate, methylacrylate, e
- the primer layer comprises hydrophobic polymers that are preferably water-insoluble polymers that do not significantly react with the hydrophilic polymers in solution, have low water absorption, provide a high degree of flexibility, and have improved bonding to stent substrates.
- Suitable commercial products that may be used in the invention include acrylics such as ACRYLOID® (Rohm & Haas) AT-63, AT-51, AT-81, WR-97; ethylene acrylic acid copolymers such as PRIMACORTM (DOW) 5989, 5990; melamine resins such as CYMELO® hexamethoxymethylmelamine (CYTEC Industries) 303, 370, 380; epoxies such as EPON (Shell) 1001; and polyvinylbutyral such as BUTVAR B-79 (Monsanto), polyurethanes such Tecoflex 93A, Chronoflex AR.
- the preferred acrylic stabilizing polymers include reactive groups such as hydroxyl or carboxyl that can
- the inventive coating includes a hydrophilic polymer used in the primer and/or the drug reservoir layer(s), such as a water soluble polyolefin such as a hydrophilic vinyl polymer having polar pendant groups, a polyacrylate or methacrylate having hydrophilic esterifying groups, a polyether, a polyethylene glycol, or other polymer with hydrophilic characteristics as known in the art.
- the hydrophilic polymer is preferably PVP or PVP/vinyl acetate such as PVP/VA (GAF) E-335 and E-635.
- the hydrophilic component may be of any of the classes discussed in Concise Encyclopedia of Polymer Science and Engineering, Kroschwitz, ed. (Wiley 1990), pp. 458-59, which is incorporated herein by reference.
- Polymers such as polyvinylpyrrolidone, polyethylene glycol, polyethylene oxide, or polyvinyl alcohol are acceptable, alone or in combination.
- hydrophilic polymers examples include homopolymers or copolymers of the following compounds: polyolefins such as vinyl polymers having polar pendant groups, N-vinylpyrrolidone, N-vinyllactam, N-vinyl butyrolactam, N-vinyl caprolactam, sodium styrene sulfonate monomer, 2-acrylamido-2-methylpropane sulfonic acid, sodium vinyl sulfonate, vinyl pyridine, acrylates or methacrylates having hydrophilic esterifying groups.
- polyolefins such as vinyl polymers having polar pendant groups, N-vinylpyrrolidone, N-vinyllactam, N-vinyl butyrolactam, N-vinyl caprolactam, sodium styrene sulfonate monomer, 2-acrylamido-2-methylpropane sulfonic acid, sodium vinyl sulfonate, vinyl pyridine, acrylates or
- hydrophilic polymers include polyethers, polyethylene glycol, polysaccharides, hydrophilic polyurethanes, polyhydroxyacrylates, polymethacrylates, and copolymers of vinyl compounds and hydroxyacrylates or acrylic acid, so long as the appropriate hydrophilicity is present.
- Other examples include dextran, xanthan, hydroxypropyl cellulose, methyl cellulose, polyacrylamide, and polypeptides.
- Other hydrophilic components are known to persons of skill in the art.
- the invention may require acrylics, e.g. polymers and copolymers of acrylic acid and methacrylic acid and esters thereof, as defined for example in ACRYLOID Thermoplastic Acrylic Ester Resins for Industrial Finishing, Rohm & Haas, Bulletin 82A37 (1987), including cross-linkable acrylics with at least one component containing carboxyl, hydroxyl, amide, or methylol groups.
- ACRYLOID polymers with functional groups given are preferred: AT-51 (hydroxyl), AT-63 (hydroxyl), AT-81 (carboxyl), and WR-97 (hydroxyl).
- Cross-linkable acrylic emulsions such as RHOPLEX B-15J (Rohm & Haas), and styrene acrylic emulsions such as AROLON® 820-W-49 (Reichhold) may also be used.
- polymers may be used, e.g., epoxy resins, particularly cured epoxy polymers such as EPOTUF® 38-505 (Reichhold), and preferably those cured with polyamide, such as EPOTUF® 37-618 (Reichhold), vinyl polymers, particularly vinyl acetate, vinyl acetals such as polyvinyl butyral, and ethylene vinyl acetate copolymers.
- epoxy resins particularly cured epoxy polymers such as EPOTUF® 38-505 (Reichhold), and preferably those cured with polyamide, such as EPOTUF® 37-618 (Reichhold)
- vinyl polymers particularly vinyl acetate, vinyl acetals such as polyvinyl butyral, and ethylene vinyl acetate copolymers.
- the polymers preferably, but not necessarily, contain reactive groups or points of reactivity such as hydroxyls, mono-, di- and tertiary amines, acids such as carboxyl, amides, or other groups which represent points of chemical reactivity.
- the acrylics In the case of the acrylics, this is referred to as having a “functionality” that is cross-linkable.
- the polymers and points of chemical reactivity are able to form attractive forces such as hydrogen bonding toward the medical device surface, and also toward the hydrophilic polymer and/or bioactive agent. Such bonds are very strong, and provide desirable adhesion and flexibility to the coating presumably without requiring covalent, ionic, or other links.
- Polymers with reactive groups are preferred in the primer layer with stents, which present a metal substrate.
- polymers lacking such groups such as acrylic or styrene copolymers may also be used effectively.
- the reactive groups can also react to form a cross-linked matrix or help to form a cross-linked matrix.
- cross-linkers such as urea resins, melamines, isocyanates, phenolics, and others may be incorporated to interact with the points of chemical reactivity on the polymer chains to cross-link the polymers of the invention with themselves.
- cross-linkers may react with themselves as stabilizing polymers to form a cross-linked matrix in which the hydrophilic polymer is enmeshed, resulting in an adherent, flexible coating.
- Cross-linking is useful in promoting effective adhesion by ensuring that the solvents do not attack and degrade the polymer layer excessively when subsequent layers are applied.
- the drug reservoir layer which can be referred to as the polymeric drug-release or the drug loaded layer, comprises mixtures of more and less hydrophilic polymers.
- Hydrophobic polymers comprise cellulose esters such as cellulose nitrate, polycarbonate-urethanes, acrylate polymers and copolymers with or without functional groups such as those previously cited in this disclosure and others known to those of skill in the art.
- Hydrophilic polymers comprise vinyl polymers with hydrophilic pendant groups such PVP and its copolymers, polyethylene glycol, polyethylene oxide, HEMA, HEMA-acrylate and methacrylate copolymers, and other hydrophilic polymers/copolymers previously cited in this disclosure and others known to those of skill in the art.
- anchoring polymers is used to describe those that provide anchoring to metal substrates, typically those with functional groups, such as amides, carboxyl, hydroxyl, amine, imine, amide, imide, sulfoxyl, and sulfonyl.
- Cross-linking and cross-linkable polymers may be added to the anchoring polymer in the primer layer.
- examples include epoxy resins, melamine resins, phenolics, isocyanate polymers.
- Other polymers may be included as needed to impart desirable properties of adhesion, cohesion, durability, and flexibility. These include polyethylene ethylene glycols, polyethylene oxide, and polyvinylpyridine polymers and copolymers.
- the term stabilizing polymers is intended to describe those which protect active agents during high temperatures encountered in curing and sterilizing coated stents. These include cellulose esters and ethers, acrylic polymers and copolymers and others that can be determined by a person of ordinary skill to prevent degradation of active agents during preparation and sterilization of coatings.
- toughening polymers is used to describe those which impart desirable physical properties of toughness, durability, and flexibility in expansion and use. Examples include polyurethanes.
- the drug reservoir layer may also include other relatively hydrophilic polymers that impart other desirable physical properties, such as to control elution, and improve flexibility, and to reduce hydrophobicity.
- relatively hydrophilic polymers such as hydroxyethyl methacrylate, acrylic HEMA (polyhydroxyethyl methacrylate/methylmethacrylate) copolymers, polyvinyl pyrrolidone, PVP-VA copolymers, polyethylene glycols, and polyethylene oxides.
- the drug stabilizing matrix generally comprises polymers of relatively hydrophilic and hydrophobic character.
- the active agents may be integrated in the polymer matrix, meaning that they are alloyed with, and deposited throughout the polymer matrix. This is a preferable arrangement in contrast to active agents that are imbibed into a drug reservoir layer, or are deposited before applying a polymer layer on top of a drug.
- the coatings of the present invention are extremely durable, even when subjected to adhesion and flexing tests, as shown in the examples. Such enhanced adhesion and flexibility is a surprising result.
- the coatings according to the invention may be applied to the surface of a biomedical device or other device with sufficient thickness and permanence to retain the coating's desirable qualities throughout the useful life of the coated device.
- the coatings of the invention are nonreactive with living tissue and are non-thrombogenic in blood. They are not substantially biodegradable.
- the coatings of the invention may be thin, on the order of 0.9 to 100 microns, preferably less than about 50 or 30 microns, and coherent in that they form a continuous surface layer on the stent as manufactured, and retain the coherence on the stent after expansion. They are resistant to removal on prolonged soaking in aqueous fluids, and are adherent to a wide variety of substrates.
- the coatings may be applied by various techniques such as dip, pour, pump, spray, brush, wipe, or other methods known to those skilled in the art.
- the coating solutions have low viscosities, typically less than 100 CPS, and have good spreading properties.
- the coatings are preferably baked at elevated temperatures, typically 50 degrees C. to 140 degrees C., to drive off the organic solvents. It may be necessary to treat some surfaces like polyethylene with gas plasma or other ionizing treatment to promote interaction with the coating and adhesion to the substrates.
- the coating may contain polymers in addition to the stabilizing polymer such as polyurethane, polyester, styrene polybutadiene, polyvinylidene chloride, polycarbonate, and polyvinyl chloride, preferably in the inner layer to promote adhesion to the surface of the device.
- polymers such as polyurethane, polyester, styrene polybutadiene, polyvinylidene chloride, polycarbonate, and polyvinyl chloride, preferably in the inner layer to promote adhesion to the surface of the device.
- active agents examples include anti-fibrin and fibrinolytic agents, including plasmin, streptokinase, single chain urokinase, urokinase, t-PA (tissue type plasminogen activator), aminocaproic acid; anti-platelet agents including, aspirin, prostacyclins (and analogues); glycoprotein IIb/IIIa agents including monoclonal antibodies, peptides (e.g.
- ReoPro Cilastagel, eptifibatide, tirofiban, ticlopidine, Vapiprost, dipyridamole, forskolin, angiopeptin, argatroban), thromboxane inhibitors; anti-thrombin and anti-coagulant agents, including dextan, heparin, LMW heparin (Enoxaparin, Dalteparin), hirudin, recombinant hirudin, anti-thrombin, synthetic antithrombins, thrombin inhibitors, Warfarin (and other coumarins); anti-mitotic, antiproliferative and cytostatic agents, including vincristine, vinblastine, paclitaxel, methotrexate, cisplatin, fluorouracil, rapamycin, azathioprine, cyclophosphamide, mycophenolic acid, corticosteroids, colchicine, nitroprusside; antiangiogenic and angiostatic agents,
- Cilazapril Lisinopril, Captopril
- growth factor e.g. VEGF, FGF
- antioxidants and vitamins e.g. Probucol, Tocopherol
- calcium channel blockers e.g. nifedipine
- fish oil omega 3-fatty acid
- phosphodiesterase inhibitors e.g. dipyridamole
- nitric acid donor e.g. Molsidomine
- somatostatin analogues e.g. angiopeptin
- immunosuppresives and anti-inflammatory agents e.g. prednisolone, glucocorticoid and dexamethasone
- antimicrobials e.g.
