US8215356B2 - Tire with composite ply structure and envelope turnup - Google Patents

Tire with composite ply structure and envelope turnup Download PDF

Info

Publication number
US8215356B2
US8215356B2 US11/825,876 US82587607A US8215356B2 US 8215356 B2 US8215356 B2 US 8215356B2 US 82587607 A US82587607 A US 82587607A US 8215356 B2 US8215356 B2 US 8215356B2
Authority
US
United States
Prior art keywords
ply
tire
sidewall
bridge
plies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/825,876
Other versions
US20080149250A1 (en
Inventor
Keith Carl Trares
Joseph Kevin Hubbell
Robert Allen Losey
Robert Anthony Neubauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodyear Tire and Rubber Co
Original Assignee
Goodyear Tire and Rubber Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodyear Tire and Rubber Co filed Critical Goodyear Tire and Rubber Co
Priority to US11/825,876 priority Critical patent/US8215356B2/en
Priority to EP07123443A priority patent/EP1938959A1/en
Publication of US20080149250A1 publication Critical patent/US20080149250A1/en
Assigned to GOODYEAR TIRE & RUBBER COMPANY, THE reassignment GOODYEAR TIRE & RUBBER COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUBBELL, JOSEPH KEVIN, LOSEY, ROBERT ALLEN, NEUBAUER, ROBERT ANTHONY, TRARES, KEITH CARL
Application granted granted Critical
Publication of US8215356B2 publication Critical patent/US8215356B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/20Building tyres by the flat-tyre method, i.e. building on cylindrical drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/20Building tyres by the flat-tyre method, i.e. building on cylindrical drums
    • B29D30/30Applying the layers; Guiding or stretching the layers during application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/0207Carcasses comprising an interrupted ply, i.e. where the carcass ply does not continuously extend from bead to bead but is interrupted, e.g. at the belt area, into two or more portions of the same ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply
    • B60C9/09Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply combined with other carcass plies having cords extending diagonally from bead to bead, i.e. combined radial ply and bias angle ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D2030/086Building the tyre carcass by combining two or more sub-assemblies, e.g. two half-carcasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10855Characterized by the carcass, carcass material, or physical arrangement of the carcass materials
    • Y10T152/10864Sidewall stiffening or reinforcing means other than main carcass plies or foldups thereof about beads