- rifamycin and radionuclides, including alpha, beta and gamma emitting isotopes (e.g. Re-188, Re-186, I-125, Y-90); COX-2 inhibitors such as Celecoxib and Vioxx; kinase inhibitors, such as epidermal growth factor kinase inhibitor, tyrosine kinase inhibitors, MAP kinase inhibitors protein transferase inhibitors, Resten-NG, and other biologically active agents and biologic response modifiers, and others, alone or in combinations to exert multiple actions simultaneously in order to prevent restenosis, and provide other desired biological effects.
- alpha, beta and gamma emitting isotopes e.g. Re-188, Re-186, I-125, Y-90
- COX-2 inhibitors such as Celecoxib and Vioxx
- kinase inhibitors such as epidermal growth factor kinase inhibitor, tyrosine kinase inhibitors
- the coating may comprise combinations of active agents, e.g., coatings which contain both an anti-thrombogenic agent to protect against thrombus and an anti-restenotic agent.
- active agents e.g., coatings which contain both an anti-thrombogenic agent to protect against thrombus and an anti-restenotic agent.
- heparin complexes are combined with other bioactive agents, for example in a cellulose ester-containing layer, along with other bioactive agents that are not anti-thrombogenic, such as heparin together with anti-restenotic agents.
- the elution rates of the agents are not affected by the presence of the other agent(s).
- the anti-thrombogenic effect can be achieved in conjunction with the anti-restenotic effect without interference between the agents.
- the amount of active agent loaded in coatings which have been produced according to the invention has been in the range of about 25 to about 600 micrograms, although lower and higher loadings may be used depending on a variety of factors, including the drug, the desired dosage level, the drug release layer composition, the type of stent, the diameter and length of stent, the number of layers and how the active agent is applied, the coating thickness, the chemical characteristics of the active agent, and other factors. These factors are adjusted to provide a durable coating that controllably releases the desired amount of active agent over an extended period. In a typical desired release pattern, 25% of the active agent is released in the first few days, the remainder being released gradually over 30 or more days. Other release patterns may readily be achieved using the inventive methods and compositions, depending on the therapeutic effect desired (e.g., anti-angiogenesis, anti-cancer, etc.).
- the hybrid polymer layers of the invention possess physical properties that enable their useful application on stents.
- the hybrid polymers of the invention achieve excellent adhesion on the metallic stent surfaces.
- the adhesion of the hybrid polymer layers of the invention is made possible by the use of certain bonding layers as described in U.S. Pat. No. 5,997,517, incorporated herein by reference in its entirety.
- the hybrid polymers of the invention together with the multi-layer composite structure, ensure that the drug layers will remain well adhered to the stent surface, even during expansion of the stent, and will not lose their adhesion during prolonged implantation.
- the polymers of the invention do not alter the mechanical stent functions, such as forces required for expansion and strength so that the stent will resist collapsing after implantation.
- the production of stents can begin with the application of the bonding primer layer.
- the primer layers can be on the order of about 0.1 to about 5 microns thick.
- Cross-linked primer layers can be thinner than non-cross-linked layers.
- the primer layer can be applied by dipping the stent in the primer coating solution, followed by drying at elevated temperatures in order to drive off the solvents in the coating solution, and to cure and cross-link the primer layer.
- the primer layer may be subjected to turbulent airflow to open any bridging that occurs prior to the curing step. It is also possible to spray the primer coating onto the stent. Typical curing schedules include drying for fifteen to sixty minutes at 100° C. to 120° C.
- the hybrid polymer primer layers comprise polymeric alloys that include such polymers and copolymers as acrylate polymers and copolymers, especially those having functional groups including amine, hydroxyl, and carboxyl, etc., epoxy resins, amine resins, ethylene acrylic acid copolymers, polyurethanes (especially more hydrophobic versions), copolymers of polyvinylpyrrolidone such as with vinyl acetate, polyether sulfones, and others.
- the use of one or more intermediate layers is optional, although preferred.
- the intermediate layer can be applied over the primer layer using substantially the same methods as described for the primer layer, including similar curing schedules at elevated temperatures.
- the intermediate layer is employed to enhance the flexibility, elasticity, and expandability properties of the composite coating layers. It is recognized that thin layers in a composite when constructed appropriately will acquire the properties of its components.
- the intermediate layer is intended to contribute to and enhance the flexibility, elasticity, and expandability properties of the composite layers.
- An example of a polymer which performs well in this role is a polycarbonate-polyurethane having a flexural modulus (1% secant modulus (psi) (ASTM procedure D790)) greater than 1,000 or 3,000, and elongation at break greater than 200% or 300%.
- the primer layer preferably would be about 0.1 to about 5 microns thick, and the intermediate layer would be about 0.1 to about 15 microns thick. This is because it is intended that the ultra flexible intermediate layer contributes substantially to the flexibility of the composite coating, and therefore preferably is at least as thick as the adjacent layers.
- the invention employs polymers and copolymers which are useful in the intermediate layer and include vinyl acetals, especially polyvinyl butyral, polyurethanes which are more flexible and elastic and expandable, polycarbonate polyurethanes are especially useful for this purpose, acrylate polymers and copolymers which are elastic, flexible, and expandable.
- vinyl acetals especially polyvinyl butyral, polyurethanes which are more flexible and elastic and expandable, polycarbonate polyurethanes are especially useful for this purpose, acrylate polymers and copolymers which are elastic, flexible, and expandable.
- Other polymers and copolymers could also be used in this application, provided that they contribute the appropriate physical properties, are compatible and adherent to the adjacent layers, and are biocompatible.
- the drug releasing hybrid polymer layer can comprise two or more polymers, together with one or more drugs, which can be dissolved in an organic solvent or solvent mixture.
- the drug(s) are usually dissolved in the organic solvent mixture, but may also be present as dispersions of solid particles.
- the hybrid polymer matrix forms a polymeric alloy upon drying. In the preferred embodiment, this layer can be typically about 1 to about 10 microns thick.
- the hybrid polymer matrix can be applied as one layer, or as two or more layers, and different drugs may be present in the same or different layer(s). When multiple layers are employed, the different layers could have the same or different drug release properties.
- Soluble drugs can also form into the polymeric alloy at the molecular level.
- An organic solvent or solvent mixture can be selected so that it is a mutual solvent for the polymeric and soluble drug components, while in the liquid form, and throughout the drying process. It is also preferable if the solvent has the ability to swell the substrate, thereby enabling some of the drug-hybrid polymer components to penetrate superficially into the substrate surface and gain improved adhesion.
- the polymeric components of the drug releasing layer can comprise cellulose esters to stabilize and preserve the drug components, and usually contain a relatively hydrophilic polyurethane. The polyurethane contributes flexibility, elasticity, and expandability to the drug-releasing layer.
- polymers may also be incorporated into the layer, including hydrophilic, water soluble polymers such polyvinylpyrrolidone (PVP), PVP copolymers, polyethylene glycol, polyethylene oxide water soluble cellulose ethers and esters such hydroxymethylcellulose, others. Drugs selected from the groups that were previously cited may be incorporated, alone or in combinations.
- PVP polyvinylpyrrolidone
- PVP copolymers polyethylene glycol
- polyethylene oxide water soluble cellulose ethers such as hydroxymethylcellulose, others.
- esters such hydroxymethylcellulose, others.
- the coating solutions are prepared by first dissolving the polymer components in the solvent mixtures. It is also possible to dissolve the individual polymer components separately in solutions, and then to combine together separate solutions of the individual polymers.
- the drug(s) are then usually incorporated into the hybrid polymer solution, although the drugs can be added before the polymers.
- the drug releasing coating is then applied over the stent, which already has one, or more polymer coatings, using the same methods as used for the other polymer coatings. After coating, the coating is dried for five to sixty minutes at temperatures of 40° C.-120° C.
- the coated stents can be packaged and sterilized.
- Ethylene oxide is useful for sterilization of stents prepared according to the invention.
- the primer (bonding) layer uses a polymer combination of
- polymers may be used in this role, including polyimide copolymers, polyamide copolymers, polyether sulfone polymers, polyethylene glycol polymers, polyethylene oxide polymers, other polymers which typically are used in metal primer applications.
- An intermediate layer may be polycarbonate polyurethane, flexible acrylate polymers/copolymers including butyl acrylate, polyvinyl butyral, other elastic polymers used alone or in hybrid polymer combinations.
- a drug release layer polymer combinations suitable for use with the invention are acrylate/carboxyl polymer+epoxy polymer+polyvinylpyrrolidone vinylacetate copolymer (PVP/VA), RS Nitrocellulose plus any of the following: polytetramethylene ether glycol urethane, polycarbonate-urethanes, PVP, polyethylene glycol, polyethylene oxide, Methylvinylether maleicanhydride copolymer, and/or Poly(2-hydroxyethyl methacrylate).
- Active ingredients used with these combination coatings include paclitaxel, benzalkonium heparinate, rifamycin, and methotrexate
- Polyurethane 1 is a polycarbonate urethane
- Polyurethanes 2 and 3 are polytetramethylene ether glycol urethanes
- Cellulose Ester 1 is RS Nitrocellulose, 1 ⁇ 4 sec grade
- Cellulose Ester 2 is RS Nitrocellulose, 5-6 sec grade.
- the terms nitrocellulose and cellulose nitrate are also used for these latter compounds.
- composition 1 Acrylate/carboxyl polymer, 55.5% solution (1) 8.33 gm Tetrahydrofuran (THF) 39.58 gm Cyclohexanone 41.60 gm PVP/VA Polymer Solution (2) 2.73 gm Ethanol 1.37 gm Epoxy Polymer Solution (3) 1.20 gm Composition 2 Epoxy Polymer Solution (3) 2.56 gm PVP/VA Polymer Solution (2) 2.79 gm Acrylate/carboxyl polymer, 55.5% Solution (1) 8.50 gm Cyclohexanone 42.70 gm THF 36.70 gm Ethanol 5.56 gm Paclitaxel 1.00 gm (1) This copolymer solution is 55.5% (w/w) solids in aromatic 150/butyl cellosolve, 87.5/12.5. (2) This copolymer solution is 50.0% (w/w) solids in ethanol. (3) This epoxy polymer is 75% (w/w) solids in xylene
- Composition 1 was coated on stainless steel coronary stents, and dried for 60 minutes at 120° C. This layer was applied twice. Composition 2 was then coated over the primer layers, and dried for 60 minutes at 120° C. Drug loading on the stents in the range of 50-60 ⁇ g was achieved by applying composition 2 three times and drying after each application. The stent samples with three layers of composition 2 were subjected to elution in room temperature phosphate buffered saline for times up to 336 hours, and produced the following results tabulated in TABLE 1.
- the data show that approximately 10% of the paclitaxel eluted out over a period of 14 days.
- the data plotted in FIG. 1 show the cumulative quantity of paclitaxel eluted, in micrograms, over a period of 336 hours (14 days). While not wishing to be bound thereby, it is believed that the rate of drug elution is independent of the number of coated layers, and that the total amount of eluted drug and length of elution time are influenced by the amount of or the number of coatings of the drug releasing layer, the hydrophilicity of the layer(s), and the solubility of the drug(s) in the medium into which it/they are being released.
- This example provides a composite coating of three flexible polymer or hybrid polymer layers.
- the hybrid polymer bonding layer solution was applied and dried at 120° C. for 60 minutes.
- An intermediate layer was applied and dried at 120° C. for 60 minutes.
- the drug release hybrid polymer layer was applied and dried at 75° C. for 60 minutes.
- a high boiling point solvent was included in each formulation to aid in processing.
- Drug(s) can be imbibed into the drug release hybrid polymer layer, but the preferred method is to add the active agents to the coating liquid so that the drug/polymer layer can be controlled.
- Stent samples coated with this example had good uniformity based on dye testing. Coated stents that were expanded proved quite flexible and demonstrated excellent adhesion to the substrate.
- This example considers a composite coating of three flexible polymer or hybrid polymer layers.
- a hybrid polymer bonding layer solution was applied and dried at 120° C. for 60 minutes.
- An intermediate layer was applied and dried at 120° C. for 60 minutes.
- a drug release hybrid polymer layer was applied and dried at 75° C. for 60 minutes.
- the drug release hybrid polymer layer contains one additional, ultra hydrophilic component that was not included in Example 2. It was expected that Example 3 would elute more rapidly relative to Example 2.
- a high boiling solvent was included in each formulation to aid in processing.
- This drug release hybrid polymer layer is more susceptible to having the drug imbibed into it from solution than the drug release layer in Example 2.
- the preferred method is to add the active agents to the coating liquid to achieve better control of the drug/polymer ratio.
- Stent samples coated with this example had good uniformity based on dye testing. Coated stents that were expanded demonstrated good flexibility and adhesion to the substrate, and did not crack.
- Example 3 is desirable as compared to Example 5 due to high boiling solvents (e.g., a boiling point over about 110° C.) for processing, and lower viscosity solutions (e.g., about 20-70 cps), which are desired ranges for coating liquids.
- high boiling solvents e.g., a boiling point over about 110° C.
- lower viscosity solutions e.g., about 20-70 cps
- Example 3 is preferred over that of Example 4 since high boiling solvents were incorporated in the drug release hybrid polymer layer in that example, which improves processing, makes it easier to prevent the coating from bridging between the struts of the stent, and provides lower solution viscosity.
- This example concerns a composite coating of two flexible polymer or hybrid polymer layers. No bonding layer was applied. Solution was applied and dried at 120° C. for 60 minutes. Drug release hybrid polymer layer was applied and dried at 75° C. for 60 minutes.
- Example 3 is preferred over this example 5 due to improved composite integrity credited to the adhesion imparted by the bonding layer. Specifically, the composite of Example 3 showed strong adhesion to the substrate when abraded by rubbing with a finger when immersed in water at room temperature. The composite coating of this example showed some breakdown/delamination when wet rubbed during water immersion.
- two drugs (paclitaxel and benzalkonium heparinate) were combined together in the drug release layer and were coated on a stainless steel stent.
- the bonding layer was applied by dip coating, and excess coating was blown off with nitrogen, and dried for 30 minutes at 100° C.
- the intermediate layer was applied by dip coating, and excess coating was blown off with nitrogen, and dried for 30 minutes at 100° C.
- the drug release layer was applied by dip coating, excess coating was blown off with nitrogen, and was dried for 60 minutes at 75° C.
- This example showed good coating uniformity, good wet abrasion resistance, and good adhesion to the metal stent surface.
- Example 6 This example is similar to Example 6, except that the drug release layer contained only benzalkonium heparinate. The coatings were applied on a stainless steel stent using the same procedures as in Example 6.
- This example also showed good coating uniformity, good wet abrasion resistance, and good adhesion to the metal stent surface.
- Example 6 This example is similar to Example 6, except that the drug release layer contained rifamycin.
- the coatings were applied on a stainless steel stent using the same procedures as in Example 6.
- methotrexate was imbibed into the drug releasing layer from an aqueous solution.
- the bonding layer and intermediate layer are the same as were used in Example 6, and were applied using the same procedures.
- the drug release layer was applied and treated as in Example 8. After the oven curing process, the stent was cooled to room temperature, and then briefly immersed in an aqueous solution of methotrexate, 25 mg/ml., and air dried. The coating absorbed drug from the aqueous solution.
- Stents were coated with the following primer (BOND-COAT®, STS Biopolymers, Inc.) layer and intermediate layer, and dried 15 minutes at 100° C., after each application.
- primer BOND-COAT®, STS Biopolymers, Inc.
- the stent was coated with the following drug reservoir layer, and dried for 15 minutes at 75° C.
- a coronary stent was coated with the primer and intermediate layers as in Example 10. Next, the stent was coated with the following drug reservoir layer, and dried using the same schedule as in Example 10.
- a coronary stent was coated with the primer and intermediate layers as in Example 10.
- the stem was coated with the following drug reservoir layer, and dried using the same schedule as in Example 10.
- Tetrahydrofuran 7.0 gm Dimethylacetamide 4.0 gm Cyclohexanone 6.0 gm Methylvinylether maleic anhydride copolymer 0.37 gm Cellulose nitrate 0.03 gm Paclitaxel 0.015 gm
- a coronary stent was coated with the primer and intermediate layers as in
- Example 10 Next, the stent was coated with the following drug reservoir layer, and dried using the same schedule as in Example 10.
- a coronary stent was coated with the primer and intermediate layers as in Example 10. Next, the stent was coated with the following drug reservoir layer, and dried using the same schedule as in Example 10.
- Stents were expanded and inspected for cracking and adhesion failure. No cracking or chipping off was observed after stent expansion.
- Several coated stents were incubated in 37° C. phosphate buffered saline (PBS) for various times up to 10 days. Stents were removed from the serum at their designated time points, and soaked in acetonitrile to remove the coating. The acetonitrile extract was tested via HPLC to determine how much paclitaxel remained on each stent after its incubation period. 60.4% of the starting Paclitaxel remained on stents after 10 days of incubation on PBS.
- PBS phosphate buffered saline
- This comparative example evaluates adhesion of gelatin and human albumin on metal stents.
- Stainless steel stents were coated with two biodegradable polymer solutions, 5% gelatin and 5% human albumin and tested for adhesion.
- Human albumin comes as a 5% w/v solution. Add 0.4% w/w Triton X-100 by mixing 0.1 g of Triton X-100 to 24.9 g of 5% w/v human albumin solution.
- the coated stents were dyed with a Gentian Violet solution and compared to a dyed uncoated stent.
- the stent pieces were dipped into the solution and blotted dry with a paper towel. Both the coated stents showed a bright purple color while the uncoated stent did not show the bright purple color. This shows that the stents were covered with the polymer coatings.
- the samples underwent the dry adhesion tape test and were observed under a microscope. Polymer strands were seen to be coming off, showing the samples failed the adhesion test. No other tests were performed since they failed the first test.
- gelatin and human albumin polymers produce coatings that fail to adhere to steel tabs or stainless steel stents.
- the inventive coatings were far superior.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Surgery (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Pulmonology (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Description
Cellulose nitrate is a hard, relatively inflexible polymer, and has limited adhesion to many polymers that are typically used to make medical devices. Also, control of drug elution dynamics is limited if only one polymer is used in the binding matrix, since the stent has significant variables such as coating thickness and the ratio of polymer to entrapped drug. In one embodiment, this invention uses polyurethane polymers with cellulose nitrate in the hybrid polymer drug loaded matrix. Polyurethanes provide the hybrid polymer matrix with greater flexibility and adhesion to the polymer coated stent surfaces of the invention. Polyurethanes can also be used to slow the drug elution from coatings. Aliphatic, aromatic, polytetramethylene ether glycol, and polycarbonate are among the polyurethanes, which can be used in the coatings.
Polyvinylpyrrolidone (PVP) is a polyamide that possesses unusual complexing and colloidal properties and is essentially physiologically inert. PVP and other hydrophilic polymers are typically biocompatible. PVP is incorporated in drug loaded hybrid polymer compositions in order to increase drug release rates. In one embodiment, the concentration of PVP that is used in drug loaded hybrid polymer compositions can be less than 20%. This concentration would not make the layers bioerodable or lubricious. In addition, PVP concentrations from <1% to greater than 80% are deemed workable.
-
- (1) acrylate/carboxyl polymer+epoxy polymer+polyvinylpyrrolidone vinylacetate copolymer (PVP/VA) or
- (2) ethylene acrylic acid copolymer (EAA)+epoxy polymer+polycarbonate urethane.
Composition 1 |
Acrylate/carboxyl polymer, 55.5% solution (1) | 8.33 gm | |
Tetrahydrofuran (THF) | 39.58 gm | |
Cyclohexanone | 41.60 gm | |
PVP/VA Polymer Solution (2) | 2.73 gm | |
Ethanol | 1.37 gm | |
Epoxy Polymer Solution (3) | 1.20 gm |
Composition 2 |
Epoxy Polymer Solution (3) | 2.56 gm | ||
PVP/VA Polymer Solution (2) | 2.79 gm | ||
Acrylate/carboxyl polymer, 55.5% Solution (1) | 8.50 gm | ||
Cyclohexanone | 42.70 gm | ||
THF | 36.70 gm | ||
Ethanol | 5.56 gm | ||
Paclitaxel | 1.00 gm | ||
(1) This copolymer solution is 55.5% (w/w) solids in aromatic 150/butyl cellosolve, 87.5/12.5. | |||
(2) This copolymer solution is 50.0% (w/w) solids in ethanol. | |||
(3) This epoxy polymer is 75% (w/w) solids in xylene |
TABLE 1 |
Release Characteristics for Paclitaxel Extracts |
Analysis #1 | Analysis #2 | Average | ||
Sample Identi- | Paclitaxel | Paclitaxel | Paclitaxel in | Extract |
fication and | Conc. | Conc. | Eluent | volume |
Elution Time | (μg/ml) | (μg/ml) | (μg/ml) | (ml) |
Sample 1, | 0.6 | 0.7 | 0.65 | 1.5 |
2 hr. | ||||
Sample 1, | 0.5 | 0.5 | 0.50 | 1.5 |
4 hr. | ||||