Definitions

  • the present invention provides a novel way of creating such a ply structure in a tire and another novel radial ply pneumatic tire made by this method.
  • the invention provides in a first aspect a method of building a tire having a carcass assembly having a pair of bead cores and a radial ply reinforcing structure; the method comprises the steps of: applying an innerliner; applying a bridge ply over said innerliner; cylindrically applying a pair of radial cord reinforced sidewall plies, wherein the sidewall plies are spaced apart in the crown area of the tire; wherein bridge ply overlaps the ends of the sidewall plies; setting one bead core over each sidewall ply; turning up each sidewall ply forming a turned up end, wherein the turned up end of each sidewall ply overlaps with the end of the bridge ply; moving the carcass assembly axially inwardly while shaping the carcass assembly toroidally to form ply turnups axially inwardly of the bead cores.
  • the invention provides in a second aspect a pneumatic radial ply tread tire comprising: a pair of axially-spaced bead cores; a carcass having a pair of sidewall plies and a bridge ply, each ply being reinforced with parallel radially extending cords, the sidewall plies each having a first end which is received between the bridge ply and a belt reinforcing structure; wherein each sidewall ply extends axially outward along the sidewall and extending radially inwardly to the bead core and folded from a position axially outside the bead core to a position axially inside and around the bead core to an axially inner turnup end; said bridge ply having ends which overlap with a respective inner turnup end of said sidewall ply and a tread.
  • Bead or “Bead Core” means generally that part of the tire comprising an annular tensile member, the radially inner beads are associated with holding the tire to the rim being wrapped by ply cords and shaped, with or without other reinforcement elements such as flippers, chippers, apexes or fillers, toe guards and chaffers.
  • Belt Structure or “Reinforcing Belts” means at least two annular layers or plies of parallel cords, woven or unwoven, underlying the tread, unanchored to the bead, and having both left and right cord angles in the range from 17° to 27° with respect to the equatorial plane of the tire.
  • “Circumferential” means lines or directions extending along the perimeter of the surface of the annular tread perpendicular to the axial direction.
  • Carcass means the tire structure apart from the belt structure, tread, undertread, over the plies, but including the beads.
  • “Casing” means the carcass, belt structure, beads, sidewalls and all other components of the tire excepting the tread and undertread.
  • Chaffers refers to narrow strips of material placed around the outside of the bead to protect cord plies from the rim, distribute flexing above the rim.
  • Core means one of the reinforcement strands of which the plies in the tire are comprised.
  • Equatorial Plane means the plane perpendicular to the tire's axis of rotation and passing through the center of its tread.
  • “Footprint” means the contact patch or area of contact of the tire tread with a flat surface at zero speed and under normal load and pressure.
  • Innerliner means the layer or layers of elastomer or other material that form the inside surface of a tubeless tire and that contain the inflating fluid within the tire.
  • Normal Inflation Pressure means the specific design inflation pressure and load assigned by the appropriate standards organization for the service condition for the tire.
  • Normal Load means the specific design inflation pressure and load assigned by the appropriate standards organization for the service condition for the tire.
  • “Ply” means a layer of rubber-coated parallel cords.
  • “Pneumatic tire” means a laminated mechanical device of generally toroidal shape (usually an open-torus) having bead cores and a tread and made of rubber, chemicals, fabric and steel or other materials. When mounted on the wheel of a motor vehicle, the tire through its tread provides traction and contains the fluid that sustains the vehicle load.
  • Ring and radially mean directions radially toward or away from the axis of rotation of the tire.
  • Ring Ply Tire means a belted or circumferentially-restricted pneumatic tire in which at least one ply has cords which extend from bead to bead are laid at cord angles between 65° and 90° with respect to the equatorial plane of the tire.
  • “Section Height” means the radial distance from the nominal rim diameter to the outer diameter of the tire at its equatorial plane.
  • “Section Width” means the maximum linear distance parallel to the axis of the tire and between the exterior of its sidewalls when and after it has been inflated at normal pressure for 24 hours, but unloaded, excluding elevations of the sidewalls due to labeling, decoration or protective bands.
  • “Sidewall” means that component which comprises a portion of the outside surface of a tire between the tread and the be
  • Shader means the upper portion of sidewall just below the tread edge.
  • “Sidewall” means that portion of a tire between the tread and the bead.
  • Tire industry standard size refers to the series of letters and numbers used by tire manufacturers to define a tire's characteristics. The series includes such factors as tire width, aspect ratio (height to width), radial/bias type, rim diameter, speed rating, and load rating.
  • Thread means a molded rubber component which, when bonded to a tire casing, includes that portion of the tire that comes into contact with the road when the tire is normally inflated and under normal load.
  • Tread Width or Tread Arc Width means the arc length of the road-contacting tread surface in the axial direction, that is, in a plane parallel to the axis of rotation of the tire.