Sample 1, | 0.4 | 0.4 | 0.40 | 1.5 |
6 hr. | ||||
Sample 1, | 0.3 | 0.4 | 0.35 | 1.5 |
8 hr. | ||||
Sample 1, | 0.3 | 0.3 | 0.30 | 1.5 |
24 hr. | ||||
Sample 1, | 0.3 | 0.3 | 0.30 | 1.5 |
48 hr. | ||||
Sample 1, | 0.4 | 0.4 | 0.40 | 1.5 |
168 hr. | ||||
Sample 1, | 0.3 | 0.3 | 0.30 | 1.5 |
216 hr. | ||||
Sample 1, | 0.3 | 0.3 | 0.30 | 1.5 |
336 hr. | ||||
% of Total | Paclitaxel | |||
Sample Identi- | Paclitaxel | Elution Time | Release | |
fication and | μg Paclitaxel | released over | Cumulative | Cumulative |
Elution Time | Released | 336 hours | Hrs. | μg |
Sample 1, | 0.98 | 18.6 | 2 | 0.98 |
2 hr. | ||||
Sample 1, | 0.75 | 14.3 | 4 | 1.73 |
4 hr. | ||||
Sample 1, | 0.60 | 11.4 | 6 | 2.33 |
6 hr. | ||||
Sample 1, | 0.53 | 10.0 | 8 | 2.85 |
8 hr. | ||||
Sample 1, | 0.53 | 10.0 | 8 | 2.85 |
8 hr. | ||||
Sample 1, | 0.45 | 8.6 | 24 | 3.30 |
24 hr. | ||||
Sample 1, | 0.45 | 8.6 | 48 | 3.75 |
48 hr. | ||||
Sample 1, | 0.60 | 11.4 | 168 | 4.35 |
168 hr. | ||||
Sample 1, | 0.45 | 8.6 | 216 | 4.80 |
216 hr. | ||||
Sample 1, | 0.45 | 8.6 | 336 | 5.25 |
336 hr. | ||||
Bonding layer |
Polyurethane 1 | 0.78% | |
EAA | 3.05% | |
Epoxy | 0.90% | |
Dimethyl acetamide (DMAC) | 2.67% | |
Cyclohexanone | 33.66% | |
THF | 58.94% |
Intermediate layer |
Polyurethane 1 | 8.80% | |
DMAC | 66.20% | |
Cyclohexanone | 25.00% |
Drug release hybrid polymer layer |
Polyurethane 2 | 6.07% | ||
Cellulose ester 1 | 2.43% | ||
THF | 54.64% | ||
Ethanol | 21.85% | ||
DMSO | 15.01% | ||
Bonding layer - |
Same as Example 2 |
Intermediate layer - |
Same as Example 2 |
Drug release hybrid polymer layer |
Polyurethane 2 | 5.05 | ||
Polyurethane 3 | 2.17 | ||
Cellulose ester 2 | 1.28 | ||
THF | 46.75 | ||
Ethanol | 29.75 | ||
DMSO | 15.00 | ||
Bonding layer |
Polyurethane 1 | 0.80 | |
EAA | 3.90 | |
Epoxy | 1.15 | |
DMAC | 3.40 | |
Cyclohexanone | 15.60 | |
THF | 75.15 |
Intermediate layer |
Polyurethane 1 | 11.7 | |
DMAC | 88.3 |
Drug release hybrid polymer layer |
Polyurethane 2 | 7.14 | ||
Cellulose ester 1 | 2.86 | ||
THF | 64.29 | ||
Ethanol | 25.71 | ||
Intermediate layer |
Polyurethane 1 | 11.7 | |
DMAC | 88.3 |
Drug release hybrid polymer layer |
Polyurethane 2 | 7.14 | ||
Cellulose ester 1 | 2.86 | ||
THF | 64.29 | ||
Ethanol | 25.71 | ||
Bonding layer |
Polyurethane 1 | [1] | 0.79% | |
EAA | [2] | 3.06% | |
Epoxy | [3] | 0.90% | |
Cyclohexanone | [4] | 33.64% | |
DMAC | [5] | 2.67% | |
THF | [6] | 58.94% |
Intermediate layer |
Polyurethane 1 | [7] | 8.80% | |
DMAC | [8] | 66.20% | |
Cyclohexanone | [9] | 25.00% |
Drug release layer |
Polyurethane 2 | [10] | 5.89% | ||
Nitrocellulose 2 | [11] | 2.36% | ||
THF | [12] | 53.00% | ||
Ethanol | [13] | 21.19% | ||
DMSO | [14] | 14.56% | ||
Paclitaxel | [15] | 1.00% | ||
Benzalkonium heparinate | [16] | 2.00% | ||
Bonding layer - |
same as previous examples |
Intermediate layer - |
same as previous examples |
Drug releasing layer |
Polyurethane 2 | 5.89% | ||
Nitrocellulose 2 | 2.36% | ||
THF | 53.00% | ||
Ethanol | 21.19% | ||
DMSO | 14.56% | ||
Benzalkonium heparinate | 3.0% | ||
Bonding layer - |
same as previous examples |
Intermediate layer - |
same as previous examples |
Drue release layer |
Polyurethane 2 | 5.89% | ||
Nitrocellulose 2 | 2.36% | ||
THF | 53.00% | ||
Ethanol | 21.19% | ||
DMSO | 14.56% | ||
Rifamycin | 3.00% | ||
Bonding layer - |
same as above |
Intermediate layer - |
same as above |
Drug release layer |
Polyurethane 2 | 6.07% | ||
Nitrocellulose 2 | 2.43% | ||
THF | 54.64% | ||
Ethanol | 21.85% | ||
DMSO | 15.01% | ||
BOND-COAT ® Primer Layer |
Polycarbonate polyurethane | 0.78% | |
Ethylene acrylic acid copolymer | 3.05% | |
Epoxy resin | 0.90% | |
DMAC | 2.67% | |
Cyclohexanone | 33.66% | |
THF | 58.94% |
Intermediate layer |
Polycarbonate polyurethane | 1.28% | ||
DMAC | 71.67% | ||
Cyclohexanone | 27.05% | ||
Drug Reservoir Layer |
Polycarbonate polyurethane | 2.5 gm | ||
Cellulose nitrate | 1.0 gm | ||
Methyl ethyl ketone | 30.0 gm | ||
n-Butanol | 20.0 gm | ||
Dimethylacetamide | 41.4 gm | ||
Cyclohexanone | 27.6 gm | ||
Paclitaxel | 2.0 gm | ||
Silicone polyurethane | 2.5 gm | ||
This solution coated uniformly, and resulted in a smooth, clear layer.
Drug Reservoir Layer |
Cyclohexanone | 6.29 gm | ||
Dimethylacetamide | 4.31 gm | ||
n-Butanol | 4.40 gm | ||
Polyethylene glycol 3350 | 0.37 gm | ||
Cellulose nitrate | 0.15 gm | ||
Paclitaxel | 0.015 gm | ||
This solution coated uniformly, and resulted in a smooth, clear layer.
Drug Reservoir Layer |
Tetrahydrofuran | 7.0 gm | ||
Dimethylacetamide | 4.0 gm | ||
Cyclohexanone | 6.0 gm | ||
Methylvinylether maleic anhydride copolymer | 0.37 gm | ||
Cellulose nitrate | 0.03 gm | ||
Paclitaxel | 0.015 gm | ||
Drug Reservoir Layer |
Dimethylacetamide | 8.0 gm | ||
Benzyl alcohol | 8.0 gm | ||
Poly(2-hydroxyethyl methacrylate) | 0.25 gm | ||
Paclitaxel | 0.019 gm | ||
This solution coated uniformly, and resulted in a smooth, clear layer.
Drug Reservoir Layer |
Polycarbonate polyurethane | 2.5 gm | ||
Cellulose nitrate | 1.0 gm | ||
Methyl ethyl ketone | 30.0 gm | ||
n-Butanol | 20.0 gm | ||
Dimethylacetamide | 18.9 gm | ||
Cyclohexanone | 27.6 gm | ||
Paclitaxel | 2.0 gm | ||
This solution coated uniformly, and resulted in a smooth, clear layer.
- Commercial 15 mm stainless steel stents
-
VEE GEE 150 Bloom Type A Economix Gelatin, Vyse Gelatin Company - 5% human albumin solution, Alpha Therapeutic Corporation
- 1,1,1 trichloroethane, EM Science
- stainless steel tabs, 1 cm×8 cm
- Triton X-100 nonionic surfactant, Ruger Chemical Company
Protocol
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/828,512 US8287590B2 (en) | 2001-03-16 | 2010-07-01 | Medicated stent having multi-layer polymer coating |
US13/651,828 US20130253636A1 (en) | 2001-03-16 | 2012-10-15 | Medicated stent having multi-layer polymer coating |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27608901P | 2001-03-16 | 2001-03-16 | |
PCT/US2002/008039 WO2002074194A2 (en) | 2001-03-16 | 2002-03-18 | Stent with medicated multi-layer hydrid polymer coating |
US10/662,877 US7771468B2 (en) | 2001-03-16 | 2003-09-16 | Medicated stent having multi-layer polymer coating |
US12/828,512 US8287590B2 (en) | 2001-03-16 | 2010-07-01 | Medicated stent having multi-layer polymer coating |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/008039 Continuation-In-Part WO2002074194A2 (en) | 2001-03-16 | 2002-03-18 | Stent with medicated multi-layer hydrid polymer coating |
US10/662,877 Continuation US7771468B2 (en) | 2001-03-16 | 2003-09-16 | Medicated stent having multi-layer polymer coating |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/651,828 Continuation US20130253636A1 (en) | 2001-03-16 | 2012-10-15 | Medicated stent having multi-layer polymer coating |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100331967A1 US20100331967A1 (en) | 2010-12-30 |
US8287590B2 true US8287590B2 (en) | 2012-10-16 |
Family
ID=34393334
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/662,877 Expired - Fee Related US7771468B2 (en) | 2001-03-16 | 2003-09-16 | Medicated stent having multi-layer polymer coating |
US12/828,512 Expired - Fee Related US8287590B2 (en) | 2001-03-16 | 2010-07-01 | Medicated stent having multi-layer polymer coating |
US13/651,828 Abandoned US20130253636A1 (en) | 2001-03-16 | 2012-10-15 | Medicated stent having multi-layer polymer coating |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/662,877 Expired - Fee Related US7771468B2 (en) | 2001-03-16 | 2003-09-16 | Medicated stent having multi-layer polymer coating |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/651,828 Abandoned US20130253636A1 (en) | 2001-03-16 | 2012-10-15 | Medicated stent having multi-layer polymer coating |
Country Status (5)
Country | Link |
---|---|
US (3) | US7771468B2 (en) |
EP (1) | EP1680047A4 (en) |
JP (1) | JP2007505704A (en) |
CA (1) | CA2538669C (en) |
WO (1) | WO2005030094A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9763892B2 (en) | 2015-06-01 | 2017-09-19 | Autotelic Llc | Immediate release phospholipid-coated therapeutic agent nanoparticles and related methods |
US12390554B2 (en) | 2018-05-21 | 2025-08-19 | Greatbatch Ltd. | Method for making insertable medical devices with low profile composite coverings |
Families Citing this family (144)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7611533B2 (en) * | 1995-06-07 | 2009-11-03 | Cook Incorporated | Coated implantable medical device |
US6774278B1 (en) * | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device |
EP1019111B1 (en) * | 1998-04-27 | 2002-06-26 | Surmodics Inc. | Bioactive agent release coating |
US20020188037A1 (en) * | 1999-04-15 | 2002-12-12 | Chudzik Stephen J. | Method and system for providing bioactive agent release coating |
US7771468B2 (en) * | 2001-03-16 | 2010-08-10 | Angiotech Biocoatings Corp. | Medicated stent having multi-layer polymer coating |
US6656506B1 (en) * | 2001-05-09 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Microparticle coated medical device |
JP2005527302A (en) * | 2002-05-24 | 2005-09-15 | アンジオテック インターナショナル アーゲー | Compositions and methods for coating medical implants |
US8313760B2 (en) | 2002-05-24 | 2012-11-20 | Angiotech International Ag | Compositions and methods for coating medical implants |
US7097850B2 (en) | 2002-06-18 | 2006-08-29 | Surmodics, Inc. | Bioactive agent release coating and controlled humidity method |
US20040111144A1 (en) * | 2002-12-06 | 2004-06-10 | Lawin Laurie R. | Barriers for polymeric coatings |
WO2005030091A2 (en) * | 2003-09-25 | 2005-04-07 | Scios Inc. | Stents and intra-luminal prostheses containing map kinase inhibitors |
DE102004020856A1 (en) * | 2003-09-29 | 2005-04-14 | Hemoteq Gmbh | Biocompatible, biostable coating of medical surfaces |
US20050220843A1 (en) * | 2004-04-06 | 2005-10-06 | Dewitt David M | Coating compositions for bioactive agents |
US20060240065A1 (en) * | 2005-04-26 | 2006-10-26 | Yung-Ming Chen | Compositions for medical devices containing agent combinations in controlled volumes |
US20060051393A1 (en) * | 2004-09-08 | 2006-03-09 | Medtronic, Inc. | Method of manufacturing drug-eluting medical device |
US9012506B2 (en) | 2004-09-28 | 2015-04-21 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US9801982B2 (en) | 2004-09-28 | 2017-10-31 | Atrium Medical Corporation | Implantable barrier device |
WO2006036967A1 (en) | 2004-09-28 | 2006-04-06 | Atrium Medical Corporation | Solubilizing a drug for use in a coating |
US8858978B2 (en) | 2004-09-28 | 2014-10-14 | Atrium Medical Corporation | Heat cured gel and method of making |
US9592324B2 (en) | 2006-11-06 | 2017-03-14 | Atrium Medical Corporation | Tissue separating device with reinforced support for anchoring mechanisms |
US9000040B2 (en) | 2004-09-28 | 2015-04-07 | Atrium Medical Corporation | Cross-linked fatty acid-based biomaterials |
US9011831B2 (en) * | 2004-09-30 | 2015-04-21 | Advanced Cardiovascular Systems, Inc. | Methacrylate copolymers for medical devices |
US7858077B2 (en) * | 2005-01-28 | 2010-12-28 | Bezwada Biomedical Llc | Functionalized phenolic esters and amides and polymers therefrom |
US7691364B2 (en) | 2005-01-28 | 2010-04-06 | Bezwada Biomedical, Llc | Functionalized drugs and polymers derived therefrom |
US8066759B2 (en) * | 2005-02-04 | 2011-11-29 | Boston Scientific Scimed, Inc. | Resonator for medical device |
EP2896412A1 (en) * | 2005-02-18 | 2015-07-22 | Abraxis BioScience, LLC | Drugs with improved hydrophobicity for incorporation in medical devices |
US20070269486A1 (en) * | 2005-03-14 | 2007-11-22 | Conor Medsystems, Llc. | Methods and Devices for Reducing Tissue Damage After Ischemic Injury |
US20100034867A1 (en) * | 2005-04-29 | 2010-02-11 | Atrium Medical Corporation | Drug delivery coating for use with a medical device and methods of treating vascular injury |
KR20080008364A (en) * | 2005-05-05 | 2008-01-23 | 헤모텍 아게 | Front coating of tubular stent |
US7595469B2 (en) * | 2005-05-24 | 2009-09-29 | Boston Scientific Scimed, Inc. | Resonator for medical device |
AU2006270221B2 (en) | 2005-07-15 | 2012-01-19 | Micell Technologies, Inc. | Polymer coatings containing drug powder of controlled morphology |
WO2007011708A2 (en) | 2005-07-15 | 2007-01-25 | Micell Technologies, Inc. | Stent with polymer coating containing amorphous rapamycin |
US7279664B2 (en) * | 2005-07-26 | 2007-10-09 | Boston Scientific Scimed, Inc. | Resonator for medical device |
US7304277B2 (en) * | 2005-08-23 | 2007-12-04 | Boston Scientific Scimed, Inc | Resonator with adjustable capacitor for medical device |
US7524282B2 (en) * | 2005-08-29 | 2009-04-28 | Boston Scientific Scimed, Inc. | Cardiac sleeve apparatus, system and method of use |
US9427423B2 (en) | 2009-03-10 | 2016-08-30 | Atrium Medical Corporation | Fatty-acid based particles |
US9278161B2 (en) * | 2005-09-28 | 2016-03-08 | Atrium Medical Corporation | Tissue-separating fatty acid adhesion barrier |
WO2007047781A2 (en) * | 2005-10-15 | 2007-04-26 | Atrium Medical Corporation | Hydrophobic cross-linked gels for bioabsorbable drug carrier coatings |
US8318973B2 (en) * | 2005-10-21 | 2012-11-27 | Bezwada Biomedical, Llc | Functionalized sinapic acid and methyl sinapate |
US7423496B2 (en) * | 2005-11-09 | 2008-09-09 | Boston Scientific Scimed, Inc. | Resonator with adjustable capacitance for medical device |
US8007526B2 (en) | 2005-12-01 | 2011-08-30 | Bezwada Biomedical, Llc | Difunctionalized aromatic compounds and polymers therefrom |
US7935843B2 (en) | 2005-12-09 | 2011-05-03 | Bezwada Biomedical, Llc | Functionalized diphenolics and absorbable polymers therefrom |
US7976891B1 (en) | 2005-12-16 | 2011-07-12 | Advanced Cardiovascular Systems, Inc. | Abluminal stent coating apparatus and method of using focused acoustic energy |
BRPI0600275A (en) * | 2006-01-03 | 2007-10-02 | Brz Biotecnologia Ltda | Coronary prosthesis releasing drug composition for prevention and treatment of restenosis and manufacturing process |
US20070162110A1 (en) * | 2006-01-06 | 2007-07-12 | Vipul Bhupendra Dave | Bioabsorbable drug delivery devices |
US20090048537A1 (en) * | 2006-01-31 | 2009-02-19 | Angiotech Biocoatings Corp. | Lubricious coatings |
CA2628234C (en) * | 2006-04-24 | 2014-06-17 | Nm Tech Ltd. Nanomaterials And Microdevices Technology | Functional nanomaterials with antibacterial and antiviral activity |
ES2540059T3 (en) | 2006-04-26 | 2015-07-08 | Micell Technologies, Inc. | Coatings containing multiple drugs |
US20070254003A1 (en) * | 2006-05-01 | 2007-11-01 | Pu Zhou | Non-sticky coatings with therapeutic agents for medical devices |
US7775178B2 (en) * | 2006-05-26 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Stent coating apparatus and method |
WO2008020460A1 (en) * | 2006-06-14 | 2008-02-21 | Nm Tech Ltd. Nanomaterials And Microdevices Technology | Nanomaterial coatings for osteointegrated biomedical prostheses |
US20080095918A1 (en) * | 2006-06-14 | 2008-04-24 | Kleiner Lothar W | Coating construct with enhanced interfacial compatibility |
EP2043704B2 (en) | 2006-06-30 | 2017-04-19 | Cook Medical Technologies LLC | Methods of manufacturing and modifying taxane coatings for implantable medical devices |
US20080039362A1 (en) * | 2006-08-09 | 2008-02-14 | Afmedica, Inc. | Combination drug therapy for reducing scar tissue formation |
US8293318B1 (en) * | 2006-08-29 | 2012-10-23 | Abbott Cardiovascular Systems Inc. | Methods for modulating the release rate of a drug-coated stent |
US9492596B2 (en) | 2006-11-06 | 2016-11-15 | Atrium Medical Corporation | Barrier layer with underlying medical device and one or more reinforcing support structures |
US9474833B2 (en) * | 2006-12-18 | 2016-10-25 | Cook Medical Technologies Llc | Stent graft with releasable therapeutic agent and soluble coating |
US11426494B2 (en) | 2007-01-08 | 2022-08-30 | MT Acquisition Holdings LLC | Stents having biodegradable layers |
WO2008086369A1 (en) | 2007-01-08 | 2008-07-17 | Micell Technologies, Inc. | Stents having biodegradable layers |
US20080188830A1 (en) * | 2007-02-06 | 2008-08-07 | Arrow International, Inc. | Selectively reinforced medical devices |
US8383156B2 (en) * | 2007-04-30 | 2013-02-26 | Cordis Corporation | Coating for a medical device having an anti-thrombotic conjugate |
DE102007024256A1 (en) * | 2007-05-16 | 2008-11-20 | Gelita Ag | vascular stent |
US8802184B2 (en) | 2007-05-30 | 2014-08-12 | Abbott Cardiovascular Systems Inc. | Medical devices containing biobeneficial particles |
US8133553B2 (en) | 2007-06-18 | 2012-03-13 | Zimmer, Inc. | Process for forming a ceramic layer |
US8309521B2 (en) | 2007-06-19 | 2012-11-13 | Zimmer, Inc. | Spacer with a coating thereon for use with an implant device |
KR100883329B1 (en) | 2007-08-21 | 2009-02-11 | 주식회사 에스앤지바이오텍 | Drug Release Membrane for Stent and Drug Release Stent for Lumenal Expansion |
US8217134B2 (en) | 2007-08-30 | 2012-07-10 | Bezwada Biomedical, Llc | Controlled release of biologically active compounds |
WO2009031295A1 (en) | 2007-09-04 | 2009-03-12 | Japan Stent Technology Co., Ltd. | Stent for controlled drug release |
US8026285B2 (en) * | 2007-09-04 | 2011-09-27 | Bezwada Biomedical, Llc | Control release of biologically active compounds from multi-armed oligomers |
WO2009031484A1 (en) * | 2007-09-07 | 2009-03-12 | Toray Industries, Inc. | Sheet for developing liquid |
US8048980B2 (en) | 2007-09-17 | 2011-11-01 | Bezwada Biomedical, Llc | Hydrolysable linkers and cross-linkers for absorbable polymers |
US8608049B2 (en) | 2007-10-10 | 2013-12-17 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US20100298928A1 (en) * | 2007-10-19 | 2010-11-25 | Micell Technologies, Inc. | Drug Coated Stents |
US20090192583A1 (en) * | 2008-01-28 | 2009-07-30 | Medtronic Vascular, Inc. | Ordered Coatings for Drug Eluting Stents and Medical Devices |
US20110150961A1 (en) * | 2008-02-22 | 2011-06-23 | Angiotech International Ag | Anti-infective catheters |
US20090228097A1 (en) * | 2008-03-07 | 2009-09-10 | Abbott Cardiovascular Systems Inc. | A1 Adenosine Receptor Antagonist-Coated Implantable Medical Device |
US8252048B2 (en) | 2008-03-19 | 2012-08-28 | Boston Scientific Scimed, Inc. | Drug eluting stent and method of making the same |
CA2721832C (en) | 2008-04-17 | 2018-08-07 | Micell Technologies, Inc. | Stents having bioabsorbable layers |
CA2730995C (en) | 2008-07-17 | 2016-11-22 | Micell Technologies, Inc. | Drug delivery medical device |
US8257722B2 (en) | 2008-09-15 | 2012-09-04 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US8114429B2 (en) | 2008-09-15 | 2012-02-14 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US9198968B2 (en) | 2008-09-15 | 2015-12-01 | The Spectranetics Corporation | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US8128951B2 (en) | 2008-09-15 | 2012-03-06 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens |
US20100082097A1 (en) * | 2008-10-01 | 2010-04-01 | Joel Rosenblatt | Article Containing Segregated Biguanide and Lewis Acid |
US7819914B2 (en) * | 2008-12-16 | 2010-10-26 | Cordis Corporation | Adhesion promoting primer for coated surfaces |
JP5597625B2 (en) * | 2009-03-02 | 2014-10-01 | 株式会社日本ステントテクノロジー | Drug eluting stent |
US11219706B2 (en) | 2009-03-11 | 2022-01-11 | Arrow International Llc | Enhanced formulations for coating medical devices |
US20100233288A1 (en) * | 2009-03-11 | 2010-09-16 | Teleflex Medical Incorporated | Medical devices containing nitroprusside and antimicrobial agents |
US9981072B2 (en) | 2009-04-01 | 2018-05-29 | Micell Technologies, Inc. | Coated stents |
WO2010121187A2 (en) | 2009-04-17 | 2010-10-21 | Micell Techologies, Inc. | Stents having controlled elution |
CN105214143A (en) * | 2009-04-28 | 2016-01-06 | 苏尔莫迪克斯公司 | For sending the apparatus and method of bioactivator |
EP2453834A4 (en) | 2009-07-16 | 2014-04-16 | Micell Technologies Inc | Drug delivery medical device |
US20110038910A1 (en) | 2009-08-11 | 2011-02-17 | Atrium Medical Corporation | Anti-infective antimicrobial-containing biomaterials |
WO2011097103A1 (en) | 2010-02-02 | 2011-08-11 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
WO2011129162A1 (en) * | 2010-04-16 | 2011-10-20 | 株式会社グッドマン | Medical instrument and process for production thereof |
US10232092B2 (en) | 2010-04-22 | 2019-03-19 | Micell Technologies, Inc. | Stents and other devices having extracellular matrix coating |
US8858577B2 (en) | 2010-05-19 | 2014-10-14 | University Of Utah Research Foundation | Tissue stabilization system |
US8945156B2 (en) | 2010-05-19 | 2015-02-03 | University Of Utah Research Foundation | Tissue fixation |
US10143196B2 (en) | 2010-07-09 | 2018-12-04 | Oerlikon Surface Solutions Ag, Pfäffikon | Antibacterial medical product and method for producing same |
EP2593039B1 (en) | 2010-07-16 | 2022-11-30 | Micell Technologies, Inc. | Drug delivery medical device |
US10322213B2 (en) | 2010-07-16 | 2019-06-18 | Atrium Medical Corporation | Compositions and methods for altering the rate of hydrolysis of cured oil-based materials |
CN102397590B (en) * | 2010-09-07 | 2014-09-10 | 上海微创医疗器械(集团)有限公司 | Biodegradable bracket |