  • FIG. 1 is a cross-sectional view of the tire according to the invention and FIG. 1A is an enlarged view of half the tire of FIG. 1 ;
  • FIG. 2 is an exploded view of the tire components prior to application to the tire building drum
  • FIGS. 3A , 3 B and 3 C are schematic views of the tire carcass of FIG. 1 being made according to the method of the present invention.
  • FIG. 1 shows a cross-sectional view of the general construction of a tire 10 according to the present invention.
  • the tire 10 of the present invention may be a passenger tire, a radial light truck tire, or radial commercial truck tire.
  • the tire 10 has a tread portion 12 and a pair of sidewalls 16 wherein the sidewalls 16 are connected to the tread portion 12 in the shoulder regions 14 .
  • the tire 10 may have one or more reinforcing belts 24 which laterally extend under the tread.
  • the tire 10 includes an additional bridge ply 50 that is located below the belts 24 and spans the gap under the crown portion between the split sidewall plies 17 a and 17 b . The location of the bridge ply 50 may vary.
  • a carcass 18 of the tire includes tires an air impervious innerliner 42 which extends from bead to bead along the innermost portion of the tire.
  • the liner 42 may comprise halobutyl rubber by way of example.
  • the carcass further comprises a single layer of ply 17 which is split into two sidewall plys 17 a , 17 b and does not have a center crown portion.
  • the split plys 17 a , 17 b have a first end 17 a , 17 b which is located between the tread belt 24 and the bridge ply 50 .
  • the split plies 17 a , 17 b extend down the sidewall of the tire and wrap around the bead 26 and apex 22 from the outside of the tire to the inside, i.e., a reverse turnup.
  • the split plys terminate in a turn-up end 20 a , 20 b located in the sidewall of the tire.
  • the ends 20 a , 20 b extend radially outward from the bead center a distance H wherein H ranges from about 1.5 inches to about 9 inches depending upon tire size.
  • the ends 20 a , 20 b overlap with ends 50 a , 50 b of bridge ply 50 .
  • the amount of overlap ranges from about 0.1 to about 6 inches, more preferably about 1 to about 5 inches. Because the sidewall ply overlaps with the bridge ply there is effectively two layers of ply in the sidewall area of the tire to provide extra protection against sidewall damage and improve overall durability.
  • the method of manufacturing the present invention permits the tire to be fabricated on a flat build cylindrically shaped building drum 5 as illustrated in FIGS. 2 , and 3 A, 3 B, and 3 C.
  • an optional liner layer 42 may first be applied to a tire building drum 5 .
  • a pair of rubber sidewall strips 16 is placed on the drum axially outward of the inner liner 42 .
  • a bridge ply 50 is applied to the building drum 5 and centrally positioned in the centerline as shown over the inner liner.
  • a pair of sidewall ply layers 17 a , 17 b are applied onto the building drum over the sidewalls 16 with the axially inner turnup ends 20 a , 20 b abutting respective ends 50 a , 50 b of the bridge ply 50 . More preferably, the turnup ends 20 a , 20 b are applied over the bridge ply such that the turnup ends 20 a , 20 b overlap bridge ply ends 50 a , 50 b in the range of about 1 to about 5 inches.
  • the bridge ply 50 may be placed before or after the pair of sidewall plies 17 a , 17 b.
  • An optional pair of flippers 40 can be located in an area approximated at the location of the bead cores 26 if so desired.
  • the bead cores 26 are then passed over the building drum 5 over the cylindrically formed components and placed on the drum 5 at a predetermined spacing L between the bead cores. Preferably the bead cores are locked into position on the building drum.
  • a means 6 for turning up and folding over the sidewall plies 17 a , 17 b At each end of the building drum 5 is a means 6 for turning up and folding over the sidewall plies 17 a , 17 b .
  • the means 6 When the means 6 is activated the sidewall plies 17 a , 17 b are folded overlapping lateral edge portions 50 a and 50 b of the bridge ply 50 on each side.
  • the assembly can then be stitched securing the carcass assembly 18 .
  • the carcass assembly 18 may optionally include a pair of chafer strips 21 applied in an area directly below the beads as an initially applied component.
  • the carcass assembly 18 can be toroidially shaped by moving the beads 26 and carcass components axially inwardly as the assembly is expanded radially to a toroidal shape.
  • a first belt layer 24 a is then applied to the carcass covering the bridge ply 50 and the overlapping portions of the sidewall plies 17 a , 17 b .
  • This overlapping belt layer 24 a provides additional structure to hold the assembly together.
  • the belt layer has a width W B1 , as shown.
  • a second narrower in width belt layer 24 b having cords inclined opposite the first layer 24 a can then be applied. That second belt layer has a width W B2
  • first belt layer has cords oriented at about 0° then a second and third belt layers 24 b and 24 c may be employed as an alternative construction.
  • the resultant method yields a tire as illustrated in FIG. 1 wherein ends of split plies 17 a and 17 b are sandwiched between the bridge ply 50 and the first belt layer 24 a .
  • the bridge ply bridges the gap between ply ends 17 a , 17 b to reinforce the crown portion of the tire and preferably extends down the shoulder to abut or overlap with turnup ends 20 a , 20 b.
  • This construction creates a very strong mechanical structure in the crown area of the tire and insures the ends of plies 17 a and 17 b are moved well inboard of the highly flexed tread shoulders 14 and directly inward of the crown portion of the tread 12 and belt reinforcing structure 24 .
  • the shoulder portions of the tire are reinforced with two effective layers of ply formed from the split plies and the bridge ply.