US8852214B2 (en) | 2011-02-04 | 2014-10-07 | University Of Utah Research Foundation | System for tissue fixation to bone |
CN102151185A (en) * | 2011-04-13 | 2011-08-17 | 微创医疗器械(上海)有限公司 | Biodegradable stent with laminated coatings |
US10213529B2 (en) | 2011-05-20 | 2019-02-26 | Surmodics, Inc. | Delivery of coated hydrophobic active agent particles |
US9861727B2 (en) | 2011-05-20 | 2018-01-09 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
WO2012170591A2 (en) * | 2011-06-07 | 2012-12-13 | Qing Liu | Hybrid polymer stent fabricated by a non-laser cut fabrication method |
CA2841360A1 (en) | 2011-07-15 | 2013-01-24 | Micell Technologies, Inc. | Drug delivery medical device |
US10188772B2 (en) | 2011-10-18 | 2019-01-29 | Micell Technologies, Inc. | Drug delivery medical device |
US9867880B2 (en) | 2012-06-13 | 2018-01-16 | Atrium Medical Corporation | Cured oil-hydrogel biomaterial compositions for controlled drug delivery |
US9956385B2 (en) | 2012-06-28 | 2018-05-01 | The Spectranetics Corporation | Post-processing of a medical device to control morphology and mechanical properties |
JP5576441B2 (en) * | 2012-07-19 | 2014-08-20 | チョンナム ナショナル ユニバーシティ ホスピタル | Heparin coating method for stent surface |
US9629632B2 (en) | 2012-07-30 | 2017-04-25 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
US11253252B2 (en) | 2012-07-30 | 2022-02-22 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10219804B2 (en) | 2012-07-30 | 2019-03-05 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US9427309B2 (en) | 2012-07-30 | 2016-08-30 | Conextions, Inc. | Soft tissue repair devices, systems, and methods |
US11957334B2 (en) | 2012-07-30 | 2024-04-16 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10390935B2 (en) | 2012-07-30 | 2019-08-27 | Conextions, Inc. | Soft tissue to bone repair devices, systems, and methods |
US11944531B2 (en) | 2012-07-30 | 2024-04-02 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10835241B2 (en) | 2012-07-30 | 2020-11-17 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
CA3176076C (en) * | 2012-08-29 | 2024-04-09 | The Administrators Of The Tulane Educational Fund | Drug delivery devices and methods of making and using same |
CA2890205C (en) | 2012-11-05 | 2020-12-22 | Surmodics, Inc. | Composition and method for delivery of hydrophobic active agents |
US11246963B2 (en) | 2012-11-05 | 2022-02-15 | Surmodics, Inc. | Compositions and methods for delivery of hydrophobic active agents |
JP6330024B2 (en) | 2013-03-12 | 2018-05-23 | マイセル・テクノロジーズ,インコーポレイテッド | Bioabsorbable biomedical implant |
KR102079613B1 (en) | 2013-05-15 | 2020-02-20 | 미셀 테크놀로지즈, 인코포레이티드 | Bioabsorbable biomedical implants |
WO2015095768A1 (en) * | 2013-12-19 | 2015-06-25 | Kent State University | Biocompatible smart responsive scaffold having interconnected pores |
US10525171B2 (en) | 2014-01-24 | 2020-01-07 | The Spectranetics Corporation | Coatings for medical devices |
US11583384B2 (en) | 2014-03-12 | 2023-02-21 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
KR101668590B1 (en) | 2014-06-19 | 2016-10-25 | 전남대학교병원 | Bioactive Peptide-coated Stent Promotes Endothelial Cell Proliferation and Prevents Stent Thrombosis |
US20160015852A1 (en) * | 2014-07-15 | 2016-01-21 | Industrial Technology Research Institute | Composite material |
US11696822B2 (en) | 2016-09-28 | 2023-07-11 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US10898446B2 (en) | 2016-12-20 | 2021-01-26 | Surmodics, Inc. | Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces |
US11826492B2 (en) * | 2016-12-22 | 2023-11-28 | Biotronik Ag | Intratumoral drug delivery materials and methods for treating breast cancer |
KR102371096B1 (en) * | 2017-02-28 | 2022-03-04 | 로레알 | Non-woven solid material suitable for topical application |
LT3618883T (en) | 2017-05-04 | 2024-08-26 | Hollister Incorporated | LUBRICANT HYDROPHILIC COATINGS AND METHODS OF THEIR FORMATION |
US11027046B2 (en) * | 2017-10-31 | 2021-06-08 | Hothouse Medical Limited | Textile products having selectively applied sealant or coating and method of manufacture |
US12102317B2 (en) | 2017-12-20 | 2024-10-01 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
US11547397B2 (en) | 2017-12-20 | 2023-01-10 | Conextions, Inc. | Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone |
CN108264824B (en) * | 2018-02-12 | 2020-01-14 | 石家庄市油漆厂 | Solvent-free epoxy coating for high-pressure airless spraying of outer wall of buried steel pipe and preparation method thereof |
CN118303936A (en) | 2018-02-20 | 2024-07-09 | 科内克思申斯股份有限公司 | Medical device system for fixing soft tissue to bone |
US12226552B2 (en) | 2019-09-30 | 2025-02-18 | Surmodics, Inc. | Active agent depots formed in situ |
WO2021251712A1 (en) * | 2020-06-12 | 2021-12-16 | 연세대학교 산학협력단 | Stent for drug delivery and manufacturing method therefor |
US11911259B2 (en) * | 2020-07-31 | 2024-02-27 | DePuy Synthes Products, Inc. | Multi-layer folding flow diverters |
WO2025006879A1 (en) * | 2023-06-29 | 2025-01-02 | Teleflex Medical Incorporated | Compounded active pharmaceutical agents in thermoplastic polymer compositions and methods of manufacture |
Citations (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4391797A (en) | 1977-01-05 | 1983-07-05 | The Children's Hospital Medical Center | Systems for the controlled release of macromolecules |
US4531933A (en) | 1982-12-07 | 1985-07-30 | C. R. Bard, Inc. | Helical ureteral stent |
US4723957A (en) | 1986-02-07 | 1988-02-09 | Alza Corp. | System for delivering drug with enhanced bioacceptability |
US4733665A (en) | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
EP0294905A1 (en) | 1987-06-09 | 1988-12-14 | Cordis Europa N.V. | Covalent attachment of anticoagulants and the like onto biomaterials |
US4800882A (en) | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5001009A (en) | 1987-09-02 | 1991-03-19 | Sterilization Technical Services, Inc. | Lubricious hydrophilic composite coated on substrates |
US5069899A (en) | 1989-11-02 | 1991-12-03 | Sterilization Technical Services, Inc. | Anti-thrombogenic, anti-microbial compositions containing heparin |
WO1993016687A1 (en) | 1992-02-28 | 1993-09-02 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
WO1993017669A1 (en) | 1992-02-28 | 1993-09-16 | Board Of Regents, The University Of Texas System | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
US5294448A (en) | 1989-11-24 | 1994-03-15 | British Technology Group Limited | Delayed release formulations |
WO1994021308A1 (en) | 1993-03-18 | 1994-09-29 | Cedars-Sinai Medical Center | Drug incorporating and releasing polymeric coating for bioprosthesis |
US5380299A (en) | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
WO1995003036A1 (en) | 1993-07-19 | 1995-02-02 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US5523092A (en) | 1993-04-14 | 1996-06-04 | Emory University | Device for local drug delivery and methods for using the same |
US5525348A (en) | 1989-11-02 | 1996-06-11 | Sts Biopolymers, Inc. | Coating compositions comprising pharmaceutical agents |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US5620738A (en) | 1995-06-07 | 1997-04-15 | Union Carbide Chemicals & Plastics Technology Corporation | Non-reactive lubicious coating process |
US5707385A (en) | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
US5716981A (en) | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US5733925A (en) | 1993-01-28 | 1998-03-31 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
WO1998017331A1 (en) | 1995-06-07 | 1998-04-30 | Cook Incorporated | Silver implantable medical device |
WO1998019713A1 (en) | 1996-11-06 | 1998-05-14 | Sts Biopolymers Inc. | Echogenic coating containing gaseous spaces for ultrasonography |
WO1998023228A1 (en) | 1996-11-25 | 1998-06-04 | Alza Corporation | Directional drug delivery stent |
EP0850604A2 (en) | 1996-12-30 | 1998-07-01 | SORIN BIOMEDICA S.p.A. | A stent for angioplasty and associated production process |
US5779673A (en) | 1995-06-26 | 1998-07-14 | Focal, Inc. | Devices and methods for application of intraluminal photopolymerized gels |
US5797898A (en) | 1996-07-02 | 1998-08-25 | Massachusetts Institute Of Technology | Microchip drug delivery devices |
WO1998036784A1 (en) | 1997-02-20 | 1998-08-27 | Cook Incorporated | Coated implantable medical device |
US5800412A (en) | 1996-10-10 | 1998-09-01 | Sts Biopolymers, Inc. | Hydrophilic coatings with hydrating agents |
US5837008A (en) | 1993-04-26 | 1998-11-17 | Medtronic, Inc. | Intravascular stent and method |
US5840329A (en) | 1997-05-15 | 1998-11-24 | Bioadvances Llc | Pulsatile drug delivery system |
US5843172A (en) | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US5851217A (en) | 1990-02-28 | 1998-12-22 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US5866619A (en) | 1990-05-04 | 1999-02-02 | Perio Products Ltd. | Colonic drug delivery system |
US5873904A (en) | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
US5882335A (en) | 1994-09-12 | 1999-03-16 | Cordis Corporation | Retrievable drug delivery stent |
US5962620A (en) | 1996-08-26 | 1999-10-05 | Tyndale Plains-Hunter, Ltd. | Hydrophicic and hydrophobic polyether polyurethanes and uses therefor |
EP0950386A2 (en) | 1998-04-16 | 1999-10-20 | Cordis Corporation | Stent with local rapamycin delivery |
US5972027A (en) | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
US5977163A (en) | 1996-03-12 | 1999-11-02 | Pg-Txl Company, L. P. | Water soluble paclitaxel prodrugs |
US5980550A (en) | 1998-06-18 | 1999-11-09 | Target Therapeutics, Inc. | Water-soluble coating for bioactive vasoocclusive devices |
US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
JP2000001255A (en) | 1999-06-07 | 2000-01-07 | Fuji Xerox Co Ltd | Sheet distributing and containing device |
JP2000051367A (en) | 1998-06-30 | 2000-02-22 | Ethicon Inc | Stent coating method |
WO2000032255A1 (en) | 1998-12-03 | 2000-06-08 | Boston Scientific Limited | Polymeric coatings with controlled delivery of active agents |
US6086547A (en) | 1995-11-27 | 2000-07-11 | Belden Wire And Cable B.V. | Wire for medical use coated with polyether sulphone and a copolymer |
US6110483A (en) | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
US6171609B1 (en) | 1995-02-15 | 2001-01-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6197051B1 (en) | 1997-06-18 | 2001-03-06 | Boston Scientific Corporation | Polycarbonate-polyurethane dispersions for thromobo-resistant coatings |
WO2001015526A1 (en) | 1999-08-31 | 2001-03-08 | Sts Biopolymers, Inc. | Anti-infective covering for percutaneous and vascular access devices and coating method |