Abstract

A tire and method of building a tire is described wherein the tire has a carcass having a pair of sidewall plies and a bridge ply, each ply being reinforced with cords, the sidewall plies each having a first end which is received between the bridge ply and a belt reinforcing structure; wherein each sidewall ply extends axially outward along the sidewall and extending radially inwardly to the bead core and folded from a position axially outside the bead core to a position axially inside and around the bead core to an axially inner turnup end; said bridge ply having ends which overlap with a respective inner turnup end of said sidewall ply.

Description

This application claims the benefit of, and incorporates by reference, U.S. Provisional Application No. 60/876,329 filed Dec. 21, 2006.
BACKGROUND OF THE INVENTION
It is known in the prior art to utilize an “outside-in” configuration wherein the ply is wrapped around the bead so that the turn up end is located on the inside of the tire or inside the apex. The reversing of the location of the ply turnup results in the reversing of the direction of the force on the ply (not shown), torquing the toe into the rim. Further, this reversed torquing action utilizes the material in the bead more efficiently allowing the bead size to be proportionately reduced. Other associated components can then also be reduced. Even a small decrease in the amount of materials needed to produce a tire can result in significantly decreased material expenses for a manufacturer engaged in high-volume tire production. There is a need for a tire having reduced weight that provides the desired performance characteristics and can be produced with fewer materials at a lower cost.
The present invention provides a novel way of creating such a ply structure in a tire and another novel radial ply pneumatic tire made by this method.
SUMMARY OF THE INVENTION
The invention provides in a first aspect a method of building a tire having a carcass assembly having a pair of bead cores and a radial ply reinforcing structure; the method comprises the steps of: applying an innerliner; applying a bridge ply over said innerliner; cylindrically applying a pair of radial cord reinforced sidewall plies, wherein the sidewall plies are spaced apart in the crown area of the tire; wherein bridge ply overlaps the ends of the sidewall plies; setting one bead core over each sidewall ply; turning up each sidewall ply forming a turned up end, wherein the turned up end of each sidewall ply overlaps with the end of the bridge ply; moving the carcass assembly axially inwardly while shaping the carcass assembly toroidally to form ply turnups axially inwardly of the bead cores.
The invention provides in a second aspect a pneumatic radial ply tread tire comprising: a pair of axially-spaced bead cores; a carcass having a pair of sidewall plies and a bridge ply, each ply being reinforced with parallel radially extending cords, the sidewall plies each having a first end which is received between the bridge ply and a belt reinforcing structure; wherein each sidewall ply extends axially outward along the sidewall and extending radially inwardly to the bead core and folded from a position axially outside the bead core to a position axially inside and around the bead core to an axially inner turnup end; said bridge ply having ends which overlap with a respective inner turnup end of said sidewall ply and a tread.
DEFINITIONS
“Aspect Ratio” means the ratio of its section height to its section width.
“Axial” and “axially” mean the lines or directions that are parallel to the axis of rotation of the tire.
“Bead” or “Bead Core” means generally that part of the tire comprising an annular tensile member, the radially inner beads are associated with holding the tire to the rim being wrapped by ply cords and shaped, with or without other reinforcement elements such as flippers, chippers, apexes or fillers, toe guards and chaffers.
“Belt Structure” or “Reinforcing Belts” means at least two annular layers or plies of parallel cords, woven or unwoven, underlying the tread, unanchored to the bead, and having both left and right cord angles in the range from 17° to 27° with respect to the equatorial plane of the tire.
“Circumferential” means lines or directions extending along the perimeter of the surface of the annular tread perpendicular to the axial direction.
“Carcass” means the tire structure apart from the belt structure, tread, undertread, over the plies, but including the beads.
“Casing” means the carcass, belt structure, beads, sidewalls and all other components of the tire excepting the tread and undertread.
“Chaffers” refers to narrow strips of material placed around the outside of the bead to protect cord plies from the rim, distribute flexing above the rim.
“Cord” means one of the reinforcement strands of which the plies in the tire are comprised.
“Equatorial Plane (EP)” means the plane perpendicular to the tire's axis of rotation and passing through the center of its tread.
“Footprint” means the contact patch or area of contact of the tire tread with a flat surface at zero speed and under normal load and pressure.
“Innerliner” means the layer or layers of elastomer or other material that form the inside surface of a tubeless tire and that contain the inflating fluid within the tire.
“Normal Inflation Pressure” means the specific design inflation pressure and load assigned by the appropriate standards organization for the service condition for the tire.
“Normal Load” means the specific design inflation pressure and load assigned by the appropriate standards organization for the service condition for the tire.
“Ply” means a layer of rubber-coated parallel cords.
“Pneumatic tire” means a laminated mechanical device of generally toroidal shape (usually an open-torus) having bead cores and a tread and made of rubber, chemicals, fabric and steel or other materials. When mounted on the wheel of a motor vehicle, the tire through its tread provides traction and contains the fluid that sustains the vehicle load.
“Radial” and “radially” mean directions radially toward or away from the axis of rotation of the tire.
“Radial Ply Tire” means a belted or circumferentially-restricted pneumatic tire in which at least one ply has cords which extend from bead to bead are laid at cord angles between 65° and 90° with respect to the equatorial plane of the tire.
“Section Height” means the radial distance from the nominal rim diameter to the outer diameter of the tire at its equatorial plane.
“Section Width” means the maximum linear distance parallel to the axis of the tire and between the exterior of its sidewalls when and after it has been inflated at normal pressure for 24 hours, but unloaded, excluding elevations of the sidewalls due to labeling, decoration or protective bands.
“Sidewall” means that component which comprises a portion of the outside surface of a tire between the tread and the be
“Shoulder” means the upper portion of sidewall just below the tread edge.
“Sidewall” means that portion of a tire between the tread and the bead.
“Tire industry standard size” refers to the series of letters and numbers used by tire manufacturers to define a tire's characteristics. The series includes such factors as tire width, aspect ratio (height to width), radial/bias type, rim diameter, speed rating, and load rating.
“Tread” means a molded rubber component which, when bonded to a tire casing, includes that portion of the tire that comes into contact with the road when the tire is normally inflated and under normal load.
“Tread Width or Tread Arc Width” means the arc length of the road-contacting tread surface in the axial direction, that is, in a plane parallel to the axis of rotation of the tire.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be described by way of example and with reference to the accompanying drawings in which:
FIG. 1 is a cross-sectional view of the tire according to the invention and FIG. 1A is an enlarged view of half the tire of FIG. 1;
FIG. 2 is an exploded view of the tire components prior to application to the tire building drum;
FIGS. 3A, 3B and 3C are schematic views of the tire carcass of FIG. 1 being made according to the method of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a cross-sectional view of the general construction of a tire 10 according to the present invention. The tire 10 of the present invention may be a passenger tire, a radial light truck tire, or radial commercial truck tire. The tire 10 has a tread portion 12 and a pair of sidewalls 16 wherein the sidewalls 16 are connected to the tread portion 12 in the shoulder regions 14. The tire 10 may have one or more reinforcing belts 24 which laterally extend under the tread. The tire 10 includes an additional bridge ply 50 that is located below the belts 24 and spans the gap under the crown portion between the split sidewall plies 17 a and 17 b. The location of the bridge ply 50 may vary.
A carcass 18 of the tire includes tires an air impervious innerliner 42 which extends from bead to bead along the innermost portion of the tire. The liner 42 may comprise halobutyl rubber by way of example.