WO2001036008A2 (en) | 1999-11-18 | 2001-05-25 | Sts Biopolymers, Inc. | Medical devices coated with elastic polymeric material |
US6251136B1 (en) | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
US6254632B1 (en) | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
US6273908B1 (en) | 1997-10-24 | 2001-08-14 | Robert Ndondo-Lay | Stents |
WO2001067991A1 (en) | 2000-03-13 | 2001-09-20 | Jun Yang | Stent having cover with drug delivery capability |
US6306421B1 (en) | 1992-09-25 | 2001-10-23 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6344035B1 (en) | 1998-04-27 | 2002-02-05 | Surmodics, Inc. | Bioactive agent release coating |
US20020018795A1 (en) | 2000-04-13 | 2002-02-14 | Whitbourne Richard J. | Targeted therapeutic agent release devices and methods of making and using the same |
US6395326B1 (en) | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6403635B1 (en) | 1993-07-29 | 2002-06-11 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method of treating atherosclerosis or restenosis using microtubule stabilizing agent |
US20020082680A1 (en) | 2000-10-16 | 2002-06-27 | Shanley John F. | Expandable medical device for delivery of beneficial agent |
US20020123801A1 (en) | 2000-12-28 | 2002-09-05 | Pacetti Stephen D. | Diffusion barrier layer for implantable devices |
WO2002074194A2 (en) | 2001-03-16 | 2002-09-26 | Sts Biopolymers, Inc. | Stent with medicated multi-layer hydrid polymer coating |
EP1261297A2 (en) | 2000-03-06 | 2002-12-04 | Advanced Laser Applications Holding S.A. | Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof |
US6491938B2 (en) | 1993-05-13 | 2002-12-10 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6491666B1 (en) | 1999-11-17 | 2002-12-10 | Microchips, Inc. | Microfabricated devices for the delivery of molecules into a carrier fluid |
US6515016B2 (en) | 1996-12-02 | 2003-02-04 | Angiotech Pharmaceuticals, Inc. | Composition and methods of paclitaxel for treating psoriasis |
WO2003035135A1 (en) | 2001-09-24 | 2003-05-01 | Boston Scientific Limited | Optimized dosing for drug coated stents |
WO2003063924A1 (en) | 2002-01-31 | 2003-08-07 | Scimed Life Systems, Inc. | Medical device for delivering biologically active material |
US6699281B2 (en) | 2001-07-20 | 2004-03-02 | Sorin Biomedica Cardio S.P.A. | Angioplasty stents |
US20040063805A1 (en) | 2002-09-19 | 2004-04-01 | Pacetti Stephen D. | Coatings for implantable medical devices and methods for fabrication thereof |
US20040166140A1 (en) | 1996-07-02 | 2004-08-26 | Santini John T. | Implantable device for controlled release of drug |
US6783543B2 (en) | 2000-06-05 | 2004-08-31 | Scimed Life Systems, Inc. | Intravascular stent with increasing coating retaining capacity |
US20050181977A1 (en) | 2003-11-10 | 2005-08-18 | Angiotech International Ag | Medical implants and anti-scarring agents |
US20050283228A1 (en) | 1998-07-29 | 2005-12-22 | Stanford Ulf H | Expandable stent with relief holes capable of carrying medicines and other materials |
US7771468B2 (en) * | 2001-03-16 | 2010-08-10 | Angiotech Biocoatings Corp. | Medicated stent having multi-layer polymer coating |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6110783A (en) * | 1997-06-27 | 2000-08-29 | Sun Microsystems, Inc. | Method for forming a notched gate oxide asymmetric MOS device |
US6491936B1 (en) * | 1997-12-09 | 2002-12-10 | Chugai Seiyaku Kabushiki Kaisha | Creams containing vitamin D3 derivatives |
US6258121B1 (en) * | 1999-07-02 | 2001-07-10 | Scimed Life Systems, Inc. | Stent coating |
JP4473390B2 (en) | 2000-01-07 | 2010-06-02 | 川澄化学工業株式会社 | Stent and stent graft |
JP4064355B2 (en) * | 2004-01-20 | 2008-03-19 | 任天堂株式会社 | GAME SYSTEM AND GAME DEVICE |
-
2003
- 2003-09-16 US US10/662,877 patent/US7771468B2/en not_active Expired - Fee Related
-
2004
- 2004-09-16 WO PCT/US2004/030354 patent/WO2005030094A1/en active Application Filing
- 2004-09-16 CA CA2538669A patent/CA2538669C/en not_active Expired - Fee Related
- 2004-09-16 JP JP2006527022A patent/JP2007505704A/en active Pending
- 2004-09-16 EP EP04784270A patent/EP1680047A4/en not_active Withdrawn
-
2010
- 2010-07-01 US US12/828,512 patent/US8287590B2/en not_active Expired - Fee Related
-
2012
- 2012-10-15 US US13/651,828 patent/US20130253636A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4391797A (en) | 1977-01-05 | 1983-07-05 | The Children's Hospital Medical Center | Systems for the controlled release of macromolecules |
US4531933A (en) | 1982-12-07 | 1985-07-30 | C. R. Bard, Inc. | Helical ureteral stent |
US4733665B1 (en) | 1985-11-07 | 1994-01-11 | Expandable Grafts Partnership | Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft |
US4733665A (en) | 1985-11-07 | 1988-03-29 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4723957A (en) | 1986-02-07 | 1988-02-09 | Alza Corp. | System for delivering drug with enhanced bioacceptability |
US4800882A (en) | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
EP0294905A1 (en) | 1987-06-09 | 1988-12-14 | Cordis Europa N.V. | Covalent attachment of anticoagulants and the like onto biomaterials |
US5001009A (en) | 1987-09-02 | 1991-03-19 | Sterilization Technical Services, Inc. | Lubricious hydrophilic composite coated on substrates |
US5331027A (en) | 1987-09-02 | 1994-07-19 | Sterilization Technical Services, Inc. | Lubricious hydrophilic coating, resistant to wet abrasion |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5069899A (en) | 1989-11-02 | 1991-12-03 | Sterilization Technical Services, Inc. | Anti-thrombogenic, anti-microbial compositions containing heparin |
US5525348A (en) | 1989-11-02 | 1996-06-11 | Sts Biopolymers, Inc. | Coating compositions comprising pharmaceutical agents |
US5294448A (en) | 1989-11-24 | 1994-03-15 | British Technology Group Limited | Delayed release formulations |
US5851217A (en) | 1990-02-28 | 1998-12-22 | Medtronic, Inc. | Intralumenal drug eluting prosthesis |
US5866619A (en) | 1990-05-04 | 1999-02-02 | Perio Products Ltd. | Colonic drug delivery system |
US6515009B1 (en) | 1991-09-27 | 2003-02-04 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6268390B1 (en) | 1991-09-27 | 2001-07-31 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6074659A (en) | 1991-09-27 | 2000-06-13 | Noerx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
WO1993017669A1 (en) | 1992-02-28 | 1993-09-16 | Board Of Regents, The University Of Texas System | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
WO1993016687A1 (en) | 1992-02-28 | 1993-09-02 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
US6599928B2 (en) | 1992-09-25 | 2003-07-29 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6306421B1 (en) | 1992-09-25 | 2001-10-23 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5733925A (en) | 1993-01-28 | 1998-03-31 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
WO1994021308A1 (en) | 1993-03-18 | 1994-09-29 | Cedars-Sinai Medical Center | Drug incorporating and releasing polymeric coating for bioprosthesis |
US5523092A (en) | 1993-04-14 | 1996-06-04 | Emory University | Device for local drug delivery and methods for using the same |
US5837008A (en) | 1993-04-26 | 1998-11-17 | Medtronic, Inc. | Intravascular stent and method |
US6491938B2 (en) | 1993-05-13 | 2002-12-10 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
WO1995003036A1 (en) | 1993-07-19 | 1995-02-02 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US5716981A (en) | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US6403635B1 (en) | 1993-07-29 | 2002-06-11 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Method of treating atherosclerosis or restenosis using microtubule stabilizing agent |
WO1995006487A2 (en) | 1993-08-30 | 1995-03-09 | Med Institute, Inc. | Intravascular medical device |
US5380299A (en) | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
US5882335A (en) | 1994-09-12 | 1999-03-16 | Cordis Corporation | Retrievable drug delivery stent |
US5707385A (en) | 1994-11-16 | 1998-01-13 | Advanced Cardiovascular Systems, Inc. | Drug loaded elastic membrane and method for delivery |
US6171609B1 (en) | 1995-02-15 | 2001-01-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US6096070A (en) | 1995-06-07 | 2000-08-01 | Med Institute Inc. | Coated implantable medical device |
US5873904A (en) | 1995-06-07 | 1999-02-23 | Cook Incorporated | Silver implantable medical device |
WO1998017331A1 (en) | 1995-06-07 | 1998-04-30 | Cook Incorporated | Silver implantable medical device |
US5620738A (en) | 1995-06-07 | 1997-04-15 | Union Carbide Chemicals & Plastics Technology Corporation | Non-reactive lubicious coating process |
JPH0999056A (en) | 1995-06-07 | 1997-04-15 | Cook Inc | Medical device |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US5779673A (en) | 1995-06-26 | 1998-07-14 | Focal, Inc. | Devices and methods for application of intraluminal photopolymerized gels |
US6086547A (en) | 1995-11-27 | 2000-07-11 | Belden Wire And Cable B.V. | Wire for medical use coated with polyether sulphone and a copolymer |
US5977163A (en) | 1996-03-12 | 1999-11-02 | Pg-Txl Company, L. P. | Water soluble paclitaxel prodrugs |
US20040166140A1 (en) | 1996-07-02 | 2004-08-26 | Santini John T. | Implantable device for controlled release of drug |
US5797898A (en) | 1996-07-02 | 1998-08-25 | Massachusetts Institute Of Technology | Microchip drug delivery devices |
US5962620A (en) | 1996-08-26 | 1999-10-05 | Tyndale Plains-Hunter, Ltd. | Hydrophicic and hydrophobic polyether polyurethanes and uses therefor |
US5800412A (en) | 1996-10-10 | 1998-09-01 | Sts Biopolymers, Inc. | Hydrophilic coatings with hydrating agents |
WO1998019713A1 (en) | 1996-11-06 | 1998-05-14 | Sts Biopolymers Inc. | Echogenic coating containing gaseous spaces for ultrasonography |
WO1998023228A1 (en) | 1996-11-25 | 1998-06-04 | Alza Corporation | Directional drug delivery stent |
US6071305A (en) | 1996-11-25 | 2000-06-06 | Alza Corporation | Directional drug delivery stent and method of use |
US6515016B2 (en) | 1996-12-02 | 2003-02-04 | Angiotech Pharmaceuticals, Inc. | Composition and methods of paclitaxel for treating psoriasis |
EP0850604A2 (en) | 1996-12-30 | 1998-07-01 | SORIN BIOMEDICA S.p.A. | A stent for angioplasty and associated production process |
US6306176B1 (en) | 1997-01-27 | 2001-10-23 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
WO1998036784A1 (en) | 1997-02-20 | 1998-08-27 | Cook Incorporated | Coated implantable medical device |