The carcass further comprises a single layer of ply 17 which is split into two sidewall plys 17 a, 17 b and does not have a center crown portion. The split plys 17 a, 17 b have a first end 17 a, 17 b which is located between the tread belt 24 and the bridge ply 50. The split plies 17 a, 17 b extend down the sidewall of the tire and wrap around the bead 26 and apex 22 from the outside of the tire to the inside, i.e., a reverse turnup. The split plys terminate in a turn-up end 20 a, 20 b located in the sidewall of the tire. The ends 20 a, 20 b extend radially outward from the bead center a distance H wherein H ranges from about 1.5 inches to about 9 inches depending upon tire size. Preferably, the ends 20 a, 20 b overlap with ends 50 a, 50 b of bridge ply 50. The amount of overlap ranges from about 0.1 to about 6 inches, more preferably about 1 to about 5 inches. Because the sidewall ply overlaps with the bridge ply there is effectively two layers of ply in the sidewall area of the tire to provide extra protection against sidewall damage and improve overall durability.
The method of manufacturing the present invention permits the tire to be fabricated on a flat build cylindrically shaped building drum 5 as illustrated in FIGS. 2, and 3A, 3B, and 3C.
As shown in FIG. 2, an optional liner layer 42 may first be applied to a tire building drum 5. A pair of rubber sidewall strips 16 is placed on the drum axially outward of the inner liner 42. A bridge ply 50 is applied to the building drum 5 and centrally positioned in the centerline as shown over the inner liner.
A pair of sidewall ply layers 17 a, 17 b are applied onto the building drum over the sidewalls 16 with the axially inner turnup ends 20 a, 20 b abutting respective ends 50 a, 50 b of the bridge ply 50. More preferably, the turnup ends 20 a, 20 b are applied over the bridge ply such that the turnup ends 20 a, 20 b overlap bridge ply ends 50 a, 50 b in the range of about 1 to about 5 inches. Although not shown, the bridge ply 50 may be placed before or after the pair of sidewall plies 17 a, 17 b.
An optional pair of flippers 40 can be located in an area approximated at the location of the bead cores 26 if so desired.
The bead cores 26 are then passed over the building drum 5 over the cylindrically formed components and placed on the drum 5 at a predetermined spacing L between the bead cores. Preferably the bead cores are locked into position on the building drum.
At each end of the building drum 5 is a means 6 for turning up and folding over the sidewall plies 17 a, 17 b. When the means 6 is activated the sidewall plies 17 a, 17 b are folded overlapping lateral edge portions 50 a and 50 b of the bridge ply 50 on each side. The assembly can then be stitched securing the carcass assembly 18.
The carcass assembly 18 may optionally include a pair of chafer strips 21 applied in an area directly below the beads as an initially applied component.
Once all the carcass components are assembled, the carcass assembly 18 can be toroidially shaped by moving the beads 26 and carcass components axially inwardly as the assembly is expanded radially to a toroidal shape.
A first belt layer 24 a is then applied to the carcass covering the bridge ply 50 and the overlapping portions of the sidewall plies 17 a, 17 b. This overlapping belt layer 24 a provides additional structure to hold the assembly together. The belt layer has a width WB1, as shown. A second narrower in width belt layer 24 b having cords inclined opposite the first layer 24 a can then be applied. That second belt layer has a width WB2
If the first belt layer has cords oriented at about 0° then a second and third belt layers 24 b and 24 c may be employed as an alternative construction.
The resultant method yields a tire as illustrated in FIG. 1 wherein ends of split plies 17 a and 17 b are sandwiched between the bridge ply 50 and the first belt layer 24 a. The bridge ply bridges the gap between ply ends 17 a, 17 b to reinforce the crown portion of the tire and preferably extends down the shoulder to abut or overlap with turnup ends 20 a, 20 b.
This construction creates a very strong mechanical structure in the crown area of the tire and insures the ends of plies 17 a and 17 b are moved well inboard of the highly flexed tread shoulders 14 and directly inward of the crown portion of the tread 12 and belt reinforcing structure 24. The shoulder portions of the tire are reinforced with two effective layers of ply formed from the split plies and the bridge ply.

Claims (6)

1. A pneumatic radial ply tire comprising:
a pair of axially-spaced bead cores;
a carcass having a pair of sidewall plies and a bridge ply, said bridge ply having first and second outer ends which do not wrap around the bead cores and which terminate in the sidewall portion of the tire, each ply being reinforced with cords, the sidewall plies each having a first end which is received between the bridge ply and a belt reinforcing structure;
wherein each sidewall ply extends axially outward along the sidewall and extending radially inwardly to the bead core and folded from a position axially outside the bead core to a position axially inside and around the bead core forming first and second axially inner turnup ends which terminate in the sidewall portion of the tire;
said first and second outer ends of said bridge ply overlapping with said first and second axially inner turnup ends of said sidewall plies.
2. The pneumatic radial ply tire of claim 1 wherein the sidewall plies are reinforced with steel cords.
3. The pneumatic radial ply tire of claim 1 wherein the bridge ply is reinforced with substantially inextensible cords made of steel or aramid.
4. The pneumatic radial ply tire of claim 1 wherein the first and second outer ends of the bridge ply overlap with a respective first and second axially inner turnup ends of the sidewall ply in the range of about 0.1 to 6 inches.
5. The pneumatic radial ply tire of claim 1 wherein the first and second outer ends of the bridge ply overlap with a respective first and second axially inner turnup ends of the sidewall ply in the range of about 1 to 5 inches.
6. The pneumatic radial ply tire of claim 1 wherein the bridge ply is radially inward of the sidewall plies.
US11/825,876 2006-12-21 2007-07-10 Tire with composite ply structure and envelope turnup Expired - Fee Related US8215356B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/825,876 US8215356B2 (en) 2006-12-21 2007-07-10 Tire with composite ply structure and envelope turnup
EP07123443A EP1938959A1 (en) 2006-12-21 2007-12-18 Tire with composite ply structure and envelope turnup

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87632906P 2006-12-21 2006-12-21
US11/825,876 US8215356B2 (en) 2006-12-21 2007-07-10 Tire with composite ply structure and envelope turnup

Publications (2)

Publication Number Publication Date
US20080149250A1 US20080149250A1 (en) 2008-06-26
US8215356B2 true US8215356B2 (en) 2012-07-10

Family

ID=39167105

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/825,876 Expired - Fee Related US8215356B2 (en) 2006-12-21 2007-07-10 Tire with composite ply structure and envelope turnup

Country Status (2)

Country Link
US (1) US8215356B2 (en)
EP (1) EP1938959A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8991459B2 (en) 2011-11-10 2015-03-31 Bridgestone Americas Tire Operations, Llc Reinforced radial tire
CN104411478B (en) 2012-06-21 2017-05-10 米其林集团总公司 Method for adhering an innerliner to a carcass ply of a tire
WO2014002631A1 (en) * 2012-06-26 2014-01-03 横浜ゴム株式会社 Pneumatic tire and method for manufacturing pneumatic tire
CN105751555A (en) * 2015-04-17 2016-07-13 青岛双星橡塑机械有限公司 Cord fabric sewing device
CN107487130A (en) * 2017-08-11 2017-12-19 朱晓 A kind of good Agricultural tire of protection effect
JP7072494B2 (en) * 2018-12-14 2022-05-20 株式会社ブリヂストン Pneumatic tires
JP7211802B2 (en) * 2018-12-21 2023-01-24 Toyo Tire株式会社 pneumatic tire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451461A (en) 1965-10-09 1969-06-24 Continental Gummi Werke Ag Pneumatic vehicle tire
DE19537395A1 (en) * 1995-10-07 1997-04-10 Uniroyal Englebert Gmbh Pneumatic tyre with three-part carcass
US6709540B1 (en) * 1999-06-17 2004-03-23 The Goodyear Tire & Rubber Company Composite ply structure for tires and method of manufacture
EP1433590A2 (en) 2002-12-27 2004-06-30 The Goodyear Tire & Rubber Company Tire with composite ply structure and method of manufacture
US20040123928A1 (en) * 2002-12-27 2004-07-01 Losey Robert Allen Tire with outside-in ply construction
JP2005081873A (en) * 2003-09-04 2005-03-31 Sumitomo Rubber Ind Ltd Pneumatic radial tire
US7509987B2 (en) * 2005-11-22 2009-03-31 The Goodyear Tire & Rubber Company Tire with turned down ply construction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4420504B2 (en) * 2000-01-13 2010-02-24 株式会社ブリヂストン Pneumatic tire