US5843172A (en) | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US5840329A (en) | 1997-05-15 | 1998-11-24 | Bioadvances Llc | Pulsatile drug delivery system |
US6197051B1 (en) | 1997-06-18 | 2001-03-06 | Boston Scientific Corporation | Polycarbonate-polyurethane dispersions for thromobo-resistant coatings |
US6110483A (en) | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
US5972027A (en) | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
US6273908B1 (en) | 1997-10-24 | 2001-08-14 | Robert Ndondo-Lay | Stents |
EP0950386A2 (en) | 1998-04-16 | 1999-10-20 | Cordis Corporation | Stent with local rapamycin delivery |
US6344035B1 (en) | 1998-04-27 | 2002-02-05 | Surmodics, Inc. | Bioactive agent release coating |
US5980550A (en) | 1998-06-18 | 1999-11-09 | Target Therapeutics, Inc. | Water-soluble coating for bioactive vasoocclusive devices |
JP2000051367A (en) | 1998-06-30 | 2000-02-22 | Ethicon Inc | Stent coating method |
US20050283228A1 (en) | 1998-07-29 | 2005-12-22 | Stanford Ulf H | Expandable stent with relief holes capable of carrying medicines and other materials |
US6335029B1 (en) | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
WO2000032255A1 (en) | 1998-12-03 | 2000-06-08 | Boston Scientific Limited | Polymeric coatings with controlled delivery of active agents |
JP2000001255A (en) | 1999-06-07 | 2000-01-07 | Fuji Xerox Co Ltd | Sheet distributing and containing device |
US6368611B1 (en) | 1999-08-31 | 2002-04-09 | Sts Biopolymers, Inc. | Anti-infective covering for percutaneous and vascular access device and coating method |
WO2001015526A1 (en) | 1999-08-31 | 2001-03-08 | Sts Biopolymers, Inc. | Anti-infective covering for percutaneous and vascular access devices and coating method |
US6491666B1 (en) | 1999-11-17 | 2002-12-10 | Microchips, Inc. | Microfabricated devices for the delivery of molecules into a carrier fluid |
US7041130B2 (en) | 1999-11-17 | 2006-05-09 | Boston Scientific Scimed, Inc. | Stent for controlled release of drug |
US6656162B2 (en) | 1999-11-17 | 2003-12-02 | Microchips, Inc. | Implantable drug delivery stents |
US7052488B2 (en) | 1999-11-17 | 2006-05-30 | Boston Scientific Scimed, Inc. | Implantable drug delivery device |
WO2001036008A2 (en) | 1999-11-18 | 2001-05-25 | Sts Biopolymers, Inc. | Medical devices coated with elastic polymeric material |
US6251136B1 (en) | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
US7135039B2 (en) | 2000-03-06 | 2006-11-14 | Boston Scientific Scimed, Inc. | Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof |
EP1261297A2 (en) | 2000-03-06 | 2002-12-04 | Advanced Laser Applications Holding S.A. | Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof |
US20060129231A1 (en) | 2000-03-06 | 2006-06-15 | Boston Scientific Scimed, Inc. | Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof |
WO2001067991A1 (en) | 2000-03-13 | 2001-09-20 | Jun Yang | Stent having cover with drug delivery capability |
US20020018795A1 (en) | 2000-04-13 | 2002-02-14 | Whitbourne Richard J. | Targeted therapeutic agent release devices and methods of making and using the same |
US6616765B1 (en) | 2000-05-31 | 2003-09-09 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6395326B1 (en) | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6783543B2 (en) | 2000-06-05 | 2004-08-31 | Scimed Life Systems, Inc. | Intravascular stent with increasing coating retaining capacity |
US6254632B1 (en) | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
US20020082680A1 (en) | 2000-10-16 | 2002-06-27 | Shanley John F. | Expandable medical device for delivery of beneficial agent |
US6663662B2 (en) | 2000-12-28 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Diffusion barrier layer for implantable devices |
US20020123801A1 (en) | 2000-12-28 | 2002-09-05 | Pacetti Stephen D. | Diffusion barrier layer for implantable devices |
US7771468B2 (en) * | 2001-03-16 | 2010-08-10 | Angiotech Biocoatings Corp. | Medicated stent having multi-layer polymer coating |
WO2002074194A2 (en) | 2001-03-16 | 2002-09-26 | Sts Biopolymers, Inc. | Stent with medicated multi-layer hydrid polymer coating |
US6699281B2 (en) | 2001-07-20 | 2004-03-02 | Sorin Biomedica Cardio S.P.A. | Angioplasty stents |
WO2003035135A1 (en) | 2001-09-24 | 2003-05-01 | Boston Scientific Limited | Optimized dosing for drug coated stents |
WO2003063924A1 (en) | 2002-01-31 | 2003-08-07 | Scimed Life Systems, Inc. | Medical device for delivering biologically active material |
US20040063805A1 (en) | 2002-09-19 | 2004-04-01 | Pacetti Stephen D. | Coatings for implantable medical devices and methods for fabrication thereof |
US20050181977A1 (en) | 2003-11-10 | 2005-08-18 | Angiotech International Ag | Medical implants and anti-scarring agents |
Non-Patent Citations (7)
Title |
---|
Concise Encyclopedia of Polymer Science and Engineering, Ed. J. I. Kroschwitz, p. 458-459, 1990. |
Dev et al., Microspheres for Drug Delivery to the Arterial Wall: A Study of Kinetics, Toxicity and Effects of Corticosteroid Loaded Microspheres. 1994. JACC. p. 194. |
J. Eduardo Sousa, MD, titled "New Frontiers in Cardiology Drug-Eluting Stents: Part 1", Clinical Cardiology: New Frontiers, Part 1, Circulation, pp. 2274-2279, May 16, 2003. |
Lincoff et al., Local Delivery of Dexamethasone by Eluting Stent Attenuates the Adverse Response to Biodegradable Polymer in Porcine Coronary Artery. 1993. Circulation. vol. 88, No. 4, Part 2, p. 1-655. |
Rohm & Haas, "ACRYLOID Acrylic Resins for Industrial Finishing", Bulletin 82A4, Sep. 1985. |
Rohm & Haas, "PARALOID Thermoplastic Solution Grade & Solid Grade Acrylic Resins for Industrial Finishing", Bulletin 82A37, p. 1-46 (Jun. 1998). |
Von Birgelen, C. et al., "The Jostent Coronary Stent Graft-Just another Stent? . . . How Should it be Implemented ?" , Abstract: 825-4, ACC 2004/4 9th Annual Scientific Session, Mar. 12-15, 2000, Anaheim, CA, USA. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9763892B2 (en) | 2015-06-01 | 2017-09-19 | Autotelic Llc | Immediate release phospholipid-coated therapeutic agent nanoparticles and related methods |
US12390554B2 (en) | 2018-05-21 | 2025-08-19 | Greatbatch Ltd. | Method for making insertable medical devices with low profile composite coverings |
Also Published As
Publication number | Publication date |
---|---|
EP1680047A4 (en) | 2011-07-27 |
JP2007505704A (en) | 2007-03-15 |
US20100331967A1 (en) | 2010-12-30 |
US20130253636A1 (en) | 2013-09-26 |
CA2538669A1 (en) | 2005-04-07 |
EP1680047A1 (en) | 2006-07-19 |
WO2005030094A1 (en) | 2005-04-07 |
CA2538669C (en) | 2010-11-30 |
US20040117007A1 (en) | 2004-06-17 |
US7771468B2 (en) | 2010-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8287590B2 (en) | Medicated stent having multi-layer polymer coating | |
WO2002074194A2 (en) | Stent with medicated multi-layer hydrid polymer coating | |
US6713119B2 (en) | Biocompatible coating for a prosthesis and a method of forming the same | |
US6585765B1 (en) | Implantable device having substances impregnated therein and a method of impregnating the same | |
EP1740235B1 (en) | Coating compositions for bioactive agents | |
US5624411A (en) | Intravascular stent and method | |
US7803394B2 (en) | Polycationic peptide hydrogel coatings for cardiovascular therapy | |
US6908624B2 (en) | Coating for implantable devices and a method of forming the same | |
US6503954B1 (en) | Biocompatible carrier containing actinomycin D and a method of forming the same | |
EP1684821B1 (en) | Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same | |
US8518097B2 (en) | Plasticized stent coatings | |
JP2005536263A (en) | Drug eluting coating for medical implants | |
JP2008535563A (en) | Coating composition for bioactive agents | |
HK1083183B (en) | Drug eluting coatings for medical implants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WELLS FARGO FOOTHILL, LLC, AS AGENT, GEORGIA Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:ANGIOTECH PHARMACEUTICALS, INC.;AFMEDIA, INC.;AMERICAN MEDICAL INSTRUMENTS HOLDINGS, INC.;AND OTHERS;REEL/FRAME:024861/0219 Effective date: 20090227 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: ANGIOTECH PHARMACEUTICALS (US), INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANGIOTECH BIOCOATINGS CORP.;REEL/FRAME:029930/0255 Effective date: 20130301 |
|
AS | Assignment |
Owner name: AMERICAN MEDICAL INSTRUMENTS HOLDINGS, INC., CANAD Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: ANGIOTECH PHARMACEUTICALS, INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: ANGIOTECH AMERICA, INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: ANGIOTECH INTERNATIONAL HOLDINGS CORP., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: B.G. SULZLE, INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: MEDICAL DEVICE TECHNOLOGIES, INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: SURGICAL SPECIALTIES CORPORATION, CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: ANGIOTECH BIOCOATINGS CORP., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: ANGIOTECH PHARMACEUTICALS (US), INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: MANAN MEDICAL PRODUCTS, INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 Owner name: QUILL MEDICAL, INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK NATIONAL TRUST COMPANY;REEL/FRAME:030218/0820 Effective date: 20130412 |
|
AS | Assignment |
Owner name: ANGIOTECH PHARMACEUTICALS, INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANGIOTECH PHARMACEUTICALS (US), INC.;REEL/FRAME:031510/0399 Effective date: 20130716 |
|
AS | Assignment |
Owner name: IPXMEDICAL, LLC, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANGIOTECH PHARMACEUTICALS, INC;REEL/FRAME:032815/0107 Effective date: 20140425 Owner name: IPXMEDICAL, LLC, TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANGIOTECH PHARMACEUTICALS, INC.;REEL/FRAME:032815/0138 Effective date: 20140425 |
|
AS | Assignment |
Owner name: ANGIOTECH PHARMACEUTICALS (US), INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANGIOTECH BIOCOATINGS CORP.;REEL/FRAME:034034/0900 Effective date: 20130301 |
|
AS | Assignment |
Owner name: STS BIOPOLYMERS, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WHITBOURNE, RICHARD J.;CHAMBERLAIN, ALEXANDRA M.;HULLIHEN, DANIEL G.;AND OTHERS;SIGNING DATES FROM 20040920 TO 20041013;REEL/FRAME:034232/0766 Owner name: ANGIOTECH BIOCOATINGS CORP., NEW YORK Free format text: CHANGE OF NAME;ASSIGNOR:STS BIOPOLYMERS, INC.;REEL/FRAME:034429/0799 Effective date: 20041021 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20201016 |