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3451461A (en) 1965-10-09 1969-06-24 Continental Gummi Werke Ag Pneumatic vehicle tire
DE19537395A1 (en) * 1995-10-07 1997-04-10 Uniroyal Englebert Gmbh Pneumatic tyre with three-part carcass
US6709540B1 (en) * 1999-06-17 2004-03-23 The Goodyear Tire & Rubber Company Composite ply structure for tires and method of manufacture
EP1433590A2 (en) 2002-12-27 2004-06-30 The Goodyear Tire & Rubber Company Tire with composite ply structure and method of manufacture
US20040123928A1 (en) * 2002-12-27 2004-07-01 Losey Robert Allen Tire with outside-in ply construction
US20040123937A1 (en) * 2002-12-27 2004-07-01 Losey Robert Allen Tire with composite ply structure and method of manufacture
US6913052B2 (en) 2002-12-27 2005-07-05 The Goodyear Tire & Rubber Company Tire with composite ply structure and method of manufacture
JP2005081873A (en) * 2003-09-04 2005-03-31 Sumitomo Rubber Ind Ltd Pneumatic radial tire
US7509987B2 (en) * 2005-11-22 2009-03-31 The Goodyear Tire & Rubber Company Tire with turned down ply construction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
European Search Report, completed Mar. 18, 2008.
Patent Abstracts of Japan, Publication No. 2001 191722 A dated Jul. 17, 2001.

Also Published As

Publication number Publication date
US20080149250A1 (en) 2008-06-26
EP1938959A1 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US6913052B2 (en) Tire with composite ply structure and method of manufacture
US7409974B2 (en) Self-supporting pneumatic tire with a partial inner liner
US20070137757A1 (en) Tire with improved high speed capability and a method of manufacturing
JP2885419B2 (en) Pneumatic tire
US8215356B2 (en) Tire with composite ply structure and envelope turnup
US20090095397A1 (en) Floating two-ply tire
US10124551B2 (en) Split ply tires and bead area monocomponents
US7926533B2 (en) Pneumatic tire with increased lower sidewall durability
EP3501857B1 (en) Pneumatic tire with a robust bead area structure
US7509987B2 (en) Tire with turned down ply construction
EP2156966B1 (en) Pneumatic tire with single non-continuous carcass ply
US5651845A (en) Motorcycle radial tire with supplementary breaker fly
US5746852A (en) Motorcycle radial tire with rubber member between carcass plies
EP1242251B1 (en) Tire design based on first principles of structural engineering
US20190184765A1 (en) Pneumatic tire with a robust ply ending structure
GB2283215A (en) Motor-cycle radial tyre
US20020112798A1 (en) Radial ply tire having a sidewall reinforcement
EP1433590B1 (en) Tire with composite ply structure and method of manufacture
US7249622B2 (en) Tire with deep tread grooves
US20080163969A1 (en) Pneumatic tire with buttressed sidewall
US7267149B2 (en) Pneumatic tire with improved crown durability
CN101219632B (en) Tire with composite ply structure and envelope turnup
US20230191839A1 (en) Pneumatic tire
US20160167451A1 (en) Rim/tire interface structure
WO1998056605A1 (en) Aircraft tire with embedded breaker plies

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOODYEAR TIRE & RUBBER COMPANY, THE, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRARES, KEITH CARL;HUBBELL, JOSEPH KEVIN;LOSEY, ROBERT ALLEN;AND OTHERS;REEL/FRAME:028336/0600

Effective date: 20070710

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20160710